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Abstract: 
 
The quest for novel natural products has recently focused on the marine environment as a source 
for novel microorganisms. Although isolation of marine-derived actinomycete strains is now 
common, understanding their distribution in the oceans and their adaptation to this environment 
can be helpful in the selection of isolates for further novel secondary metabolite discovery. This 
study explores the taxonomic diversity of marine-derived actinomycetes from distinct 
environments in the coastal areas of the Yucatan Peninsula and their adaptation to the marine 
environment as a first step towards novel natural product discovery. The use of simple ecological 
principles, for example, phylogenetic relatedness to previously characterized actinomycetes or 
seawater requirements for growth, to recognize isolates with adaptations to the ocean in an effort 
to select for marine-derived actinomycete to be used for further chemical studies. Marine 
microbial environments are an important source of novel bioactive natural products and, together 
with methods such as genome mining for detection of strains with biotechnological potential, 
ecological strategies can bring useful insights in the selection and identification of marine-
derived actinomycetes for novel natural product discovery. 
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In recent years, the search for bioactive secondary metabolites has turned its focus to the 
exploration of microbial populations from ecologically diverse environments that harbor 
microorganisms with specialized adaptations. This has yielded many novel natural products with 
diverse types of bioactivity, including novel diketopiperazine dimers and a new iso-naseseazine 
B, novel isocoumarins, streptorubin B, sporolides, and marinomycins [1, 2, 3]⁠. The marine 
environment has become an important source of income for this industry with estimations on the 
global market for marine-derived drugs reaching up to $ 8.6 billion a year [4, 5]. Marine-derived 
Actinobacteria, found mainly in marine sediments, are still the leading source of novel 
compounds and have been responsible for compounds such as the abyssomicins, salinosporamide 
A, and arenicolides [6, 7, 8]⁠. 
 
Even with improved cultivation techniques, only less than 20% of microbial diversity can 
generally be accessed under laboratory conditions [9, 10] and only a few of the cultivated taxa 
(i.e., 7000) have been formerly described with a type strain [10, 11].⁠ The opportunities of finding 
new microbes by modifying current cultivation techniques are vast. One way to search for 
uncultured diversity may be the exploration of environments with distinct environmental 
pressures, such as the ocean floor. The ocean sediments cover three fourths of our planet and are 
subjected to high pressures, varying oxygen conditions, and the influence of ions present in 
seawater. These conditions could provide distinct selective pressures to microorganisms resulting 
in the production of new molecules [12, 13]⁠. In fact, over the past 12 years, reports on the 
discovery of marine natural products with pharmaceutical significance have continued to 
increase [5, 14] and new technologies that allow for genome mining to explore cryptic 
biosynthetic gene clusters have become a very promising area for natural product discovery [15]⁠. 
However, exploration of marine bacterial diversity often requires cultivation strategies for 
specific bacteria with potential for secondary metabolite production that are of utmost 
importance in natural product discovery. Actinomycetes are widespread in the ocean 
environment with more than 17 genera isolated from diverse sediments and up to 10% of marine 
snow microbial populations represented by this class of bacteria [13, 16, 17, 18]⁠. Actinomycetes 
isolated from the Sea of Cortez to the deep trenches in the middle of the Atlantic suggest they 
have managed to adapt and survive under diverse and harsh conditions [16, 17, 19, 20]⁠. The 
habitats in which marine-derived actinomycetes thrive suggest they have developed a distinct set 
of chemical repertoires for defense and microbial communication [21, 22]. 
 
Understanding the taxonomic distribution and marine adaptations of these microorganisms in 
easily accessible coastal areas could help lead to the identification of locations with 
taxonomically diverse populations of marine-adapted actinomycetes, therefore increasing the 
chances of finding novel compounds. In the recent past, exploration of the marine environments 
as a source of actinomycetes has resulted in the discovery of bioactive metabolites including 
meroterpenoids, like azamerone, sesquiterpenes like neomarinone, polyketides like saliniketal 
and abyssomicin C, and peptides like thiocoraline and cyclomarin A [23]. The exploration of 
overlooked marine environments, including coastal sediments of the Yucatan Peninsula where 
karstic sediments and bottom water spurts from the underground aquifer join [24]⁠], could lead to 
the discovery of new microbial taxa capable of producing novel compounds. In fact, recent 
studies have shown that exploration of coastal zones is still a promising source of bioactive 
actinomycetes [16, 25, 26, 27, 28, 29]⁠. 
 



