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Abstract: 

The executive attention theory of working memory capacity (WMC) proposes that measures of WMC broadly 

predict higher order cognitive abilities because they tap important and general attention capabilities (R. W. 

Engle & M. J. Kane, 2004). Previous research demonstrated WMC-related differences in attention tasks that 

required restraint of habitual responses or constraint of conscious focus. To further specify the executive 

attention construct, the present experiments sought boundary conditions of the WMC–attention relation. Three 

experiments correlated individual differences in WMC, as measured by complex span tasks, and executive 

control of visual search. In feature-absence search, conjunction search, and spatial configuration search, WMC 

was unrelated to search slopes, although they were large and reliably measured. Even in a search task designed 

to require the volitional movement of attention (J. M. Wolfe, G. A. Alvarez, & T. S. Horowitz, 2000), WMC 

was irrelevant to performance. Thus, WMC is not associated with all demanding or controlled attention 

processes, which poses problems for some general theories of WMC. 
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Article: 

Individual differences in working memory capacity (WMC), as measured by tasks such as reading span 

(Daneman & Carpenter, 1980), strongly predict individual differences in a wide range of fluid cognitive 

capabilities, including language comprehension, learning, and reasoning (for reviews, see Conway, Kane, & 

Engle, 2003; Daneman & Merikle, 1996; Engle, Kane, & Tuholski, 1999). However, because WMC tasks are 

themselves complex, the cognitive processes that drive these empirical associations are not transparent. 

Consider the reading span task, which typically presents short lists of words to remember, with each memory 

item preceded by the presentation of an unrelated comprehension task, such as reading or evaluating sentences. 

Subjects must effectively encode, maintain access to, and/or recover the current set of target words in the face 

of interruption and disruption from the reading task and proactive interference from prior sets. Thus, reading 

span scores may predict other cognitive abilities because they reflect reading skill (Daneman & Carpenter, 

1980, 1983), storage capacity or memory decay (Bayliss, Jarrold, Gunn, & Baddeley, 2003; Towse, Hitch, & 

Hutton, 2000), mental resources or activation (Cantor & Engle, 1993; Just & Carpenter, 1992; Shah & Miyake, 

1996), processing efficiency or speed (Bayliss et al., 2003; Case, Kurland, & Goldberg, 1982; Fry & Hale, 

1996), mnemonic strategies (McNamara & Scott, 2001), inhibitory control of memory interference (Lustig, 

May, & Hasher, 2001), a limited structural capacity for focused attention or mental binding (Cowan, 2005; 

Oberauer, 2005), or a combination of these mechanisms. Although some of these explanations for WMC tasks’ 

predictive power seem to fail critical tests (see Engle & Kane, 2004; Engle, Kane, et al., 1999), no consensus 

view has yet emerged from this active research area (e.g., Miyake, 2001; see also Ackerman, Beier, & Boyle, 

2005; Beier & Ackerman, 2005; Kane, Hambrick, & Conway, 2005; Oberauer, Schulze, Wilhelm, & Süß, 

2005). 

 

Our own view, which motivated the present set of experiments, is that WMC tasks reflect a host of cognitive 

processes and abilities, but the ones that are primarily responsible for the relation between WMC and general 

fluid abilities (Gf) are attentional. This executive attention view argues that WMC tasks predict individual 
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differences in Gf because they reflect, in part, the controlled, attentional, and domain-general ability to maintain 

or recover access to stimulus or goal representations outside of conscious focus.
1
 This ability is most important 

and most easily measurable when people must keep representations accessible in the face of proactive 

interference or habits from prior experiences and in the face of distraction from other mental or environmental 

events (Engle & Kane, 2004; Engle, Tuholski, Laughlin, & Conway, 1999; Heitz, Unsworth, & Engle, 2005; 

Kane & Engle, 2002; for related views, see Hasher & Zacks, 1988; Hasher, Zacks, & May, 1999; Lustig et al., 

2001). 

 

To summarize the supporting evidence (see Engle & Kane, 2004, for a more detailed review), we note that 

WMC tasks correlate with Gf measures more strongly than do ―simple‖ short-term memory (STM) span tasks 

that require only immediate recall of lists. Indeed, a recent review suggested that WMC accounts for about half 

the variability in Gf among healthy adults (Kane et al., 2005). Moreover, residual variance from WMC tasks 

continues to predict Gf after STM variance, which may be interpreted as nonattentional storage variance, is 

partialed out (Bayliss et al., 2003; Conway, Cowan, Bunting, Therriault, & Minkoff, 2002; Engle, Tuholski et 

al., 1999; Oberauer et al., 2005; but see Colom, Rebollo, Abad, & Shih, 2006). More direct support comes from 

extreme-group-design studies contrasting top-quartile scorers on WMC span tasks (high spans) with bottom-

quartile scorers (low spans) in a variety of memory- and attention-control tasks. For example, in memory 

interference tasks, high spans show less vulnerability to competition at retrieval than do low spans (e.g., 

Bunting, 2006; Bunting, Conway, & Heitz, 2004; Conway & Engle, 1994; Lustig et al., 2001; Rosen & Engle, 

1998). Many theories suggest that such effective interference resistance is diagnostic of effective attention 

control (e.g., Anderson, 2003; Dempster, 1992; Hasher & Zacks, 1988; Norman & Shallice, 1986), and, indeed, 

experimenters can make high spans as vulnerable to interference as low spans by dividing their attention during 

the memory task (Kane & Engle, 2000; Rosen & Engle, 1997). 

 

Even in more simple tests of attention control that do not heavily tax memory, high spans outperform low spans. 

This is particularly true when the attention task requires novel goals to be accessibly maintained and habitual 

responses to be withheld, such as in the antisaccade task, which requires subjects to move their eyes and 

attention in opposition to a salient visual stimulus (Kane et al., 2001; Unsworth, Schrock, & Engle, 2004), and 

in the Stroop task, in which subjects must respond to the hue rather than the identity of color words (Kane & 

Engle, 2003; Kiefer, Ahlegian, & Spitzer, 2005; Long & Prat, 2002; McCabe, Robertson, & Smith, 2005). As 

well, high spans’ responses to target stimuli are less disrupted by the presentation of distractors than are low 

spans’ responses in dichotic listening and visual flanker tasks (Conway, Cowan, & Bunting, 2001; Heitz & 

Engle, 2006; Reddick & Engle, in press; but see Friedman & Miyake, 2004). Intervention studies provide 

further experimental evidence: Providing healthy people and attention-deficit/hyperactivity disorder patients 

with extensive training on WMC tasks significantly improves their scores on attention control and fluid-ability 

tasks, such as Stroop and progressive matrices (e.g., Klingberg et al., 2005; Klingberg, Forssberg, & 

Westerberg, 2002). 

 

Despite considerable evidence in favor of the executive attention view of WMC and its relation to complex 

cognition, significant challenges remain (see Friedman & Miyake, 2004; Kane et al., 2005). First, but not 

addressed in the present work, is that we do not yet know that the variance shared between WMC and Gf tasks 

is the same as that shared between WMC and attention control tasks. These associations have almost always 

been tested in separate studies, so it remains possible that different cognitive processes mediate them. Indeed, as 

they are typically measured, WMC may correlate more strongly with Gf than does attention control (e.g., 

Friedman et al., 2006; Schweizer & Moosbrugger, 2005), which would suggest that aspects of WMC beyond 

attention may contribute to Gf correlations. Large-scale latent variable studies using WMC, attention control, 

and Gf tasks are required, therefore, to settle the issue of whether executive attention processes are critical to 

WMC’s predictive power. Second, and at the focus of the present experiments, is that the executive attention 

construct is inadequately specified. Like the concepts of controlled processing, executive function, top-down 

control, attention, and obscenity, one may know it when one sees it, and researchers may be able to create a 

consensus list of its attributes (e.g., Hasher & Zacks, 1979; Norman & Shallice, 1986; Posner & Snyder, 1975; 



Shiffrin, Dumais, & Schneider, 198 1), but scientific progress eventually demands stricter operationalization 

than we have yet offered. 

 

As we have noted, we characterize executive attention as comprising those domain-general processes that keep 

stimulus and goal representations accessible outside of conscious focus, which are most useful and detectable 

under conditions of interference, distraction, and response competition (Engle & Kane, 2004). How-ever, if 

executive attention processes are as general as we have proposed (and as some views of executive function 

suggest; e.g., Norman & Shallice, 1986), then they ought to contribute to some aspects of cognitive control 

beyond those tapped by interference or conflict tasks, such as Stroop, antisaccade, and dichotic listening. After 

all, the higher order abilities that WMC predicts do not all seem to involve much competition or conflict. 

 

Indeed, there is accumulating evidence that individual differences in WMC also predict variation in 

performance of ―controlled‖ visual attention tasks in which prepotent response tendencies play a less obvious 

role. For example, Conway, Tuholski, Shisler, and Engle (1999) found that high-WMC-span subjects showed 

larger negative priming effects in a letter-naming task than did low spans, and Engle, Conway, Tuholski, and 

Shisler (1995) found that putting subjects under a simultaneous working memory load decreased their negative 

priming effects. Although the under-lying causes of negative priming are still under debate (e.g., Houghton & 

Tipper, 1994; Milliken, Joordens, Merikle, & Seiffert, 1998; Neill & Valdes, 1992), these tasks required 

subjects to selectively attend to one visual stimulus while ignoring another, without any strong habitual 

tendency to attend to distractors. Similarly, in a response-deadline version of the Eriksen flanker task (Eriksen 

& Eriksen, 1974) that presented a target letter surrounded by four distractor letters, high spans reached 

asymptotic accuracy at much shorter deadlines than did low spans (Heitz & Engle, 2006; see also Reddick & 

Engle, in press). Because both groups eventually reached identical asymptotes, Heitz and Engle argued that high 

spans demonstrated effective control by more rapidly restricting attentional focus than did low spans, from its 

originally diffuse mode, encompassing the entire array, to a tighter lock onto the target (see Gratton, Coles, & 

Donchin, 1992; Gratton, Coles, Sirevaag, Eriksen, & Donchin, 1988). 

 

WMC-related differences in controlling attentional focus, again in the absence of strong prepotencies, were 

perhaps most dramatically demonstrated by Bleckley, Durso, Crutchfield, Engle, and Khanna (2003). Subjects 

identified a centrally presented letter at the same time they localized another letter to 1 of 24 locations along 

three concentric rings around fixation (see Egly & Homa, 1984). All displays were masked after very brief 

exposures that were individually tailored to each subject, and the location of the peripheral stimulus was 

endogenously cued in advance of each trial by the word inner, middle, or distant. Cues were valid for 80% of 

the trials, so attending to them generally improved performance. However, on the critical, invalidly cued trials 

that presented a target on a ring interior to the cued ring (e.g., in the inner ring when the middle one was cued), 

low spans actually localized targets more accurately than did high spans, and they did so as accurately as on 

valid trials. These findings suggest that low spans focused their attention like a spotlight, highlighting the cued 

ring and everything within it. In contrast, high spans appeared to more effectively limit their visual attention to 

the cued ring. When a target appeared interior to the cued ring, high spans localized it no more accurately than 

they did those that appeared outside the cued ring—even though the target was closer to fixation than was the 

cued ring. Bleckley et al. (2003) argued that executive attention is necessary to build and maintain 

endogenously cued object representations. As further support for this idea, Bleckley and Engle (2006) found 

that high spans performed like low spans, showing spotlightlike focus, under dual-task conditions that stressed 

their executive control processes. Moreover, low spans performed like high spans, showing object-based focus, 

only when the target ring was exogenously cued by its flashing, thus relieving executive processes from duty. 

 

Together, then, the findings from attention tasks involving response conflict and endogenous focusing—that is, 

those requiring either the restraint of habitual behavior or the constraint of visual or auditory attention—

suggest that WMC correlates broadly with diverse indicators of top-down executive control. Thus, WMC does 

not seem to be uniquely associated with any particular control function. The present experiments further test the 

boundaries of the WMC–executive attention construct by examining the performance of high- and low-span 

subjects in a variety of visual search tasks. Although visual search is rarely mentioned in the context of 



executive functions (see Monsell, 1996) and is not strongly associated with deficits accompanying prefrontal 

cortex damage, the same can be said for flanker-type tasks (e.g., Lee, Wild, Hollnagel, & Grafman, 1999; Rafal 

et al., 1996), which do produce WMC-related differences in performance. Moreover, suggestive evidence of a 

WMC–search association comes from an enumeration study in which subjects counted between 1 and 12 visual 

targets on each trial (Tuholski, Engle, & Baylis, 2001). High spans responded more quickly than low spans 

amid increasing numbers of conjunctive distractors, which shared features with the targets; the span groups 

were equivalent, however, with increasing numbers of disjunctive distractors, which shared no features with 

targets. These findings are clearly reminiscent of classic visual search results, in which increasing numbers of 

conjunctive distractors in a display led to steeper search response time (RT) slopes than did increasing numbers 

of disjunctive distractors (e.g., Treisman & Gelade, 1980). 

