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Traditional test development focused on one purpose of the test, either ranking 

test-takers or providing diagnostic profiles for test-takers. Embedding both the ranking 

and diagnostic purposes in one assessment instrument would be a great advancement to 

the test functionality and utility. Our understandings regarding how such dual-purpose 

test should be optimally design and analyzed, however, were dwarfed by the growing 

needs for it in practice. Potential psychometric challenges related to the dual-purpose 

testing were not fully addressed in the literature. The present study provided a systematic 

comparison of various plausible designing and analyzing paradigms for the dual-purpose 

test in conditions with varying test length and dimensionality of true abilities.  

Results suggested that in order to obtain accurate and reliable total score and 

subscores, the test should be designed with multidimensionality and at least 10 items per 

domain and analyzed using the multidimensional IRT model. Specifically, the 

unidimensional dual-purpose test was able to produce reliable and accuracy but not 

diagnostically meaningful scores. Subscores obtained from an essentially unidimensional 

test were either unable to provide added value to the total score according to the PRMSE 

criterion or homogeneous to each other according to disattenuated correlations. The 

idiosyncratic multidimensional design was able to yield accurate, reliable, and 

diagnostically useful scores, but the validity of the diagnostic subscores was questionable, 

whose correlation disagreed with the true correlational structure. Consequently, even 

though subscores were identified distinct from the total score according to the PRMSE 
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criterion, they were still nearly identical to each other according to the disattenuated 

correlations. On the other hand, the principled multidimensional design showed slightly 

lower accuracy and reliability in scores due to the principled “simple structure” of test 

design, but this sacrifice of accuracy and reliability ensured the interpretability and 

validity of diagnostic subscores, whose empirical correlational structure approximated the 

true structure.  

Furthermore, with respect to calibration methods, unidimensional calibration was 

found failing to distinguish subscores, and thus failing to give subscores useful diagnostic 

information, even though the subscores sometimes appeared more accurate and reliable 

than those obtained with the other two calibrations. The confirmatory multidimensional 

calibration and separate unidimensional calibration delivered very comparable results. 

Finally, alternative scoring methods were found either inappropriate to use or offering 

insignificant improvements over the raw scores. 
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CHAPTER I 

INTRODUCTION 

It has been a long tradition to design tests that serve one purpose. Mostly, the 

primary purpose of an assessment instrument is to quantify the ability being measured 

(i.e., construct) and thereby rank test-takers according to their numeric scores on the 

latent scale. Scores that test-takers receive summarize their performances in the testing 

domain and possibly predict their future performance in a more generalized domain. For 

this ranking purpose, test scores can be used a as an important evaluative criterion to 

assist in critical decision-making processes, such as granting admission, awarding 

scholarship, assigning class placement, certificating or licensing profession, and so forth. 

In educational settings, for instance, a student’s SAT® or GRE® score is commonly 

referred to as an indicator of the student’s mastery of skills and knowledge (i.e., score of 

an achievement test) or a predictor of the student’s academic success in higher education 

(i.e., score of an aptitude test) in the process of granting college or graduate school 

admission and/or awarding scholarships. Although numeric scores are not always directly 

reported to test-takers in professional certification and licensure settings, each test-take is 

still scored with a total score, indicating the test-taker’s preparedness of entering into the 

profession. The pass/fail decision will be made by comparing the total score to a 

predetermined passing standard set to mirror the skills and knowledge required by the 

safe and effective entry-level practice in that profession. In addition to the ranking 
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purpose, some other tests are designed for the diagnostic purpose. The fine-grained 

diagnostic scores offer important information that is missing in the total score. For 

instance, two test-takers who receive the same total scores may show different patterns of 

diagnostic scores, in other words, distinct patterns of strengths and weaknesses. 

Diagnostic subscores thereby become useful in further distinguishing these two test-

takers, where the total score regard them as indistinguishable. The No Child Left Behind 

Act of 2001 even mandated educational tests to report diagnostic scores in order to 

facilitate educators addressing the student’s specific academic needs (Sinharay, 2010). 

Although diagnostic report is not mandatory for professional certification and licensure 

tests, some testing programs still elect to provide, especially to failing test-takers, 

diagnostic subscores in hopes of guiding test-takers’ preparations for the examination and 

profession in the future. 

It would be a desirable extension for the test, which was originally designed to 

report the total score alone, to report diagnostic subscores as well. The total score is 

therefore reported for the test’s primary purpose, or function, of quantifying and ranking 

test-takers, whereas subscores are reported for the secondary purpose, which is to 

diagnose test-takers’ strengths and weaknesses. Accordingly, the test of this kind is 

defined as the dual-purpose test in the present study. It may be deemed, outside of 

psychometric communities, as natural for a test to serve more than one purposes; 

however, inside of psychometric communities it is well acknowledged that many 

psychometric difficulties would actually arise if a test has, by design, more than one 

purposes of score use. Per Wainer et al. (2001), the ranking and diagnostic purposes were 
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“antithetic” in the sense that one required the test to be focused on a narrowly-defined 

and coherent domain whereas the other required the test to encompass broad and 

distinctive domains. That is, in formal terminology, the ranking purpose requires the 

complete test to be unidimensional, with all items in all content domains consistently 

measuring the same construct, so that the total score of the test serves as a reliable and 

valid measurement of the overall ability. The diagnostic purpose, on the other hand, 

requires the test to be multidimensional on the premise that the overall ability further 

comprises of multiple domain-specific abilities, which are measured in individual 

subtests or dimensions. Without multidimensionality, the test may fail to produce 

meaningful and useful diagnostic subscores, since items are too akin to yield distinct 

information from the total score (Haberman, 2008; Luecht, Gierl, Tan, & Huff, 2006; 

Wainer et al., 2001). In short, a successful dual-purpose test purports to be 

unidimensional and multidimensional simultaneously. 

Another psychometric difficulty is related to the test reliability. To validate a 

dual-purpose test, both the total score and subscores need to be supported by theoretical 

and empirical evidences of high reliability (American Educational Research, American 

Psychological, & National Council on Measurement in, 1999). Fundamentally, the 

reliability is defined as the consistency of a test-taker’s scores over multiple 

administrations. The simplest incarnation of this definition is the test-retest reliability, 

which is given by the correlation between two administrations of the same test spanned 

over a period of time that is long enough to erase memorization of the test content and 

short enough to avoid growth of the ability. Because it is typically impossible to 
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administrate the same test repetitively in practice, even just twice, estimators that 

approximate reliability using one administration were developed to circumvent this 

problem. Among all estimators, Cronbach’s alpha, also known as the KR-20 or internal 

consistency, is arguably the most common and useful one in practice, which estimates the 

degree to which items within the test are measuring the same construct statistically by the 

ratio of the between-item covariance to the total score variance (Cronbach, 1951; Kuder 

& Richardson, 1937). According to the Spearman-Brown prophecy formula, test 

reliability grows in proportion to the increase of test length. That means, while the 

complete test has an acceptably high reliability, subtests may not achieve good 

reliabilities due to the insignificantly shorter test lengths. The reliability issue is further 

complicated by the dimensionality. If the test were designed with multidimensionality to 

yield meaningful diagnostic subscores from subtests, the “internal consistency” of the test 

would be contaminated by such multidimensionality. Therefore, the complete test is 

unlike to show high reliability, even though subscore may have been satisfactorily 

reliable.  

The last psychometric difficulty is concerning which analysis paradigm should be 

used to calibrate the dual-purpose test and score test-takers. Unidimensional item 

response theory (UIRT) was developed with the purpose of producing psychometrically 

sound total score, but not subscores. Alternative subscoring methods were proposed to be 

used in addition to the UIRT analyses to derive subscores (de la Torre & Patz, 2005; de la 

Torre & Song, 2009; de la Torre, Song, & Hong, 2011; Wainer et al., 2001; Yen, 1987). 

In contrast, multidimensional item response theory (MIRT) was developed to report 
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domain-specific subscores, leaving the total score of the overall ability be computed with 

alternative methods (Graybill & Deal, 1959; Longford, 1997; Luecht et al., 2006). There 

is little research in literature specifically comparing calibration and scoring methods in 

terms of their effectiveness of deriving both good total scores and subscores. Much is still 

unknown about the optimal analysis paradigm for the dual-purpose test. 

Given considerations above, it is obviously seen that embedding two “antithetic” 

purposes of score use into one test would bring forth several psychometric difficulties for 

the design and analysis of the test. Any naïve treatment of these issues could lead to a 

flawed test with misleading scores and unfulfilled purposes. For example, empirical 

studies found that subscores of many existing dual-purpose tests failed to provide added 

value to the total score, and thus were not worth reporting (Haberman, 2008; Puhan, 

Sinharay, Haberman, & Larkin, 2010; Sinharay, 2010; Sinharay, Haberman, & Puhan, 

2007). Therefore, the purpose of the present study was to probe for the optimal design of 

the dual-purpose test and the effective scoring procedure that should be coupled with that 

design. The performances of various plausible designs and analysis paradigms were 

compared across conditions with varying test length and dimensionality of true abilities. 

Findings of this study were expected to advise practitioners on how to design and analyze 

a dual-purpose that contains both valuable total score and diagnostically meaningful 

subscores.
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CHAPTER II 

REVIEW OF THE LITERATURE 

Unidimensionality 

It has been a long tradition for practitioners to design, develop, and administer 

unidimensional tests, in which all items in all content domains measure the same 

construct. A test-taker’s proficiency level of the construct, in return, is considered as the 

single determinant of his or her test performance. The construct can be a simple latent 

ability (e.g., the ability of summation operation) or a complex combination of multiple 

latent abilities (e.g., the ability of arithmetic operation, consisting of abilities pertaining to 

summation, subtraction, multiplication, and division), as long as the composition of these 

specific abilities is consistent throughout the test. The total score obtainable from the test 

is thus reported as a summary of the test-taker’s overall test performance and the latent 

ability. The total score also serves as a piece of very interpretable and usable information 

for ranking test-takers and making decisions. 

To illustrate the concept of unidimensionality, consider the true score model in 

the classical test theory (CTT). As the model conceptualizes, the observed score consists 

of two unobservable components, the true score and the error:    

           (2.1) 
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where x is the observed score, τ is the true score, and ε is the error term (Allen & Yen, 

1979). The true score is the test-taker’s true ability of the construct being measured. The 

error term is an unwanted but inevitable variation added to the true score, which can be 

caused by a variety of contextual variables. In general, the error term is assumed to have 

a standard normal distribution N(0, 1), meaning it would be summed to zero and 

cancelled out of the equation in the long term. Regardless of whether the construct is 

simple or composite one, the test-taker’s ability is packaged into and represented by one 

parameter, namely the true score τ. This can be considered as the incarnation of the 

unidimensionality assumption in the true score model.  

The same is true for UIRT models. Take the famous unidimensional 3-parmaeter 

logistic (3PL) model for example. The probability of getting a correct response to an item 

in the 3PL model is given by 

 (      |            )     
    

     [      (     )]
    (2.2) 

where uij is test-taker i’s response to item j with 1 standing for correct and 0 incorrect, θi 

is test-taker i’s ability that theoretically spans from negative infinity to positive infinity 

on a continuum called θ scale, aj is item j’s discrimination power, bj is item j'’s difficulty, 

and cj is item j's lower asymptote, a.k.a. pseudo-guessing (Hambleton & Swaminathan, 

1984). The constant of 1.7 is added to equation to make the item characteristic curve 

(ICC) in this logistic model resemble the ICC in the normal ogive model. If c-parameters 

are fixed at zero, the 3PL model would be reduced to the 2PL model. If a-parameters are 

further fixed at unity, the 2PL model would be reduced to the 1PL model. If the constant 
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1.7 is further set to unity, the 1PL model would become the Rasch model. All models 

described above incorporate one ability-specific parameter and at least one item-specific 

parameter. That means, for a calibrated item where item parameters are known, “a 

person’s θ is all we need in order to determine his probability of success on a specific 

item” (Lord, 1980). 

