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Abstract: 
 
This study quantifies the effect of the 2020 state COVID economic activity reopening policies on 
daily mobility and mixing behavior, adding to the economic literature on individual responses to 
public health policy that addresses public contagion risks. We harness cellular device signal data 
and the timing of reopening plans to provide an assessment of the extent to which human mobility 
and physical proximity in the United States respond to the reversal of state closure policies. We 
observe substantial increases in mixing activities, 13.56% at 4 days and 48.65% at 4 weeks, 
following reopening events. Echoing a theme from the literature on the 2020 closures, mobility 
outside the home increased on average prior to these state actions. Furthermore, the largest 
increases in mobility occurred in states that were early adopters of closure measures and hard-hit 
by the pandemic, suggesting that psychological fatigue is an important barrier to implementation 
of closure policies extending for prolonged periods of time. 
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Article: 
 
1 INTRODUCTION 
 
During the early months of the coronavirus disease (COVID-19) pandemic, state governments 
implemented social distancing policies mandating that certain venues of economic transaction be 
closed to control the spread of the SARS-CoV-2 virus in the United States. These government 
actions, combined with private responses to the risk of infection, effectively shut down a large 
share of U.S. economic and social activity. Research based on past epidemics shows that human 
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mobility plays an important role in the spread of many infectious diseases (Wesolowski et al., 
2016). In recent work on the COVID-19 pandemic, Gupta et al. (2020) examine the effects of a 
variety of state and local mitigation actions (emergency declarations, school closures, restaurant 
dining-in prohibitions, nonessential business closures, and stay-at-home mandates) on cell-phone-
based measures of mobility and interaction. Their event studies suggest that state distancing 
policies lead to small reductions in mobility that grow over time, and also that early and 
information-focused state policies may have the largest causal influence on mobility patterns. 
 There is also emerging evidence that state shutdown policies have helped reduce 
transmission of the virus (Courtemanche et al., 2020; Dave et al., 2020; Friedson et al., 2020). 
Inducing higher levels of social distancing and keeping transmission rates low may help protect 
the viability of local health care systems by reducing peak utilization of limited health care 
resources like intensive care unit beds and ventilators. Thus, there is evidence that social distancing 
policies yield important social benefits, slowing the pace of the epidemic, preventing surges of 
healthcare demand, and perhaps ultimately saving lives. Nevertheless, these broad-based 
(nontargeted) social distancing responses have high costs. Over 31 million people filed new 
unemployment insurance claims between March 1 and May 2, 2020, according to the U.S. 
Department of Labor. The rise in unemployment was mostly a nationwide response to the 
epidemic, with early social distancing policies playing a smaller role (Kahn et al., 2020; Rojas et 
al., 2020). Job losses during in the early epidemic were less common among people who were able 
to work remotely and among people working in essential industries (Montenovo et al., 2020). Mass 
unemployment can strain household and national finances, and the experience of unemployment 
is damaging to mental and physical health (Krueger et al., 2011; Sullivan & Von Wachter, 2009). 
Given this situation, the pressure on state governments and individual households to restart 
economic activity was high (Mervosh et al., 2020). 
 Most states started to lift some of their social distancing policies in April and May of 2020; 
the effects of reversing state closure policies are not well understood. In this study, we examine 
the short-term effects of state reopening policies on mobility and social contact patterns. We use 
multiple cell-phone-based data sources to measure various dimensions of mobility and to track the 
variation between and timing of reopening policies across the country. Our paper makes three 
empirical contributions. First, we document a sudden increase in social contact and mobility in 
most states starting in mid-April. Whatever the cause of the increase, it is clear that a reopening 
phase really was underway by late April. The recovery in mobility was small relative to the decline 
that occurred during the initial lockdown, but it is observable across a broad range of cell-phone-
based metrics. Second, we estimate event study models to trace out the ways in which mobility 
patterns responded to state reopening policies. These estimates suggest that the reopening policies 
substantially increased social contact; however, mobility outside the home appears to have 
increased in advance of the reopening policies. Comparing results across pairs of contiguous 
counties, we further find that the changes in mobility are larger in models that account for spillover 
effects on neighboring counties, indicating that even “untreated” counties experience increases in 
mobility when a neighboring county reopens. Third, the reopening effects on the mixing index are 
largest among states that were either early adopters of closure policies or hard hit by the pandemic. 
 To the best of our knowledge, this study provides the first comprehensive overview of 
reopening policies that lift many restrictions on nonessential business activities. Through the lens 
of home production theory, we can view the COVID-19 pandemic and related regulatory decisions 
as exogenous changes in the perceived infection risk associated with physical interactions that 
individuals make in the production of the other commodities. Our findings on immediate increases 



to social contact following reopening policies are consistent with the idea of pent-up demand for 
“social contact intensive” activities, such as visits to retail stores, recreation areas, pharmacies, and 
other places with in-person interactions. Like durable goods, these activities may be most likely to 
rebound relatively quickly once reopening occurs due to delayed consumption during the 
restriction period. In the same vein, this study also finds that people in hard-hit areas with a 
prolonged period of lockdown tend to respond immediately to reopening events by mixing more. 
 Another important finding of this study is that mobility outside the home tended to increase 
prior to reopening policies. This result suggests that these policies may have more muted effects 
on certain work or leisure activities with lower perceived infection risk. For instance, small group 
gatherings with situational mitigation strategies such as wearing a mask or staying at least 6 feet 
from others may be considered safe even before the official announcement of reopening policies 
or the lifting of indoor dining bans. The aggregate area-wide demographic levels associated with 
cell data analysis, however, are unable to dissect such heterogeneous preferences for various 
activities. 
 
2 BACKGROUND 
 
2.1 Roles of mobility and physical distancing interventions in the context of a pandemic 
 
Previous research suggests that human mobility affects the dynamics of infectious diseases 
(Wesolowski et al., 2016). Recent work suggests that sustained physical distancing interventions 
are likely to reduce the magnitude of the COVID-19 epidemic's peak (Prem et al., 2020). And other 
work finds that the lockdown of Wuhan significantly reduced mobility and that social distancing 
reduced the spread of COVID-19 (Fang et al., 2020). 
 The early official responses to the COVID-19 pandemic in the United States included 
orders or actions to encourage or mandate physical distancing through emergency declarations, 
school closures, nonessential business closures, restaurant dining-in prohibitions, and stay-at-
home orders and advisories. Stay-at-home orders have received a great deal of attention in public 
debates, but they were typically the final policy in a series of state and local actions (Gupta et al., 
2020). Dave et al. (2020) find that early stay-at-home orders reduced COVID-19 case counts and 
mortality, but they found that later stay-at-home orders had no effect. Using SafeGraph mobility 
data, they also find that stay-at-home orders increased the share of devices that stay home by 5.2%. 
Similarly, Courtemanche et al. (2020) find that stay-at-home orders reduced the COVID-19 case 
growth rate by 3.0 percentage points in the first 5 days after implementation and that the effect 
increases to an 8.6% reduction after 21 days; closing restaurants has similar effects on the growth 
of COVID-19 cases, although with a flatter trajectory. Friedson et al. (2020) use a synthetic control 
method to estimate the effect of California's stay-at-home order on COVID-19 case counts. They 
find that the stay-at-home order reduced COVID-19 cases by approximately 20 to 45 cases per 
100,000 two to 3 weeks after adoption. In log linear models, their estimates indicate that stay-at-
home orders reduced COVID-19 case counts by 40 to 50%. Collectively, these papers suggest that 
stay-at-home orders reduce disease transmission, with the implication that they do so by increasing 
social distancing. 
 