 

Indeed, several theories of visual search, particularly those arguing for self-terminating serial search under some 

contexts, propose an important role for attention and top-down control processes. For example, both feature 

integration theory (Treisman & Gelade, 1980; Treisman & Gormican, 1988; Treisman & Sato, 1990) and 

guided search theory (Cave & Wolfe, 1990; Wolfe, 1994; Wolfe, Cave, & Franzel, 1989) propose that some 

primitive features of visual scenes are analyzed and represented in parallel across the visual field but that 

identification and localization of objects usually requires attention to be serially deployed to bind together the 

features at potential target locations.
2
 These models also include a role for subjects’ top-down control over the 

coordination of attention. In guided search, attention is guided across locations on the basis of activation levels 

in a master map that receives both bottom-up and top-down input. Bottom-up activation from independent 

feature maps (e.g., representing color or line orientation) is based on local feature distinctiveness, and top-down 

activation derives from coarse categorical knowledge about the target’s features (e.g., that it is likely to be red 

or horizontally oriented). Top-down control may operate to increase the activation of a feature that is likely to 

identify the target (e.g., to all locations of red things), to decrease the bottom-up activation from a feature map 

that is associated with distractors (e.g., if targets are red horizontal lines and there are green horizontal 

distractors, bottom-up input from orientation would be reduced), or both. 

 

Regardless of how such top-down input might be implemented (feature integration theory emphasizes 

inhibition, whereas guided search theory emphasizes activation), these theories propose some endogenous 

control over the deployment of attention in visual search, suggesting that it may be a profitable testing ground 

for attentional theories of WMC. Indeed, there are myriad findings indicating that subjects can sometimes exert 

strategic control over search (e.g., Bacon & Egeth, 1997; Duncan, 1989; Egeth, Virzi, & Garbart, 1984; Green 

& Anderson, 1956; Moore & Egeth, 1998; Rabbitt, 1984; Wolfe et al., 1990; Zohary & Hochstein, 1989) and 

that individual differences in search are robust (Wolfe, Friedman-Hill, Stewart, & O’Connell, 1992). Moreover, 

related theoretical approaches to search, such as biased competition views, propose that an attentional template 

is held in active memory to control competition from distractors for limited processing capacity (e.g., 

Bundeson, 1990; Desimone, 1996; Desimone & Duncan, 1995; Downing, 2000; Duncan, 1998; Duncan & 

Humphreys, 1989). The analogy seems strong to executive attention processes of working memory that 

maintain access to stimulus and goal representations in the face of competition and conflict (Engle & Kane, 

2004; Kane & Engle, 2003). 

 

Thus, if executive attention is involved in many (or most) varieties of attention control, even in those that do not 

involve the restraint of habitual responses, the constraint of visual focus, or the resolution of interference, then 

WMC-related individual differences should emerge in search performance. If, however, the attention processes 

involved in WMC are more limited in scope, involved in goal maintenance only in the service of controlling 

conflict and restricting focus, we may observe null effects of WMC. 

 

Rest assured that we recognize the potential circularity in this line of pursuit. We propose to infer executive 

involvement in tasks by their sensitivity to WMC-related differences, but at the same time we seek to explain 

those WMC differences by appealing to executive attention. However, in the present experiments we attempt to 

break this tautology by investigating particular task conditions that other research suggests should be especially 

likely to evoke endogenous control or to be susceptible to attentional limitations. But, even without this 



protective measure, we suggest that our approach has considerable heuristic value. WMC is clearly related to 

some varieties of attention control (memory-interference tasks, Strooplike conflict tasks, selective-focusing 

tasks), but to better specify what we mean by an executive attention construct, we must delineate its boundaries 

by trying to find ostensible attention tasks that are insensitive to WMC differences. An empirical failure to link 

WMC to visual search would therefore be important to working memory theory. In addition, students of visual 

search who are interested in the nature of top-down control should gain some theoretical purchase from a 

finding either that visual search is related to WMC in similar ways as are other controlled tasks or that it is 

unrelated to WMC and is likely to be controlled via different mechanisms than are those other demanding 

―attention‖ tasks. 

 

EXPERIMENT 1 

Experiment 1 was motivated by a small pilot study that yielded no evidence for WMC-related differences in 

visual search. In that study, subjects identified as having high or low WMC, on the basis of their working 

memory span performance, searched matrices of letters for target Fs among either Os or Es in one trial block 

and for target Ps among either Cs or Rs in another block. We had predicted span equivalence in the efficient 

pop-out searches for Fs and Ps among Os and Cs and had predicted span differences in the inefficient searches 

among Es and Rs (we expected these latter searches to be inefficient, with increasing RTs with increasing set 

sizes, on the basis of prior findings from feature-absent searches; Treisman & Gormican, 1988; Treisman & 

Souther, 1985). As we expected, both high and low spans showed very shallow—and equivalent—search slopes 

when the targets and distractors were perceptually dissimilar. The span groups were also equivalent, however, 

in the feature-absent conditions, despite surprisingly steep search slopes overall (approximately 24 ms/item on 

target-present trials and 55 ms/item on target-absent trials). 

 

In Experiment 1 we attempt to replicate these null pilot findings in a larger scale study using a similar search 

task. Although, as we have mentioned, search-task methods can be manipulated in ways that elicit controlled, 

strategic behavior in subjects (e.g., Bacon & Egeth, 1997; Wolfe, Alvarez, & Horowitz, 2000), we wanted to 

begin our investigation of the WMC–search relation with as simple a method as possible that could still be 

expected to elicit serial or attention-demanding search and to yield substantial search slopes. Recall that our 

goal is to push the boundaries of the executive attention construct, and this requires investigating search tasks 

with little in common with attention-control tasks that have repeatedly been associated with WMC differences. 

In this experiment, then, high- and low-WMC subjects searched visual displays for a target F among either Os 

(for efficient search) or Es (for inefficient search). To test whether our prior null findings arose because we 

presented stimuli in regular, 4 X 4 matrix displays, we also manipulated the degree of organization of search 

displays between trial blocks. 

 

Method  

WMC Screening 
We individually screened approximately 500 undergraduates (ages 18–35 years) from the University of North 

Carolina at Greensboro and Southern Illinois University at Edwardsville for WMC using the Operation Span 

(OSPAN) task (Turner & Engle, 1989). Each trial presented a series of two to five simple mathematical 

operations to solve, interpolated with two to five unrelated words to memorize. An E-Prime 1.0 program 

(Schneider, Eschman, & Zuccolotto, 2002) presented the stimuli, in black against a white background, at the 

center of a color monitor. This version of OSPAN is highly reliable, demonstrating good internal consistency 

and strong correlations with other putative WMC tasks (see Kane et al., 2004). 

 

One operation–word string appeared at a time, and subjects read the operation out loud—for example, ―Is (9/3) 

+ 2 = 5?‖—verified whether the provided answer was correct (i.e., ―yes‖), and then immediately read the word 

aloud (e.g., ―drill‖). The experimenter then immediately pressed a key to advance the screen either to the next 

operation–word string or, if the trial was complete, to the recall cue (a set of three centered question marks). If 

an operation–word string appeared, subjects read it aloud with-out pausing. If the recall cue appeared, subjects 

used an answer sheet to report all the words from the trial in serial order. 



Three trials were presented at each length (two through five), in the same pseudorandom sequence for all 

subjects. The OSPAN score was calculated as the sum of recalled words from all trials that were completely 

recalled in correct serial order (maximum score = 42). 

 

Visual Search 

Subjects 

One hundred twenty of the screened subjects participated in Experiment 1 as partial fulfillment of a course 

requirement. Fifty-six subjects were selected as having OSPAN scores from the top quartile of our typical 

distribution (i.e., at least 19; high spans), and 64 were selected from the bottom quartile (i.e., 9 or lower; low 

spans). All subjects who participated in the visual search experiment had responded correctly to 85% or more of 

the OSPAN operations, and they completed the visual search experiment within the same academic semester as 

the OSPAN screening. 

 

Design 

The design was a 2 X 2 X 2 X 3 X 2 mixed-model factorial, with working memory (WM) span (high, low) as a 

between-subjects variable; array type (more organized, less organized) manipulated within subjects and 

between trial blocks; and distractor type (Es, Os), array size (1, 4, 16), and trial type (target present, target 

absent) manipulated within subjects and within trial blocks. We randomly assigned subjects to one of two array-

type order conditions: more organized block first versus less organized block first. 

 

Apparatus and Materials 

An E-Prime 1.0 program, running on Pentium III or higher PCs, presented the stimuli on a 17-in. (43-cm) color 

monitor and collected response latency and accuracy data. We drew the letter search stimuli in Microsoft Paint; 

all lines were drawn 1 mm (2 pixels) thick. Target Fs were 7 mm high, with a top horizontal line of 4.5 mm and 

a middle horizontal line of 4 mm. Distractor Es differed from Fs in that their top and bottom horizontal 

lines were 5 mm long and their middle horizontal line was 4.5 mm long. Distractor Os were 7 mm high and 6.5 

mm wide. 

 

Search stimuli appeared in either more organized or less organized arrays (see Figure 1). More organized arrays 

presented the search stimuli within 16 possible locations, arranged into a 4 X 4 matrix (71 mm high X 70 mm 

wide). The distances between stimuli in the matrix varied slightly from display to display, depending on the 

particular composition of letters, and ranged from 14.5 mm to 18 mm apart horizontally and from 13 mm to 

15.5 mm apart vertically. Less organized arrays presented the target (F) and distractor (O or E) stimuli in any of 

the 16 locations from the more organized arrays but also presented distractors in any of the horizontal and 

vertical spaces between the locations from the more organized arrays. Thus, the minimum possible distance 

between stimuli was much smaller here than in more organized arrays, ranging from 3.5 mm to 6 mm 

horizontally and from 2.5 mm to 4 mm vertically. 

 

Subjects saw 192 trials in both the more and the less organized array blocks. In each block, 96 trials presented a 

target F (target-present trials), and 96 trials did not (target-absent trials). Half the trials for each trial type 

presented Os as distractor stimuli, and half presented Es, and within each of these distractor types, 16 trials 

presented 1, 4, and 16 total stimuli for search (for target-absent trials, a distractor stimulus was presented in the 

place of the target). 

 

On more organized array trials, target and distractor stimuli were presented only in the 16 locations defining a 4 

X 4 matrix, not in the spaces between these locations. Targets appeared equally often in each of the 16 locations 

within each experimental condition. Thus, Array Size 1 trials presented a target (or single distractor) one time in 

each location. Array Size 4 trials did so, too, and distractors were presented only within the quadrant of the 

matrix that also contained the target. So, for example, if the target was presented in the topmost left location, a 

distractor appeared in the location to the right, the location below, and the location diagonally down and to the 

right. Array Size 16 trials presented distractors in all the locations not occupied by the target (15 locations on 

target-present trials, and all 16 locations on target-absent trials). 



 

 

Figure 1. Examples of more organized and less organized stimulus arrays from Experiment 1. Subjects 

searched these arrays for the presence of a target F. 

 

On less organized array trials, targets appeared in one of the same 16 locations defined by the more organized 

arrays, and on target-absent trials of array size 1, the single distractor always appeared in 1 of these 16 

locations. However, in trials with array sizes 4 or 16, distractors could appear in empty target locations and in 

empty locations between target locations (horizontally and vertically, for a total of 49 possible locations). Array 

Size 4 trials randomly presented distractors within the quadrant of 9 locations defined by the target; Array Size 

16 trials randomly presented distractors in any of the 49 locations. 

 

All subjects saw the same set of 192 stimulus arrays for more organized blocks and 192 arrays for less 

organized array blocks, but in a different random sequence. Thirty arrays were created for practice trials in the 

more organized condition that approximately balanced the experimental conditions of trial type, distractor type, 

and set size; 24 such arrays were created for less organized practice. 

 

Procedure 

We tested all subjects individually. They had to report, as quickly and accurately as possible, whether an F 

appeared in each display via a keypress (the z key for yes and the slash key for no). The task began with a 

practice block for either the more organized array condition or the less organized array condition, followed by 

the experimental block. Then a practice block for the other array condition preceded its experimental block. 

Each practice and experimental trial presented a blank screen for 490 ms, then an asterisk at central fixation for 

740 ms, and then the centered stimulus array, which remained on screen until the subject responded. Subjects 

received no feedback. 