If an extra dimension consistently affects the test-taker’s performance on certain 

items or the complete test but is not included in the construct being assessed, the 

unidimensionality assumption of the test is very likely violated. The affecting items 

might consequently show “local item dependence” (LID; Yen, 1984, 1993), meaning that 

responses on those items are determined by not only the ability being assessed but also 

something not being assessed. If items were locally independent, the likelihood of a 

response vector is given by  

 (  |        )  ∏  (     |           )
    (     |           )

      
      (2.3) 

where N is the number of items, U is test-taker i’s vector of responses, a, b and c are the 

vectors of item parameters, P(uij=1) is the probability of test-taker i getting a correct 

response to item j, and P(uij=0) is the probability of test-taker i getting an incorrect 

response to item j. In contrast, if items were locally dependent, the above likelihood 

equation does not necessarily stand up. 

Yen (1984) introduced the Q3 statistic to detect LID, and it has been widely used 

in practice since then (Pommerich & Segall, 2008; Yen, 1984, 1993; Zenisky, Hambleton, 

& Sireci, 2006). The Q3 statistic was given by the correlation between residuals remained 
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in an item pair following the removal of the variances explained by  ̂s. The computation 

was given by 

           ( ̂ )      (2.4) 

           
       (2.5) 

where dij is the test-taker i's residual on item j, and    ( ̂ ) is the expected probability of a 

correct response, or expected raw score (ERS). When the LID is absent between two 

items, the Q3 statistic would be a small negative number from the normal distribution 

with     and     (   )⁄ . When the LID is present but is ignored in analysis, 

however, it would mislead analysts to overestimate test reliability and item information 

function (Wainer & Thissen, 1996; Yen, 1984, 1993; Zenisky et al., 2006). Occasional 

LIDs among items sharing the same question prompt could be treated by combining those 

items to a polytomously scored item and analyzing that polytomous item using the testlet 

model (Sireci, Thissen, & Wainer, 1991; Wainer, Bradlow, & Du, 2002; Wainer & Kiely, 

1987; Wainer & Thissen, 1996). Consistent LIDs throughout the test, on the other hand, 

might imply the presence of multidimensionality and thereby invite the applications of 

MIRT techniques (Reckase, 1985, 1997, 2009; Reckase & McKinley, 1991).   

The stringent definition of unidimensionality is difficult, if not impossible, to 

follow in reality. However, a minor violation to the unidimensionality assumption would 

not necessarily disqualify the UIRT analyses from being validly used. A less stringent 

definition of the unidimensionality was developed to determine whether the test is 

“essentially unidimensional” and whether the UIRT analysis is appropriate for the testing 
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data (Nandakumar & Stout, 1993; Stout, 1987, 1990). The statistical test of the essential 

unidimensionality involved a nonparametric t-test comparison between two sets of items, 

one containing items identified to be most likely unidimensional and the other containing 

remaining items in the test that might be at odds with the unidimensionality presented in 

the first set (Nandakumar, 2005; Nandakumar & Stout, 1993; Stout, 1987, 1990, 2005). A 

statistical significant would suggest the presence of multidimensionality; otherwise, the 

test is essentially unidimensional. 

 

Unidimensional Dual-purpose Test 

In practice, test developers intentionally select items showing empirical evidence 

of satisfactory characteristics on the statistically most significant dimension in the field 

test in order to construct a unidimensional test with minimal dimensionality. While this 

might neglect information not reflected on the measurement dimension and lose some 

estimation efficiency, it ensures the test is internally consistent and able to produce 

reliable total score that is easy to interpret and use. Although items in a unidimensional 

test are deemed to measure the same construct, they can still be classified into different 

content domains as if measuring different aspects of the construct. From the validation 

perspective, the “multi-aspect” assessment of the construct is necessary, as it aligns the 

content representation of the test with the scope of the construct so as to avoid the 

construct underrepresentation error and construct irrelevant variance (Kane, 2006; 

Messick, 1995). Subtests based on content domains at times tempts practitioners to derive 

subscores from content-based subtests and assume they carry diagnostic information with 
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respect to domain-specific abilities that could supplement the unidimensional total score 

obtained in the complete test. This results in a unidimensional dual-purpose test.  

A well-developed unidimensional dual-purpose test is expected to yield reliable 

and accurate total score, because the test is essentially fine-tuned for high-quality total 

score. However, subscores might exhibit some problems: inaccurate, unreliable, and 

providing diagnostically useless information (Luecht et al., 2006; Wainer et al., 2001). 

For instance, Haberman (2008) developed a CTT-based method of testing whether 

subscores provide added-value to the total score, in which the proportional reduction of 

mean square error (PRMSE) of the true subscore that was estimated with observed 

subscore, denoted as PRMSES, was compared to the PRMSE of the true subscore that was 

estimated with observed total score, denoted as PRMSET. If PRMSEs was larger than 

PRMSET, then the observed subscore was considered as a more accurate estimate of the 

true subscore than the observed total score, and hence, provided additional diagnostic 

information to the observed total score. In this sense, this subscore should be reported. If 

PRMSES was smaller than PRMSET otherwise, the observed subscore was essentially 

useless.  

Using this criterion, Haberman (2008) found that both SAT and Praxis failed to 

produce subscores with added value. The author further argued that subscores had to be 

highly reliable and somehow distinct from the total score in order to carry added value. 

Additional empirical studies were conducted to examine a wider array of operational 

unidimensional tests using this criterion, finding that most subscores were diagnostically 

useless (Puhan et al., 2010; Sinharay, 2010; Sinharay et al., 2007). Sinharay (2010) 
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argued that subtests of a unidimensional test needed to comprise of at least 20 items in 

order to “have any hope of having added value”.  

Alternative subscoring methods that exploit collateral, or ancillary, information 

across subtests of the complete test were proposed in hopes of deriving more accurate 

estimates of subscores. The collateral information refers to the information that has 

potential of being utilized to improve estimation but is overlooked by the traditional 

scoring method, such as demographics, educational background, etc. (Mislevy & Sheehan, 

1989). If the collateral information of interest already exists within the test, it is termed as 

the in-test collateral information; conversely, if it requires additional data collection 

process, it is then referred to as the out-of-test collateral information (de la Torre et al., 

2011). All of the alternative subscoring methods to be introduced in the following 

paragraphs exploit the in-test collateral information only. 

One of the early attempts was Yen’s (1987) objective performance index (OPI), 

which used regular IRT estimates of the complete test as “prior information” to adjust 

subscores. The adjusted subscores supposedly have less error than raw subscores. Per 

Yen, the computation of OPIs took following steps. First, the complete test was analyzed 

as a whole to obtain item and ability parameters. Second, parameters were used to 

compute the expected average observe score Ti:  

 ̂  
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and the chi-square statistic Q: 

  ∑
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         (2.7) 

Third, if Q < χ
2 

(N, .10), the final OPI estimate was given by 

 ̂  
 ̂  

 
    

  
    

       (2.8) 

where  
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  ( ̂ | )
      (2.9) 

Otherwise, if Q > χ
2 

(N, .10), the OPI estimate was given by 

 ̂  
  

  
      (2.10) 

Wainer et al. (2001) introduced the score augmentation method on the basis of 

Kelley’s true score regression and empirical Bayes theorem, which used observed 

covariance and reliabilities to regress observed subscores toward true subscores. Like 

Yen’s OPI, the resulting subscores supposedly exhibit higher reliability and less error 

than raw subscores. Kelley’s true score regression was given by 

 ̂     (   )       (2.11) 
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where  ̂ is the estimated true score, ρ is the observed reliability, x is the observed score, 

and μ is the mean score. The regressed score τ was a more reliable but biased estimate of 

the true score than raw observed score x. Rearranging terms, the equation was identical to: 

 ̂      (    )      (2.12) 

where ρ is substituted by a sample estimate of reliability r, and μ is substituted by a 

sample estimate of mean x.. Extending the equation to the multivariate scenario, 

subscores could be augmented as follows: 

 ̂      (    )      (2.13) 

where the matrix B was given by 

       (    )        (2.14) 

where S
Obs

 and S
True

 are the variance-covariance matrices of observed subscores and true 

subscores respectively. The unobserved S
True

 matrix could be approximated using and 

S
Obs

 and observed subscore reliabilities ρnn’. Thus, the estimation of S
True

 is given by 

[
   
           

   

   
   
       

       

] 

Empirical evidence suggested that score augmentation was more effective for 

multidimensional tests than unidimensional tests (Wainer et al., 2001). For example, 

when subscores of the 1994 American Production and Inventory Control Society (APICS) 
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certification examination were augmented, little advantage was gained from score 

augmentation, because information was barely borrowed from that unidimensional test. 

On the contrary, for the performance part of the North Carolina Test of Computer skills, 

which was a multidimensional test by design, the augmented subscores showed 

appreciable higher reliabilities and less error than raw subscores.  

In the situation where the domain-specific abilities assessed in subtests 

presumably slightly deviate from the overall ability assessed in the complete test, it was 

sensible to apply MIRT to model these dimensional deviations and collect information 

across dimensions (Luecht, 1996; Reckase, Ackerman, & Carlson, 1988; Segall, 1996, 

2010). For subscoring purposes, de la Torre and Patz (2005) described a MIRT-based 

hierarchical Bayesian subscoring method, in which several correlated but independently 

assessed abilities in a test battery were simultaneously estimated using a Markov Chain 

Monte Carlo (MCMC) estimation algorithm due to the computational complexity of the 

problem. Correlational collateral information was consequently borrowed across subtests 

to improve the subscore estimations. Results of a simulation study confirmed that 

compared with multiple independent unidimensional estimations, the simultaneous 

multidimensional estimation showed more reliable and accurate estimation results, 

especially for tests with highly correlated abilities.  

More recently, de la Torre and Song (2009) introduced the high-order IRT (HO-

IRT) subscoring method, in which secondary domain-specific abilities that determine the 

test-taker’s subtest performances are supposedly derived from a higher-order ability, or 

the primary/overall ability. While the primary ability score was deemed reflecting the 
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test-taker’s total score on the complete test, the secondary ability scores obtained from 

subtests were deemed the test-taker’s subscores for corresponding subtests. The authors 

named this hierarchical structure as “multi-unidimensionality” in their study, suggesting 

that it was unidimensional on the test level but multidimensional on the subtest level. 

This model distinguishes itself from the bi-factor model, which would be described in 

later sections, in that the test-taker’s performance on an item is solely determined by 

secondary abilities, rather than both the primary ability and domain-specific abilities as in 

the bi-factor model. Results of a simulation study implied that in general, HO-IRT 

estimates of total scores were rather comparable to UIRT estimates, yet slightly less 

biased and more efficient than UIRT estimates, especially when the test was 

multidimensional.  

In a study comparing all of these subscoring methods described above, they were 

found to produce very comparable subscores, except for Yen’s OPI (de la Torre et al., 

2011). As the authors explained, the augmentation, MIRT, and HO-IRT subscoring 

methods all exploited the correlational collateral information across dimension. As a 

result, they were expected to deliver similar results. In addition, these alternative 

subscoring methods generally showed their advantages over traditional methods when 

dimensional correlations were high enough to allow collateral information to be 

borrowed. The test length did not present a significant effect, meaning longer subtests did 

not necessarily result in better subscores. When subtests were so long that they were 

already highly reliable, there was no necessity to employ any alternative subscoring 

technique.  
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Multidimensionality 

The ability that a test attempts to measure or actually measures is at times 

multidimensional in reality, constituted of multiple correlated or uncorrelated further 

specific abilities. In this case, the conventional UIRT models might fall short in 

describing the sophisticated interaction between test-takers and testing items and 

provided biased and less efficient score estimations (Reckase, 2009). Take a language 

proficiency test for example, which attempts to measure the test-taker’s abilities in four 

modalities by design: listening, reading, speaking, and writing. These four abilities are all 

related to language proficiency, but none can fully represent it. A high proficiency in one 

modality is not automatically related high proficiency on other modality. Therefore, the 

test-taker’s language proficiency cannot be accurately described unless his or her abilities 

in all four modalities are considered. Take another math achievement test for example. 