 
 
 



2.2 Econometric evidence on effects of state closure policies on mobility 
 
Prior work has examined determinants of mobility reductions during state closures (Gupta et al., 
2020; Painter & Qiu, 2021; Abouk & Heydari, 2020; Andersen, 2020). Specifically, Gupta et al. 
(2020) provide a comprehensive overview of the kinds of policies states enacted and their timing. 
They examine five different measures of mobility from SafeGraph and PlaceIQ. Using event study 
regressions to examine several state information events and policies at both county and state levels, 
they find little evidence that stay-at-home mandates induced distancing. In contrast, early and 
information-focused actions have larger effects: first case announcements, emergency 
declarations, and school closures reduced mobility by 1%–5% after 5 days and 7%–45% after 
20 days. Painter and Qiu (2021) use SafeGraph data on the fraction of cellular devices that remain 
at home all day and finds that there is an immediate 5.1 percentage point increase in this variable 
following a stay-at-home order, which is 15% of the reported average overall. Andersen et al. 
(2020) use a difference-in-difference (DD) framework and SafeGraph data on number of device 
visits per county per day to examine the impact of stay-at-home orders, banning gatherings of more 
than 50 or 500 people, closing schools, restricting dining-in restaurants, and closing gyms and 
entertainment venues. That work suggests that there was a 19.3% change from stay-at-home laws 
and effects of up to 11% from other laws. Abouk and Heydari (2020) examine mobility indices 
from Google in a DD framework, studying statewide stay-at-home orders, more limited stay-at-
home orders, nonessential business closures, large gathering bans, school closure mandates, and 
restaurant and bar limits. They find that stay-at-home mandates increased the percent of individuals 
who are present at home by 600%, with statistically insignificant effect from any other policy. 
 There are several differences between these existing studies on the largest determinants of 
mobility slowdowns experienced from early March to early April, and the literature has not fully 
resolved reasons for differences in conclusions. Other emerging studies emphasize the importance 
of political variables in understanding mobility responses as well as the role of weather as an 
instrument for mobility, which holds promise in newly emerging research (Allcott et al., 2020; 
Kapoor et al., 2020). For instance, Allcott et al. (2020) embed an epidemiological model of disease 
transmission into an economic model with heterogeneous agents to understand the causes and 
consequences of pandemic responses. These authors use SafeGraph data to show that areas with 
more republicans engaged in less physical distancing after controlling for other factors such as 
public policies, population density, and local COVID-19 severity measures. 
 
2.3 State reopening policies and private responses 
 
Between mid-April and early June, all states had started to unwind some of the policies adopted 
during the shutdown (Mervosh et al., 2020; Raifman et al., 2020). But the details of the reopening 
policies vary across states. South Carolina was the first state to adopt a reopening policy, on April 
20. It was also one of the last states to adopt a stay-at-home order.1 This April 20 reopening was 
partial as it started by allowing retail stores to open to 20% of capacity. By April 30, eight states 
had reopened to some degree (AL, MS, TN, MT, OK, AK, GA, and SC). By June 1, 2020, all states 
took the first actions to resume nonessential business activity. 
 Glaeser et al. (2021) introduce a model of learning from deregulation into the emerging 
literature of the COVID-19 pandemic and emphasize one potential indirect effect of lifting the 
physical distancing restrictions. Specifically, the model predicts that lifting stay-at-home orders 
can signal that the activities such as restaurant visits are now safe. Using mobility data from 



SafeGraph and reservations data from Yelp, these authors find that restaurant demand increased 
sharply shortly after the end of lockdowns suggesting an important signaling effect through a 
regulatory decision. The effects of reversing state closure policies on diverse activities is not well 
understood yet. 
 
3 DATA 
 
3.1 State policies 
 
In this study, we mostly define reopening as the first action a state takes to resume nonessential 
business activity. This is not the only way to measure the concept of reopening, of course. Another 
option is to use the date when stay-at-home (SAH) orders are lifted. In most states, SAH orders 
end on the same day that some nonessential businesses are allowed to open. A third approach 
would focus on how gradually versus suddenly a state reopens its economy. 
 One advantage of the first reopening action definition is that – in a DD framework – the 
first action may serve as a reduced form measure of the collection of reopening actions that follow. 
Another advantage is that the first reopening step may send a strong signal that the government 
thinks it is safe to start returning to regular life. It is possible that people may respond more to the 
initial reopening order than to incremental changes in the degree of opening. Even before official 
state closures, attention to the coronavirus as measured by internet search behavior in a state 
increased suddenly when the state announced its first positive case (Bento et al., 2020). Earlier 
work on state closures suggests that mobility effects are largest for information-laden policy 
actions (Gupta et al., 2020). 
 We collected data on state reopening policies using media searches, starting with New York 
Times descriptions of reopening plans, combined with additional information on the reopening 
schedules for each state from news releases of state governor or state health officials. Each state's 
reopening date was defined as the earliest date at which that state issued a reopening policy of any 
type. Panel A of Figure 1 lists the states that have reopened on each date since April 20, 2020. By 
June 1, 2020 all states had officially reopened in some form. The study period ends on June 30, 
which means that we are able to estimate impacts for at least 4 weeks post reopening using 
variation from all state reopening polices; we thus report effects as of 4 days, 14 days, and 28 days 
after the policy. 
 Some states never formally adopted a stay-at-home order, but even these states 
implemented partial business closures (i.e., restaurant closures) and some nonessential business 
restrictions. Of course, measures of mobility and economic activity have fallen in these states as 
well because of private social distancing choices. In addition, the lack of an official closure does 
not mean that state governments cannot take actions to try to hasten the return to regular levels of 
activity. For example, South Dakota did not have a statewide stay-at-home order, but the governor 
announced a “back to normal” plan that set May 1, 2020, as the reopening date for many 
businesses. Our study period commences on April 15, 2020, to ensure that we capture reopenings 
across all states. We provide the information we have compiled from various sources on GitHub.2 
 
 
 
 
 



 
FIGURE 1. Timing and U.S. population covered by States' COVID-19 policies. Author's compilations are 
based on New York times and other media databases. The timelines of the presented figures vary by types 
of state policy or information events. Data covered 4/20/20–6/1/20 for Figure 1a to capture the timing of 
state reopenings, data covered 3/10/20–6/1/20 for Figure 1b to capture the earliest restrictions and 
reopenings, data covered 3/15/20–4/15/20 for Figure 1c to reflect the lockdown phase, and data covered 
4/20/20–6/30/20 for Figure 1d to reflect the reopening phase until 6/30/20, the end of our study period. (a) 
Dates of reopenings by state, (b) State policy and information event timing, (c) Population covered by social 
distancing policies and (d) Population covered by reopening plans. State reopening data are available on 
GitHub (https://github.com/nguyendieuthuy/ReOpeningPlans)  
 

 
Stay-at-home orders and nonessential business closures are related but distinct. Several 

states issued ‘stay-at-home’ mandates after they issued orders closing all nonessential businesses, 
or after closing some nonessential businesses (such as gyms) and closing restaurants for on-site 
dining (Panels B and C of Figure 1). Although for the most part, stay-at-home orders coincided 
with regulatory orders to close nonessential businesses, restaurants, and other select categories of 
business. Many business closures started in mid-March, along with school closures (see Figure 2.1 
of Gupta et al., 2020). States that either implemented fewer social distancing measures or 
implemented those measures later also tended to reopen earlier, based on time since the first of 
four major social distancing measures – nonessential business closures, restaurant closures, social 
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gathering restrictions, and stay-at-home orders or advisories. These results may reflect either a lack 
of political desire to engage in distancing or a more limited outbreak (Adolph et al., 2021; Allcott 
et al., 2020; Andersen, 2020). 