 

Results 

Alpha levels were set at .05 for all analyses, and effect sizes are reported as partial eta squared (η
2

P) Cohen 

(1988) suggested effect sizes of .01, .06, and .14 to indicate small, medium, and large effects, respectively 

(although such criteria are necessarily arbitrary and perhaps too liberal; Olejnik & Algina, 2000). 

 



Subjects 

Data from 3 subjects were dropped because of excessive error rates (at least 50% in any of the experimental 

conditions), which left 55 high spans and 62 low spans in the analyses. 

 

RTs 

Target-Present Trials 

Figures 2A and 2B present the means of high- and low-span subjects’ median RTs for correct target-present 

trials, in more organized and less organized arrays, respectively. These two array types elicited similar result 

patterns, so we analyzed them together in a 2 (WM span) X 2 (array type) X 2 (distractor type) X 3 (array size) 

mixed-model analysis of variance (ANOVA), with array type, distractor type, and array size as repeated-

measures variables. 

 
 

Figure 2. Mean target-present response times (in milliseconds) from Experiment 1, by working memory span 

group (high span vs. low span) and array size, for trials with O distractors versus E distractors. A: Data from 

more organized arrays. B: Data from less organized arrays. Error bars represent standard errors of the 
means. 

 



As expected, subjects located target Fs significantly more slowly amid distractor Es than amid distractor Os, 

F(1, 115) = 165.93 , η
2

P = .59, and in larger than in smaller arrays, F(2, 230) = 216.34 , η
2

P = .65; searches also 

slowed more with increasing array size amid distractor Es than amid Os, F(2, 230) = 102.37, η
2

P = 47. 

However, despite these large experimental effects, WM span showed none, with only one F > 1; for the WM 

Span X Array Type X Distractor Type interaction, F(1, 115) = 1.07, p = .31. There was no evidence for a 

relation between WMC and visual search times. Remaining significant effects were a main effect of array type, 

F(1, 115) = 7.06, η
2

P = .06; and Array Type X Set Size, F(2, 230) = 4.38, η
2

P = .04; and Array Type X 

Distractor Type X Array Size interactions, F(2, 230) = 10.22, η
2

P = .08. 

 

 
 

 

Figure 3. Mean target-absent response times (in milliseconds) from Experiment 1, by working memory span 

group (high span vs. low span) and array size, for trials with O distractors versus E distractors. A: Data from 

more organized arrays. B: Data from less organized arrays. Error bars represent standard errors of the 

means. 

 

Target-Absent Trials 

Figures 3A and 3B present the means of high and low spans’ median RTs for correct target-absent trials, in 

more and less organized arrays, respectively. Again, subjects responded more slowly to arrays presenting 

distractor Es than to those presenting Os, F(1, 115) = 391.95, η
2

P = .77, and to larger than to smaller arrays, F(2, 



230) = 193.67, η
2

P = .63; searches also slowed more with increasing array size amid distractor Es than amid Os, 

F(2, 230) = 187.39, η
2

P = 62. Again, WM span had no significant effects (all Fs < 1), so we find no evidence for 

a WMC–search association. Remaining significant interactions were Array Type X Distractor Type, F(1, 115) = 

4.92, η
2

P = .04, and Array Type X Distractor Type X Array Size, F(2, 230) = 4.36, η
2

P = .04. 

 

Error Rates 

Target-Present Trials 

Table 1 presents the means of high- and low-span subjects’ error rates for target-present and target-absent trials, 

which we analyzed in a 2 (WM span) X 2 (array type) X 2 (distractor type) X 3 (array size) mixed-model 

ANOVA, with array type, distractor type, and array size as repeated-measures variables. Error rates were very 

low overall (Ms < 5% in all conditions). Nonetheless, subjects missed more targets amid distractor Es than amid 

Os, F(1, 115) = 12.80, n2p = .10, and amid larger than amid smaller arrays, F(2, 230) = 7.12, η
2

P = .06; subjects 

also missed more targets with increasing array size amid distractor Es than amid Os, F(2, 230) = 6.56, η
2

P = .05.  

 
 

Moreover, low spans missed more targets than did high spans, F(1, 115) = 3.97, η
2

P = .03, and a significant WM 

Span X Array Type X Array Size interaction, F(2, 230) = 3.71, η
2

P = .03, reflected that low spans had higher 

error rates than high spans in the largest, less organized arrays but also in the smallest, more organized arrays. 

To follow up on this interaction, we con-ducted a WM Span X Array Size ANOVA for more organized arrays, 

which yielded only a main effect of WM span, F(1, 115) = 4.43, η
2

P = .04, reflecting an approximate 1% span 

difference in accuracy. A corresponding ANOVA for less organized arrays yielded only a marginal WM Span 

X Array Size interaction, F(2, 230) = 2.55, p = .08, η
2

P = .02, reflecting less than a 1% span difference in 

accuracy for smaller arrays and a 1%–2% difference for larger arrays. Unlike the RT analyses, then, error rates 



did yield evidence for span differences in search, but they were very small in magnitude. Remaining significant 

effects from the omnibus ANOVA were a main effect of array type, F(1, 115) ~ 4.43, ~p 2 ~ .04, and Array 

Type X Array Size, F(2, 230) = 4.01, η
2

P = .03, and Distractor Type X Array Size interactions, F(2, 230) 6.56, 

η
2

P = .05. 

 

Target-Absent Trials 

ANOVA indicated that subjects committed more false alarms on distractor Es than on Os, F(1, 115) = 19.10, 

η
2

P = .14, and on larger than on smaller arrays, F(2, 230) = 13.48, η
2

P = .10. No effects involving WM span 

were significant (largest F = 2.32, p > .13, η
2

P = .01, for the WM Span X Array Type interaction), and there 

were no other significant effects. The evidence for WMC-related error differences in search was thus limited to 

misses, not false alarms. 

 

Reliability 

Null WM span effects in visual search RTs may indicate that there is no fundamental relation between WM and 

visual search or, instead, that either WM span or search performance was not measured reliably. The version of 

OSPAN we used is reliable (see Kane et al., 2004), but attention tasks used in experimental investigations often 

are not (e.g., Friedman & Miyake, 2004); this is particularly true when the effects of interest are difference 

scores, such as search slopes. To assess reliability of our visual search RTs, we computed Cronbach’s alpha in 

two different ways. First, we calculated it across the 12 RTs for each subject in conditions involving distractor 

Es, or inefficient search (2 array types X 3 array sizes X 2 target-present/-absent trials), and found that a = .87. 

Second, we calculated it across the four RT search slopes involving distractor Es (2 array types X 2 target-

present/-absent trials), with slopes computed simply as the difference score between Array Size 16 and Array 

Size 1, and found that a = .79. Both of these reliability estimates are satisfactory, and, coupled with our 

reasonably large sample size, they suggest that the null span effects on search were not due to measurement 

problems. 

 

Discussion 

Experiment 1 replicates our pilot results with a larger subject sample and two different versions of the search 

task. As measured by the OSPAN task, individual differences in WMC were rather spectacularly unrelated to 

the speed and efficiency of visual search. Whether the stimulus displays were highly organized or less 

organized, low spans identified the presence and absence of search targets as quickly as did high spans, even in 

very large arrays. The lack of a WMC effect cannot be attributed to insensitive or unreliable measures, because 

our tasks yielded large search slopes in both of our inefficient conditions (Fs among Es in more organized and 

in less organized arrays), and these slopes were reliably measured, as estimated by internal consistency 

statistics. Moreover, our samples of high and low spans were reasonably large relative to others in this research 

domain (with 50–60 subjects each), especially with all the remaining variables manipulated within subjects. 

The only suggestion of a WMC-related search effect was in misses, with low spans generally missing 0.5%–2% 

more targets than did high spans across conditions. This is a very small absolute difference, and, given the high 

accuracy rates overall (most conditions ~~!! 98%) and the general insensitivity of this span difference to array 

size, we see only very weak evidence that the executive processes involved in WMC are also engaged during 

visual search. 

 

Of course, one must be concerned that we are arguing to accept the null hypothesis. We believe that we are 

justified in doing so, given the reliability of our measures, the internal replication of a null effect between more 

and less organized arrays, and the external replication of the null effect from our pilot data. Nonetheless, to 

make a more compelling claim that we put forth a ―good effort‖ (Frick, 1995, p. 135) to find any effect that 

might actually be there, we seek to replicate these findings again in yet a larger sample and in a different set of 

search tasks. 

 

EXPERIMENT 2 

Experiment 2 tested nearly 300 subjects in two WMC tasks and two visual search tasks. We included a second 

WMC task to increase the validity of our classification of subjects, and we used two visual search tasks that 



differed in the surface characteristics of their stimuli and also in their likely attention demands. More-over, we 

warped our stimulus display matrices to appear even more random than the less organized arrays from 

Experiment 1; the resulting arrays were much more similar to those regularly used in the visual search literature. 

Finally, to quantify the strength of any relation between WMC and search, we measured correlations between 

the full range of WMC scores and search-performance measures in the sample, in addition to conducting 

ANOVA-based comparisons of the extreme groups of high- and low-WMC subjects. 

 

The search tasks we used here were a conjunction search task, which asked subjects to search for a red vertical 

bar amid red horizontal and green vertical bars, and a spatial configuration search, which asked subjects to 

search for an F among Es and rotated Ts. We thought it wise to investigate conjunction search, if only because 

of its prominence in the visual search literature following Treisman and Gelade (1980; see also Corcoran & 

Jack-son, 1979; Treisman, 1977). Conjunction search is also of interest because, in some sense, it might be 

considered a more complex task than the feature-absence search we assessed in Experiment 1, with attention 

being required to bind color and orientation features together into objects rather than just identifying a missing 

part. At the same time, conjunction search often yields very shallow search slopes (for reviews, see Treisman & 

Sato, 1990; Wolfe, 1994, 1998a) and substantially shallower than those we found in Experiment 1. In either 

case, whether conjunction search proves more or less demanding than feature-absence search, Experiment 2 will 

help generalize our Experiment 1 findings while making closer contact to the larger visual-search literature. 

 

We chose to investigate spatial configuration search as well because it afforded an opportunity to seek WMC-

related differences in a search task that was likely to be especially difficult. Subjects searched for a target F 

among both Es and tilted Ts (90° to the left). To identify an F among these distractors, one cannot simply search 

for either the absence or the presence of a single feature. An F lacks the bottom horizontal bar of an E, but so 

does a tilted T; the F has a top horizontal bar that a tilted T lacks, but so does an E. Thus, subjects are forced to 

spatially combine all individual features to identify the target, and the resulting search slopes are very steep 

(Wolfe, 1998b). Moreover, Huang and Pashler (2005) have demonstrated that, unlike even quite difficult feature 

or conjunction searches, slopes for spatial configuration searches cannot be attributable solely to statistical 

decision noise that accumulates over larger stimulus arrays (Lu & Dosher, 1998; Palmer, Ames, & Lindsey, 

1993). In a preparation using brief masked displays and d' as the dependent measure, Huang and 

Pashler found that only spatial configuration searches benefited from presenting the two halves of each array in 

rapid succession rather than the entire array all at once. Attention thus appears to be a limiting factor to spatial 

configuration search performance, so it provides an important testing ground for our executive attention theory 

of WMC. 

 

Method  

WMC Screening 
We individually screened 344 undergraduates (ages 18–35), from the same sources as Experiment 1, for WMC 

using two span tasks, OSPAN and Reading Span (RSPAN; Daneman & Carpenter, 1980). The OSPAN task 

was identical to that in Experiment 1. The RSPAN task presented series of two to five unrelated sentences to 

judge, interpolated with two to five isolated letters to memorize (for more details, see Kane et al., 2004). 

Subjects first read each sentence aloud (e.g., ―Andy was stopped by the policeman because he crossed the 

yellow heaven‖), judged whether the sentence made semantic sense (e.g., ―no‖), and then immediately read the 

letter aloud (e.g., ―R‖). As in OSPAN, the experimenter then advanced the screen to the next sentence–letter 

pair or recall cue. At the recall cue, subjects wrote the letters that had appeared in the trial in serial order. Also 

as in OSPAN, three trials were presented at each length (two to five) in the same pseudorandom order for all 

subjects. 

 

In contrast to Experiment 1, we scored each span task by averaging the percentage of items recalled in correct 

serial position for each trial in the task (see Kane et al., 2004). Thus, scores were expressed as proportions, 

ranging from .00 to 1.00. We have found this scoring method to correlate very strongly with others (rs = .90 and 

higher), including that used in Experiment 1, but it yields more normal, less positively skewed distributions in 

both university and community populations (Conway et al., 2005; Kane et al., 2004). 



 

Visual Search 

Subjects 

Two hundred ninety-seven subjects completed both the WM screening and the visual search sessions (and were 

at least 85% accurate in solving the OSPAN operations and judging the RSPAN sentences) within the same 

academic semester. In this experiment, top and bottom quartiles (high spans and low spans) were based on a z 

score composite of proportional OSPAN and RSPAN scores. 