The math test is designed to assess the math ability, but might unintentionally involve the 

reading ability. It is possible that some test-taker’s incorrect responses are caused by the 

misunderstanding of question prompts due to a lower reading ability, instead of lower 

math ability. Accounting for both math and reading abilities using the MIRT model 

supposedly isolates the effects of the math and reading abilities, and thus, provides a 

more accurate estimation of the math ability than estimating it along using the UIRT 

model.   

In general, there are two classes of multidimensional models: compensatory and 

noncompensatory models. The noncompensatory model theorists assumed that 

dimensional abilities are isolated between dimensions and a correct response to an item in 
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this case required the test-taker to master all abilities (Sympson, 1978). Thus, the 

probability of getting a correct response to an item is given by 

 (     |           )     (    ) [∏
 

     [       (       )]

 
   ]       (2.15) 

where θi is test-taker i's m-dimensional vector of abilities, aj and bj are item j’s m-

dimensional vectors of discrimination and difficulty parameters, θik is test-taker i's ability 

in dimension k, and ajk and bjk are item j’s parameters in dimension k. 

In contrast, the compensatory model theorists assumed that deficiency in one 

dimension could be compensated by sufficiency in other dimensions, and the test-taker’s 

“total ability” that accounted for all abilities determined his or her probability of 

answering an item correctly (McDonald, 1985). The probability of answering an item 

correctly in the compensatory multidimensional normal ogive model is given by 

 (     |           )     (    ) [∑    (       )
 
   ]           (2.16) 

where N(.) is the normal distribution function. Because of the following equation 

∑    (       )   
   ∑        ∑       

 
   

 
              (2.17) 

in which the second summation term on the right only involves item parameters, the 

multidimensional normal ogive model with reduced number of parameters is given by 

 (     |           )     (    ) [∑       
 
      ]  (2.18) 
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Accordingly, the logistic form of this model, which is often called the 

multidimensional 3PL (M3PL) model, is given by 

 (     |           )     
    

     [    (∑         )]
   (2.19) 

If c-parameters are fixed at zero, this model is reduced to the multidimensional 2PL 

(M2PL) model. Based on the M2PL model, some useful statistics were developed to 

describe item characteristics as in the UIRT, such as discrimination, difficulty, and 

information function (Reckase, 1985; Reckase & McKinley, 1991). By definition, the 

multidimensional discrimination (MDISC) is the item’s discrimination power in the 

direction with maximum information, and it is given by  

      √∑      
        (2.20) 

Similarly, the multidimensional item difficulty (MDIFF) was defined as the item’s 

difficulty in the direction with maximum information, and it is given by 

      
   

√∑    
  

   

      (2.21) 

The geometrical angle between item j’s dimension k and the dimension with maximum 

information is given by 

       
   

√∑    
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 The item’s multidimensional information function (MINF) on direction α is given by 

       ( )    ( )  ( )(∑         
 
   )     (2.23) 

A special case of importance is the bi-factor model, in which the 

multidimensionality structure consists of a primary ability dimension and m specific 

ability dimensions (Gibbons & Hedeker, 1992). The bi-factor model imposes the 

constraint on the item characteristics loading pattern as such that each item has nonzero 

loadings on the primary dimension and only one specific dimension as follows:  

[
 
 
 
 
 
       
       
       
       

       

       ]
 
 
 
 
 

 

where there are six items and two specific dimensions, three items per specific dimension. 

Under some circumstances, the abilities in specific dimensions can be understood as the 

strengths and weakness. Take the four-modality language proficiency for example. While 

the primary ability corresponds to the overall language proficiency, a positive θ score in 

the reading ability would increase the test-taker’s probabilities of getting correct 

responses to all reading items and a negative θ score in the writing ability would decrease 

the test-taker’s probabilities of getting correct responses to all writing items. The bi-

factor model gives each test-taker a primary score as well as m specific scores. Such bi-

factor constraint leads to a simpler loading pattern than regular M2PL and M3PL models, 

resulting in a remarkably simpler estimation. 



 

 

21 

 

2
1
 

The MIRT models were historically calibrated with factor analytical approaches 

(Bock, Gibbons, & Muraki, 1988; McDonald, 1982). Two widely used computer 

programs of MIRT calibration were NOHARM (Fraser, 1993) and TESTFACT (Wilson, 

Wood, & Gibbons, 1991). While both computer programs allow exploratory factor 

analysis (EFA), only NOHARM allows general confirmatory factor analysis (CFA). 

Empirical results were inconsistent with respect to the calibration performance, and no 

definitive evidence was found to favor one program over the other (Reckase, 2009). 

However, general studies regarding the factor analytical approach suggested that factor 

analysis was vulnerable to indeterminacies brought forth by subjective, or arbitrary, 

decisions on rotation methods, the number of factors, etc. (Luecht et al., 2006; McLeod, 

Swygert, & Thissen, 2001; Swygert, McLeod, & Thissen, 2001).  

Alternative to the factor analytical approach, Luecht and Miller (1992) proposed a 

two-stage mixed approach to calibrating MIRT models. That is, a factor analysis and a 

hierarchical cluster analysis were conducted in Stage 1 to classify items into independent 

clusters, with each cluster representing a unidimensional subtest. The UIRT calibration 

was subsequently conducted to each individual subtest in Stage 2 to obtain item 

parameters. This two-stage approach was found to produce high level of accuracy and 

stability in parameter estimation and better representation of the multidimensionality 

structure underlying responses (Luecht & Miller, 1992). 

The relationship between the UIRT and MIRT was an intriguing topic that drew 

much attention. Reckase et al. (1988) argued that “conceptually, any item that can be 

described by the M2PL model is unidimensional in that it is equivalent to an item 
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described by a unidimensional model with the ability scale equal to a weighted composite 

of the elements of the θ-vector.” In other words, if multidimensional items measure the 

same weighted composite of multidimensional abilities throughout the test, they would 

eventually constitute a unidimensional test. The other way around, a unidimensional test 

can be thought of assessing a consistent composition of multiple specific abilities. In 

contrast, if the composition of specific abilities varies within the test, the test might be 

regarded as having idiosyncratic multidimensionality or principled multidimensionality, 

depending on the degree to which items are heterogeneous (Luecht & Miller, 1992; 

Luecht et al., 2006). When dimensions are highly correlated, the unidimensional 

calibration might obtain adequate estimation of item and ability parameters (Drasgow & 

Parsons, 1983). However, when dimensions are not highly correlated, the relationship 

between unidimensional estimates of multidimensional data and true multidimensional 

parameters could not be described by any simple linear functions. For instance, Ansley 

and Forsyth (1985) and Way, Ansley and Forsyth (1988) found out that for data 

generated with the compensatory multidimensional model, the unidimensional estimate  ̂ 

approximated the sum of   and   , and  ̂ approximated the mean of   and   . For data 

generated with the noncompensatory model,  ̂ approximated the mean of   and   , and  ̂ 

was an overestimate of   and   . It is reasonable to expect the relationship would be 

further complicated as the multidimensionality of the test increases.  
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Multidimensional Dual-purpose Test 

In the context of the present study, it is imperative to distinguish two types of 

multidimensionality: the random and fixed multidimensionality (Wainer & Thissen, 

1996). While the random multidimensionality refers to the presence of unexpected 

extraneous dimensionality in the test, which brings in error to the estimation, the fixed 

multidimensionality is defined as multidimensionality by design, which intends to reduce 

error in estimation by accounting for more sources of variances in test performances 

(Luecht, 1996; Segall, 1996, 2010). Thus, only the fixed multidimensionality is desirable 

in terms of reporting useful subscores. The fixed multidimensionality can be realized in 

two ways in test design: the idiosyncratic multidimensional design and the principled 

multidimensional design. The idiosyncratic multidimensional design is defined in this 

study as the design allowing factorially complex-structured items (i.e. item having 

nonzero loadings on multiple dimensions), as long as the marginal item characteristics 

agree with the test plan. Conversely, the principled multidimensional design is defined as 

the design allowing only factorially simple-structured items (i.e. item having nonzero 

loading on one dimension) in the test, which leads to unidimensional subtests with 

prescribed relationship between subtests (Luecht et al., 2006). This stringent constraint 

imposed on the principled multidimensional design arguably leads to scales with higher 

statistical stability, psychometric quality, and interpretability (Luecht et al., 2006), and it 

is in compliance with recent advancements of test design theory—evidence centered 

design (Hendrickson, Huff, & Luecht, 2010; Huff, Steinberg, & Matts, 2010; Luecht et 

al., 2006; Mislevy, 1994, 1996).  



 

 

24 

 

2
4
 

On the basis of the idiosyncratic multidimensional design, the conventional MIRT 

model exploits both idiosyncratic dimensional information that is absent or uncollected in 

the composite dimension and cross-dimensional collateral information. Therefore, it 

supposedly improves the estimations of domain-specific abilities (Luecht, 1996; Reckase, 

2009; Segall, 1996, 2010). The implementation of MIRT at times was confronted by the 

calibration problem. In the scenario where analysts attempt to detect the presence of any 

unintentional dimension(s), an exploratory factor analytical calibration might be 

conducted to find a solution on the basis of statistical associations and differentiations 

among items. The subjective decisions are then necessary for determining the number of 

factors and the rotational method. This purely data-based analysis might be too sensitive 

to unsystematic errors in the data to yield consistent and stable calibration results across 

administrations of the same test (Luecht et al., 2006; McLeod et al., 2001; Swygert et al., 

2001). Conversely, if analysts acquire strong pre-knowledge regarding the item-factor 

loading structure, the confirmatory factor analytical calibration might be more 

appropriate than the EFA calibration, because the CFA calibration tends to yield 

consistent results that are compatible results with the test plan. It should be remembered 

that in order for the CFA calibration to be viable, “for each trait there are at least two 

items measuring it that are factorially simple” (McDonald, 2000).   

Compared to the idiosyncratic multidimensional design, the principled 

multidimensional design is arguably easier to achieve and manage from the item 

development perspective. That is, a test of the principled multidimensionality can be 

thought of be composed of several unidimensional subtests, or independent item clusters, 
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and the goal of test development is, as in a unidimensional test, to develop items 

primarily measuring sole one ability for each subtest. Although the exploratory and 

confirmatory factor analytical calibrations might still be applicable, Luecht et al. (2006) 

argued that separate UIRT calibrations, one per each essentially unidimensional subtest, 

showed minimal technical inferiority to the sophisticated and computationally intensive 

MIRT calibration.  

Another difficulty related the multidimensional dual-purpose test is the derivation 

of the total score. While the MIRT model only provides the estimation of subscores, the 

total score needs to be accurately derived with alternative methods to represent the test-

taker’s overall ability with an easily interpreted score for the ranking purpose of the test. 

A straightforward method is to conduct a unidimensional analysis of the test in addition 

to the multidimensional analysis (Brandt, 2008, 2010). As Brandt argued, although this 

practice was psychometrically sound, it was difficult to explain to the public the 

interpretations of different parameters for the same items. As described in preceding 

section, the HO-IRT might also be plausible in resolving this problem; however, it 

imposed a relatively novel and less-studied model. Instead, some score-aggregation 

methods were proposed to combine domain-specific scores to a composite total score. 

The simplest method is to estimate the total score by summing raw subscores or 

averaging θ subscores. This method is logically straightforward and computationally 

convenient, but it results in an inefficient estimate with larger variance and more error 

than any of the subscores.  
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Graybill and Deal (1959) introduced a method that combined estimates of the 

population mean from two independent samples and resulted in a uniformly better 

estimate than either individual sample estimate:  

 ̂  (    
       

  ) (    
      

 )    (2.24) 

where x is distributed as a normal variable with mean μ and variance   
   ⁄ , y is also 

distributed as a normal variable with mean μ and variance   
   ⁄ , and s1 and s2 are 

sample standard deviations. The estimate  ̂  obtained in this approach would have less or 

equal variance to both   
  and   

 , meaning that it is a uniformly better estimate. 

Assuming subscores are independent estimates of the overall ability, this approach might 

be employed to derive a weighted composite total score that is better than individual 

subscores. 