Even though the use of novel sequencing technologies as a way to mine for specialized 
metabolite biosynthetic pathways in Actinobacteria has recently bolted [30]⁠, random selection of 
locations for cultivation of actinomycetes from the marine environment has still resulted in 
successful achievements in the discovery of sources for bioactive compounds [16]⁠. However, this 
randomness can be reduced by applying ecological strategies towards the selection of locations 
with increased probability of harboring microbial taxa that produce novel metabolites [22]⁠. The 
present study was designed to explore the diversity of marine-derived actinomycetes from sites 
along the Yucatan coast and use ecological and phylogenetic strategies to support the hypothesis 
that distinct phylogeny and marine adaptations can be used as ecological indicators of strains that 
produce bioactive secondary metabolites. 
 
Materials and Methods 
 
One hundred six marine sediment samples were collected between 2 and 30 m depth by scuba 
diving and using 50-mL Whirl Pack sterile bags from 12 sites located in the Yucatan Peninsula 
from January 2012 to March 2013. Samples were kept at 4 °C until processed. 
 
Marine sediment samples (5 g) were dried in a laminar flow hood (24 to 36 h); once completely 
dried, the sediment was stamped in agar plates using an autoclaved foam plug in a clockwise 
direction to create a serial dilution effect as described previously by Jensen et al. [31]⁠. Agar 
plates contained A1 media with peptone (4 g), starch (10 g), yeast extract (2 g), cycloheximide 
(100 μg mL−1) to prevent fungal contamination, and either rifamycin or gentamicin 
(10 μg mL−1 and 5 μg mL−1, respectively) to reduce the growth of gram-negative bacteria. Plates 
were incubated at 28 °C for 1 to 3 weeks. Colonies were selected based on morphology and 
pigmentation as mentioned in Bergey’s Manual of Systematic Bacteriology [32]⁠. Strains were 
subcultured using A1 media until pure and tested using a non-staining reaction with KOH [33]⁠. 
Gram-positive isolates were then inoculated in 2-L flasks of A1 liquid medium in order to obtain 
cell mass. 
 
Molecular Methods 
 
Genomic DNA from the isolates was extracted using the in situ lysis method described by Rojas 
and collaborators [34]. Presence of DNA was confirmed by electrophoresis on an agarose gel 
(1%). The 16S rDNA gene was amplified using the actinomycete-specific primers FC27 (5′ 
TACGGCTACCTTGTTACGACTT 3′) and RC1492 (5′ AGAGTTTGATCCTGGCTCAG 3′) 
and the program suggested by Mincer and collaborators [20]⁠ was followed: 10 min at 95 °C, 
followed by 30 cycles of 45 s at 94 °C, 45 s at 65 °C for annealing and 1 min at 72 °C for 
extension, and a final extension for 10 min at 72 °C as suggested. PCR product amplification 
was confirmed by agarose gel electrophoresis. 
 
PCR products were sent to Macrogen enterprise (Korea) for purification and sequencing. All 
sequences were deposited in the GenBank data base under accession numbers KT214470–
KT214553. 
 
Sequence Processing 
 



Reverse and forward sequences were aligned and trimmed (900 bp) using Geneious 7.1.2 
(http://www.geneious.com) and nearest neighbors were obtained by blasting against the 
EZTaxon database [35]⁠. All further sequence alignments were performed in SILVA ( www.arb-
silva.de/act ) and operational taxonomic units (OTUs) at 97% sequence identity were created 
using the cluster command and average neighbor method on MOTHUR [36, 37]. Using the 
otu.rep command in MOTHUR, one representative sequence per OTU was used to create an 
alignment. This was used to create a maximum likelihood phylogenetic tree with 1000 bootstrap 
randomizations on MEGA 7 [38, 39]. A representative OTU tree was used as an input for the 
weighted.unifrac command in MOTHUR to obtain a dissimilarity dendogram and the UniFrac 
values among locations. The richness estimator Chao 1 [40] was calculated using the 
rearefaction.single command in MOTHUR. All graphics were developed on the R project 
software [41, 42] using vegan. All edits on names for the phylogenetic tree were done using 
InkScape (http://www.inkscape.org). 
 
Effect of Distilled Water (DW) on Growth 
 
To test the requirement of seawater for growth, all strains were inoculated on A1 media. Once 
growth was observed, strains were inoculated at the same time on plates containing A1 medium 
prepared with seawater and in plates with the same medium using distilled water. Plates were 
incubated at 28 °C for 1 to 3 weeks. Full growth was considered when the actinomycete strain 
grew equally well in both media after the time period evaluated. Isolated growth was determined 
when the actinomycete strain showed random growth of colonies on DI water medium while the 
area of growth was full of biomass on the seawater water medium after the time period 
evaluated. Null growth was considered when no colonies where observed on the DI water 
medium while the area of growth was full of biomass on the seawater medium after the time 
period evaluated. 
 