 

Design 

The design was a 2 X 2 X 3 X 2 mixed-model factorial, with WM span (high, low) as a between-subjects 

variable, stimulus type (letters, bars) manipulated within subjects and between trial blocks, and array size (2–4, 

8–10, 17–19) and trial type (target present, target absent) manipulated within subjects and within trial blocks. 

We randomly assigned subjects to one of two search-type order conditions: letter search first versus bar search 

first. 

 

Apparatus and Materials 

An E-Prime 1.0 program, run on Dell Optiplex GX110 computers, presented the stimuli for the search task on a 

17-in. (43-cm) color monitor and collected response latency and accuracy data. As in Experiment 1, we created 

letter stimuli in Microsoft Paint, in this case using a black Zurich Ex Bt font (a sans serif font) letter E, with the 

center horizontal bar lengthened such that it extended the same distance as the top and bottom bars; all lines 

were drawn 1 mm thick. The E (a distractor stimulus) measured 7 X 5 mm. We created a horizontally tilted T 

(the other distractor type) by removing both the top and bottom horizontal bars of the E and an F (the target 

stimulus) by removing the bottom bar of the E. We created the bar stimuli in a similar manner, removing all 

except the vertical bar of the E (7 X 1 mm), changing the color to red or green (using standard colors in the 

Paint program: for red bars, hue = 0, saturation = 240, luminance = 120, red = 255, blue = 0, green = 0; for 

green bars, hue = 80, saturation = 240, luminance = 60, red = 0, blue = 0, green = 128), and centering the bar 

within the 15 X 11 pixel space that the letters had occupied. The vertical red bar served as the target stimulus; 

the vertical green bar and horizontal red bar served as distractor stimuli. 

 

All stimuli appeared within an irregular 7 X 7 matrix, for a total of 49 possible locations. We made the grid of 

possible locations irregular (more irregular than those used in Experiment 1) in several ways. Rows 1, 4, and 7 

were offset to the right by the equivalent of 2.5, 2.3, and 3.0 locations, respectively, and Rows 2, 5, and 6 were 

shifted to the left by 3.25, 2.5, and 1.25 locations, respectively. The result was that none of the possible 

locations lined up vertically. We then moved individual locations vertically (maximum = 11 mm) and 

horizontally (maximum = 8.5 mm), with the requirements that no two locations were less than 1.5 mm away 

from each other in any direction and that any 2 adjacent horizontal locations were no more than 7.5 mm apart. 

The largest horizontal and vertical extents of any trial display were 103 mm and 75 mm, respectively (see 

Figure 4 for examples). We assigned numbers to possible locations, in ascending order, from left to right, by 

their previous row location, and we used a computerized random number generator to select the locations for 

particular stimuli on each trial (all subjects saw the same stimulus arrays, but in a different random order). 

 

Subjects saw 96 trials in the bar search block and 96 trials in the letter search block. In each block, 48 trials 

presented a target, and 48 did not. Within target-present and target-absent conditions, 16 trials presented a small 

number of distractors (half the trials with 2 distractors, and half with 3), 16 trials presented a medium number of 

distractors (half with 8, half with 9), and 16 trials presented a large number of distractors (half with 17, half 

with 18). Subjects also completed 24 practice trials preceding each block, which approximately balanced all the 

experimental conditions. 

 



 

 

Figure 4. Examples of bar (conjunction) search and letter (spatial con-figuration) search stimulus arrays 

from Experiment 2. The gray bars in the figure appeared as red bars on screen, and the black bars in the 

figure appeared as green bars on screen. Subjects searched the bar arrays for a target vertical red bar and 

searched the letter arrays for a target F. 

 

Procedure 

The only difference from Experiment 1 was that in the letter search task subjects reported whether an F 

appeared in each display by pressing either the z (yes) or the m (no) key on the keyboard and that in the bar-

search task subjects similarly reported whether a vertical red bar appeared in the display. 

 

Results  

Subjects 
Data from 15 subjects were dropped, 5 because of illness (excessive coughing or sneezing during the visual 

search session), 3 because of self-reported color blindness, and 7 because of computer error. This left a total of 

282 subjects in the analyses, of which the top and bottom quartiles on the WM composite were classified as 

high and low spans, respectively. Because the bar and letter search tasks make such different attentional 

demands (Huang & Pashler, 2005), we analyzed their data separately. 

 

To make contact with Experiment 1 as well as other recent investigations of WMC-related differences in 

attention-control tasks, we report ANOVAs to contrast performance of the extreme groups of high- and low-

WM span subjects. In addition, we then report the correlation between WM span and search slope, using the full 

range of WM span scores from the sample of 282 subjects. Here, as in Experiment 1, we calculated slope as the 

difference score between the largest arrays (17–19 stimuli) and the smallest arrays (2–4 stimuli). 

 

WMC Screening 

The OSPAN and RSPAN scores were determined by the mean proportion of items recalled correctly across all 

sets for each span task. The mean performance on the OSPAN and RSPAN tasks, on the basis of the 282 

participants’ data, was 0.617 (SD = 0. 144) and 0.668 (SD = 0.139), respectively. The span measures correlated 



at r(282) = .609. The proportion span scores were converted (separately for each measure) into z scores, and 

these were then aver-aged to create the composite WM score. For extreme-group span analyses, high- and low-

WM span groups were determined by the upper and lower quartiles, respectively, of the composite WM scores. 

The cutoff for high spans’ z scores was greater than 0.669, and the cutoff for low spans’ z scores was lower than 

-0.608. 

 

Bar Search (Conjunction Search) Task 

RTs 

Figures 5A and 5B present the means of high- and low-span subjects’ median RTs for the bar search task, by 

array size, for target-present and target-absent trials, respectively. A 2 (WM span group) X 3 (array size) 

ANOVA on target-present RTs indicated that search times increased with array size, F(2, 276) = 155.68, η
2

P = 

.53, but, despite this large effect, high- and low-WM-span groups did not differ in overall RTs, F(1, 138) = 

2.35, p = .13, and WM span did not interact with array size, F(2, 276) = 1.35, p = .26. As expected, then, the 

correlation between WM span and target-present RT search slope in the full sample was nonsignificant and near 

zero, r(282) = —.04, p > .50. The ANOVA on target-absent trials also yielded a significant effect of array size, 

F(2, 276) = 200.58, η
2

P = .59, but yielded neither a main effect of WM span, F(1, 138) = 1.60, p = .21, nor a 

WM Span X Array Size interaction, F(2, 276) < 1. The WM Span X Target-Absent Slope correlation was, 

again, near zero, r(282) = —.03, p > .50. As in Experiment 1, we found no evidence for WMC-related 

differences in visual search.
3 

 

The lack of a significant relation between WM span and search RT is again meaningful because both were 

measured reliably. Recall that OSPAN and RSPAN scores correlated at .609, indicating good reliability (along 

with previously reported coefficient alphas for these tasks of about .80; Kane et al., 2004). Regarding visual 

search reliability, when internal consistency was calculated across all 12 RT conditions (2 search tasks X 3 

array sizes X target present/absent), a = .853, and when it was calculated across 4 RT search slopes (2 search 

tasks X target present/absent), a = .585. Although the latter value is somewhat low, it is considerably higher 

than the near-zero correlations between WM span and search slopes, and it suggests at least a modest ability to 

detect any span-related associations. 

 

Error Rates 

Table 2 presents the mean error rates, for high- and low-WM-span subjects, by array sizes and target-present/-

absent trials, for both the bar and the letter search tasks. A 2 (WM span group) X 3 (array size) ANOVA on 

target-present trials indicated that subjects missed more red vertical targets as array size increased, F(2, 276) = 

22.02, η
2

P = .14, and that low spans missed more targets than did high spans, overall, F(1, 138) = 4.20, η
2

P = 

.03. Of most importance, however, the WM span difference did not increase across array sizes, F(2, 276) = 

1.45, p = .24. The correlation between WM span and target-present search slope in the full sample was also near 

zero and nonsignificant, r(282) = —.053, p = .38. The parallel ANOVA on target-absent trials indicated that 

false alarms increased across array sizes, F(2, 276) = 4.44, η
2

P = .03, and that low spans committed more false 

alarms than did high spans, F(1, 138) = 3.81, η
2

P = .03, but, again, the WM span difference did not increase 

with array size, F(2, 276) = 1. 11, p = .33. Accordingly, the full-sample correlation between WM span and 

target-absent search slope was also nonsignificant and near zero, r(282) = .012, p = .84. Low spans were 

slightly more error prone than high spans overall. However, the search process itself, as reflected by interactions 

with array size, was unrelated to WMC. 

 

Unlike the RT data, however, null correlations cannot be interpreted easily here because of poor reliability. 

Although Cronbach’s alpha calculated for error rates over all 12 search conditions (2 search tasks X 3 array 

sizes X target present/absent) was .767, which is adequate, the value calculated across the four slopes (2 search 

tasks X target present/absent) was not, with a = .115. We therefore assessed the individual correlations between 

WM span 

 

 



 
Figure 5. Mean response times (in milliseconds) for the bar (conjunction) search task from Experiment 2, by 

working memory span group (high span vs. low span) and array size. A: Data from target-present trials. B: 

Data from target-absent trials. Error bars represent standard errors of the means. 

 

and error rates on target-present and target-absent trials for small, medium, and large arrays separately rather 

than using the unreliable slope values. Nonetheless, even these correlations were generally near zero and 

nonsignificant. The only significant correlations were for target-present medium arrays, r(282) = -. 128, and 

target-absent medium arrays, r(282) = -.139, although these isolated correlations were obviously rather weak 

and their 95% confidence intervals both included zero. 

 

Letter Search (Spatial Configuration Search) Task 

RTs 

Figures 6A and 6B present the means of high- and low-span subjects’ median RTs for the letter search task, by 

array size, for target-present and target-absent trials, respectively. A 2 (WM span group) X 3 (array size) 

ANOVA on target-present RTs indicated that subjects took more time to find targets as array size increased, 



F(2, 276) = 568.34, η
2

P = .80. However, despite this large effect, high- and low-WM-span subjects did not differ 

in overall RTs, F(1, 138) = 1.49, p = .23, or in their RT increase over array sizes, F(2, 276) = 1.63, p = .20. 

Across the full range of WM span scores, the correlation between WM span and the letter search RT slope 

across array sizes was weak and only marginally significant, r(282) = -.102, p = .09. A parallel ANOVA on 

target-absent trials also indicated a very large effect of array size, F(2, 276) = 469.02, η
2

P = .77, but no 

significant main effect or interaction involving WM span (all Fs < 1). The correlation between WM span and 

RT search slope was near zero, r(282) = -.018,p > .70. Therefore, only target-present trials hinted at a weak 

relation between WMC and search, but even this correlation did not reach statistical significance with a sample 

of over 280 subjects, and the corresponding interaction was not nearly significant by the extreme-groups 

ANOVA. 

 

 

Error Rates 

A 2 (WM span group) X 3 (array size) ANOVA on target-present trials indicated that subjects missed more 

targets as array size increased, F(2, 278) = 72.20, η
2

P = .34, and that low spans missed more targets overall than 

did high spans, F(1, 138) = 6.13, η
2

P = .04. It is important to note that, as in the bar search task, the WM span 

difference in errors did not increase across array sizes, F(2, 276) = 1.33, p = .27. The correlation between WM 

span and target-present search slope in the full sample was only marginally significant, r(282) = -.096, p = .11. 

A parallel analysis on target-absent trials similarly showed that subjects committed more false alarms as array 

size increased, F(2, 276) = 3.70, η
2

P = .03, and that low spans committed more false alarms overall than did 

high spans, F(1, 138) = 6.95, η
2

P = .05. As with misses, the span difference in false alarms did not increase 

across array sizes, F(2, 276) < 1. The WM Span X Target-Absent Slope correlation was near zero, r(282) =       

-.011, p = .84. Because these error-rate search slopes were not reliable (see above), we also tested the 

correlation between WM span and each of the six bar search conditions individually (3 array sizes X target 

present/absent). The only significant correlations (p < .05) emerged from target-present trials with large arrays 

and target-absent trials with medium arrays, but these correlations were still relatively weak (rs = -. 119 and      

-.142, respectively). (Of all the correlations we report for Experiment 2, this correlation of -.142 is the only one 

with a 95% confidence interval that did not include zero; even here, however, the upper limit of the confidence 

interval, -.026, was very near zero). Error rates thus provide little evidence for an association between WMC 

and visual search individual differences. 