Another method was introduced by Longford (1997) to specifically address the 

issue of combining estimates of test scores. Supposing arbitrary weights were assigned 

prior to the data collection, these weights were then adjusted using the empirical post-

administration data so as to produce a composite score showing minimal (conditional) 

mean square error (MSE):  

       
              (2.25) 

where SObs and STrue are the variance-covariance matrices of the observed and true 

subscores. Subsequently, the composite total score Xv was given by   
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            (2.26) 

where μ is the m-dimensional vector of score means. 

Lastly, a factor-analytic method was introduce by Luecht et al. (2006) to 

approximate the composite total score using observed subscores. This method obtained 

the total score that would explain maximal variance among subscores. To do so, a factor 

analysis was conducted on standardized subscores, obtaining the largest eigenvalue S and 

the corresponding eigenvector A, which were then used to approximate score-aggregating 

weights W as follows:  

   √          (2.27) 

     (   )        (2.28) 

And, the composite total score θ
*
 was given by 

  
            (2.29) 

Purpose and Questions of Research 

Embedding both the ranking and diagnosis purposes in one assessment instrument 

would be great advancement in this field. Our understandings of the optimal design and 

analysis of such dual-purpose test, however, are dwarfed by the growing needs for it in 

practice. Potential psychometric challenges related to the dual-purpose testing were not 

fully addressed in the literature. The purpose of the present study was, thus, to provide a 

systematic comparison of a variety of possible designing and analyzing paradigms for the 
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dual-purpose test in conditions with varying test length and dimensionality structure of 

true abilities.  

The above considerations led to four main research questions listed below: 

1. In which design(s) can the total score be most accurately and reliably estimated? 

 1.1. Is this effect consistent over various dimensionality structures of true abilities? 

 1.2 Is this effect consistent over various test lengths? 

 1.3. Is this effect consistent over various calibration approaches? 

2. In which design(s) can subscores be most accurately and reliably estimated? 

 2.1. Is this effect consistent over various dimensionality structures of true abilities? 

 2.2 Is this effect consistent over various test lengths? 

 2.3. Is this effect consistent over various calibration approaches? 

3. In which design(s) can subscores provide added value to the total score? 

 3.1. Is this effect consistent over various dimensionality structures of true abilities? 

 3.2 Is this effect consistent over various test lengths? 

 3.3. Is this effect consistent over various calibration approaches? 

4. Do alternative scoring methods, inclusive of both alternative subscoring methods and 

score-aggregating methods, improve the accuracy and reliability of raw estimated 

scores? 

 4.1. Is this effect consistent over various test designs? 

 4.2. Is this effect consistent over various dimensionality structures of true abilities? 

 4.3. Is this effect consistent over various test lengths? 

 4.4. Is this effect consistent over various calibration approaches? 
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CHAPTER III 

METHODS 

Context of Study 

A hypothetical math test was introduced as a concrete example to illustrate the 

methodology. This math test was designed to measure mathematical skills and knowledge 

that students learned in schools, consisting of questions coming from four content 

domains: arithmetic operations (ARI), algebra (ALG), geometry (GEO), and statistics 

and probability (STA). These domains were denoted as Domain 1 to 4 in the remainder of 

the article. Whether this multi-domain test was unidimensional or multidimensional 

depended on the actual test designs, which was manipulated in this study. If the test was 

unidimensional, domains represented various components of the overall math ability. If 

the test was multidimensional, domains essentially represented various dimensions folded 

in the overall math ability. Moreover, since domains were not likely to display equivalent 

difficulties in reality (i.e., some domain being easier while others being more 

challenging), item difficulties were presumably compounded with domains as such that 

the ARI items were easiest, having average item difficulty equal to -.5, followed by the 

ALG ( ̅     ), GEO ( ̅    ), and STA items ( ̅    ). 

With respect to scores, there were two intended functions, or utilities. The 

primary function was to report a total score for each student, indicating the student’s 

overall math ability. This total score would be utilized to assist educational institutions in 
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ranking students and making critical decisions accordingly. The secondary function was 

to report diagnostic subscores, assessing various components/dimensions of the overall 

math ability, namely, the abilities of arithmetic operations, algebra, geometry, and 

statistics and probability respectively. Not only did subscores offer educational 

institutions finer-grained information to further rank students, but also directed the 

student’s focus onto identified weak areas or abilities. Therefore, the test met the 

definition of the dual-purpose test in this study, and was required to report both reliable 

and accurate total score and domain-specific subscores. 

 

Conditions of Study 

Three factors were manipulated in this study, namely the test design, test length, 

and calibration approach, resulting in 7×3×3 cross-factor experimental conditions. The 

test design was manipulated with seven levels: one unidimensional (UNI) design, three 

idiosyncratic multidimensional (IM) designs with dimensions correlated at ρ=.3, .6, 

and .9, and three principled multidimensional (PM) designs with dimensions correlated at 

ρ=.3, .6, and .9. The UNI design was to mirror the practice as such that items were 

meticulously selected for the inclusion in the test based on statistical estimates of their 

characteristics on the single dimension (the “reference composite” dimension, if it were a 

“true” multidimensional test) obtained from the field test in order to construct a 

psychometrically sound and robust unidimensional test. It was also reasonable to 

assemble test with multidimensional items, maximizing the diagnostic functionality of 

the test. The multidimensionality could be idiosyncratic, in which each item provided 
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information on one major dimension as well as several minor dimensions, or principled, 

in which each item was psychometrically effective on one predefined dimension. 

Specifically, the IM designs imitated the practice of constructing a conventional 

multidimensional with idiosyncratic information, whereas the PM designs imitated the 

practice of imposing principled information on test designs ((Luecht et al., 2006; Mislevy, 

1994, 1996). 

The test length was manipulated with three levels: 5 items per domain (N=5), 10 

items per domain (N=10), and 20 items per domain (N=10). Since the test was composed 

of four domains, these three levels corresponded to the total test length of 20, 40, and 80 

respectively. The 20-item test (5 items per domain) represented the short test-length 

condition, which was unlikely for any high-stake tests but might be plausible for the low-

stake formative classroom tests. In contrast, the 80-item test (20 items per domain) 

represented the long test-length condition. The length of 80 items might still be short for 

high-stake tests, but the effect of test-length should manifest itself through the 

progression from 5 items per domain to 20 items per domain. 

Crossing these two factors resulted in 7 × 3 “data generation conditions”, in each 

of which a data set of responses with 5,000 examinees and corresponding number of 

items was generated. Afterwards, the data set was calibrated with three approaches: the 

concurrent unidimensional (CU) calibration, the confirmatory multidimensional (CM) 

calibration, and the separate unidimensional (SU) calibration. The CU approach was the 

conventional unidimensional calibration approach, in which all items were 

simultaneously calibrated as a whole and assigned with parameters indicating their 
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characteristics on the calibrated dimension. The CM approach defined a simple-

structured confirmatory factor loading pattern for calibration as such that the first N items 

in an N-item-per-domain test assessed the first dimension, the second N items the second 

dimension, and so on. The SU approach, instead, calibrated each subtest with a 

unidimensional model individually. 

In summary, crossing all factors resulted in 63 experimental conditions. Item 

parameters, ability parameters, and responses were generated according to the test design 

in each of 21 data generation conditions. The sample size was held constant at 5,000 in 

all data generation condition, which is supposedly sufficient to produce stable estimation 

results. Also, 30 replications were conducted to reduce sampling error incurred in data 

generation.   

 

Data Generation 

Item Parameters 

The data generation began with the item generation for the IM design. For the IM 

designs with N items per domain, a 4N×4 matrix of a-parameters was generated from the 

lognormal distribution with the following mean vector and variance-covariance matrix on 

the log scale: 

  [    ] 

   [

   
    
     
      

] 
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The a-parameters outside of the interval [0.0, 2.0] were regenerated until all a-parameters 

stayed within the bounds, which avoided unrealistic parameters. The resulting a-

parameters were expected to be tightly distributed around 1.0. The order of the a-

parameter in each row was then rearranged as such the greatest a-parameter was placed 

under the item’s major assessment domain. For instance, the ARI items were generated to 

have largest a-parameters in the ARI domain.  

For the PM design with N items per domain, the same a-parameters in the 

corresponding IM design were used to compute the pseudo-composite a-parameters as 

follows:  

   √∑    
  

         (3.1) 

This pseudo-composite a-parameter was also an item’s MDISC, approximating the 

maximum information it had in the aggregate. Each item’s pseudo-composite a-

parameter was then assigned to the item’s major assessment domain, leaving other three 

minor domains zeros. This ensured the equality of measurement information across test 

designs, as well as the comparability of performances of different test designs. Similarly, 

the pseudo-composite a-parameters were also assigned to items in the UNI design as their 

a-parameters, ensuring the equality of measurement information and comparability of 

various test designs. 

 In all designs, the difficulty parameters were generated from the normal 

distributions with the same variance of .8 but differential means for different domains in 

order to reflect differential hypothetical domain difficulties. The generation of difficulty 
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parameters was bounded by the lower bound of -3.0 and upper bound of 3.0, in an 

attempt to avoid unrealistic difficulty parameters. The lower-asymptote c-parameters 

were generated with fixed value at .10.  

Table 1. An Example of Item Generation Results for the IM Design with N=5 

a1 a2 a3 a4 d c Domain 

0.65 0.16 0.44 0.44 1.11 0.1 ARI 

0.96 0.46 0.86 0.91 -0.02 0.1 ARI 

0.83 0.38 0.21 0.33 0.55 0.1 ARI 

0.63 0.15 0.40 0.49 -0.48 0.1 ARI 

0.97 0.74 0.48 0.50 -1.87 0.1 ARI 

0.08 0.90 0.34 0.21 0.68 0.1 ALG 

0.15 0.48 0.43 0.36 0.87 0.1 ALG 

0.27 0.54 0.49 0.48 -1.59 0.1 ALG 

0.38 0.93 0.80 0.31 -0.79 0.1 ALG 

0.19 0.75 0.34 0.36 -0.49 0.1 ALG 

0.19 0.34 0.36 0.07 0.67 0.1 GEO 

0.28 0.51 0.75 0.32 -0.69 0.1 GEO 

0.45 0.11 0.60 0.43 0.28 0.1 GEO 

0.55 0.35 0.99 0.14 0.41 0.1 GEO 

0.37 0.34 0.62 0.09 0.38 0.1 GEO 

0.58 0.13 0.09 0.74 0.46 0.1 STA 

0.40 0.56 0.28 0.73 0.52 0.1 STA 

0.30 0.63 0.21 0.80 -1.28 0.1 STA 

0.13 0.38 0.18 0.55 -0.63 0.1 STA 

0.16 0.19 0.34 0.46 -1.46 0.1 STA 
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Table 2. An Example of Item Generation Results for the PM Design with N=5 

a1 a2 a3 a4 d c Domain 

0.91 0.00 0.00 0.00 0.41 0.10 ARI 

1.64 0.00 0.00 0.00 1.40 0.10 ARI 

0.99 0.00 0.00 0.00 0.16 0.10 ARI 

0.90 0.00 0.00 0.00 0.00 0.10 ARI 

1.40 0.00 0.00 0.00 2.53 0.10 ARI 

0.00 0.99 0.00 0.00 0.54 0.10 ALG 

0.00 0.75 0.00 0.00 0.69 0.10 ALG 

0.00 0.92 0.00 0.00 -0.16 0.10 ALG 

0.00 1.32 0.00 0.00 2.00 0.10 ALG 

0.00 0.92 0.00 0.00 0.42 0.10 ALG 

0.00 0.00 0.54 0.00 -0.32 0.10 GEO 

0.00 0.00 1.00 0.00 0.00 0.10 GEO 

0.00 0.00 0.87 0.00 0.25 0.10 GEO 

0.00 0.00 1.19 0.00 -1.15 0.10 GEO 

0.00 0.00 0.81 0.00 -0.90 0.10 GEO 

0.00 0.00 0.00 0.96 -0.69 0.10 STA 

0.00 0.00 0.00 1.04 -0.33 0.10 STA 

0.00 0.00 0.00 1.08 -2.32 0.10 STA 

0.00 0.00 0.00 0.71 -0.65 0.10 STA 

0.00 0.00 0.00 0.62 -0.59 0.10 STA 

 

Ability Parameters and Scores 

For each IM or PM design with ρ true ability correlation, a 5000×4 matrix of true 

domain-specific ability parameters was randomly from the multivariate normal 

distribution with the following mean vector and variance-covariance matrix: 

  [    ], 

   [

 
  

   
    

]. 
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For each UNI design, 5000 unidimensional ability parameters were generated from the 

normal distribution with mean equal to 0.0 and standard deviation 1.0. Because of the 

unidimensionality, these ability parameters indicated both the examinees’ overall abilities 

and domain-specific abilities. 