Cultivation and Extraction of Marine Actinomycetes 
 
The strains NCA002, NCA004, NCA005, NCA006, NCA008, NCA012, NCA024, NCA049, and 
NCA093 were grown for 10–12 days in Erlenmeyer flasks (two 2 L) containing seawater A1 
medium (1 L) and placed on a rotary shaker (120 rpm, 27 °C). Following fermentation, each 
strain culture was centrifuged (5000 rpm, 30 min) and the cell-free supernatant was harvested 
and mixed twice with ethyl acetate (600 mL). The organic layer was dried using anhydrous 
sodium sulfate and the solvent was evaporated under reduced pressure. The cell pellets were 
washed with distilled water and extracted with acetone (500 mL) two times at room temperature. 
The acetone was evaporated under reduced pressure. 
 
Thin-Layer Chromatography 
 
Analytical thin-layer chromatography (TLC) was carried out using aluminum-backed silica gel 
(60F254) plates (E.M. Merck, 0.2 mm thickness); the plates were first examined under UV light 
(254 and 366 nm) and visualized by dipping the plates in a solution of phosphomolybdic acid 
(20 g) and ceric sulfate (2.5 g) in 500 mL of sulfuric acid (5%), followed by drying and gentle 
heating. The metabolites present in the ethyl acetate extracts were then visualized using 



dichloromethane/methanol 95:5. The acetone extracts were visualized using 
dichloromethane/methanol 6:4. 
 
Gas Chromatography-Mass Spectrometry 
 
The gas chromatography-mass spectrometry (GC-MS) analysis was carried out using a Trace GC 
Ultra Series GC System (ThermoScientific Inc., Waltham, MA, USA) coupling with a mass 
detector triple quadrupole model TSQ Quantum XLS (ThermoScientific Inc.). A 
ThermoScientific TR-5MS column (30 m, × 0.25 mm i.d., × 0.25 μm film thickness) was used 
with helium as a carrier gas (1.2 mL min−1). The GC oven temperature was kept at 50 °C for 
1 min and programmed to 300 °C at a rate of 7 °C min−1 for 2 min. The injector temperature was 
at 50 °C. 
 
Liquid Chromatography Analysis 
 
The crude extracts were analyzed by ultra-performance liquid chromatography tandem mass 
spectrometry (UPLC-MS). The UPLC system, a Waters Acquity UPLC-H Class (Waters, 
Milford, MA, USA) equipped with a quaternary pump, sample manager, column oven, and 
photodiode array detector (PDA), was coupled to a SQD2 single-quadrupole mass spectrometer 
with an electrospray ionization (ESI) source. The analysis were performed using a reversed-
phase C18 column (Waters BEH C18 column, 50 × 2.1 mm i.d., 1.7  m) and a gradient solvent 
system from 20:80 to 100:0 CH3CN-H2O (0.1% formic acid) in 12 min, at a flow rate of 
0.3 mL min−1. PDA detector was set from 190 to 500 nm and the mass spectrometer parameters 
were the following: cone and capillary voltage, 35.0 V and 3.0 kV, respectively; source and 
desolvation temperature, 350 and 450 °C, respectively; collision gas, N2; and mass 
range, m/z 50–2000 (scan duration of 0.5 s). All samples were analyzed in both positive and 
negative modes. 
 
Purification of NCA004 and NCA008 and the Isolation of Resistomycin 
 
The crude ethyl acetate extract of NCA004 (200 mg) was subjected to gravity column 
chromatography purification (2.5 cm diameter, 20 cm high) with Hx/CHCl3/AcOEt/MeOH 
7:3:2:1 to produce five main fractions (A–E). Fraction C was determined by TLC as a pure 
metabolite 1 (2 mg) yellow oil soluble in CHCl3, retention factor (Rf) 0.63 in Hx/AcOEt 95:5, 
and identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) as 
resistomycin. Additionally, sonication of the crude acetone extract of strain NCA004 (2.05 g) 
with 100 mL of CH2Cl2 for 30 min (2x) yielded 460.3 mg of a medium-to-low polarity fraction, 
which was then subjected to successive vacuum liquid chromatography (VLC) (CHCl3/MeOH), 
gravity column chromatography (Hx/An 8.2, 7:3, and 1:1), and gel permeation column 
chromatography, Sephadex LH-20 (CH2Cl2/MeOH 1:1), that resulted in seven semi-purified 
fractions. The sonication of the crude acetone extract of strain NCA008 (2.56 g) with 100 mL of 
CH2Cl2 for 30 min (2x) yielded 693.7 mg of a medium-to-low polarity fraction, which was then 
subjected to a gel permeation column chromatography, Sephadex LH-20 (CH2Cl2/MeOH 1:1), 
and resulted in two main semi-purified fractions. 
 