 

 

 



Discussion 

The two visual search tasks we used in Experiment 2, conjunction search and spatial configuration search, 

suggest that WMC is unrelated to search efficiency. In conjunction search, for which the target was a vertical 

red bar amid red horizontal and green vertical bars, low spans identified the presence and absence of targets as 

rapidly as did high spans, and low and high spans showed equivalently inefficient searches across increasing set 

sizes. In the full sample of 282 subjects, WMC correlated nonsignificantly with target-present and target-absent 

RTs. Similarly, in spatial configuration search, for which the target was an F among Es and tilted Ts and search 

slopes were dramatic, no differences emerged between high- and low-WMC subjects in either target-present or 

target-absent RT slopes. Although the correlation between WMC span and target-present search slopes was 

marginally significant in the full sample, with lower spans associated with larger slopes, the lack of 

conventional significance is telling given the very large sample size. Moreover, the two variables shared only 

1% of their variance. 

 

Error rates provided no more convincing evidence for a WMC– search link. As in Experiment 1, low spans 

generally committed more errors than did high spans, but the span groups did not differ in error-rate slopes 

across set sizes, indicating that the accuracy differences were not related to the search process itself. Perhaps 

because error rates were again generally low (especially for false alarms), the correlational data for error rate 

slopes were unreliable and thus not interpretable. However, WMC was also uncorrelated with error rates in 

nearly every experimental condition considered in isolation. 

 

If the executive attention processes that are associated with WMC make any contribution to visual search, it 

must be a very minor one. In two feature-absence search tasks (Experiment 1), a conjunction search task 

(Experiment 2), and a spatial configuration search task (Experiment 2), the most compelling evidence for a 

relation between WMC and search performance is a single, marginally significant correlation reflecting only 1 

% shared variance. It seems quite clear that in standard visual search tasks that yield substantial RT slopes but 

make no particular demands on the control of prepotencies, individual differences in WMC are largely 

irrelevant to performance. Prior work demonstrating WMC associations with Strooplike tasks (e.g., Kane et al., 

2001; Kane & Engle, 2003; Long & Prat, 2002; Unsworth et al., 2004) suggests that if researchers introduced 

such prepotencies or habits into visual search—for example, by providing extensive practice with consistently 

mapped stimuli and then reversing target and distractor roles—then span-related differences should emerge. 

However, this kind of manipulation would be at odds with the point of these experiments, in that we are trying 

to determine where in the semantic space of attention tasks the relation between WMC and attention control 

breaks down. 

 

Although some research suggests that spatial configuration search, at least, is sensitive to attentional limitations 

(Huang & Pashler, 2005), the top-down control implemented in models such as guided search (Wolfe, 1994) 

seems considerably different than the phenomenologically effortful or willful control processes thought to be 

applied in Strooplike tasks that require active goal maintenance and habit restraint (e.g., De Jong, Berendsen, & 

Cools, 1999; Kane & Engle, 2003; West & Alain, 2000; see also Monsell, 1996). In guided search, a subject’s 

knowledge of the target features contributes activation to corresponding features in the master map, making it 

more likely that attention will be drawn (guided) to the target’s location before other locations. Here, then, 

attention is thought to be exogenously pulled, more or less automatically, across descending peaks of activation 

in the master map. Endogenous, strategic control over a willful pushing of attention is presumed not to occur 

under most circumstances. 

 

 



 

Figure 6. Mean response times (in milliseconds) for the letter (spatial configuration) search task from 

Experiment 2, by working memory span group (high span vs. low span) and array size. A: Data from target-

present trials. B: Data from target-absent trials. Error bars represent standard errors of the means. 

 

Evidence for this claim was provided by Wolfe et al. (2000), who reported data from four types of tasks in 

which subjects were asked to move their attention in a specified path around a circular display of eight letters. 

In one version of the command task, subjects saw a sequence of eight masked frames on each trial, and the 

target letter (an N or a Y) could appear in only the clockwise position N in Frame N, with N = 1 corresponding 

to the 12:00 position. Thus, subjects had to move their attention in a clockwise direction across frames to 

identify the target. Across trials, the authors varied presentation rate for each subject to determine the minimum 

rate allowing 70% accuracy. Wolfe et al. found that presentation rates of some 200 ms per frame were necessary 

to maintain criterion accuracy (and other, similar methods required equivalent or larger rates). In contrast, in a 

control, anarchic condition in which the target appeared on every frame but in a different random location on 

each, subjects needed only about 100 ms per frame to reach criterion (other versions of the control task yielded 

even faster rates). Paradoxically, then, when subjects had no advance knowledge of where the target could be 

and so had no need to move attention strategically around the array, they identified targets much more quickly 

than when they had advance knowledge and a motivation to search strategically. These exceedingly slow 



volitional search rates, of 100 –200 ms per item, suggest that search is not normally accomplished in this 

strategic way; slopes of 20 – 40 ms per item are considered normatively steep in typical tasks. 

 

Wolfe et al. (2000) thus suggested that attention typically moves ―anarchically‖ through search displays, guided 

by bottom-up and top-down sources of activation in a master map of spatial locations, not volitionally or 

strategically (for related findings, see Van Zoest, Donk, & Theeuwes, 2004). However, if endogenous pushing 

of attention can be elicited by some task contexts, as Wolfe et al. observed in their command task, would these 

control requirements be sufficient to yield WMC-related differences in performance, even in the absence of a 

requirement to restrain habit? A direct empirical comparison of exogenous versus endogenous control of 

attention during search motivates our Experiment 3. 

 

EXPERIMENT 3 

Subjects completed a version of the Wolfe et al. (2000) command search task and a version of their anarchic 

task, and we predicted WMC-related performance differences only in the command condition, which required 

endogenous control over spatial deployment of attention. The task presented static search displays of letters 

arranged in a circle, and subjects reported whether the first F-like stimulus they encountered as they moved 

clockwise through the display was an F or a backward F; the remaining distractors were Es, backward Es, Ts 

tilted 90° to the right, and Ts tilted 90° to the left. Because each display could present more than one F or 

backward F, subjects could only determine the target by searching in the clockwise direction, so volitional 

control over search was necessary. In this experiment, we also tested whether span differences in performance 

would be exacerbated by presenting additional noise, in the form of all-distractor rings of stimuli, at the same 

time as the search display. We hypothesized that the presence of distractor rings would increase the top-down 

demands to control competition from task-irrelevant stimuli (see Awh, Matsukura, & Serences, 2003). In 

particular, half the command trials were ―clean,‖ with no other stimuli displayed beyond the eight search 

stimuli, and half the trials were ―noise‖ trials, presenting two distractor rings of eight stimuli (one ring internal 

to and one external to the target ring). 

 

The anarchic condition simply presented only one F or back-ward F in each display (along with the forward and 

backward E and tilted-T distractors), so searching in a clockwise direction was not necessary to identify the 

target. All anarchic trials were clean trials. This condition served as yet another prototypical visual search task 

that, according to our findings so far, should not yield WMC-related differences. 

 

Method  

WMC Screening 
We individually screened 120 undergraduates at the University of North Carolina at Greensboro (ages 18 –35) 

for WMC as in Experiment 2, but we attempted to further improve our measurements by adding a fourth trial at 

each set size two through five in the OSPAN and RSPAN tasks. Proportion scores, z score composites, and 

high- and low-span groups were calculated and defined as in Experiment 2. 

 

Visual Search 

Subjects 

Of the 120 subjects screened, 118 completed the visual search session (and were at least 85% accurate in 

solving the OSPAN operations and judging the RSPAN sentences) within the same academic semester. Subjects 

were randomly assigned to one of two task orders, command task first or anarchic task first. 

 

Command Search Task 

Design. The design was a 2 X 2 X 2 X 8 mixed-model factorial, with span (high, low) as a between-subjects 

variable and display type (noise, clean), target type (F, backward F), and target location (1–8) manipulated 

within subjects and within blocks. 

 

Apparatus and materials. Computer equipment and software were identical to those in Experiment 2, except 

that in the present experiment, subjects responded using the leftmost and rightmost buttons on a PST Serial 



Response box (Model 2.0 Psychological Software Tools, Pittsburgh, PA). Letter stimuli were identical to those 

in Experiment 2, but we also created backward versions of the E, F, and tilted T by horizontally flipping each 

letter. The F and backward F served as targets for the search tasks (i.e., subjects reported which of the two 

targets was present on each trial), and the remaining letters served as distractors; subjects pressed the leftmost 

button for backward Fs and the rightmost button for Fs. 

 

Stimuli appeared in three concentric rings with diameters measuring 10.2, 7.6, and 4.4 cm for the outer, middle, 

and inner rings, respectively. Eight stimulus locations were evenly spaced around each ring for a total of 24 

locations per trial. The target always appeared in 1 of the 8 locations around the middle ring (see Figure 7), and 

subjects responded only to the first target (F or backward F) occurring clockwise from the 12:00 (top) position 

on the middle ring. 

 

Subjects saw 112 clean trials and 112 noise trials within the same block of trials. Each clean trial presented one 

target and one false-target lure (i.e., an additional F or backward F) in two of the eight middle ring locations, 

plus six distractors chosen at random, with the constraint that no distractor appeared more than twice in the 

remaining locations. All other locations contained square dots (1 X 1 mm). Each target appeared in each of the 

eight locations seven times; across these seven trials, a false-target lure appeared one time in each of the seven 

remaining locations clockwise from the target. On trials in which fewer than seven locations were available 

because of the target position (e.g., when a target appeared at the 6:00, or fifth stimulus, location), each 

available location was populated with a lure equally often. When the target appeared in the eighth location, no 

lure was presented, and in its place another distractor was chosen such that no distractor appeared more than 

twice. 

 

Noise trials were constructed in the same way, but they also presented stimuli in the inner and outer rings. Each 

trial presented one F and one backward F as false-target lures in both the inner and the outer rings. The 

locations of the lures were fixed, and one of each lure type was chosen at random separately for the inner and 

outer locations. For half the trials, lures appeared in Locations 2 and 6 on the outer ring and Locations 1 and 5 

on the inner ring, and for the other half, the lures appeared in Locations 4 and 8 on the outer ring and Locations 

3 and 7 on the inner ring. We counter-balanced lure locations so that they did not indicate the target’s identity or 

location. The remaining locations not occupied by lures in the inner and outer rings were populated by 

distractors, chosen at random, with the constraint that no distractor appeared more than twice in each ring. 

 

 

Figure 7. Example of a stimulus array from the command search task (noise trial). Subjects searched the 

middle ring, clockwise, for the first F-like stimulus and reported whether it was an F or a backward F. 

Stimuli on the outer and inner rings were distractors. 

 



Thirty-two trials served as command-search practice (2 target types X 8 target locations X 2 repetitions); half of 

these were clean trials, and half were noise trials. Subjects completed a single block of 448 experimental trials, 

with 224 trials (2 target types X 8 target locations X 7 lure locations X 2 false target types) each in the clean and 

noise conditions. 

 

Procedure. Subjects first completed a block of 48 response-mapping practice trials, then the blocks of search-

practice and experimental search trials. Each response-mapping trial presented one target in one of the eight 

middle ring locations, and these repeated three times each (2 target types X 8 locations X 3 repetitions). All 

other locations in the display contained 1 X 1 mm square dots. 

 

Each search-practice and experimental trial first presented a blank screen for 500 ms and then a fixation display 

for 1,500 ms, which populated all 24 possible locations with 1 X 1 mm square dots. The search display then 

appeared and remained onscreen until response. We instructed subjects to use the dots in the fixation display as 

placeholders for the upcoming search items and to sustain focused attention on only the dots representing the 

middle ring (potential target) locations. 

 

Anarchic Search Task 

Design. The design was a 2 X 2 X 8 mixed-model factorial, with span (high, low) as a between-subjects 

variable and target type (F, backward F) and target location (1–8) manipulated within subjects and within block. 

 

Apparatus and materials. The anarchic task used the same stimuli as in the command task. All trials presented 

eight stimuli in a ring shape (the same as the middle ring in the command task). Only one F or backward F was 

presented on each trial. Seven distractors (forward and backward Es and tilted Ts) appeared in the remaining 

locations, chosen at random with the constraint that no distractor appeared more than twice on any given trial. 

Each of the two target types appeared in each of the eight locations around the ring four times for a total of 64 

trials (2 target types X 8 locations X 4 repetitions). No dots were presented as placeholders either before or 

during any anarchic experimental trials. 

 

Procedure. Subjects first completed a block of 32 response-mapping practice trials and then the 64 

experimental search trials. The response-mapping trials presented one target alone in one of the eight locations 

around the ring, two times each for a total of 32 trials (2 target types X 8 locations X 2 repetitions). The seven 

remaining locations contained 1 X 1 mm square dots. Experimental trials first presented a blank screen for 500 

ms, then a centered warning dot (1 X 1 mm) for 740 ms, and then the search display until response. 