The probabilities of getting a correct response were obtained by feeding item and 

ability parameters into the M3PL model for each IM or PM design and the 3PL model for 

each UNI design. These probabilities could be thought of each test-taker’s expected score 

on each item. Therefore, the summation over a subtest gave the expected raw score (ERS) 

of that subtest domain, or true subscore, and the summation over the complete test gave 

the ERS of the test, or true total score. It was these true scores rather than true ability 

parameters on the θ scale that would be compared with and evaluate estimated scores in 

each experimental condition. This avoided complicated conversion between overall and 

domain-specific θ scores, for which no perfect solution was available so far.  

 

Responses 

Test-taker i's probability of answering item j correctly pij was also used to 

generate this test-taker’s response to this item uij. Comparing with a random number rij 

from the uniform distribution U(0, 1), the response was generated according to the 

following rule: 

    {
             
            

      (3.2) 
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Calibration and Scoring 

All calibrations were conducted using NOHARM (Fraser, 1993). Because the 

factor analytical calibration used in NOHARM required user-defined c-parameters, all c-

parameters were fixed at .10 as what their true values were. The CU calibration was 

specified as an exploratory one-factor solution in NOHARM, yielding one a-parameter 

and one d-parameter (i.e., b-parameter with reverse sign) per item. It supposedly captured 

item characteristics on the statistically most significant dimension and aligned item 

parameters on the same dimension. The expected a posterior (EAP) estimates of the 

unidimensional abilities were estimated with13 quadrature points, ranging from -3.0 to 

3.0 in increments of .5, from the normal distribution N(0, 1). The posterior distribution 

was given by 

 ( | )   ( | )   ( )     (3.3) 

Test-taker i's final EAP estimate was given by 

     [ ]  ∑    (  )
  
       (3.4) 

where θh was quadrature point h, and P(θh) was the posterior probability of quadrature 

point h. With the calibrated items and estimated abilities, the probabilities were then 

computed using the 3PL model. Summing the probabilities by domain resulted in 

estimated expected raw subscores, called raw subscores or estimated subscores, and 

summing the probabilities over the complete test resulted in estimated expected raw total 

score, called raw total score or estimated total score.   
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The SU calibration estimated each individual subtest separately with the 

exploratory one-factor solution in NOHARM. This also yielded one a-parameter and one 

d-parameter per item; however they were not necessarily on the same dimension. That is, 

parameters of an ARI item only indicated its characteristics related the ARI subtest, 

neither directly related to other three subtests nor to the overall test. Four EAP estimates 

of domain-specific abilities were estimated separately using item parameters and 

responses associated with each subtest, and the probabilities were computed using 3PL 

model. Summing the probabilities by domain resulted in raw subscores, and summing the 

probabilities over the complete test resulted in raw total score.   

The CM calibration was specified as a confirmatory four-factor solution in 

NOHARM. The confirmatory loading pattern was of simple structure, in which an item 

had nonzero loading in its major assessment dimension but zeros in other three minor 

dimensions. In addition to a- and d-parameters, correlations between abilities were also 

estimated in NOHARM. Following the calibration, four EAP estimates of domain-

specific abilities were jointly estimated using 7
4
 quadrature points from the multivariate 

normal distribution and estimated correlations. The 7
4
 quadrature points consisted of 7 

quadrature points per domain, ranging from -3.0 to 3.0 in increments of 1.0. The joint 

posterior distribution was given by  

 (           | )   ( |           )   (           )      (3.5) 

Test-taker i's final EAP estimates were given by 

     [  ]     (  | )        (3.6) 
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where θi was the vector of examinee i’s domain-specific abilities, and P(θi|u) was the 

matrix of posterior probabilities. The probabilities were then computed with the M3PL 

model using the item and ability parameters. Summing the probabilities by domain 

resulted in raw subscores, and summing the probabilities over the test resulted in raw 

total score.  

 In addition to raw total score and subscores, a set of subscores and two sets of 

total scores were computed using alternative socring methods. First, raw subscores were 

augmented using the procedure described in Wainer et al. (2001). Next, raw subscores 

were aggregated to create the composite total score using the methods described in 

Luecht et al. (2006) and Longford (1997). The former method gave a factor analytically 

optimal total score, denoted as the FA composite (total) score, which explained argest 

variance among subscores, while the latter method gave a score with least MSE, denoted 

as the MSE composite (total) score. The computations were documented in details in 

Chapter II. 

 

Analyses 

One of the most important criteria to evaluate the effectiveness of various test 

designs was the score accuracy, which was the extent to which estimated scores 

recovered their true values. The score accuracy was evaluated via Pearson’s product-

moment correlation and the root mean square error (RMSE). The Pearson’s product-

moment correlation was given by 
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  ̂ 

  ̂  
      (3.7) 

where   ̂  is the covariance of true score and estimated score,   ̂ and    are standard 

deviations  of estimated score and true score. The RMSE was given by 

     √
 

 
∑ ( ̂    )

  
        (3.8) 

where  ̂  is test-taker i's estimated score and Xi is test-taker i's true score. The correlation 

should be considered in conjunction with the RMSE, and vice versa. High correlation and 

low RMSE would suggest that scores were well estimated with high level of accuracy. 

High correlation and high RMSE would suggest that scores might have been accurately 

estimated on a different scale with the true scores. Low correlation and low RMSE would 

suggest the restriction of range of the estimated or true scores. Low correlation and high 

RMSE confirmed that estimated scores were not accurate enough.  

Another essential criterion to evaluate score quality was the reliability. By 

definition, the reliability was given by 

     
     
 

    
        (3.9) 

Since true scores were generated in the simulation study, the reliability was simply 

squared Pearson’s correlation. By theory, the reliability should range from 0.0 to 1.0, 

with the higher value suggesting more reliable and less erroneous scores. As rule of 
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thumb, a reliability of at least .85 was considered acceptable for any large-scale high-

stakes examination. Otherwise, scores were contaminated with large proportion of error. 

For subscores, an additional evaluative criterion was whether they provided added 

values to total score. Under some circumstances, subscores might be reliably and 

accurately estimated but failed to provide significant diagnostic information as they were 

expected to. In this case, subscores were still not good enough for the dual-purpose test, 

even though their regular psychometric qualities were satisfactory. The PRMSE criterion 

described in Haberman (2008), was used to determine whether subscores provided added 

value. The PRMSE compared the proportional reduction of mean square error of 

subscores that were estimated with observed subscores, denoted as PRMSEX, and the 

PRMSE of subscores that were estimated with observed total score, denoted as PRMSET, 

which were given by 

         (     )    
  (  )

  (  )
        (3.10) 

         (     )   (     ) [
 (     )

 (     ) (     )
 

  (  )

 (  ) (  )
]           (3.11) 

where X is the observed subscore, Z was the observed total score. If PRMSEX was greater, 

subscores provided additional information to the total score. 

In addition, Q3 was computed using estimated item and ability parameters in each 

experimental condition to examine the amount of unexplained covariance between items. 

On the basis of residual correlation, Q3 indicated the modeling sufficiency of the 

calibration approach to the data, or model fit in some senses. If there was a merely 
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insignificant correlation between residuals of an item pair, Q3 should be a slight negative 

number, whose r-to-z transformation supposedly had a normal distribution with mean 

equal to 0 and variance 1/(N-3). Therefore, the r-to-z transformation of each Q3 was 

compared with the critical value with α=.001 to determine whether it was a statistical 

outlier. Because it was unconcerned in this study which pair of items shared significant 

amount of unexplained covariance, the percentage of Q3 outliers of all possible item pairs 

was used to evaluate the modeling sufficiency in each condition. The higher the 

percentage was, the higher the likelihood was that there was at least one significant 

dimension not being accounted for by the model. The Q3 statistic expectedly provides 

additional supporting information to the interpretation of results. 

Lastly, two widely-used model comparison statistics, the Akaike information 

criterion (AIC) and Bayesian information criterion (BIC), were computed to further 

compare calibration approaches. They assessed the goodness of fit of competing models 

to the data, while taking into account of model complexity at the same time. The absolute 

AIC/BIC value in isolation was meaningless, because they were expected to be 

interpreted in relative to one another. The model with lower AIC/BIC value was preferred, 

suggesting a higher likelihood for the model to minimize the information loss when it 

was used to reproduce the data. Computationally, AIC and BIC were given by 

          ( )      (3.12) 

       ( )     ( )     (3.13) 
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where k was the number of estimated parameters, N was the sample size, and L was the 

likelihood function. Both AIC and BIC were based on the negative 2 log-likelihood, but 

BIC incorporated a harsher penalty to overparameterization than AIC, being prone to 

favor the more parsimonious model. 
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CHAPTER IV 

RESULTS 

True Item Parameters and Scores 

Table 3 and 4 provided descriptive statistical summaries of generated item 

parameters. For the UNI designs, b-parameters were converted to d-parameters by 

reversing the sign. For the IM and PM designs, the composite a-parameters, or MDISCs, 

were computed by taking the square root of the sum of squared domain-specific a-

parameters, indicating the amount of information that a multidimensional item provided. 

The results showed that the means and standard deviations of a-parameters were very 

comparable across conditions (.970 for N=5, .986 for N=10, and .986 for N=20), which 

ensured the equality of measurement information across test designs. The standard 

deviations were also reasonably small in all conditions (.235 for N=5, .243 for N=10, 

and .247 for N=20), suggesting that the vast majority of a-parameters were distributed 

within a range bounded by .5 and 1.5. The means and standard deviations of d-parameters 

varied with conditions, but the variations were within an acceptably narrow range (means 

ranging from -.016 to .037, and standard deviations ranging from .788 to .945), which 

equated the average difficulty of the tests. The means of domain-specific a-parameters in 

the PM designs, ranging from .238 to .254, were smaller than those in the IM designs, 

ranging from .434 to .454, because of the simple-structure constraint imposed on the PM 

designs. Together, items were generated as intended.  
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Table 3. Means of Generated Item Parameters 

 a d a1 a2 a3 a4 

UNI 
      

    N = 5 .970 -.008 - - - - 

    N = 10 .986 -.016 - - - - 

    N = 20 .986 .000 - - - - 

IM 
      

    N = 5 .970 .032 .435 .448 .434 .454 

    N = 10 .986 .015 .447 .448 .449 .454 

    N = 20 .986 .037 .449 .450 .444 .452 

PM 
      

    N = 5 .970 .023 .242 .245 .238 .246 

    N = 10 .986 .003 .248 .239 .245 .254 

    N = 20 .986 .032 .248 .247 .248 .243 

 

Table 4. Standard Deviations of Generated Item Parameters 

 a d a1 a2 a3 a4 

UNI 
      

    N = 5 .235 .894 - - - - 

    N = 10 .243 .861 - - - - 

    N = 20 .247 .862 - - - - 

IM 
      

    N = 5 .235 .788 .229 .235 .234 .232 

    N = 10 .243 .830 .241 .231 .233 .243 

    N = 20 .247 .811 .240 .239 .239 .236 

PM 
      

    N = 5 .235 .945 .443 .447 .435 .453 

    N = 10 .243 .930 .449 .440 .444 .459 

    N = 20 .247 .899 .449 .448 .449 .441 

 

Table 5 and 6 presented the means and standard deviations of true scores. The 

means of total scores were roughly 11, 22, and 44 for the 20-item (N=5), 40-item (N=10), 

and 80-item (N=20) tests. While the means were proportional to the test length, they 

remained almost invariant across test designs. The standard deviations of true total scores, 
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on the other hand, varied along with the test designs as well as test length. The score 

variation, on average, was largest in the IM designs but least in the PM designs. 