The pace of reopening by mid-May 2020 has been gradual. For instance, panel D of Figure 
1 shows that by May 13, 63.5% of the U.S. population lived in a state that had adopted some form 
of reopening policy, only 36.5% of the population lives in states that opened the retail sector, and 
only 33.6% are in states that opened 3 or more sectors. Of the 36 states that reopened by May 13, 
16 states reopened across three or more of the seven sectors that we track while other states pursued 
a more limited strategy by opening only one or two sectors.3 
 

 
FIGURE 2. In mobility changes. Author's calculation based on data from PlaceIQ and SafeGraph 
aggregated mobility metrics smart device data. Each gray line represents a state. Red lines represent states, 
which re-opened, for the period after the re-opening. The thick black line represents a “smoothed” 7 day 
moving average of the states. (a) Trend in mixing index and (b) Trend in fraction leaving home.  
 
3.2 Mobility measures 
 
Mobility data in this study come from four cellular signal aggregators who provide their data for 
free to support COVID-19 research: PlaceIQ (GitHub repository), SafeGraph (provided upon free 
research agreement), Apple's Mobility Trends Reports, and Google's Community Mobility 
Reports. Each company has several different measures of mobility, which may provide answers to 
different questions and have different implications. In this study, we focus on two distinct 
outcomes based on mobility data from SafeGraph and PlaceIQ: human mobility and social contact. 
 
3.2.1 Human mobility 
 
We obtain the key human mobility measure, the fraction of devices leaving home, from SafeGraph 
data. We calculate the fraction of devices at the census block group level that are detected to have 
left the house and aggregate to county or state by-day levels. SafeGraph also provides some 
alternative measures of overall movement patterns such as the median hours spent at home by 
devices as well as the number of devices at the census block group level that are detected to be 
entirely at home during the day. 



 There are other measures of mobility, which have more specific implications. First, Apple's 
Mobility Trends Reports (Apple's Maps Site, 2020) are published daily and reflect requests for 
driving directions in Apple Maps. This measure shows the relative volume of driving directions 
requests per state compared to a baseline volume on January 13, 2020; no county-level equivalent 
is available. Second, Google Community Mobility Reports provide the data that reflect the percent 
change in visits to places within a geographic area, including: grocery and pharmacy; transit 
stations (public transport hubs such as subway, bus, and train stations); retail and recreation (e.g., 
restaurants, shopping centers, and theme parks); and residential (places of residence) (Google's 
Site, 2020). The baseline for computing these changes is the median level of activity on the 
corresponding day of the week from January 3 to February 6, 2020. Third, out-of-state and out-of-
county travel indices based on PlaceIQ data measured, among smart devices that pinged in a given 
geographic location, the percent of these devices that pinged in another geographic location at least 
once during the previous 14 days. 
 None of these data sources provides a metric of social mobility that is theoretically ideal in 
any sense. Each metric may capture a different form of underlying behavior, with different 
implications for the transmission of the virus and economic activity. Given these complexities, we 
think it is particularly important in this literature to compare across several measures of mobility. 
A multiple measure approach provides a simple way to assess the robustness and generality of a 
result; it also may provide opportunities to learn from differences in results across measures. 
 
3.2.2 Social contact 
 
To reflect mixing patterns, we use a “mixing” index derived from smartphone movement data from 
PlaceIQ (Couture et al., 2020). This mixing index is an anonymized, aggregated location exposure 
index that for a given day detects the likely exposure of a smartphone device in a county or state 
to other devices that day. Specifically, this exposure index value captures a fraction of the number 
of distinct individuals that also visited any of the commercial venues visited by a device. This 
measure provides a proxy for actual interactions between people. 
 
3.3 County-level characteristics 
 
We collect a vector of county-level covariates to understand heterogeneity in a cross-sectional, 
descriptive analysis. We derive the socio-demographic data from the 2020 Area Health Resources 
Files (HRSA, 2020) and County Health Rankings database (County Health Rankings, 2020). We 
estimate the number of nursing home residents in a county from the 2017 Nursing Home Compare 
database (CMS, 2020). County incarceration rates are obtained from the Incarceration Trends 
dataset of the U.S. Department of Justice Bureau of Justice Statistics (Incarceration Trends Dataset, 
2020). We collect weather data (temperature and precipitation) from the National Centers for 
Environmental Information (NCEI, 2020). We use the latest year available in each original source. 
 
4 CONCEPTUAL FRAMEWORK 
 
4.1 Pent-up demand for social contact intensive activities 
 
During a pandemic, social contact intensive activities that are normally considered safe – such as 
dining out, traveling for work, and socializing in groups – become “risky” behaviors due to the 



perceived risk of infection. In standard economic models, people will tend to respond to an increase 
in health risks by reducing their participation in risky activities. Likewise, a return to preepidemic 
levels of participation will depend on individual perceptions about changes in the risks posed by a 
given activity. Gupta et al. (2020) sketch a simple home production model – Gronau (1986) – in 
which social distancing arises as a response to changes in the health risks associated with the 
production of various types of home produced goods and services. The basic logic of the home 
production framework is that people derive utility from their own health as well as the consumption 
of a collection of home-produced goods and services. In the models, people do not obtain goods 
and services directly from the market. Instead, they create the consumption good using a home 
production function to combine market inputs, their own time, and contact with other people. 
Health is produced using a health production function, and – during the epidemic – the health 
production function is declining in contact with other people. When the health penalty associated 
with social contact increases because of the epidemic, demand for contact intensive goods and 
services decline. By reducing demand for contact intensive goods and services, people are 
implicitly supplying social distancing. 
 Although the logic of a simple framework like this is easy to understand, it is also possible 
that maintaining high levels of social distancing for a longer period of time may lead to an 
accumulation of delayed demand for contact intensive goods and services. Like durable goods, the 
delayed demand for these activities may be most likely to rebound relatively quickly once stores 
or restaurants are reopened. Some people may experience social distancing fatigue, which could 
make it harder to maintain high levels of social distancing over a prolonged period of time. Lifting 
the shutdown mandates may trigger increases in social mixing among individuals from emotional 
exhaustion, isolation, or boredom. It is also plausible that lifting stay-at-home orders may have 
indirect effects on social distancing by signaling that these social intensive activities are now safe 
(Glaeser et al., 2021), and therefore leads to increases in mobility and social contact. The effects 
of reopening may depend on how binding the various shutdown mandates actually were in practice. 
If reductions in mobility were primarily driven by “private” responses to the change in public 
health conditions, then it is possible that lifting a state social distancing mandate will not generate 
large increases in mobility. 
 