Antimicrobial Activity of Crude Fermentation Extracts 
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Antimicrobial activity from the ethyl acetate and acetone extracts from nine marine actinomycete 
strains was determined by a triplicate bioautography assay (planar chromatographic analysis-
biologial detection method [43]⁠ with the pathogenic bacterial strains Staphylococcus 
aureus (ATCC 25923) and Pseudomonas aeruginosa (ATCC 27853)). This method is a fast and 
simple technique which combines the advantages of TLC separation of a crude extract and 
antimicrobial detection [44, 45]. Activity of the spots with different Rf from crude extracts was 
assessed by adding 0.5 mg of crude extracts (or semi-purified fraction extracts) on the TLC 
plates and eluted using a dichloromethane/methanol 95:5 mixture. After the elution, each TLC 
plate was set in 10 mL TSB medium containing 1 × 106 UFC mL−1 of bacteria. TLC plates were 
incubated at 37 °C for 24 h. To aid inhibition zone visualization, dehydrogenase activity was 
detected with tetrazolium salt [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 
MTT] reagents (1 mg mL−1) since metabolically active bacteria convert MTT into formazan dye 
[43]⁠. A strong bioactivity was considered when halos of inhibition around the spots in the TLC 
covered more than 50% of the growth in the plate. A medium bioactivity was considered when 
halos of inhibition around the spots in the TLC covered between 10 and 50% of the growth in the 
plate. A weak bioactivity was considered when halos of inhibition around the spots in the TLC 
were small and covered less than 10% of the plate. 
 
Results 
 
Molecular Identification and Operational Taxonomic Unit Distribution of Marine Sediment-
Associated Actinomycetes 
 
From a total of 106 sediment samples, 85 actinomycete strains were isolated and taxonomically 
identified. Thirty-two operational taxonomic units (OTUs) were formed based on 97% similarity 
within these sequences. The OTUs were distributed among nine different 
genera: Streptomyces, Saccharomonospora, Dietzia, Nocardiopsis, Pseudonocardia, Verrucosisp
ora, Brachybacterium, Jiangella, and Salinispora. 
 
Most (61%) of OTUs belonged to the Streptomyces genus which were also the most abundant of 
the genera identified (Table 1). Salinispora was the second most abundant genus with four OTUs 
followed by Jiangella, with three OTUs. The rest of the genera had one or two OTUs formed by 
single strains (e.g., Saccharomonospora, Dietzia, and Brachybacterium) or by multiple strains in 
the same OTUs (Nocardiopsis, Pseudonocardia, and Verrucosispora). 
 
Table 1. Number of sequences in OTU classification 
Genus No. of OTUs No. of sequences 
Streptomyces 17 52 
Salinispora 4 12 
Jiangella 3 3 
Nocardiopsis 2 7 
Pseudonocardia 2 3 
Verrucosispora 1 5 
Brachybacterium 1 1 
Dietzia 1 1 
Saccharomonospora 1 1 
 



From all 12 locations covering the western [Gulf of Mexico (Celestún)], northern [Yucatan 
current (La Bocana, Chelem, Dzilam, Rio Lagartos, and Holbox)], and eastern [Caribbean 
(Cancun, Puerto Morelos, Cozumel, Akumal, Mahahual, and Banco Chinchorro)] coasts of the 
Yucatan Peninsula, the highest number of genera and OTUs was observed in Cancun (Fig. 1), 
while in Akumal and La Bocana, only Streptomyces and Salinispora were identified. The only 
location where no representative of the Streptomyces genus was isolated was Banco Chinchorro 
which is an island in the Caribbean seas (Fig. 1). 
 