 

Results  

Subjects 
Of the 118 subjects tested, data from 18 were dropped from all visual search analyses: 2 nonnative English 

speakers, 1 with missing span data, 8 with computer errors during the search task, and 7 because of illness 

(excessive coughing or sneezing). This left 100 subjects with both WM span and visual search data in the 

analyses. Of these subjects, 16 (4 high spans, 7 middle spans, and 5 low spans) had error rates greater than 30% 

on command-task noise search trials, so their command-task data were excluded from analyses. 

 

WMC Screening 

The OSPAN and RSPAN scores were determined by the mean proportion of items recalled correctly across all 

sets for each span task. The mean performance on OSPAN and RSPAN, on the basis of the 100 participants’ 

data, was 0.605 (SD = 0.131) and 0.636 (SD = 0. 128), respectively. The span measures correlated at .686. As in 

Experiment 2, composite WM scores were derived from z score composites of OSPAN and RSPAN. For 

extreme-group span analyses, high- and low-WM-span groups were determined by the upper and lower 

quartiles, respectively, of the WM composite scores, with the cutoff for high spans’ z scores greater than 0.537 

and the cutoff for the low spans’ z scores lower than -0.565. 

 

 



Visual Search 

As in Experiment 2, we first present RT analyses and then error analyses, by extreme WM span groups (top vs. 

bottom quartiles), for each visual search task. We then follow those ANOVAs with correlations between search 

slopes and the full range of WM span scores in the sample. Following those analyses, we compare command 

search (clean trials) with anarchic search to test whether the command task appeared to make greater control 

demands than did the anarchic task, as predicted. 

 

Command Visual Search Task 

RTs. Means of median RTs in the command visual search task are presented in Table 3. A 2 (WM span group) 

X 2 (display type: clean vs. noise) X 8 (target location: 1– 8) X 2 (target type: backward F vs. F) mixed-model 

ANOVA, with WM span group as a between-subjects factor, indicated that clean trials were per-formed faster 

than noise trials, F(1, 39) = 282.73, η
2

P = .88, and RTs increased across clockwise target locations, F(7, 273) = 

772.30, η
2

P = .95. As well, RTs to target Fs were shorter than RTs to backward Fs, F(1, 39) = 91.06, η
2

P = .70. 

 

Despite these very large experimental effects, the only significant main effect or interaction involving WM span 

was a three-way interaction, depicted in Figure 8, of WM span with target location and target type, F(7, 273) = 

2.02, p = .05, η
2

P = .05 (for all other span effects, Fs < 1.7 1, ps > .198). Although the effects of WM span did 

not appear to be systematic, we conducted separate 2 (WM span) X 8 (target locations) mixed-model ANOVAs 

for the targets backward F and F. For the backward F trials, RTs increased across clockwise locations, F(7, 

273) = 665.60, η
2

P = .94, but neither the main effect of WM span, F(1, 39) = 1.14, p = .29, nor the interaction of 

WM span with target location, F(7, 273) < 1.0, was significant. For F target trials, RTs also increased across 

locations, F(7, 273) = 690.38, η
2

P = .95, and, again, neither the main effect of WM span, F(1, 39) = 1.29, p = 

.26, nor the interaction of WM span with target location, F(7, 273) < 1, was significant. Thus, the small three-

way interaction of WM span with target location and target type is not readily interpretable. 

 



 

Figure 8. Mean response times (in milliseconds) for the command search task from Experiment 3, by 

working memory span group (high span vs. low span), target type (F vs. backward F), and clockwise target 

location. Error bars represent standard errors of the means. 

 

Remaining significant interactions from the omnibus ANOVA were as follows: (a) between display type and 

target location, F(7, 273) = 77.78, η
2

P = .67, with a greater increase in RT across clockwise target locations for 

noise than for clean trials; (b)between target location and target type, F(7, 273) = 6.37, p = .14, with Fs eliciting 

a greater slowing across clockwise locations than did backward Fs; (c) among display type, target location, and 

target type, F(7, 273) = 2.14, η
2

P = .05, with the slowing difference across locations between Fs and backward 

Fs being greater in noise than in clean trials. 

 

Within the full sample, WM span correlated nonsignificantly and near zero with RT search slopes (i.e., the 

difference scores between Locations 8 and 1). This was true for clean F trials, r(84) = .012, p = .92; for clean 

backward F trials, r(84) = .012, p = .91; for noise F trials, r(84) = -.069, p = .54; and for noise backward F 

trials, r(84) = -.035, p = .75. As with the RTs from Experiment 2, these null correlations (all with 95% 

confidence intervals that included zero) are meaningful because we measured WM span and search slopes 

reliably. For search slopes, we calculated Cronbach’s alpha by taking the slope difference score between 

Locations 1 and 7 and also between Locations 2 and 8. We did this separately for clean and noise trials and for 

F and back-ward F trials, which yielded eight slope values for each subject (a = .889). With coefficient alpha 

computed separately for clean and noise trials (four values each), as = .752 and .853, respectively. Clearly, these 

slope values were reliable enough to detect any possible correlations with WM span. 

 

Error rates. Mean error rates on the command task are presented in Table 4 and were analyzed with a 2 (WM 

span) X 2 (display type) X 8 (target location) X 2 (target type) mixed-model ANOVA, with WM-span group as 

a between-subjects factor. Subjects made more errors on noise trials than on clean trials, F(1, 39) = 4.70, η
2

P = . 

11, and there was a significant effect of target location, F(7, 273) = 7.22, η
2

P = .16, with the greatest proportion 

of errors occurring at the first clockwise target location. Neither the main effect nor any interaction with WM 

span was significant (all Fs < 2.67, ps > . 110). Remaining significant interactions from the omnibus ANOVA 

were between display type and target location, F(7, 273) = 2.65, η
2

P = .06, apparently driven by a large error 

rate on clean trials at target Location 7, and between target type and target location, F(7, 273) = 4.24, η
2

P = . 10, 

apparently driven by stable error rates across locations for Fs but declining rates for backward Fs. 

 



Within the full sample, WM span correlated nonsignificantly and near zero with error rate search slopes: For 

clean F trials, r(84) = -.048, p = .66; for clean backward F trials, r(84) = -.006, p = .95; for noise F trials, r(84) 

= .079, p = .47; and for noise backward F trials, r(84) = .090, p = .42. As in Experiment 2, however, our error 

slope data had questionable reliability (calculated in this experiment as we did for RTs). Cronbach’s alpha 

across the eight slope values for clean and noise F and backward F trials was .677, which is arguably just 

adequate, but when alphas were calculated separately for clean and noise trials, they were only .322 and .566, 

respectively. These values, particularly the former, are low enough to cloud interpretation of the null correlation 

with WM span. Nonetheless, when we calculated a mean slope for each subject over the eight slope values that 

together yielded a reasonable reliability estimate, the slope correlation with WM span was still zero, r(84) = 

.025, p = .823 (again, 95% confidence intervals for all the WMC-error correlations included zero). 

 

Anarchic Visual Search Task 

RTs. Means of median RTs from the anarchic task are presented in Figure 9. We analyzed these data with a 2 

(WM span) X 8 (target location) X 2 (target type) mixed-model ANOVA, with WM-span group as a between-

subjects factor. An unexpected finding was that earlier clockwise locations elicited faster responses than did 

later ones, F(7, 336) = 12.04, η
2

P = .20 (but see also our subsequent analysis of command vs. anarchic task 

order, which seemed to moderate this location effect). RTs to Fs were faster than RTs to backward Fs, F(1, 48) 

= 14.29, η
2

P = .23, and target type interacted with target location F(7, 336) ~ 3.47, ~p 2 ~ .07, apparently 

because backward Fs had longer RTs at later clockwise locations than did Fs. WM span was associated with no 

significant effects; the only one that approached significance was an interaction with target type, F(1, 48) = 

2.66, p = .12, η
2

P = .05. We investigated this interaction with separate ANOVAs for target Fs and backward Fs, 

but no main effect or interactions involving WM span were significant (largest F = 1.48, lowest p = .17). 

Within the full sample (n = 100), WM span showed no significant correlations with RTs at any of the target 

locations—with only one r > .09, for Location 8, r(100) = .136, p = .18; the correlation between WM span and 

mean search RT over all locations was r( 100) = —.02, p = .84. These null correlations (all with 95% 



confidence intervals that included zero) are meaningful be-cause anarchic search RTs were reliable: calculated 

across 16 variables (8 locations X 2 target types) and across 8 variables (locations only, collapsed over target 

type; Cronbach’s as = .87 and .82, respectively). 

 

Error rates. Mean error rates on the anarchic search trials are presented in Table 5 and were analyzed with a 2 

(WM span) X 8 (target location) X 2 (target type) mixed-model ANOVA, with WM-span group as a between-

subjects factor. Error rates did not differ across target locations, F(7, 336) < 1, but subjects made more errors on 

backward F targets than on F targets, F(1, 48) = 3.84, p = .06, η
2

P = .08, and target location interacted with 

target type, F(7, 336) = 3.47, η
2

P = .07, apparently reflecting higher error rates for backward Fs than for Fs at 

the first target location and lower error rates for backward Fs than for Fs at the latest clock-wise locations. 

WM span yielded no significant main effect or interactions, with all Fs < 1. In addition, in the full sample, WM 

span showed no significant correlations to error rates at any of the target locations—only one r>.09: for 

Location 7,r(100) = —.148,p = .14; the correlation between WM span and mean error rate over all locations 

was r(100) = —.07, p = .49. Here, for the first time in our studies, these null correlations in error rates (all with 

95% confidence intervals that included zero) are clearly meaningful because they were reliable: calculated 

across 16 variables (8 locations X 2 target types) or across 8 variables (locations only, collapsed over target 

type; Cronbach’s a = .78). 

 

 

Figure 9. Mean response times (in milliseconds) for the anarchic search task from Experiment 3, by working 

memory span group (high span vs. low span), target type (F vs. backward F), and clockwise target location. 

Error bars represent standard errors of the means. 

 

Order Effects: Anarchic Versus Command Search 

Two questions motivated the following RT analysis of order effects on performance of the anarchic and 

command (clean display) search tasks. First, is the command search task substantially different than the 

anarchic task? Only the former has been pro-posed to require the volitional movement of attention (Wolfe et al., 

2000). Second, were task order effects responsible for the significant but unexpected target location effects 

found in the anarchic data (i.e., longer RTs across clockwise target locations)? 

 

Mean RTs on the anarchic search and command search (clean) trials, by WM span, task order (anarchic first or 

anarchic second), and target location (1–8) are depicted graphically in Figures 10 (anarchic) and 11 (command 

clean). Because of random assignment to search task order, the WM-span group samples are unequal across 



orders: Our analyses are based on data from 41 participants (anarchic first: 10 high spans, 9 low spans; anarchic 

second: 11 high spans, 11 low spans). 

 

 

 

 

 

Figure10. Mean response times (in milliseconds) for the anarchic search task from Experiment 3, by task 

order (anarchic first vs. second), working memory span group (high span vs. low span), and clockwise target 

location. Error bars represent standard errors of the means. 

 

We conducted a 2 (WM span) X 2 (search task) X 2 (task order) X 8 (target location) mixed-model ANOVA, 

with WM-span group and task order as between-subjects factors (we report only the effects relevant to our 

questions). Command clean searches took significantly longer than anarchic searches, F(1, 37) = 58.76, η
2

P = 

.61, supporting the claim that performance of the command task is more controlled than performance of the 

anarchic task. Later clockwise target locations had longer RTs than earlier locations, F(7, 259) = 192.24, η
2

P = 

.84, but this effect was qualified by a Target Location X Task Order interaction, F(7, 259) = 3.61, η
2

P = .09, 



with increasing RTs across clockwise locations when the anarchic task was performed after the command task 

but relatively constant RTs across locations when it was performed first. Search task interacted with target 

location, F(7, 259) = 95.69 , η
2

P = .72, but this interaction was qualified by a three-way Task Order X Search 

Task X Target Location interaction, F(7, 259) = 3.93, η
2

P = .10. This seems to indicate that the target location 

effect was present in the command task, regardless of task order, but anarchic RTs increased across target 

locations only when they were per-formed after the command task. There were no significant main effects of 

WM span or interactions between WM span and the other variables (all Fs < 2.02, ps > .163). 

 

 

Figure 11. Mean response times (in milliseconds) for the command search task from Experiment 3, by task 

order (Command first vs. second), working memory span group (high span vs. low span), and clockwise 

target location. Error bars represent standard errors of the means. 