Specifically in multidimensional designs (i.e. IM and PM designs), larger score variance 

was observed for conditions with higher ability correlation (ρ=.9). Of all subscores, the 

means of Subscore 1 were the largest, followed by Subscore 2, 3, and 4, which reflected 

the differences in hypothetical domain difficulties, that is, Subtest 1 (ARI) being easier 

and Subtest 4 (STA) harder. For each individual subscore, it showed similar cross-

condition patterns as the total score.   

Presented in Table 7 were correlation coefficients between true subscores. As 

expected, true subscores were highly correlated at nearly 1.0 in the UNI designs, since 

they were driven by the same unidimensional ability. Subscores were correlated 

approximately at .3, .6, and .9 in the PM designs, consistent with the true ability 

correlations. In the IM designs, however, subscores were highly correlated at at least .918, 

regardless of true ability correlations. This inflation of score correlations was possibly 

because that each item’s true ERS was a score on the local reference composite score, 

which considered information in dimensions instead of solely in the major dimension. 

Furthermore, Figure 1 presented a random example of true score distributions with10 

items per domain. The example reiterated the interpretations above, and thus would not 

be discussed further.  
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Table 5. Means of True Scores  

 

Total Score Subscore 1 Subscore 2 Subscore 3 Subscore 4 

UNI 
     

    N = 5 10.992 3.387 3.001 2.519 2.085 

    N = 10 21.873 6.498 5.868 5.109 4.398 

    N = 20 44.045 13.246 11.851 10.147 8.801 

IM, ρ = .3 
     

    N = 5 11.105 3.018 2.812 2.705 2.57 

    N = 10 22.116 5.892 5.701 5.43 5.093 

    N = 20 44.429 11.719 11.748 10.652 10.311 

IM, ρ = .6 
     

    N = 5 11.106 2.997 2.809 2.714 2.586 

    N = 10 22.026 5.838 5.662 5.418 5.108 

    N = 20 44.426 11.663 11.692 10.693 10.378 

IM, ρ = .9 
     

    N = 5 11.104 2.981 2.806 2.717 2.600 

    N = 10 22.069 5.826 5.662 5.433 5.147 

    N = 20 44.436 11.629 11.652 10.724 10.431 

PM, ρ = .3 
     

    N = 5 11.072 3.485 3.032 2.486 2.069 

    N = 10 22.018 6.848 5.887 5.019 4.264 

    N = 20 44.458 13.31 12.079 10.158 8.911 

PM, ρ = .6 
     

    N = 5 11.078 3.483 3.035 2.485 2.076 

    N = 10 22.046 6.843 5.896 5.030 4.277 

    N = 20 44.426 13.293 12.065 10.152 8.916 

PM, ρ = .9 
     

    N = 5 11.072 3.481 3.033 2.484 2.074 

    N = 10 22.032 6.841 5.887 5.025 4.279 

    N = 20 44.519 13.327 12.095 10.172 8.926 
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Table 6. Standard Deviations of True Scores  

 

Total Score Subscore 1 Subscore 2 Subscore 3 Subscore 4 

UNI 
     

    N = 5 4.194 1.037 1.092 1.099 1.014 

    N = 10 8.490 2.126 2.161 2.179 2.089 

    N = 20 16.952 4.226 4.388 4.332 4.144 

IM, ρ = .3 
     

    N = 5 4.868 1.249 1.257 1.260 1.259 

    N = 10 9.735 2.519 2.452 2.521 2.513 

    N = 20 19.475 5.017 4.980 5.000 4.993 

IM, ρ = .6 
     

    N = 5 5.443 1.379 1.384 1.387 1.389 

    N = 10 10.856 2.771 2.702 2.772 2.764 

    N = 20 21.798 5.532 5.506 5.522 5.511 

IM, ρ = .9 
     

    N = 5 5.845 1.471 1.474 1.475 1.478 

    N = 10 11.651 2.946 2.880 2.950 2.945 

    N = 20 23.38 5.883 5.861 5.877 5.866 

PM, ρ = .3 
     

    N = 5 2.849 0.987 1.079 1.077 1.027 

    N = 10 5.787 2.071 2.120 2.189 2.089 

    N = 20 11.611 4.169 4.284 4.370 4.165 

PM, ρ = .6 
     

    N = 5 3.444 0.988 1.079 1.079 1.029 

    N = 10 7.006 2.068 2.121 2.192 2.090 

    N = 20 14.075 4.174 4.292 4.365 4.174 

PM, ρ = .9 
     

    N = 5 3.964 0.991 1.080 1.079 1.029 

    N = 10 8.060 2.070 2.120 2.191 2.095 

    N = 20 16.195 4.171 4.286 4.367 4.167 
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Table 7. Correlations between True Subscores 

 
N=5 N=10 N=20 

UNI .969 .979 .978 

IM, ρ = .3 .918 .928 .932 

IM, ρ = .6 .954 .963 .967 

IM, ρ = .9 .976 .984 .988 

PM, ρ = .3 .286 .288 .289 

PM, ρ = .6 .573 .578 .580 

PM, ρ = .9 .866 .872 .878 

 

 

Figure 1. True Score Distributions when N = 10 
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Estimated Item Parameters 

Table 8 summarized the means of item parameters when the data set was 

calibrated with the CU calibration approach. As it should, the CU calibration provided a 

good recovery of item parameters for the UNI designs, in which the means of estimated 

a- and d-parameters were close to the means of true parameters. However, the CU 

calibration overestimated a-parameters for the IM designs, especially for the IM designs 

with high true ability correlations (ρ=.9). The means of estimated a-parameters were all 

above 1.0, while the means of true a-parameters were slightly below 1.0. In the worst 

case where true abilities were correlated at .9 and test length was 20 items per domain, 

the mean of a-parameters was inflated to 2.220. On the other hand, the CU calibration 

underestimated a-parameters for the PM designs. The lower the ability correlation was, 

the greater the underestimation was. In the worst case where the abilities were correlated 

at .3 and the test length was 5 items per domain, the mean of a-parameters was deflated 

to .518. In general, d-parameters were well estimated, whose means were close to the true 

values in all conditions.  

Table 8. Estimated Item Parameters in the CU Calibration 

 
N = 5 

 
N = 10 

 
N = 20 

 
a d 

 
a d 

 
a D 

UNI .957 -.015 
 

.979 -.018 
 

.976 .002 

IM, ρ = .3 1.153 .029 
 

1.174 .016 
 

1.162 .033 

IM, ρ = .6 1.457 .023 
 

1.480 .013 
 

1.480 .035 

IM, ρ = .9 1.764 .034 
 

1.804 .019 
 

2.220 .125 

PM, ρ = .3 .518 .015 
 

.535 -.001 
 

.538 .031 

PM, ρ = .6 .692 .015 
 

.707 .003 
 

.709 .023 

PM, ρ = .9 .893 .004 
 

.901 -.001 
 

.900 .034 
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Presented in Table 9 were the means of item parameters estimated with the CM 

calibration approach. The composite a–parameter was computed to approximate the 

amount of information a multidimensional item provided. In addition to a- and d-

parameters, the estimated ability correlations were also included in Table 8. For the UNI 

designs, the CM calibration allotted almost equal discrimination powers to four domains, 

ranging from .238 to .246, and the composite a-parameters (.959 for N=5, .981 for N=10, 

and .980 for N=20) closely approximated their true values. The CM calibration 

underestimated a-parameters for the IM designs unless the ability correlation was as high 

as ρ=.9 (ranging from .303 to .317 for N=5, .366 to .392 for N=10, and .430 to .466 for 

N=20), but accurately estimated a-parameters in the PM designs regardless of true ability 

correlations (ranging from .237 to .250 for N=5, .238 to .247 for N=10, and .238 to .251 

for N=20). This might be attributable to that fact the complex-structured 

multidimensional response data as in the IM designs were naturally more difficult to 

calibrate than the simple-structured response data as in the PM designs. The d-parameters 

were calibrated with acceptably small biases. The correlation coefficients between 

abilities were generally calibrated with precision for the UNI and PM designs, in which 

they were almost 1.0 for the UNI designs, and roughly .3, .6, and .9 for PM designs with 

ρ=.3, .6, and .9 respectively. Ability correlations, however, were significantly 

overestimated for the IM designs. 

Table 10 presented the means of item parameters estimated with the SU 

calibration approach. The discrimination power was evenly allotted into domains in the 

UNI designs, where a-parameters ranged from .239 to .252. The a-parameters were 
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underestimated in the IM designs when the correlation between abilities was not high, 

ranging from .298 to .315 when ρ=.3 and .365 to .392 when ρ=.6. When abilities were 

correlated at .9, a-parameters were estimated in the vicinity of their true values, ranging 

from .440 to .471. For the PM designs, a-parameters stayed within a narrow range 

between .238 and .262, regardless of the correlation between abilities. Overall, the 

measurement information provided by an item, as approximated by the composite a-

parameter, was overestimated for the IM designs and underestimated for the PM designs. 

The domain-specific d-parameters were generally estimated with precision. In all 

conditions, differential domain difficulty was observed in estimated item parameters. 

However, such differences were greater in the UNI design (d-parameters ranging from -

.156 to .142) and the PM designs (d-parameters ranging from -.186 to .170) than in the 

IM designs (d-parameters ranging from -.058 to .075).  

 

 

 

 

 

 

 

 

 

 

 



 

 

53 

 

5
3
 

Table 9. Estimated Item Parameters in the CM Calibration 

 

a1 a2 a3 a4 d r
1 

a
2 

UNI 
       

    N = 5 .238 .244 .237 .240 -.015 .997 .959 

    N = 10 .246 .238 .246 .251 -.018 .997 .981 

    N = 20 .246 .247 .246 .241 .002 .995 .980 

IM, ρ = .3 
       

    N = 5 .308 .306 .299 .309 .030 .945 1.222 

    N = 10 .313 .303 .310 .317 .017 .947 1.242 

    N = 20 .312 .308 .309 .303 .035 .945 1.233 

IM, ρ = .6 
       

    N = 5 .381 .376 .366 .389 .022 .976 1.512 

    N = 10 .387 .371 .379 .392 .014 .978 1.529 

    N = 20 .388 .381 .386 .379 .036 .977 1.533 

IM, ρ = .9 
       

    N = 5 .450 .450 .430 .452 .034 .995 1.783 

    N = 10 .461 .441 .455 .466 .019 .995 1.823 

    N = 20 .466 .453 .459 .450 .164 .995 1.826 

PM, ρ = .3 
       

    N = 5 .238 .240 .237 .247 .018 .296 .962 

    N = 10 .249 .241 .246 .250 -.002 .297 .985 

    N = 20 .246 .245 .247 .243 .039 .297 .982 

PM, ρ = .6 
       

    N = 5 .239 .241 .238 .246 .015 .595 .963 

    N = 10 .246 .238 .244 .251 .016 .594 .978 

    N = 20 .245 .247 .247 .244 .027 .594 .983 

PM, ρ = .9 
       

    N = 5 .238 .243 .238 .246 .009 .896 .963 

    N = 10 .246 .238 .245 .251 -.001 .894 .980 

    N = 20 .245 .245 .247 .241 .035 .895 .978 

Note: 
1
estimated correlations between abilities, 

2
composite a-parameters. 
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Table 10. Estimated Item Parameters in the SU Calibration 