 
Figure 1. Number of OTUs and genera from sampled locations 
 
The phylogenetic diversity of marine-derived actinomycetes isolated from the Yucatan shows 
that strains in OTUs belonging to the genera Dietzia, Pseudonocardia, Nocardiopsis, 
Verrucosispora, and Saccharomonospora are similar to their nearest type strain, while 
many Streptomyces strains branch out from the type strain “leaf” (Fig. 2, Supplementary 
Figure 1). In an effort to explore if these branching Streptomyces OTUs showed an adaptation to 
life in the ocean, we ran growth tests in deionized water media. Out of 69 Streptomyces strains 
tested, 21 showed a requirement for growth. Figure 2 shows OTUs that contain seawater 
requiring strains in bold. When their 16S rRNA gene sequence was compared to the GenBank 
database, all strains shared more than 98% of their nucleotide sequence with their nearest 
neighbor; therefore, we did not consider any of them as novel actinomycete strains. However, all 
of these strains’ nearest neighbors were reported as isolated from marine environments (data not 
shown); therefore, all of our isolates can still be considered as marine-derived. 
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Figure 2. Maximum likelihood tree with 1000 bootstrap randomizations of partial 16S rDNA 
gene sequences (900 bp) from OTUs isolated from marine sediments of the Yucatan Peninsula. 
Nodes above 50% bootstrap values are shown. OTU representative strains display collection 
number, Genbank accession number, and number of sequences per OTU in parenthesis. OTUs 
with strains that were unable to grow in distilled water are shown in bold. Black circles indicate 
OTUs with a bioactive strain (see results below). Type strains show the ID numbers found on 
EZ-Taxon (ezbiocloud.net) 
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Alpha Diversity of Marine Sediment-Derived Cultivable Actinomycetes in Yucatan 
 
A rarefaction curve for the count of the actinomycete OTUs in Yucatan, together with a richness 
estimator, shows the number of OTUs does not reach a plateau, suggesting our sampling effort 
was not enough to reach the highest number of culturable actinomycetes from sampled 
sediments. Therefore, further processing and cultivation methods, or a greater sampling effort in 
these locations, is recommended (Fig. 3). A more detailed analysis shows that no location was 
sampled or processed to its full potential for actinomycete cultivation (Supplementary 
Figure S2). 
 

 
Figure 3. Rarefaction curves for richness (sobs) and estimated richness (chao) using the 
statistical estimator Chao 1 [46]⁠ of cultivable actinomycetes. Data shows a plateau was not 
reached, suggesting further sampling or processing of samples is needed to achieve a higher 
coverage of the cultivable actinomycete richness from sediments in Yucatan 
 
Effect of Seawater on Growth of Marine Sediment-Associated Actinomycetes 
 
A growth test where the seawater in the medium was replaced with deionized water assessed 
adaptation to growth in the marine environment. Our results suggest that marine adaptation is a 
common trait among coastal streptomycetes since 30% of strains isolated from these areas 
required seawater for growth. Furthermore, the acquisition of this trait seems to be common 
(40%) among diverse Streptomyces from coastal sediments from the Yucatan (Fig. 2). On the 
other hand, non-Streptomyces strains isolated from these same sediments did not require 
seawater for growth, except for the obligate marine genus Salinispora. This result suggests 
that Streptomyces have either been in the coastal area for longer times allowing them to adapt to 
these conditions or that members of these genus have a greater genomic plasticity than other 
actinomycetes which enables them to easily adapt to stressing environmental conditions [47]⁠. 
The two locations with the highest number of marine-adapted Streptomyces were Chelem and 
Mahahual, while none of the Streptomyces strains isolated from Celestún, Dzilam, and Cancun 
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showed any effects when seawater was removed from the growth medium (Fig. 4) highlighting 
the former two locations as key sites for future sampling efforts. 
 

 
Figure 4. Distribution of Streptomyces strains according to their growth on DW among sampled 
locations (full growth: no changes in growth on both media; isolated growth: random growth in 
DW medium; null growth: no growth on DW medium) 
 
Beta Diversity of Marine Sediment-Derived Cultivable Actinomycetes in Yucatan 
 
To explore the phylogenetic differences between cultivable actinomycete diversity in marine 
sediments from different locations of the Yucatan, we performed a UniFrac statistical test which 
uses phylogenetic information (i.e., evolutionary distances) to compare microbial communities 
[48]. Two distinct clusters were observed: the first cluster contained locations where a majority 
of the cultivable strains belonged to the family Micromonosporacea (Rio Lagartos, Cancun, 
Dzilam, Akumal, and Banco Chinchorro); and the second cluster was formed by locations where 
most strains belonged to the family Streptomycetacea (Mahahual, Holbox, Chelem, La Bocana, 
Cozumel, and Celestún) (Fig. 5). Internal nodes in these clusters (sub-clusters) suggest that 
geographic vicinity is not a determining factor for phylogenetic similarity among cultivable 
actinomycete diversity. That is, locations as far apart as Rio Lagartos (northern Yucatan—
Yucatan current) and Cancun (eastern Yucatan—Caribbean Sea), or Dzilam and Akumal, clade 
closer together than to any adjacent location. No trends were observed according to sample 
locations, except for Banco Chinchorro and Celestún that did not form a cluster with any other 
location. The former is an island in the Caribbean eastern side of the peninsula, while the latter is 
a coastal lagoon on the western side of the peninsula. 
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Figure 5. Weighted UniFrac dissimilarity dendogram shows a clear separation between 
Micromonosporacea-dominated locations (top clade) and those locations dominated by 
Streptomycetacea (bottom clade) in the Yucatan Peninsula. Banco Chinchorro (island in the 
eastern Caribbean) and Celestún (coastal lagoon in the western Gulf of Mexico side of the 
peninsula) do not group with any other location 
 