 

To further investigate the three-way interaction of task order, search task, and target location, we conducted 

separate Location X Order ANOVAs for the command and anarchic tasks. In the command task, early 

clockwise target locations had shorter RTs than did later ones, F(7, 273) = 637.23, η
2

P = .94, but neither the 

main effect of task order nor the interaction between target location and task order was significant (both          

Fs < 1). Thus, previous anarchic task performance had no influence on the command task (see Figure 11). In the 

anarchic task, the main effect of target location was significant, F(7, 273) = 10.93, η
2

P = .22, as was the main 

effect of task order, F(1, 39) = 4.63, η
2

P = .11, but they were qualified by a significant Target Location X Task 

Order interaction, F(7, 273) = 4.71, η
2

P = .11 (see Figure 10). When the anarchic task was performed first, RTs 

were relatively stable over target locations, but when the command task was performed before the anarchic task, 

participants responded faster at early clockwise target locations. This suggests that some aspect of the command 

task response set (e.g., ―Start searching at the 12:00 position‖) perseverated into the subsequent anarchic task. 

 

Discussion 

Experiment 3 was designed to increase the executive control demands of the visual search tasks without 

creating a habit-restraint demand similar to that imposed by Strooplike tasks. We did so in the command task by 

requiring subjects to search potential target locations in a clockwise order on every trial (Wolfe et al., 2000). On 

half the trials we also presented distractor noise stimuli in locations that were always irrelevant and never 

contained the target (Awh et al., 2003). However, neither variable elicited WMC-related individual differences 

in search. Although search slopes across successive clockwise locations were very large, low spans searched 

through these locations at the same rate as high spans. In conjunction with the data from the anarchic task we 

included, then, Experiment 3 has produced two more examples of null WMC effects on visual search. 



Despite its lack of span effects, the command task did appear to elicit endogenous control over attention. Search 

latencies increased dramatically across clockwise locations (approximately 900– 1,000 ms over eight locations 

on clean trials, suggesting search slopes of more than 100 ms/item), regardless of whether subjects completed 

the task before or after the anarchic task. Subjects thus seemed to follow the task instructions to guide their 

search strategically. In contrast, the anarchic search task, which represented a more prototypical experimental 

paradigm with no volitional instructions, yielded relatively flat slopes across locations when it was performed as 

subjects’ first task. Our basic findings from these tasks therefore replicate those of Wolfe et al. (2000). 

 

When the anarchic task was performed second, however, it yielded large slopes across locations, much like the 

command task. Across Locations 2–7 (the locations that approximated a linear RT increase), search times 

increased approximately 400–500 ms, yielding slope values of approximately 80–100 ms per item. This finding 

suggests that the task set from the previous command task persisted into the anarchic task despite our 

instructions to subjects. Given this indication of set perseveration, it is surprising that high-and low-WMC 

subjects’ performance did not differ in the anarchic task when they performed it after the command task. Prior 

work with antisaccade and Stroop tasks has found that low spans have more difficulty than high spans in 

abandoning a controlled task set that has built up over a long block of trials (Kane et al., 2001; Kane & Engle, 

2003). For example, in the antisaccade paradigm, low spans persist more than high spans do in looking away 

from the flashing cue when the task demands shift from antisaccade (look away from the cue) to prosaccade 

(look toward the cue). Perhaps it is only in contexts in which the task set requires a strong prepotency to be 

restrained that low spans have particular difficulty abandoning such controlled sets. Future work should address 

this question more rigorously. 

 

A second surprise, given previous findings, is the lack of WMC sensitivity to the noise manipulation in the 

command task. The presence of two distractor rings in the noise displays increased subjects’ search times by 

several hundred milliseconds compared with clean displays, but low spans were no more slowed by these 

distractors than were high spans. In contrast, prior research with the Eriksen flanker task (Heitz & Engle, 2006; 

Reddick & Engle, in press) and with Egly and Homa’s (1984) object-based orienting task (Bleckley et al., 2003; 

Bleckley & Engle, 2006) suggests that low spans less effectively constrain visual attention than do high spans. 

We suggest that the requirement to move attentional focus, versus fixating focus, may be the critical variable 

here. That is, previous evidence for span differences in visual interference susceptibility has emerged from tasks 

in which subjects must restrict their focus to a single static location or object amid distractors in other static 

locations. Our command task, in contrast, asked subjects to restrict their focus to a ring of stimuli while they 

were also required to move their attention along that ring. It seems as though high spans’ advantage in 

restricting focus could not be maintained as that focus was pushed from item to item. We therefore speculate 

that the requirement to move spatial attention across particular locations in this experiment prevented all 

subjects from adopting a very restricted spatial focus, which had the side effect of making them more vulnerable 

to distractors than they would otherwise have been.
4
 Just as high spans’ normal superiority in dealing with 

memory interference is thwarted by the addition of a secondary task to perform, making high spans and low 

spans similarly vulnerable to interference (Kane & Engle, 2000; Rosen & Engle, 1997), perhaps the requirement 

to move attention prevented high spans from doing what they normally do to effectively restrict attentional 

focus. 

 

However, this idea—and our data—seems to conflict with frequently reported findings that irrelevant distractors 

have very little influence on performance during inefficient visual search tasks (e.g., Gibson & Peterson, 2001; 

Lamy & Tsal, 1999; Theeuwes, 1991, 1992). These prior findings of null distractor effects seem to suggest that 

distractors receive little processing under high perceptual load (Lavie & Cox, 1997; Theeuwes, 2004). Our data, 

in contrast, show that two rings of irrelevant distractors had a substantial disruptive effect on search efficiency. 

We are unsure about how to resolve this apparent conflict. However, it may be important that our noise trials 

presented many distractors, as opposed to prior work that only presented one singleton distractor. In addition or 

instead, our command task differed from others in that it required strategic, sequential search across locations 

rather than anarchic search. Future work is required to resolve these secondary issues. 



Of most importance, however, the key finding from Experiment 3 is that, even in contexts in which subjects had 

to endogenously control visual attention by moving it strategically through search arrays, high- and low-WMC 

subjects performed equivalently. Even top-down, controlled visual search did not elicit WMC-related individual 

differences. 

 

GENERAL DISCUSSION 

In three experiments, each presenting two different varieties of demanding visual search tasks, we found WMC 

to be unrelated to performance. Extreme groups of high- and low-WMC subjects showed statistically equivalent 

search slopes, and, within the continuous range of WMC scores in our sample, WMC showed near-zero 

correlations with search slopes and raw search RTs. In particular, we discovered span equivalence in feature-

absence search, feature-conjunction search, spatial configuration search, and a command search task that 

required endogenous and strategic movement of attention through arrays. Given our large subject 

 

samples, our varied measures of search, our steep and reliable search slopes, our reliable measures of WMC, 

and the sheer consistency of our null effects, we suggest that these null effects are real, important, and 

interesting (and that they meet Frick’s, 1995, good effort criteria for accepting the null hypothesis). Any actual 

effect of WMC on visual search efficiency must be quite small, and it is certainly much smaller than those 

WMC-related effects seen in many other varieties of controlled, attentional performance (e.g., Conway et al., 

2001; Kane et al., 2001; Kane & Engle, 2003; Long & Prat, 2002; Unsworth et al., 2004). 

 

Knowing that individual differences in WMC do not translate into individual differences in prototypical visual 

search is important because it helps us to delimit the boundaries of the executive attention construct as it applies 

to variation in WMC (e.g., Engle & Kane, 2004; Engle, Kane, et al., 1999; Heitz et al., 2005; Kane et al., 2001, 

2005; Kane & Engle, 2002). In our work, we have proposed that the executive attention processes that are 

correlated with WMC (and that drive the association between WMC and Gf) are those involved in (a) 

maintaining access to stimuli and goals outside of conscious focus, which is especially important—and 

measurable—in the face of interference from prior experiences or habit; (b) resolving response competition and 

restraining context-inappropriate responses; and (c) constraining conscious focus amid distraction. 

 

We have characterized the attentional correlates of WMC this way for several reasons. First, we have found that 

WMC-related differences in memory-task performance were minimal or absent when sources of interference or 

response competition were re-moved (e.g., Bunting et al., 2004; Conway & Engle, 1994; see also Bunting, in 

press; May, Hasher, & Kane, 1999) and that high spans’ normal superiority in resolving interference was 

abolished when their attention was divided during the task (Kane & Engle, 2000). Second, our view is 

consistent with viable theories of executive control and functional views of attention (e.g., Allport, 1980; 

Monsell, 1996; Neumann, 1987; Norman & Shallice, 1986), with commonly accepted characterizations of 

prefrontal cortex functions (e.g., Duncan, 1995; Fuster, 1999; Malmo, 1942; Miller & Cohen, 2001; Stuss, 

Shallice, Alexander, & Picton, 1995), and with the effects of aging and circadian arousal on attention control 

(e.g., Dempster, 1992; Hasher & Zacks, 1988; Hasher et al., 1999; West, 1996, 2001). Third, we have been 

influenced by this prior theoretical work to look for WMC-related effects in these particular attention control 

domains, so when we have found them it has naturally reinforced our views about the executive attention 

construct. As we reviewed in our introduction, these empirical findings include WMC-related individual 

differences in tasks requiring the restraint of habitual responses in favor of novel goals, such as in Stroop and 

antisaccade tasks, and in tasks requiring the constraint of auditory or (static) visual focus amid distractors, such 

as in dichotic listening, negative priming, flanker, and discontiguous-focus tasks. 

 

However, our resulting view may be myopic: It is possible that we have defined executive attention too 

narrowly and that WMC is related to a host of attentional, or controlled, abilities and processes beyond the 

executive concerns that we and others have investigated, which have little or nothing to do with interference, 

distraction, and competition. We designed the present study to address this potential myopia. Nonetheless, we 

find no support for an expanded view of executive attention. In visual search tasks that present minimal 

competition between candidate responses or between habit and goal and that present minimal demands to 



actively maintain or update goal-relevant information, but which are still difficult and thought to be sensitive to 

attentional limitations and to involve top-down attention control (Huang & Pashler, 2005; Wolfe et al., 2000), 

variation in WMC is of no measurable consequence. Thus, although there is obviously considerable generality 

to the executive attention construct, it does not seem to generalize to difficult attention tasks lacking the need to 

actively maintain goals to restrain prepotent responses or constrain attentional focus to particular stimuli or 

locations in space amid distractors. 

 

Of course, there are other varieties of visual search that seem to require (or allow for) top-down control, and 

future work with these paradigms may reveal some sensitivity to variation in WMC. For example, it is perhaps 

not surprising that individual differences in WMC appear to predict performance in Sternberg-like memory 

search tasks, especially when stimuli are variably mapped onto target and distractor roles across trials (Conway 

& Engle, 1994; Oberauer, 2005). Thus, in contrast to the prototypical visual search tasks we have used in the 

present experiments, when a search task involves remembering and updating target information from trial to 

trial, high-WMC subjects seem to be advantaged relative to low-WMC subjects. On this basis, we predict 

WMC-related differences in a variably mapped visual search task that cues a new target stimulus or stimulus 

dimension (among only a few that repeat throughout the task) on each trial, not unlike the procedures explored 

by Schneider and Shiffrin (1977) and Shiffrin and Schneider (1977). WMC-related differences or other 

executive-related variation would be especially likely in this case if phonological rehearsal were effectively 

discouraged or prevented. 

 

As another example, when the search target is a red horizontal bar amid many red vertical bars and few green 

horizontal bars, then color is less diagnostic of the target than is orientation. To the extent that people may 

exhibit top-down control over bottom-up influences (e.g., Wolfe, 1994), the bottom-up contribution of 

orientation should be amplified, the contribution of color should be reduced, and/or stimuli should be grouped 

according to the diagnostic feature. As evidence for this kind of modulation, when experimenters manipulate 

the proportions of nontarget features, subjects use this information to speed their search (e.g., Egeth et al., 1984; 

Zohary & Hochstein, 1989). We speculate that this top-down ability to amplify, dampen, or organize bottom-up 

influences could vary with WMC, but typical conjunction-search tasks (including the ones we used in the 

present experiments) prevent its expression by presenting equal numbers of nontarget types. 