 

a1 a2 a3 a4 d1 d2 d3 d4 a
1 

d
2 

UNI 
          

    N = 5 .24 .24 .24 .24 .14 .05 -.06 -.16 .96 -.02 

    N = 10 .25 .24 .25 .25 .11 .04 -.05 -.13 .98 -.02 

    N = 20 .25 .25 .25 .24 .13 .05 -.05 -.13 .98 .00 

IM, ρ = .3 
          

    N = 5 .31 .30 .30 .31 .07 .02 -.01 -.05 1.22 .03 

    N = 10 .31 .30 .31 .32 .05 .02 -.01 -.05 1.23 .02 

    N = 20 .31 .31 .31 .30 .05 .05 -.02 -.04 1.22 .03 

IM, ρ = .6 
          

    N = 5 .38 .38 .37 .39 .07 .02 -.01 -.05 1.52 .02 

    N = 10 .39 .37 .38 .39 .05 .02 -.01 -.06 1.52 .01 

    N = 20 .39 .38 .38 .38 .05 .05 -.02 -.04 1.52 .04 

IM, ρ = .9 
          

    N = 5 .46 .45 .44 .46 .08 .02 -.01 -.05 1.80 .03 

    N = 10 .46 .44 .46 .47 .05 .02 -.01 -.06 1.83 .02 

    N = 20 .47 .45 .46 .45 .05 .05 -.02 -.04 1.83 .04 

PM, ρ = .3 
          

    N = 5 .24 .24 .24 .25 .17 .06 -.06 -.16 .96 .02 

    N = 10 .25 .24 .25 .25 .16 .05 -.06 -.15 .99 .00 

    N = 20 .25 .25 .25 .24 .13 .06 -.05 -.12 .98 .04 

PM, ρ = .6 
          

    N = 5 .24 .24 .24 .25 .17 .06 -.06 -.16 .96 .02 

    N = 10 .25 .24 .25 .25 .16 .05 -.07 -.15 .99 -.01 

    N = 20 .25 .25 .25 .25 .13 .06 -.05 -.12 .98 .03 

PM, ρ = .9 
          

    N = 5 .24 .24 .24 .26 .17 .06 -.06 -.19 .98 -.01 

    N = 10 .25 .24 .25 .25 .16 .05 -.06 -.14 .98 .00 

    N = 20 .25 .25 .25 .24 .14 .06 -.05 -.12 .98 .04 

Note: 
1
composite a-parameter, 

2
composite d-parameter 

Estimated Scores 

Table 11 provided a summary of estimated scores using item parameters from the 

CU calibration. As laid out in the preceding chapter, there were three sets of total score 

and two sets of subscores computed, including the raw total score, FA composite total 
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score, MSE composite total score, raw subscores, and augmented subscores. The means 

of both the raw and composite total scores were approximately 11 for the 20-item tests, 

22 for the 40-item tests, and 44 for the 80-item tests, and these means remained almost 

invariant across test designs. Raw subscores remained invariant across test designs too, 

and in each design they reflected the differential domain difficulties, such as higher mean 

in Subscore 1 (ARI) and lower mean in Subscore 4 (STA). However, such differences 

were more evident in the UNI designs and the PM designs than in the IM designs. For 

example, in the UNI designs, the difference between Subscore 1 and Subscore 4 was 1.2 

when N=5, 2.0 when N=10, and 4.4 when N=20, whereas in the IM designs with ρ=.3, the 

difference was .4, .7, and 1.5 respectively. In other IM designs, this difference was even 

smaller. The means of augmented subscores were nearly identical to those of raw 

subscores. Similar patterns regarding the total and subscores estimated with item 

parameters from the CM and SU calibrations were observed (see Table 12 and Table 13). 

Thus, they were not discussed in details again. 
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Table 11. Summary of Estimated Scores Using Item Parameter from the CU Calibration 

 

Total Score  Raw Subscore
  Augmented Subscore

 

 Raw FA
 

MSE
  1 2 3 4  1 2 3 4 

UNI 
   

 
    

 
    

    N = 5 10.8 10.8 10.8  3.3 2.9 2.5 2.1  3.4 3.0 2.6 2.2 

    N = 10 21.7 21.7 21.7  6.4 5.8 5.1 4.4  6.5 5.9 5.2 4.5 

    N = 20 43.9 43.9 43.9  13.2 11.8 10.1 8.8  13.2 11.8 10.2 8.9 

IM, ρ = .3 
   

 
    

 
    

    N = 5 10.9 10.9 10.9  2.9 2.8 2.7 2.5  3.0 2.8 2.7 2.6 

    N = 10 21.9 21.9 21.9  5.8 5.6 5.4 5.1  5.9 5.7 5.4 5.1 

    N = 20 44.3 44.3 44.3  11.7 11.7 10.6 10.3  11.7 11.7 10.7 10.4 

IM, ρ = .6 
   

 
    

 
    

    N = 5 10.8 10.8 10.8  2.9 2.7 2.7 2.5  3.0 2.8 2.7 2.6 

    N = 10 21.9 21.9 21.9  5.8 5.6 5.4 5.1  5.8 5.7 5.5 5.2 

    N = 20 44.1 44.1 44.1  11.6 11.6 10.6 10.4  11.6 11.7 10.7 10.4 

IM, ρ = .9 
   

 
    

 
    

    N = 5 10.8 10.8 10.8  2.9 2.7 2.7 2.6  2.9 2.8 2.7 2.6 

    N = 10 22.0 22.0 22.0  5.7 5.6 5.4 5.2  5.8 5.7 5.5 5.2 

    N = 20 43.9 43.9 43.9  11.4 11.5 10.7 10.3  11.4 11.6 10.8 10.3 

PM, ρ = .3 
   

 
    

 
    

    N = 5 11.0 11.0 11.0  3.4 3.0 2.5 2.1  3.5 3.0 2.5 2.1 

    N = 10 21.9 21.9 21.9  6.8 5.8 5.0 4.2  6.8 5.9 5.0 4.3 

    N = 20 44.5 44.5 44.5  13.3 12.0 10.2 9.0  13.4 12.1 10.2 9.0 

PM, ρ = .6 
   

 
    

 
    

    N = 5 10.9 10.9 10.9  3.4 3.0 2.5 2.1  3.5 3.0 2.5 2.1 

    N = 10 21.9 21.9 21.9  6.8 5.9 5.0 4.3  6.8 5.9 5.1 4.3 

    N = 20 44.3 44.3 44.3  13.2 12.0 10.1 8.9  13.3 12.1 10.2 9.0 

PM, ρ = .9 
   

 
    

 
    

    N = 5 10.9 10.9 10.9  3.4 3.0 2.5 2.1  3.5 3.1 2.5 2.2 

    N = 10 21.9 21.9 21.9  6.7 5.8 5.0 4.3  6.8 5.9 5.1 4.4 

    N = 20 44.5 44.5 44.5  13.2 12.0 10.2 9.0  13.3 12.1 10.2 9.0 
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Table 12. Summary of Estimated Scores with Item Parameters from the CM Calibration 

 

Total Score  Raw Subscore
  Augmented Subscore

 

 Raw
 

FA
 

MSE
  1 2 3 4  1 2 3 4 

UNI 
   

 
    

 
    

    N = 5 10.6 10.6 10.6  3.4 2.9 2.4 2.0  3.4 2.9 2.4 2.0 

    N = 10 21.4 21.4 21.4  6.5 5.8 5.0 4.2  6.5 5.8 5.0 4.2 

    N = 20 43.4 43.4 43.4  13.2 11.7 9.9 8.5  13.2 11.7 9.9 8.5 

IM, ρ = .3              

    N = 5 10.6 10.6 10.6  2.9 2.7 2.6 2.4  2.9 2.7 2.6 2.4 

    N = 10 21.5 21.5 21.5  5.8 5.6 5.3 4.9  5.8 5.6 5.3 4.9 

    N = 20 43.7 43.7 43.7  11.6 11.6 10.5 10.1  11.6 11.6 10.5 10.1 

IM, ρ = .6              

    N = 5 10.5 10.5 10.5  2.9 2.7 2.6 2.4  2.9 2.7 2.6 2.4 

    N = 10 21.4 21.4 21.4  5.7 5.5 5.3 4.9  5.7 5.5 5.3 4.9 

    N = 20 43.4 43.4 43.4  11.5 11.5 10.4 10.1  11.5 11.5 10.4 10.1 

IM, ρ = .9              

    N = 5 10.4 10.4 10.4  2.8 2.6 2.5 2.4  2.8 2.6 2.5 2.4 

    N = 10 21.5 21.5 21.5  5.7 5.5 5.4 5.0  5.7 5.5 5.4 5.0 

    N = 20 42.9 42.9 42.9  11.1 11.4 10.4 9.9  11.1 11.4 10.4 9.9 

PM, ρ = .3              

    N = 5 10.7 10.7 10.7  3.5 3.0 2.4 1.9  3.5 3.0 2.4 1.9 

    N = 10 21.5 21.5 21.5  6.8 5.8 4.8 4.0  6.8 5.8 4.8 4.0 

    N = 20 44.1 44.1 44.1  13.3 12.0 10.0 8.7  13.3 12.0 10.0 8.7 

PM, ρ = .6              

    N = 5 10.7 10.7 10.7  3.5 3.0 2.4 1.9  3.5 3.0 2.4 1.9 

    N = 10 21.7 21.7 21.7  6.8 5.9 4.9 4.1  6.8 5.9 4.9 4.1 

    N = 20 43.9 43.9 43.9  13.3 12.0 10.0 8.6  13.3 12.0 10.0 8.6 

PM, ρ = .9              

    N = 5 10.7 10.7 10.7  3.4 3.0 2.4 1.9  3.4 3.0 2.4 1.9 

    N = 10 21.5 21.5 21.5  6.8 5.8 4.9 4.0  6.8 5.8 4.9 4.0 

    N = 20 44.0 44.0 44.0  13.3 12.0 10.0 8.7  13.3 12.0 10.0 8.7 
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Table 13. Summary of Estimated Score with Item Parameters from the SU Calibration 

 

Total Score  Raw Subscore
  Augmented Subscore

 

 Raw
 

FA
 

MSE
  1 2 3 4  1 2 3 4 

UNI              

    N = 5 10.5 10.5 10.5  3.3 2.9 2.3 1.9  3.3 2.9 2.3 1.9 

    N = 10 21.2 21.2 21.2  6.4 5.7 4.9 4.1  6.4 5.7 4.9 4.1 

    N = 20 43.3 43.3 43.3  13.2 11.7 9.9 8.5  13.2 11.7 9.9 8.5 

IM, ρ = .3              

    N = 5 10.4 10.4 10.4  2.9 2.7 2.5 2.4  2.9 2.7 2.5 2.4 

    N = 10 21.3 21.3 21.3  5.7 5.5 5.2 4.9  5.7 5.5 5.2 4.9 

    N = 20 43.6 43.6 43.6  11.6 11.6 10.4 10.1  11.6 11.6 10.4 10.1 

IM, ρ = .6              

    N = 5 10.5 10.5 10.5  2.9 2.7 2.6 2.4  2.9 2.7 2.6 2.4 

    N = 10 21.4 21.4 21.4  5.7 5.5 5.3 4.9  5.7 5.5 5.3 4.9 

    N = 20 43.4 43.4 43.4  11.5 11.5 10.4 10.1  11.5 11.5 10.4 10.1 

IM, ρ = .9              

    N = 5 10.4 10.4 10.4  2.8 2.6 2.5 2.4  2.8 2.6 2.5 2.4 

    N = 10 21.5 21.5 21.5  5.7 5.5 5.4 5.0  5.7 5.5 5.4 5.0 

    N = 20 42.9 42.9 42.9  11.1 11.4 10.4 9.9  11.1 11.4 10.4 9.9 

PM, ρ = .3              

    N = 5 10.7 10.7 10.7  3.5 3.0 2.4 1.9  3.5 3.0 2.4 1.9 

    N = 10 21.5 21.5 21.5  6.8 5.8 4.8 4.0  6.8 5.8 4.8 4.0 

    N = 20 44.1 44.1 44.1  13.3 12.0 10.0 8.7  13.3 12.0 10.0 8.7 

PM, ρ = .6              

    N = 5 10.7 10.7 10.7  3.5 3.0 2.4 1.9  3.5 3.0 2.4 1.9 

    N = 10 21.7 21.7 21.7  6.8 5.9 4.9 4.1  6.8 5.9 4.9 4.1 

    N = 20 43.9 43.9 43.9  13.3 12.0 10.0 8.6  13.3 12.0 10.0 8.6 

PM, ρ = .9              

    N = 5 10.7 10.7 10.7  3.4 3.0 2.4 1.9  3.4 3.0 2.4 1.9 

    N = 10 21.5 21.5 21.5  6.8 5.8 4.9 4.0  6.8 5.8 4.9 4.0 

    N = 20 44.0 44.0 44.0  13.3 12.0 10.0 8.7  13.3 12.0 10.0 8.7 

 