Antimicrobial Activity of Fermentation Extracts and Compound Isolation 
 
Based on the phylogeny, location, and seawater requirement analysis, eight streptomycetes were 
selected (Table 2). The ethyl acetate and acetone crude extracts of eight strains were tested for 
antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa by a 
bioautography assay in order to analyze the activity of TLC spots of the crude extracts. All ethyl 
acetate extracts from Streptomyces strains from Chelem showed strong bioactivity (Table 3). 
Bioactivity from the ethyl acetate extract of NCA024 (seawater requiring strain from a location 
other than Chelem) was weak, while NCA049 (non–seawater-requiring strain from Cozumel) 
showed no bioactivity on the assays. Extracts from NCA005 (non–seawater-requiring strain from 
Chelem) also showed high bioactivity (see “Materials and Methods”), suggesting that Chelem is 
a good location to undertake broader sampling efforts. Based on these results, NCA004 and 
NCA008, both seawater-requiring strains from Chelem, were selected for further chemical 
analyses. 
 
Table 2. Seawater requirements for select marine-derived strains 
Strain ID Location Seawater requirement for growth Representative strain 
NCA002 Chelem Yes NCA004 
NCA004 Chelem Yes NCA004 
NCA005 Chelem No (negative control for Chelem strains) NCA057 
NCA006 Chelem Yes NCA056 
NCA008 Chelem Yes NCA057 
NCA012 Rio Lagartos Slow growth NCA004 
NCA024 Puerto Morelos Yes (SW requirement outside Chelem) NCA004 
NCA049 Cozumel No (negative control outside Chelem) NCA057 
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Table 3. Antimicrobial activity of selected Streptomyces strains shown by the bioautography 
method 
Extract Antimicrobial activity 

Staphylococcus aureus Pseudomonas aeruginosa 
AcOEt NCA002 +++ +++ 
Acetone NCA002 + + 
AcOEt NCA004 +++ +++ 
Acetone NCA004 +++ ++ 
AcOEt NCA005 +++ +++ 
Acetone NCA005 +++ +++ 
AcOEt NCA006 +++ ++ 
Acetone NCA006 + – 
AcOEt NCA008 +++ +++ 
Acetone NCA008 +++ +++ 
AcOEt NCA012 + + 
Acetone NCA012 ++ + 
AcOEt NCA024 + + 
Acetone NCA024 – – 
AcOEt NCA049 – – 
Acetone NCA049 – – 
+++ strong activity, ++ moderate activity, + weak activity, − null activity 
 
Successive chromatographic purifications of the ethyl acetate extract of strain NCA004 showed 
high activity of the semi-purified fractions (Supplementary Figure S3) and resulted in the 
isolation of metabolite 1, which was identified by liquid chromatography and mass spectroscopy 
(UPLC-MS) as resistomycin, a quinone-related antibiotic from the family of phenanthrenes and 
derivatives that possesses bactericidal and vasoconstrictive activity [26]. The resistomycin peak 
appeared at 12.057 min in the chromatogram (Supplementary Figure S4). The UV profile and 
MS data were both consistent with resistomycin (Supplementary Figure S5). The parent ion peak 
at m/z (M-H) found for C22H15O6 was 375.7. 
 
Table 4. Compounds found by GC-MS analysis of NCA004 CH2Cl2 semi-purified fractions 
according to their retention time and molecular weight 

No. 
Retention 
time (min) Compound Formula 

Molecular 
weight (MW) 