4.2 Heterogeneous preferences over health and nonhealth goods 
 
Some individuals may interpret the government's reopening orders as a signal of safety while other 
individuals may continue to keep their distance and avoid group gathering places because they are 
concerned about the health risks of the virus. It is also possible that people behave differently 
because they hold different beliefs about health risks or are exposed to certain type of 
misinformation prior to the reopening orders. 
 In addition, mobility measures may depend on work and consumption decisions. Mobility 
might not be substantially responsive to the government lifting of restrictions on nonessential 
business operations if many consumers do not feel that the “rents” from shopping in person are 
sufficient to justify the health risks of the added exposure. Likewise, people in jobs that can be 
performed remotely or who have other sources of income may opt to continue staying home 
(Montenovo et al., 2020). Public policies that are not related to reopening, such as the stimulus 
payment, enhanced unemployment insurance benefits, and paid sick leave, may affect decisions 
about mobility during the reopening phase as well (Andersen et al., 2020). 



 Many people are grappling with the decision of when to resume traveling (perhaps by 
public transport) to locations away from the home. This decision relates to measures captured by 
our mobility data: the detection of cell phones in far-away states from their usual location. 
Measures of out-of-state work or leisure travel will likely be shaped by employer reactions to 
changes in government restrictions, and to consumer perceptions of risk from exposure. 
Businesses' decisions to reopen shape demand for labor, work-travel, and leisure-travel; following 
a reopening, we would expect an increase in travel measures. If many businesses remain partially 
shut down because consumer demand for their services is depressed even when states allow 
reopening, then work- and leisure-related mobility measures may not change as much. 
 Geographic variation in the prevalence of essential industry workers may imply that 
reopening leads to larger changes in some locations than others. In rural areas, the effects of the 
stay-at-home orders, in terms of reduction in mobility, were less marked, likely due to the nature 
of rural work. We might expect that mobility effects would be larger after lockdowns of a longer 
nature, but there is selection into closing and opening dates: the states that were shut down for 
longer may proceed more gradually in other ways (especially since the degree of virus spread is 
information that may lead to policy change). 
 
5 RESEARCH DESIGN AND METHODS 
 
5.1 Event study analysis 
 
In this paper, we used event study regression models to examine how measures of mobility evolve 
during the period leading up to and following state reopening events. Let Es be the reopening date 
in state s. Then TSEst = t − Es measures the number of days between date t and reopening. For 
example, 5 days before reopening, TSEst = −5. Five days after reopening, TSEst = 5. We set TSEst 
= −1 for states that never reopen. We fit event study regression models with the following structure: 

 
In the model, Yst is a measure of mobility and θs is a set of state fixed effects, which are 

meant to capture fixed differences in the level of outcomes across states that are stable over the 
study period. γt is a set of date fixed effects, which capture trends in the outcome that are common 
across all states. ɛst is a residual error term. αa and βb are event study coefficients that traces out 
deviations from the common trends that states experience in the days leading up to and following 
a given policy or information event. Specifically, αa traces out differential preevent trends in the 
outcome that are associated with states that go on to experience the policy change or information 
event examined in the model. βb traces out differential post-event trends in the outcome that occur 
after a state adopts the policy or experiences the information shock. The reference period in all 
event studies is the period before reopening, when TSEst = −1. 

The main specifications are based on a balanced panel of states that are observed from 
April 15 to June 30. April 15 appears to be the approximate time when shutdowns had achieved a 
stable pattern in slowed movement across the nation (Schaul et al., 2020). June 30 is 4 weeks 
following the last reopening event (Delaware). To adjust for seasonality, we control for state-by-
day weather (average temperature and precipitation). These covariates are represented by Wst in 
the regression. Using the event-study design with a balanced panel mitigates the emerging concern 
that the two-way fixed-effect models with staggered treatment times may produce biased estimates 



(Callaway & Sant'Anna, 2020; Goodman-Bacon, 2021). Standard errors were clustered at the state 
level in the regressions. We do not weigh states by population. These estimates should be 
interpreted as reflecting the experience of the average state rather than the average person. The 
presence of a pretrend was based on the statistical significance of the prepolicy event study 
coefficients. In the summary results, a measure exhibits a pretrend if at least 30% of the coefficients 
in the preperiod were statistically significant. 
 
5.1.1 Subpopulation analysis 
 
In addition to the state-level event-study analysis, a series of heterogeneity analyses were 
implemented by stratifying the sample in several ways. First, separate regressions for rural counties 
and metropolitan counties were conducted, expecting that the nature of rural activities might be 
more essential in nature and less elastic to nonessential business closures. Counties were separated 
into metropolitan and rural categories using the National Center for Health Statistics Urban–Rural 
Classification Scheme. Second, separate regressions for states with longer and shorter stay-at-
home orders were used to capture variations in psychological fatigue. Longer stay-at-home orders 
are defined as those implemented more than 25 days prior to reopening (the median 
implementation period). A final heterogeneity analysis according the baseline COVID-19 death 
rates was used to test that where deaths were higher, individuals may be more reluctant to move 
even when restrictions are eased. Higher baseline COVID-19 related death rates are defined as 
those above the median as of April 15, prior to reopening. 
 
5.2 Border county analysis 
 
Finally, models using border county pairs that are adjacent to one another but belong to different 
states were used to control for unobserved local factors.4 The border county design provides a way 
to control for local area unobserved factors that may confound the effect of reopening on mobility, 
and also gives an opportunity to examine the spillover effects that may occur when one state 
reopens and another does not. 
 Specifically, for a pair of counties c and c' (in states s and s', respectively), we define the 
first event date in the pair as Ec,c' and an indicator Fc,c,c' = 1 if Es = Ec,c' and 0 otherwise.5 We let 
TSEc,c',t = t − Ec,c' be the number of days between date t and the first reopening in the county pair. 
We set TSEc,c',t = −1 if neither county has a reopening event in our data. Our county-pairs model is 
a modification of the main event study to include county-pair fixed effects and, in some 
specifications, pair-by-time fixed effects: 
 

 
  
 



In the model, Yct is a measure of mobility for county c at time t. θ(c,c') is a set of county-pair 
fixed effects that captures fixed differences in the level of outcomes and timing of reopening across 
counties. γt is a set of date fixed effects that captures trends in outcomes that are common across 
all counties in the sample. α0

a is a set of event study coefficients that trace out how trends in a 
given pair deviate from the national trend in the lead up to a reopening event in counties that do 
not reopen, while α1

a provides similar estimates for how different the first county to reopen is, 
relative to the adjacent county that reopens later. β0

b traces out changes in counties that did not 
reopen after the first county reopened. Therefore β0

b includes an estimate of the common spillover 
effect across all county pairs of the first county in the pair reopening. Β1

b traces the change in 
outcomes associated with the reopening event in the county that reopened first. 
 A second version of the county-pairs model allows each county pair to have a separate set 
of date fixed effects. In this model, the α0

a and β0
b terms are subsumed by the county-pair-by-date 

fixed effects. These fixed effects flexibly capture trends in the county that reopened later, including 
the spillover effect on that county from policy changes in its pair county that opened earlier. 
Therefore, we refer to the first model without the county-pair-by-date fixed effects as assuming 
“no spillovers,” while the second model assumes that there are “spillovers.” Our sample for the 
county analysis is constructed in a comparable manner to the main, state-level models, including 
using a balanced panel. Following the state-level analysis, standard errors are clustered on state 
and estimates are unweighted. 
 