 

Yet another variety of top-down modulation that may occur during search is seen in cuing studies of 

noncontiguous attentional focus (e.g., Awh & Pashler, 2000; Juola, Bouwhuis, Cooper, & Warner, 1991). When 

discontiguous regions of space are cued as likely target locations, performance costs are seen with invalid cues 

even when the target appears between the cued locations. For example, Egly and Homa (1984) had subjects 

identify a letter at central fixation. At the same time, they presented another letter in 1 of 24 locations along 

three concentric rings around fixation, and subjects had to identify the letter’s location (the entire array was 

masked). The ring on which the second letter would appear was cued (with 80% validity) before each trial with 

the word close, medium, or distant. As expected from ―spotlight‖ or ―zoom lens‖ theories, letters appearing 

outside the cued ring (outside the spot-light) on invalid trials were localized more poorly than were letters 

appearing along the cued ring. It is more interesting that letters appearing interior to the cued ring were also 

localized more poorly than were letters along the cued ring. These findings indicated that subjects flexibly 

configured attention discontiguously, focusing at fixation and on a ring beyond fixation, at the exclusion of an 

intermediary ring of space. As we reviewed earlier, Bleckley et al. (2003) tested high- and low-WMC subjects 

in the Egly–Homa task and found that only high spans demonstrated such flexible allocation, showing a cost 

when letters appeared on a ring interior to the cued ring. Low spans, in contrast, showed a benefit for any 

location on or interior to a cued ring, indicating a spotlight configuration. Together, these findings suggest that 

configuring attention flexibly is a controlled process linked to WMC variation, perhaps because it involves an 

active reduction of noise from nontarget items or locations (e.g., Dosher & Lu, 2000a, 2000b; Shiu & Pashler, 

1994). Insofar as a more conventional search task may benefit from or require such flexible allocation, it should 

also produce WMC-related differences. 

 



Indeed, such WMC-mediated search performance is provision-ally indicated in an ongoing line of experiments 

from our laboratory (Poole & Kane, 2005). In a spatial configuration search task using the same letter stimuli as 

in Experiment 3, subjects see a matrix of stimuli on each trial, and only some matrix locations are cued to be 

relevant before the search stimuli appear. Whether one, two, four, or eight discontiguous locations are cued on 

each trial, high-WMC subjects seem to identify targets in those locations significantly faster than do low-WMC 

subjects (with WMC ac-counting for about 10% of the variance in search RTs). Thus, when a static attentional 

focus must be constrained to include some locations and not others and when these locations must be constantly 

updated from trial to trial, higher WMC may be modestly associated with more efficient visual search. 

 

By our inductive approach to theory development, then, the executive attention processes that correlate with 

individual differences in WMC—and that, we hypothesize, are largely responsible for the covariation between 

measures of WMC and general intellectual ability—are not universally involved in attention tasks. It is quite 

clear from prior work that when the movement of attention is exogenously triggered by environmental events, 

as in the prosaccade task (Kane et al., 2001; Roberts et al., 1994; Unsworth et al., 2004), WMC is unrelated to 

performance. Moreover, the present study goes further to show that some endogenous, or controlled, aspects of 

behavior are also independent of WMC. Although individual difference in WMC do predict the ability to 

restrain habitual responses (e.g., Kane et al., 2001) and constrain attentional focus against distractors (e.g., 

Conway et al., 2001), they do not predict the ability to move attention through displays to locate a consistent 

target stimulus presented amid distractors. At this time, then, the concept of executive attention seems best 

limited to those mental processes that (a) keep goals and goal-relevant stimuli accessible when they are outside 

of conscious focus (without the aid of practiced skills, e.g., phonological rehearsal) and in the face of significant 

interference from prior events, (b) stop un-wanted but strongly elicited behaviors in favor of novel responses, 

and (c) restrict conscious focus to target stimulus locations in the presence of task-irrelevant stimuli. 

 

The Present Experiments and Alternative Views of WMC 

Our finding that individual differences in WMC do not predict visual search efficiency in prototypical tasks 

rules out some alter-native explanations for the relation between WMC and other cognitive abilities. For 

example, equivalent search RTs and slopes for high- and low-WMC subjects suggest that low spans’ poorer 

performance in other domains was not simply due to a lack of conscientiousness or motivation. In the present 

experiments, we engaged subjects in lengthy, monotonous tasks that required full seconds to respond accurately 

on each trial, yet low spans showed no performance deficit. 

 

Cognitive speed theories cannot account for our results, either. Such theories are quite common in the 

intelligence and life span development literatures, and they hold that variation in WMC and in higher order 

intellectual abilities are caused by variation in the speed of more elementary cognitive processes (e.g., Fry & 

Hale, 1996; Jensen, 1987, 1998; Kail & Salthouse, 1994; Vernon, 1983). We have criticized such theories 

elsewhere (Conway, Kane, & Engle, 1999; see also Ackerman & Cianciolo, 2000), so we simply note here that 

a processing speed view must predict main effects of WMC in visual search RTs as well as WMC differences in 

RT search slopes (because as slowed processes are repeated across successive stimulus locations, the resulting 

slope will be greater). Of course, we found neither. 

 

Finally, Oberauer (2005; Oberauer, Süß, Wilhelm, & Sander, in press) has proposed that WMC reflects the 

maintenance of bindings among activated mental representations and their spatiotemporal contexts in a WM 

region of direct access (which is analogous to Cowan’s, 1999, 2001 capacity-limited focus of attention). By this 

view of WMC, people differ in the number and/or quality of independent bindings that can be established and 

maintained in an accessible state, and thus variation in WMC represents primarily variation in a ―limited 

capacity for relational integration‖ (Oberauer et al., in press, p. 7). This view is relevant to the present work 

because Oberauer et al. suggested that our previous findings of WMC-related variation in Stroop and 

antisaccade tasks might have resulted from individual differences in binding representations of task-relevant 

stimulus properties to representations of required responses. That is, antisaccade and Stroop tasks ask subjects 

to respond to stimuli in nonautomatic ways, and thus they provide low stimulus–response (S-R) compatibility. 

Low spans, by this view, may therefore perform worse in such tasks because they have more difficulty 



establishing or maintaining arbitrary response mappings than do high spans. Although the visual search tasks 

we used here did not provide conflict with habitual responses, the response mappings were arbitrary and thus 

low in S-R compatibility. Subjects either pressed one key to indicate the presence of a target and another to 

indicate its absence (Experiments 1 and 2) or pressed one key to indicate an F target was present and another to 

indicate a backward F target was present (Experiment 3). Low spans appeared to have no more difficulty 

binding these stimulus dimensions to arbitrary response mappings than did high spans. 

 

Before leaving a consideration of alternative views of WMC, we should explicitly note that our results do not 

seem to us to discriminate our executive attention view of WMC from the inhibitory control view of Hasher, 

Zacks, and their colleagues (e.g., Hasher & Zacks, 1988; Hasher et al., 1999; Lustig et al., 2001). In short, the 

inhibition view holds that variation in WMC is driven by a more primitive variation in attentional inhibition. 

We argue, in subtle contrast, that a single attention control capability causes variation both in active inhibition 

(or other mechanisms of blocking, restraint, and constraint) and in active maintenance. With respect to search, 

one could conceivably argue that because visual search tasks present nontarget distractors, they might measure 

inhibitory control to some degree (e.g., Klein, 1988; Zacks & Hasher, 1994). If so, then our findings would be 

problematic for an inhibitory view of WMC. However, we do not think that the visual search literature makes a 

strong case that active inhibitory control is particularly important to the search process, especially when the 

locations of the distractors are not known in advance. 

 

Do Dual-Task Experiments Suggest a Role for WMC in Visual Search? 

Our correlational data suggest that WMC is unnecessary for effective visual search performance, even in very 

demanding search tasks. What does the vast experimental literature on visual search seem to say about a 

possible role for memory? On one hand, there is a controversy over whether visual search ―has a memory‖ or 

not. Subjects do seem to remember targets that they have found (e.g., Gibson, Li, Skow, Brown, & Cooke, 

2000; Horowitz & Wolfe, 2001) and to find targets more quickly when some aspects of stimulus displays are 

repeated (e.g., Chun & Jiang, 1998; Jordan & Rabbitt, 1977; Rabbitt, Cumming, & Vyas, 1979). However, it is 

less clear whether subjects remember not to revisit distractor locations they have already searched. Some studies 

have indicated such inhibition of return to searched locations (e.g., Klein, 1988; Muller & von Muhlenen, 

2000), but others have found either no inhibition of return or inhibition of only the last few locations that were 

searched (e.g., Horowitz & Wolfe, 1998; Snyder & King-stone, 2000; Wolfe & Pokorny, 1990). In his recent 

review of this literature, Wolfe (2003) argued that observers retain only a very limited memory for the progress 

of their searches and do not search stimuli or locations without replacement. 

 

On the other hand, biased-competition theories of visual search (e.g., Desimone, 1996; Desimone & Duncan, 

1995; Duncan, 1998) strongly suggest that another kind of memory process, more strongly related to notions of 

WMC, should be important to successful search—namely, active maintenance of a target template. As 

behavioral support for this idea, Downing (2000) found that when subjects had to actively maintain a novel 

target in memory over a delay, such as the picture of a face, their attention was automatically drawn toward 

subsequent appearances of that face, even when these subsequent faces were presented very quickly as task-

irrelevant stimuli. In contrast, when a face was seen without the requirement to remember it, attention was 

actually drawn away from subsequent appearances of that face. Thus, active maintenance of visual 

representations seems to affect the guidance of visual attention. 

 

Indeed, a strong prediction of these biased-competition views— that interfering with active memory should 

impair search—has also gained empirical support. Although Woodman, Vogel, and Luck (2001) originally 

reported that visual search performance was unaffected when subjects’ visual WMC was loaded, subsequent 

research has shown that visuospatial memory loads do disrupt search. Woodman et al. embedded an inefficient-

search task within the delay period of a matching-to-sample task that presented subjects with a sample of four 

stimuli (colored squares or Landolt Cs of different orientations) that either matched a subsequent test probe of 

four items or differed from the probe by just one item. In three experiments, RT increased under visual memory 

load, but search slopes were unaffected. Follow-up studies, in contrast, used memory-load stimuli that required 

retention of spatial relations. Woodman and Luck (2004) presented sequences of two dots as the memory 



sample and a single probe dot that either matched one location from the sample or did not. Oh and Kim (2004) 

presented an array of four squares as the sample and a single probe square that could match (or not) one location 

from the sample. Both studies with spatial memory demands found that the load task increased search slopes by 

20–30 ms relative to no-load trials. 

 

One might try to reconcile the memory-load experimental findings with our individual-differences findings by 

noting that we measured WMC using dual tasks that are thought to engage executive processes, whereas the 

dual-task studies loaded WMC using storage-only tasks of spatial memory. However, we have previously found 

that WMC span tasks using verbal stimuli correlate reasonably well with storage-only spatial tasks, and a 

growing literature suggests some domain-general executive involvement in the storage of visuospatial 

information (see Kane et al., 2004, for a review). Moreover, verbal memory tasks that require manipulation of 

encoded information, and so likely draw on executive processes to some extent, also appear to impair visual 

search when they are presented as secondary tasks. Han and Kim (2004) presented the Woodman et al. (2001) 

search task during the delay period of verbal memory tasks in which subjects either (a) subtracted by threes 

from a different three-digit number on each trial (Experiment 1A) or (b) reordered a four-letter string into 

alphabetical order (Experiment 2A). At the end of each trial, after completing the search task, subjects reported 

the final calculation (Experiment 1A) or the alphabetized letter sequence (Experiment 2A). Both of these 

nonspatial, executive memory loads increased search slopes by 50–70 ms compared with analogous verbal 

storage-only tasks of memorizing digit strings (Experiment 1B) or letter strings (Experiment 2B). 

 

Although none of these memory-load studies used the exact search tasks we did, they are reasonably similar to 

our feature-absent and spatial configuration tasks, so it is unclear what to make of the discrepancies between the 

experimental and correlational findings. It thus remains a mystery why dual-task studies suggest WMC to be 

important to search efficiency, whereas the individual-differences studies we report suggest WMC to be largely 

irrelevant to prototypical laboratory tests of inefficient search. Perhaps future work that combines experimental 

manipulations of WMC with naturally occurring individual differences in WMC will help to unravel the 

mystery. 

 

Notes: 

1 Our use of the term executive attention in this article (and, e.g., Engle & Kane, 2004; Kane & Engle, 2002, 

2003), rather than controlled attention (e.g., Engle, Kane, & Tuholski, 1999; Kane, Bleckley, Conway, & Engle, 

2001), reflects less a demarcated change in thinking than a wish to emphasize a debt and family resemblance to 

other theories of executive function, executive control, and executive attention (e.g., Baddeley & Logie, 1999; 

Norman & Shallice, 1986; O’Reilly, Braver, & Cohen, 1999; Posner & DiGirolamo, 1998). 

 

2 Wolfe (1994) noted that his model could, in principle, be implemented as a parallel processing model, in 

which a limited attentional resource is divided among potential target locations commensurate with activation 

levels at those locations. We therefore do not engage the serial versus parallel debate here (nor can our data 

adjudicate it). 

 

3 Although Figures 5A and 5B appear to indicate an overall RT difference between high- and low-WMC 

subjects in both target-present and target-absent trials, when we combined these trial types into a supplemental 

analysis to increase our power, the main effect of WM span was still nonsignificant, F(1, 138) = 2.19, MSE = 

90,143.70, p = .14, and all interactions involving WM span yielded Fs < 1.’ 

 

4 We thank Eric Ruthruff for making this suggestion. 
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