2 25.41 Trans-13-octadecenoic acid methyl ester C19H36O2 296 
3 20.75 Tetradecanoic acid C14H28O2 228 
4 22.41 Pentadecanoic acid C15H30O2 242 
5 21.03 9-Eicosene C20H40 280 
6 23.91 10-Heneicosene C21H42 294 
7 6.49 n-Decane C10H22 142 
8 8.57 n-Undecane C11H24 156 
9 10.63 n-Dodecane C12H26 170 
10 28.94 9-Octadecenamide C18H35NO 281 
11 13.98 Butoxyethoxyethyl acetate C10H20O4 204 
12 32.90 Terephthalic acid-di(2-ethylhexyl) ester C24H38O4 390 
13 30.67 1,2-Benzenedicarboxylic acid mono 2-ethylhexyl ester C16H22O4 278 
14 18.10 Piperazine-2,5-dione-1,4-dimethyl-3,3′ bis C12H18N4O4 282 
15 22.10 Pyrrolol-[1,2-alpyrazine-1,4-dione-hexahydro-3-(2methylpropyl) C11H18N2O2 210 
 
Additionally, a dichloromethane fraction of the acetone extract from strain NCA004 was further 
fractionated and seven main semi-purified fractions were analyzed by GC-MS (Table 4). 



Retention time and molecular weight corresponding to the following secondary metabolites were 
observed: carboxylic acids (13-octadecenoic acid, tetradecanoic acid, pentadecanoic acid, 13-
octadecenoic acid, 1,3-benzenedicarboxylic acid mono 2-ethylhexyl ester), hydrocarbons (9-
eicosene, 10-eicosene, decane, undecane, dodecane), amides (9-octadecenamide), esters 
(butoxyethoxyethyl acetate, terephthalic acid ester derivate), and amines (piperazine and pyrrolol 
derivates). 
 
Discussion 
 
Marine actinomycetes have long been known as a promising source of novel metabolites with 
biological activity [6, 27, 28, 29, 30]. Nevertheless, successful selection of strains producing 
novel bioactive compounds is still a challenge. One of the main obstacles for natural product 
discovery from marine sources lies in the number of isolates that can be recovered. Even though 
selective isolation methods have allowed us to cultivate a considerable amount of bacterial phyla, 
the number of bacteria that can be brought to pure culture remains around the 1% range [49]⁠. 
Marine actinomycete cultivation techniques allow us to obtain up to hundreds of strains in a plate 
[14]; however, selection of strains for chemical and bioactivity analyses is usually a random 
process. Cultivation-dependent methods are still considered as a useful method bioprospecting, 
especially as they allow further strain manipulation for compound isolation [32]. Novel 
technologies like matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 
(MALDI-TOF MS), mass spectrometry-based molecular networking, and genome mining MS-
guided metabolomics [50]⁠ have been suggested as a good way to prioritize strain selection in 
natural product discovery [33]. However, many of these methods are costly. Here, we present a 
study that focuses on the use of accessible microbial ecology techniques as a tool to increase the 
selective isolation of bioactive actinomycete strains cultivated from the Yucatan Peninsula. 
 
The coastal marine sediments of the Yucatan Peninsula harbor a notable diversity of cultivable 
actinomycetes (Table 1), with nine different genera well represented among 85 strains from 11 
locations (Fig. 1). Other studies of Mexican coastal environments have reported the isolation of 
300 to 1497 strains; however, 17 culture media were used [35]. In this case, the use of one 
selective medium amended with three antibiotics applied to 101 samples resulted in the isolation 
of three actinomycete genera not reported yet from Mexican coastal 
sediments: Jiangella, Pseudonocardia, and Brachybacterium, and four others that have been 
previously reported from the Gulf of Mexico and Gulf of 
California: Streptomyces, Salinispora, Verrucosispora, 
and Nocardiopsis [35, 36, 37, 38, 39, 40, 41]. Among this diversity, Streptomyces was the most 
dominant genus (Fig. 1). This is not surprising as this genus is often isolated from marine 
sediment samples using selective media [43, 44]. Furthermore, the use of nitrogen compounds in 
culture media has been reported to favor the growth of antibiotic-producing strains, 
like Streptomyces [47]. This over-representation of the Streptomyces can be reduced when 
samples are recovered further from shore, even when the same culture media are used [48, 51]. 
The only location where no Streptomyces strains were isolated was Banco Chinchorro, while 
Cancun, Dzilam, and Rio Lagartos showed a higher number of distinct genera reducing the 
overall Streptomyces dominance. The presence of four Salinispora OTUs may be misleading 
regarding the microdiversity in this genus which has been shown to share over 99% of its 16S 
rRNA variance among species [52]. However, careful examination of the sequences show that 



most of these differences were mostly due to clear sequencing errors in 
the Salinispora chromatograms that were detected when the 2X full sequence was carefully re-
examined. The presence of S. arenicola and S. tropica strains in these geographic locations could 
lead to the discovery of different chemical structures from the secondary metabolite families they 
produce since studies have shown that phylogenetically related strains collected from diverse 
locations produce distinct secondary metabolites [52]. Although several OTUs (31) were 
recovered from the 12 locations and 101 samples, the rarefaction curve did not reach saturation, 
and taken together with the Chao 1 richness estimator, it is clear that further sampling or 
processing of samples would yield more OTUs (Fig. 2) [51]. 
 