5.3 County cross-sectional regressions 
 
Cross sectional regressions of “long differences” in mobility measures at the county level were 
used to understand how the mobility changes we observe during the reopening phase differ across 
geographic areas with varying nonpolicy factors. The long differences ΔYc between April 15 and 
June 30 in the mixing index and fraction of devices that left home were the outcome variables in 
these regressions. To investigate the overall change in mobility patterns across counties, this 
analysis linked these long differences ΔYc with a vector of county-level covariates using the 
following regression: 
 

 
 

In the model, Urbanc is a vector of covariates reflecting county population, population 
density, and urbanicity. SESc is a vector of covariates describing median household income, 
poverty rate, health-uninsured rates, number of nursing home residents per capita in 2017, 
incarcerated rate in 2017, and whether the county is a major destination for recreation or 
retirement. Politicalc is the Republican vote share in the 2016 presidential election, and 
Demographyc includes demographic composition. We also controlled for weather changes in these 
models. We standardized all variables before estimating this cross-sectional regression to make the 
estimated coefficients more comparable. 
 
 
 
 



6 RESULTS 
 
6.1 Mobility and social contact patterns during the pandemic 
 
Figure 2 shows the national and state time series of the mixing index and fraction of devices 
leaving home from February to June. Both measures fell dramatically during the lockdown phase 
(mid-March–mid-April), and there is clear evidence across multiple measures that mobility began 
to increase in mid-April. The timing of the increase in mobility varies across states and across 
different measures of the outcome. Although the axis scales differ, the times at which dramatic 
changes occur are nearly the same across all measures. 
 The following county-level cross-sectional regression analysis of “long differences” in 
measures of mobility and social contact was used to show geographic variations in these measures 
and sociodemographic factors associated with the mobility changes during the reopening phase. 
Based on the observed heterogeneity in this descriptive analysis, a number of subpopulation event-
study analyses were implemented. In the average county, the mixing index increased by 128.1 
percentage points between April 15 and June 30 while the fraction of devices leaving home 
modestly increased by 16.4 percentage points. Figure 3 and Appendix Table A1 show standardized 
regression coefficients (per standard deviation change in the explanatory variable) from models of 
the total change in mobility measures between April 15 and June 30. 
 We found substantial demographic differences in Americans' response to the COVID-19 
pandemic across the 2097 counties with complete data. Urbanicity is associated with the 
magnitude of mixing increase (0.13 in larger metropolitan areas to 0.08 in metropolitan areas 
compared to rural areas). We observed smaller correlations between urbanicity and fraction of 
people (devices) leaving home daily. Not surprisingly, in higher recreation counties, we noted a 
statistically significant increase in overall mobility activity and an insignificant increase in the 
mixing index. These results are consistent with prior work that find more declines in mobility in 
urban or recreation areas following stay-at-home orders (Gupta et al., 2020). As racial and ethnic 
minorities made up a larger share of populations in urban areas, we also observed an increase in 
movement by black communities: a 0.36 SD increase in the mixing index and 0.11 SD increase in 
the fraction of devices leaving home. 
 Social distancing may vary by the neighborhood income level and inequality. Increased 
mixing index and mobility tend to be higher in counties with higher median household income 
while there are no significant associations between poverty rates and these measures of mobility. 
Additionally, difference in average age across counties appears to have a big effect on social 
mixing patterns, especially among females ages 35–54 (a 0.50 SD increase) and males ages 25–
34/+65 (both increasing 0.51 SD). For the most part, difference in average age across counties 
does not appear to have a big effect on the fraction leaving home, except in females ages +65 
increasing their mobility (0.15 SD). These descriptive results may be worrisome as both females 
and males at 65+, two populations that are known to be at greater risk for severe cases of COVID-
19 infection (Wang et al., 2020), appear to become less risk averse, with a marked increase in 
mobility and social mixing. 
 Finally, while counties with a higher Republican vote share were less responsive to social 
distancing policies (Gupta et al., 2020), we observed an increase in mixing (0.19 SD) and a 
decrease in fraction of people leaving home (0.07 SD) in such counties. This observation implies 
an ambiguous impact on potential virus spread regarding political views. These descriptive results 
suggest that public response to the reopening policies varies across communities and measures of 



mobility. Further research that uses individual-level data is needed to explore the relationship 
between demography and socioeconomic factors and mobility changes, as there are severe limits 
to what can be learned through county-level comparisons. For example, the aggregate mobility 
measures cannot depict levels of actual versus perceived risk of social contact and workplace's 
decisions to allow employees to continue working remotely during the reopening phase. 
 

 
FIGURE 3. County level correlates of mobility measures. Specification: Simple OLS using 
cross-sectional data at county level. Each figure represents standardized coefficients and their 
95% CIs from a separate regression, where the dependent variable is the outcome listed (long 
differences between April 15 and June 30)  

 
6.2 Event study analyses 
 
To understand the connection between recent increases in mobility and state reopening policies, 
we turn to the following event study regressions. Figure 4 and Table A2 show the state-level event 
studies for our two social mobility measures: the mixing index and fraction of devices left home. 
The results indicate that reopening policies generate a substantial increase in the mixing index; 



there is little evidence of a systematic pretrend in mixing leading up to reopening. These results 
suggest a positive effect of state reopening policies in the degree of population mixing which may 
play an important role for the transmission of COVID-19 post reopening. Though the event study 
estimates for fraction of devices that left home are noisy, there are observed increases in this 
mobility measure following reopening events. Interestingly, data shows a clear pretrend in this 
outcome, indicating that on average, mobility outside the home increased prior to the reopening 
events. 
 

 
FIGURE 4. Event study regression coefficients and 95% confidence interval of the effects of state re-
opening on mobility trends. Author's calculations are based on smart device movement data from PlaceIQ 
and SafeGraph. Each panel is a separate dependent variable. Estimation sample window is April 9, 2020–
June 30, 2020. N = 1680. Vertical gray lines depict the day before re-opening. All models include state fixed 
effects and date fixed effects. Standard errors are clustered at state level. Baseline dependent variable mean 
as of April 15, 2020 
 
To help summarize the results of these baseline models and following heterogeneity analyses, 
Table 1 reports the estimated effect of a reopening policy 4 days/14 days/28 days after the event 
for each outcome presented in the event study plots. The effect estimates are presented in 
percentage terms, relative to the average level on April 15, 2020, to help make the magnitudes as 
interpretable as possible. Overall, the state-level event study results paint a very clear picture 
(Column 1). Four days after reopening, there is a statistically significant increase in the mixing 
index (13.59%, p < .05). One concern is that reopening appears to have a large effect on the mixing 
index, which is a proxy for actual interactions between people (devices). The effect sizes after 2 
and 4 weeks are 25.65% and 48.65%, respectively. This may be worrisome if the mixing index 
represents a particularly relevant proxy for high transmission rates. This finding suggests that 
reopening events may signal to people that social interactions have become safer. At the same time, 
the fraction of devices leaving home has not increased considerably. The clear pretrend in this 
mobility measure suggests that a typical person may reduce the tendency to stay at home (while 
keeping social distancing) prior to reopening events. One interpretation is that reopening has  