All isolates were tested for seawater requirements and Salinispora and Streptomyces were the 
only two genera with strains that showed a clear dependency on it for growth. Locations on the 
North and East of the Yucatan Peninsula had from one to seven seawater-
requiring Streptomyces strains and Celestún, Dzilam, and Cancun each were the only locations 
without Streptomyces with some requirement of seawater for growth (Fig. 4). The highest 
percentage of seawater-requiring Streptomyces strains occurred in Chelem, followed by 
Mahahual, La Bocana, and Akumal. According to Aranda-Cirerol [53], Chelem and La Bocana 
are both found in a similar hydrochemical area, but the coastal area in Chelem has a higher 
wastewater discharge [54] and its salinity values range from 36 to 40 ppt [55]. In spite of being 
constantly under terrestrial influence, most of the strains in Chelem displayed strict marine 
attributes, with their closest relatives also isolated from the marine environment (data not 
shown), while many of the strains isolated from La Bocana show slow growth without seawater, 
suggesting they may be in a process of adaptation to marine conditions. The high number of 
strains with some degree of requirement of seawater for growth found in these coastal sediments 
could be due to the high tolerance of salt reported for this genus (up to 14%) [56] and to the 
evolutionary adaptations to the marine environment that have been described and which would 
allow terrestrial strains to reach the ocean (33 ppt of salt) and colonize a new niche and 
eventually become a different taxon with a dependency on seawater for their growth [57]. Recent 
genome sequencing of marine-derived Streptomyces has shown a potential for synthesizing novel 
antimicrobial peptides [58] as well as prenyltransferases involved in the synthesis of isoprenoids 
[59]. Furthermore, recent statistical studies on the diversity of marine natural products by Pye 
and collaborators have shown that compounds isolated from novel marine sources have a higher 
chance of differing from the usual chemical scaffolds [9]. These authors highlight the importance 
of designing new biological prioritization methods to improve the effective selection of these 
sources [9]. The production of interesting and novel chemical compounds from strictly marine 
strains [60, 61] highlights the importance of generating an ecological perspective from the 
isolates including their requirement of seawater for growth, their similarity, or lack of it, to 
terrestrial strains, their chemical interactions, and their resulting biological activities to select for 
novel natural product production. 
 
Phylogenetic analysis shows the presence of nine different genera of cultivable marine 
actinomycetes within the Yucatan Peninsula’s coastal sediments (Fig. 4). All partially sequenced 
strains shared > 98% of their partial 16S rRNA gene sequences with reported strains in public 
databases and were therefore not considered novel; however, the requirement of seawater for 
growth in some Streptomyces strains could suggest marine adaptations of novel ecotypes. 
Comparative genomics of marine-derived Streptomyces has evidenced adaptations on solute 



transport and nutrient acquisition mechanisms revealing their genetic adaptation to the marine 
environment [57]. Therefore, it is not surprising that many of the strains isolated in this study 
make phylogenetically distinct clades when compared to their nearest reported neighbors. 
 
Although the environmental characteristics between sediments from the Yucatan and the 
Caribbean differ greatly, i.e., submerged groundwater discharges vs coral reef ecosystem 
[54, 62], a UniFrac analysis shows no influence of sample location on the phylogenetic diversity 
of cultivated actinomycetes. Instead, a clear separation 
between Streptomycetaceae and Micromonosporaceae is observed (Fig. 5). Preliminary chemical 
analyses on the sediments show no relationship between C or N content and the UniFrac results 
(data not shown), but further analyses could determine if other physico-chemical and biological 
features of those habitats select for specific actinomycete genera [63]. 
 
To our knowledge, this is the first study that shows that simple ecological features can be used as 
signs of marine adaptation from Streptomyces strains and can be taken as criteria for the 
selection of strains for natural product discovery. This approach has proven useful in our search 
for bioactive actinomycetes from the Yucatan. These simple and non-expensive methods can be 
the first step to designing a more robust and innovative discovery strategy involving 
bioprospecting of overlooked marine environments. Furthermore, together with genomic and 
metagenomic exploration of the microorganisms potential for natural product biosynthesis and 
dereplication strategies like the Global Natural Product Social Molecular Networking platform or 
MALDI-TOF MS, the rate of natural product discovery should be notably increased. 
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