TABLE 1. Effect sizes: Percentage magnitude effects of any re-opening on social distancing measures 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
 Any       County pairs analysis 
 Re-Opening Rural Urban Shorter SAH Longer SAH High-death rates Low-death rates No spillovers Spillovers 
Geographic Unit State County County State State State State County County 
Effects after 4 days          
Mixing index          
Coefficient 5.981** 2.849 5.727** 6.042 1.541 7.532** 0.234 5.371 1.929 

 (2.434) (2.294) (2.208) (5.500) (1.021) (3.261) (4.222) (3.595) (2.771) 
Effect size 13.59% 7.32% 11.48% 11.87% 14.11% 17.20% 0.53% 4.61% 3.68% 
Fraction leaving home          
Coefficient 0.00911** 0.007 0.0113** 0.0121** 0.00196 0.00880 0.00866 0.00241 0.00177 

 (0.004) (0.005) (0.005) (0.006) (0.006) (0.006) (0.006) (0.00542) (0.00175) 
Effect size 1.49% 1.03% 1.79% 1.96% 0.33% 1.49% 1.37% 0.37% 0.27% 

Effects after 14 days          
Mixing index          
Coefficient 11.29** 4.130 8.344** 8.570 11.69*** 18.59*** −8.939 −1.092 2.376 
 (4.424) (3.384) (4.084) (10.083) (3.141) (4.425) (8.515) (4.109) (2.032) 
Effect size 25.65% 10.62% 16.72% 16.83% 30.71% 42.46% −20.19% −2.61% 5.68% 
Fraction leaving home          
Coefficient 0.0176*** 0.0122* 0.0187** 0.0220*** 0.0133** 0.0169*** 0.0177** 0.00326 0.00287 
 (0.005) (0.007) (0.007) (0.006) (0.005) (0.006) (0.006) (0.00607) (0.00223) 
Effect size 2.88% 1.79% 2.96% 3.55% 2.21% 2.87% 2.80% 0.50% 0.44% 

Effects after 28 days          
Mixing index          
Coefficient 21.41*** 7.443 20.69*** 22.26 17.67*** 30.64*** −6.339 −3.528 −0.215 
 (7.360) (5.420) (6.725) (17.713) (4.689) (8.712) (14.699) (4.958) (2.778) 
Effect size 48.65% 19.13% 41.45% 43.71% 46.41% 69.98% −14.31% −8.43% −0.52% 
Fraction leaving home          
Coefficient 0.0273*** 0.0186** 0.0296*** 0.0365*** 0.0200** 0.0247*** 0.0315*** −0.000101 −0.000836 
 (0.007) (0.008) (0.008) (0.009) (0.007) (0.007) (0.010) (0.00574) (0.00227) 
Effect size 4.48% 2.74% 4.69% 5.89% 3.33% 4.19% 4.99% −0.02% −0.13% 
Mixing Index mean at baseline 44.02 38.90 49.90 50.91 38.08 43.78 44.28 41.85 41.85 
Fraction leaving home mean at baseline 0.610 0.680 0.630 0.620 0.600 0.590 0.630 0.656 0.656 

Note: Effect sizes are estimated using coefficients in the event-study tables, divided by the dependent variable value as of April 15, 2020. *p < 0.1, **p < .05, ***p < .01. 
Note: The bold values (effect size) are calculated based on the corresponding coefficients and mean values. The reported p-value for coefficients presents the significance for 
the estimated effect size.



increased the diversity of options that people have available to them, and they are more likely to 
visit a variety of locations that they had avoided in previous weeks, without significantly increasing 
the time outside the house. Another potential mechanism is that travelers likely respond to official 
announcements prior to the effective dates of state reopening plans. To verify that the pretrend in 
the fraction of devices leaving the house is not due to the announcement of reopening, we tracked 
the date of official announcements by governors regarding their detailed reopening plans and used 
these dates in another event-study analysis. We found that a typical state announces their plan 
about 4 days prior to the official dates of reopening. As expected, the event-study estimates appear 
similar to the results using the actual initial reopening dates (these results available upon request). 
 In addition to the state-level analysis, we also fit event study specifications to county-level 
data and stratify the sample in several meaningful ways. Columns (2)–(3) in Table 1 show effect 
size estimates from models that use only data from rural counties and urban counties, respectively 
(Appendix B). These results suggest that reopening policies have had larger effects on the mixing 
index in urban areas compared to the negligible effects in rural areas. One possible reason for this 
heterogeneity is that rural activities are more essential in nature and less elastic to nonessential 
business closures. 
 Columns (4)–(5) show estimates from models that are limited to states that had stay-at-
home policies in place for a short versus a long duration, a proxy for psychological fatigue due to 
the pandemic (Appendix C). The estimated reopening effects on social mixing are smaller in states 
that were both late adopters of stay-at-home mandates or with lockdown for only a short time. This 
seems logical as psychological fatigue is likely more severe in states with longer stay-at-home 
orders, so lifting the mandate leads to large increases in social interactions. 
 Columns (6)–(7) of Table A2 show estimates from models that are limited to states that had 
high COVID-19 mortality rates versus low mortality rates (Appendix D). Higher and lower 
baseline COVID-19 related death rates are defined as those above/below the median value prior 
to reopening events. Data shows that the estimated reopening effects on social mixing are much 
larger in states that were hard hit by the pandemic. These results are consistent with our social 
distancing fatigue hypothesis, which has an important policy implication. Specifically, people in 
hard-hit areas tend to experience more emotional exhaustion, isolation, or boredom, which makes 
it harder to maintain voluntary social distancing behavior after stay-at-home mandates were 
relaxed. 
 Using a multiple measure approach to assess the sensitivity of these findings, similar 
analyses on additional measures of mobility were reported in Figure 5. Like the results of the 
mixing index, this sensitivity analysis retained a similar pattern for mobility to retail, recreation 
places, or pharmacies from Google mobility data: increases following the reopening events without 
significant pretrends. There may also have been an increase in mobility to transit stations from 
Google mobility data, but these estimates are noisier, and it is hard to distinguish the pretrend and 
post-trend. Additionally, the data showed declines in median hours at home (SafeGraph) and 
mobility in residential area (Google data) prior and post reopening events, a similar movement 
pattern when using fraction of devices that left home to measure mobility. Finally, the out-of-state 
and out-of-county movement measures from PlaceIQ data and Apple Mobility driving direction 
requests do not respond much to reopening. 
 



 
 

 
FIGURE 5. Event study regression coefficients and 95% confidence interval of the effects of state reopening on mobility trends–alternative measures of mobility. 
Author's calculation based on smart device movement data from PlaceIQ and SafeGraph. Each panel is a separate dependent variable. Estimation sample window 
is April 9, 2020-June 30, 2020. N = 1680. Vertical gray line depicts the day before reopening. All models include state fixed effects and date fixed effects. 
Standard errors clustered at state level. Baseline dependent variable mean as of April 15, 2020 
 
 
 



6.3 County pairs results 
 
We present event-study-style estimates of the effect of reopening in our county border pairs model, 
Equation (2), in Appendix E. The left panel of Figure E1a presents these estimates for the mixing 
index assuming that there are no spillovers. The pretrend, which reflects how the mixing index 
differs in the first county to reopen in a pair relative to the other county, is flat. After roughly 
1 week, there is a spike in mixing index relative to the January 3–February 6 baseline period, 
however, the estimates are imprecisely estimated. The right panel also provides little evidence for 
pretrends, but the estimates are sufficiently noisy that one cannot make a definitive statement about 
changes in mobility from these models that assume no spillovers on behavior. 
 Figure E1b presents results for our two key measures of mobility, but now we explicitly 
take spillover effects into account by allowing for a county-pair-specific set of time fixed effects. 
Similar to the no-spillover effects models, the estimates for the mixing index are too imprecise for 
reliable interpretations. In contrast, we observed increases in human movement measures (such as 
fraction of devices that left the house) immediately after a state reopened, although the effect 
appears to be slightly smaller than in the no-spillover model. The effects from these event studies 
are summarized in Columns (8)–(9) of Table 1. In all cases, these results are noisier compared to 
the state-level analyses and demonstrate weak evidence that reopening increases mobility in states. 
The implication of these results is that even counties that do not reopen also experience an increase 
in movement measures, which is consistent with people in neighboring counties crossing state 
lines to go to retail or recreational locations in newly opened states. Furthermore, there appear to 
be positive spillover effects onto neighboring counties, since in models that account for spillovers, 
our estimated changes in movement measures are larger in magnitude. 
 
7 DISCUSSION 
 
From the early phases of the COVID-19 epidemic and especially prior to mass vaccinations, social 
distancing has been a central strategy for addressing public health. Cell-phone-based metrics show 
large declines in mobility during lockdowns, and evidence suggests that both government policy 
and private responses played crucial roles. These actions have likely reduced the spread of the 
virus and therefore have had important social benefits, although maintaining high levels of social 
distancing may place a heavy burden on families, businesses, and governments. Regulatory 
decisions to impose social distancing interventions and ease such restrictions provide a quasi-
experimental setting in which to understand compliance with and adherence to these 
nonpharmaceutical interventions. This study exploits the variation in timing of state reopening 
policies to examine the short-term effects of these policies on measures of mobility and social 
contact. Using mobility measures from cell signals and an event-study design, the key findings 
suggest that reopening policies appear to substantially increase social contact, and that traveling 
outside the home increases prior to these reopening policies. 
 Given the dynamic of state reopening and lockdown decisions, the close-to-real-time data 
in this study is appropriate for understanding immediate private responses to such decisions. We 
note several key limitations in this study's data and approach. First, this study cannot draw 
conclusions on the extent to which Americans follow social distancing and COVID-19 risk 
avoidance guidelines, as cell signal data cannot discern the use of situational mitigation strategies 
such as wearing a mask or staying at least 6 feet from people who are not of one's household. States 
have mostly asked businesses that reopen to take steps to reduce transmission, and the CDC has 



issued guidelines on how to open safely. Therefore, it is possible that these policies and strategies 
could allow for increased mobility without incurring a substantial increase in new cases. Second, 
aggregate data from cell signals cannot replace individual-level data exploring heterogeneous 
responses to state reopening policies. Third, there are potential time-variant confounding factors 
that cannot be captured in our fixed effects models. Our analysis cannot disentangle to what extent 
mobility increases are rooted in policy versus other factors such as psychological fatigue, seasonal 
expectations, political views, and a waning sense of the dangers of the virus. 
 Given these limitations, our analysis clearly shows that mobility levels started rising in 
most states beginning in mid-April. During the time period of our study, the increase in mobility 
was still small compared with the declines that occurred during the lockdown phase; activity levels 
were not back to normal in June in any meaningful sense. However, the resurgence of mobility is 
observable across a broad range of indices. The most notable results in our study come from event 
study regressions. The models suggest that state reopening policies do produce a fairly immediate 
increase in mixing behavior. After 4 days of reopening, the mixing index increases by 13.59% 
(25.65% and 48.65%, in 2 weeks and 4 weeks respectively). Reopening effects are most marked 
in states that were early adopters of the major closure measures. Importantly, this suggests that 
fatigue is an important determinant of mixing behavior during the pandemic. Furthermore, the 
county-pair analysis suggests an increase in movement measures in untreated counties following 
their neighboring county's reopening. 
 Research on social distancing policy would benefit from a stronger theoretical analysis of 
the incentives and constraints that shape individual and group choices regarding social distancing. 
An economic model of home production could provide an important tool for analyzing how people 
make decisions about how much social distance to produce relative to complements and substitutes 
available at home and in marketplaces. Some degree of variation may reflect heterogeneous 
preferences over health and nonhealth goods. It is also possible, however, that people behave 
differently because they hold different beliefs about health risks or are exposed to certain types of 
misinformation. 
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Appendix A: REGRESSION TABLES 
 
TABLE A1. County level correlates of mobility measures 

 (1)  (2)  
 Mixing Index Fraction leaving home 
Change in precipitation −0.16*** (0.03) −0.35*** (0.02) 
Change in average temperature (Celsius) 0.20*** (0.03) 0.34*** (0.02) 
Poverty −0.06 (0.05) −0.01 (0.04) 
Percent Uninsured 0.18*** (0.04) −0.14*** (0.02) 
Metro Area > 1 Million 0.13*** (0.03) 0.07*** (0.02) 
Metro Area 250 k to <1 Million 0.07*** (0.02) 0.02 (0.01) 
Metro Area < 250 k 0.08*** (0.02) 0.03** (0.01) 
Percent Republican Vote in 2016 0.19*** (0.04) −0.07*** (0.03) 
Percent White 0.31*** (0.07) 0.20*** (0.05) 
Percent Black 0.36*** (0.06) 0.11** (0.05) 
Median household income 0.18*** (0.06) 0.30*** (0.04) 
Recreation county 0.08* (0.04) 0.05*** (0.02) 
Retirement destination 0.06** (0.03) −0.00 (0.01) 
Nursing home res/1000 residents −0.02 (0.04) −0.10*** (0.03) 
Incarcerated (jail & prison) rate 0.30*** (0.08) 0.02 (0.04) 
Population/1000 −0.23*** (0.07) 0.01 (0.04) 
Pop density 0.09* (0.05) 0.03 (0.02) 
Percent female 15–24 0.20*** (0.05) −0.04 (0.04) 
Percent female 25–34 0.04 (0.08) −0.05 (0.05) 
Percent female 35–54 0.50*** (0.09) 0.07 (0.04) 
Percent female 55–64 0.28*** (0.10) 0.04 (0.07) 
Percent female +65 −0.02 (0.09) 0.15** (0.07) 
Percent male 15–24 0.08 (0.05) −0.03 (0.05) 
Percent male 25–34 0.51*** (0.09) −0.01 (0.05) 
Percent male 35–54 −0.10 (0.07) 0.05 (0.04) 
Percent male 55–64 −0.45*** (0.10) −0.17** (0.08) 
Percent male +65 0.51*** (0.11) −0.08 (0.08) 
Dep. variable mean 0.05  0.05  
Dep. variable SD 1.04  0.90  
Obs. 1538  2097  
R-squared 0.35  0.50  

Note: Specification: Simple OLS using cross-sectional data at county level. Column represents 
standardized coefficients from a separate regression, where the dependent variable is the outcome 
listed (long differences between April 15 and May 6, the number of observations varies across 
different data samples). Standard errors in parentheses.  
*p < 0.1, **p < .05, ***p < .01. 
 
 
 
 



TABLE A2. Effects of any re-opening on mobility 
 (1)  (2)  
 Outcome 1: Mixing index Outcome 2: Fraction leaving home 
15 days prior to event −1.445 (5.502) −0.019*** (0.006) 
14 days prior to event 0.875 (5.079) −0.008 (0.005) 
13 days prior to event 3.354 (4.933) −0.007 (0.004) 
12 days prior to event 1.449 (4.704) −0.014** (0.005) 
11 days prior to event 0.392 (3.856) −0.006 (0.005) 
10 days prior to event 2.680 (3.805) −0.004 (0.004) 
9 days prior to event 1.769 (3.991) −0.004 (0.004) 
8 days prior to event 0.841 (2.439) −0.008* (0.004) 
7 days prior to event 1.088 (2.664) −0.002 (0.005) 
6 days prior to event 3.659 (3.092) −0.002 (0.004) 
5 days prior to event 2.901 (2.900) −0.001 (0.003) 
4 days prior to event 0.998 (1.898) 0.004 (0.004) 
3 days prior to event 2.914 (1.978) −0.001 (0.004) 
2 days prior to event 1.634 (2.123) −0.000 (0.003) 
Day of event 1.717 (2.286) 0.004 (0.004) 
1 day after event 7.071*** (2.333) 0.006 (0.004) 
2 days after event 5.317** (2.324) 0.006 (0.004) 
3 days after event 2.927 (2.124) 0.004 (0.003) 
4 days after event 5.981** (2.434) 0.009** (0.004) 
5 days after event 6.783** (3.367) 0.011*** (0.003) 
6 days after event 3.833 (2.367) 0.008*** (0.003) 
7 days after event 4.621 (3.354) 0.012*** (0.004) 
8 days after event 8.132** (4.040) 0.010** (0.004) 
9 days after event 10.794** (4.394) 0.009** (0.004) 
10 days after event 8.029** (3.240) 0.012*** (0.004) 
11 days after event 9.864*** (2.948) 0.012** (0.004) 
12 days after event 13.785*** (4.262) 0.013*** (0.004) 
13 days after event 9.085** (3.603) 0.016*** (0.004) 
14 days after event 11.290** (4.424) 0.018*** (0.005) 
15 days after event 18.216*** (4.582) 0.020*** (0.005) 
16 days after event 14.739*** (4.441) 0.020*** (0.005) 
17 days after event 15.473*** (4.959) 0.022*** (0.005) 
18 days after event 17.886*** (4.607) 0.020*** (0.005) 
19 days after event 17.247*** (4.785) 0.020*** (0.005) 
20 days after event 14.046** (5.587) 0.018*** (0.006) 
21 days after event 15.017*** (5.082) 0.018*** (0.006) 
22 days after event 20.139*** (5.685) 0.023*** (0.006) 
23 days after event 18.048*** (5.754) 0.022*** (0.007) 
24 days after event 18.800*** (5.540) 0.021*** (0.006) 
25 days after event 21.201*** (5.332) 0.027*** (0.006) 
26 days after event 20.490*** (5.613) 0.026*** (0.006) 
27 days after event 18.796*** (6.970) 0.024*** (0.007) 
28 days after event 21.414*** (7.360) 0.027*** (0.007) 
29 days after event 23.206*** (6.893) 0.029*** (0.007) 
30 days after event 22.489*** (6.590) 0.027*** (0.007) 
31 days after event 24.072*** (7.834) 0.028*** (0.007) 
Precipitation −0.085 (0.053) −0.001*** (0.000) 
Average Temperature −0.697** (0.314) 0.000*** (0.000) 
Observations 4032  4032  
Baseline DV mean 44.020  0.610  

Note: Author's calculations are based on smart device movement data from Apple Mobility. Table presents 
coefficients and standard errors from the event-study estimation in Equation (2). Each panel is a separate 
dependent variable. Estimation sample window is April 8, 2020-June 30, 2020. All models include state 
fixed effects and date fixed effects. Standard errors are clustered at state level are presented in parentheses. 
Baseline dependent variable mean as of April 15, 2020.  
*p < 0.1, **p < .05, ***p < .01.



Appendix B: URBAN AND RURAL COUNTIES 
 

 
FIGURE B1. Event study regression coefficients and 95% confidence interval. Author's 
calculations are based on smart device movement data from Google mobility. Each panel 
is based on a separate regression. Each panel is a separate dependent variable. Estimation 
sample window is April 8, 2020–June 30, 2020. Left panels presents results for urban 
counties, right panels are for rural counties. Urban/rural counties defined as 
metropolitan/nonmetropolitan counties. Vertical gray lines depict the day before re-
opening. All models include state fixed effects and date fixed effects. Standard errors are 
clustered at state level. Baseline dependent variable mean as of April 15, 2020 



Appendix C: DURATION Of STAY-AT-HOME ORDERS 
 

 
FIGURE C1 Event study regression coefficients and 95% confidence interval. Author's 
calculations are based on smart device movement data from apple mobility. Each panel 
is based on a separate regression. Each panel is a separate dependent variable. Estimation 
sample window is April 8, 2020–June 30, 2020. Longer/shorter stay-at-home orders are 
defined as those implemented more/less than the 25 days (median) prior to re-opening. 
Vertical gray lines depict the day before re-opening. All models include state fixed effects 
and date fixed effects. Standard errors are clustered at state level. Baseline dependent 
variable mean as of April 15, 2020 



Appendix d: BASELINE COVID-19 RELATED MORTALITY 
 

 
FIGURE D1 Event study regression coefficients and 95% confidence interval. Author's 
calculations are based on smart device movement data from apple mobility. Each panel is 
based on a separate regression. Each panel is a separate dependent variable. Estimation 
sample window is April 8, 2020–June 30, 2020. Higher/lower baseline COVID-19 related 
death rates are defined as those above/below the median prior to re-opening. Vertical gray 
lines depict the day before re-opening. All models include state fixed effects and date fixed 
effects. Standard errors are clustered at state level. Baseline dependent variable mean as of 
April 15, 2020 



Appendix E: BORDER COUNTIES 
 

 
FIGURE E1 Event study regression coefficients and 95% confidence interval. Author's 
calculations are based on smart device movement data from PlaceIQ (left panel) and 
SafeGraph aggregated mobility metrics (right panel). Each panel is a separate dependent 
variable. Estimation sample window is April 15, 2020–June 30, 2020. Vertical gray lines 
depict the day before re-opening. All models include county pair fixed effects, date fixed 
effects, and county-by-pair fixed effects. Standard errors are clustered at state level. (a) No 
spillovers and (b) Spillovers  