Figure 2 and 3 displayed score distributions estimated with item parameters from 

the CU calibration in one simulation replication. In Figure 2, raw total scores were 

estimated with almost equal medians in all designs but larger variance in the IM designs 

and smaller variance in the PM designs. Due to the differential domain difficulties, the 
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subscore medians differed across domains in each design, yet the order agreed with that 

of hypothetical domain difficulties. The variances of raw subscores were smaller in the 

PM designs and larger in the IM designs. Some subscore outliers appeared in the PM 

designs, especially when ρ=.3. In Figure 3, the MSE composite total score failed in the 

CU calibration, showing eerie distributions with unrealistic outliers (extremely large 

value or negative value) throughout all designs. This was possibly because of 

multicollinearity presented among correlated subscores, to which Kelley’s true score 

regression that Longford’s score-aggregation method was based on was vulnerable. The 

same problem was observed in augmented subscores in the UNI and PM designs, in 

which the score distributions went awry possibly because of multicollinearity.  
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Figure 2. Distributions of Raw Scores for the CU Calibration when N=10 
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Figure 3. Distributions of Alternative Scores for the CU Calibration when N=10 

Figure 4 and 5 displayed score distributions estimated with item parameters from 

the CM calibration from one simulation replication. In Figure 4, raw total scores were 

estimated with slightly higher medians and smaller variance in the PM designs than in the 

UNI and IM designs. The score variance also increased as the true ability correlations 

increased in the IM and PM designs. For raw subscores, distributions were rather 

leptokurtic in the IM designs. The medians of subscores varied across domains, yet the 

order did not always agreed with the hypothetical domain difficulties (e.g. in the IM 

designs). In Figure 5, however, alternative scores showed more reasonable distributions 
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in the CM calibration, compared with the CU calibration. Both alternative total scores 

and subscores showed similar distributions with scores in Figure 4. Figure 6 and 7 

showed similar pattern of score distributions estimated with item parameters from the SU 

approach. Thus, they were not discussed in details again. 

 

Figure 4. Distributions of Raw Scores for the CM Calibration when N=10 
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Figure 5. Distributions of Alternative Scores for the CM Calibration when N=10 
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Figure 6. Distributions of Raw Scores for the SU Calibration when N=10 
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Figure 7. Distributions of Alternative Scores for the SU Calibration when N=10 

Table 14 provided a summary of correlations between estimated subscores, 

averaged over 30 replications in each condition. As they should, subscores estimated with 

the CU calibration were highly correlated with one another, at least .97. Subscores were 

correlated at a much lower degree for the CM (ranging from .56 to .90 for the UNI and 

IM designs, .16 to .75 for the PM designs) and SU calibrations (ranging from .56 to .92 

for the UNI and IM designs, .16 to .75 for the PM designs). It was worth noting that 

subscores generally correlated at a lower degree in the PM designs than in the IM designs, 

possibly because of the higher degree of multidimensionality in the PM designs. 
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Table 14. Correlations between Estimated Subscores 

 
CU Calibration 

 
CM Calibration 

 
SU Calibration 

 
N=5 N=10 N=20 

 
N=5 N=10 N=20 

 
N=5 N=10 N=20 

UNI .965 .977 .977 
 

.561 .731 .832 
 

.555 .728 .835 

IM, ρ=.3 .981 .989 .993 
 

.620 .757 .829 
 

.614 .755 .839 

IM, ρ=.6 .980 .988 .993 
 

.691 .815 .871 
 

.684 .818 .891 

IM, ρ=.9 .981 .988 .993 
 

.743 .847 .893 
 

.738 .854 .921 

PM, ρ=.3 .975 .979 .987 
 

.162 .211 .244 
 

.161 .210 .245 

PM, ρ=.6 .967 .975 .983 
 

.327 .422 .491 
 

.323 .421 .493 

PM, ρ=.9 .962 .969 .980 
 

.498 .643 .747 
 

.492 .640 .750 

 

Table 15 presented the average disattenuated correlations between estimated 

subscores of four domains. The disattenuated correlations between two subscores 

indicated the degree of associations between two subscores when the measurement errors 

were eliminated. It was computed as follows: 

     
 

   

√        
      (4.1) 

where ρxy is the correlation between variable X and variable Y, ρxx’ is the reliability of 

variable X, and ρyy’ is the reliability of variable Y. Subscores given by the CU calibration 

showed disattenuated correlations greater than 1.0 in all conditions, suggesting too much 

error was contained in estimated subscores. As the test length increased, the disattenuated 

correlations became less extreme, moving toward 1.0, because the longer test contained 

less error. Estimated subscores given by both the CM and SU calibrations implied an 

effect of test design. For the test with UNI design, subscores were correlated at roughly 

1.0, indicating the high similarity between subscores. This was an expected result for the 

unidimensional test. For the test with IM design, subscores were also highly correlated at 
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almost 1.0, suggesting that the unprincipled multidimensionality could not make 

subscores distinct from each other sufficiently. Conversely, for the test with PM design, 

disattenuated correlations reflected the true distinctiveness of subscores by showing 

disattenuated correlations being about .3, .6, and .9 when ρ’s were .3, .6, and .9 

respectively. Comparing the IM and PM designs, it was evident without a principled 

design, the multidimensional test failed to present the distinctiveness of subscores. 

Table 15. Disattenuated Correlations between Estimated Subscores 

 
CU Calibration 

 
CM Calibration 

 
SU Calibration 

 
N=5 N=10 N=20 

 
N=5 N=10 N=20 

 
N=5 N=10 N=20 

UNI 1.738 1.347 1.160 

 

1.005 1.007 .988 

 

.994 1.002 .992 

IM, ρ=.3 1.507 1.249 1.123 

 

.951 .956 .937 

 

.941 .953 .949 

IM, ρ=.6 1.388 1.189 1.093 

 

.978 .980 .959 

 

.970 .983 .981 

IM, ρ=.9 1.319 1.158 1.078 

 

.998 .991 .970 

 

.995 1.000 .999 

PM, ρ=.3 1.763 1.352 1.172 

 

.293 .291 .290 

 

.290 .289 .292 

PM, ρ=.6 1.751 1.346 1.167 

 

.590 .583 .583 

 

.583 .581 .585 

PM, ρ=.9 1.737 1.340 1.163 

 

.897 .888 .887 

 

.886 .884 .890 

 

Score Accuracy 

Figure 8 to 10 showed the correlations and RMSEs between true and estimated 

raw total scores for the CU, CM, and SU calibration approaches respectively. It should be 

remembered that the scale of RMSE was five times shorter in graphs than the original 

scale in order to align with the scale of correlation. For example, if the RMSE read .4 in 

the graph, the real value of this RMSE was 2.0. According to the graphs, the total score 

was accurately estimated in all conditions and with all calibration approaches. The 

estimated total scores were correlated with true total scores at at least .85, .90, and .95 for 

the short tests (N=5), medium tests (N=10), and long tests (N=20), and the RMSEs were 
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at most 2.1, 3.0, and 4.7 for the short, medium and long tests in all conditions. 

Considering the score scale, these RMSEs were acceptably small.  

Also, as expected, longer tests produced more accurate scores. Correlations 

became consistently higher, as the test length increased. The evaluation of the RMSEs 

demanded some adjustments, due to the inequality of score scales. In longer test, the 

score scale was stretched to have wider range and higher variance. Therefore, the RMSE 

of the long test (N=20) appeared significantly greater than the short and medium test. A 

simple adjustment was to divide the RMSEs of the long tests (N=20) and medium tests 

(N=10) by 4 and 2 so that they were converted onto the scale of the short tests (N=5). 

After adjustments, the least RMSEs were observed for the long tests, followed by the 

medium tests and short tests. For example, raw RMSEs were, on average, approximately 

1.9, 2.7, and 3.9 when N=5, N=10, and N=2, yet adjusted RMSEs were roughly 1.9, 1.3, 

and 1.0 respectively.  

Another significant finding following these graphs was the equality of different 

calibration approaches. All of three calibration approaches functioned rather comparably 

to one another in terms of estimating total scores. The theoretical advantages of 

multidimensional calibrations were not present in these results. 
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Figure 8. Correlations and RMSEs between True and Estimated Raw Total Score for the 

CU Calibration 
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Figure 9. Correlations and RMSEs between True and Estimated Raw Total Scores for the 

CM Calibration 
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Figure 10. Correlations and RMSEs between True and Estimated Raw Total Scores for 

the SU Calibration 

Figure 11 to 13 presented correlations and RMSEs between true and estimated 

raw subscores for the CU, CM, and SU calibrations. For brevity, only results regarding 

Subscore 1 were presented, because of the high similarity among four subscores. With 

the CU calibration (see Figure 11), subscores were accurately recovered with high 

correlations (at least .90) and low RMSEs (roughly .52 when N=5, .74 when N=10, and 

1.19 when N=20) for the UNI and IM designs. For the PM designs, the quality of score 

estimation varied as a function of the multidimensionality of the test. When the test was 

highly multidimensional (ρ=.3) and short (N=5), the estimated subscores were correlated 

with true subscores at only .58 with a RMSE of .8. Conversely, when the test was almost 
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unidimensional (ρ=.9) and long (N=20), the estimated subscores were correlated with true 

subscores at .94 with a RMSE of 1.4 (equal to .35 on the score scale of N=5). 

With the CM and SU calibrations (see Figure 12 and 13), the effect of test length 

became even stronger, especially for the UNI and PM designs. For instance, the 

correlation between true and estimated  subscores differed by roughly .15 between the 

long and short tests for the UNI and PM designs in the CM and SU calibrations, 

compared to about  .6 in the CU calibration. The effect of test length also interacted with 

the effect of test design. In the IM designs, for example, the difference between the long 

and short tests declined from roughly .12 to .08, as the multidimensionality decreased 

from ρ =.9 to ρ=.3.  

Comparing across test designs, subscores were best estimated in the IM designs, 

with the correlations ranging from .83 to .88 when N=5, .90 to .93 when N=10, .94 to .95 

when N=20 and the RMSEs being approximately .89 when N=5, 1.3 when N=10, and 2.0 

when N=20. When the test was short (N=5), subscores were generally more poorly 

estimated with the CM and SU calibrations than the CU calibration. When the test was 

long enough, the difference between calibrations became practically negligible.      
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Figure 11. Correlations and RMSEs between True and Estimated Raw Subscore 1 for the 

CU Calibration 
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Figure 12. Correlations and RMSEs between True and Estimated Raw Subscore 1 for the 

CM calibration 
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Figure 13. Correlations and RMSEs between True and Estimated Raw Subscore 1 for the 

SU Calibration 
 

While preceding graphs compared raw total score and subscores individually, the 

following graphs provided visualized comparisons of all scores within each design in an 

attempt to investigate the performances of scoring methods and calibration approaches 

within a certain design. Only correlations were shown below, given that RMSEs would 

present practically identical information. For the UNI design (see Figure 14), both raw 

total score and subscores were accurately estimated with the CU calibration, nearly 

perfectly correlated with true scores. Raw scores were also satisfactorily calibrated with 

the CM and SU calibration when test was long enough (N=20), in which total scores were 

correlated with true total scores nearly perfectly and subscores were correlated with true 
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subscores at more than .95; however, when test was short (N=5), the correlations between 

true and estimated scores fell significantly down to less than .80 in the CM and SU 

calibrations, compared to almost 1.0 in the CU calibration. This might be because that the 

CM calibration overparameterized the response data and the SU calibration utilized 

insufficient data. In general, alternative scoring methods either malfunctioned (e.g., MSE 

composite total score and augmented subscores with the CU calibration) or barely 

showed advantages over raw scores. 

 

Figure 14. Correlations between True and Estimated Scores for the UNI Design 

Figure 15 to 17 presented score comparisons for the IM designs with ρ=.3, .6 

and .9 respectively. Both raw total score and subscores were accurately estimated with 

the CU calibration in all of three IM designs. The performance of alternative scoring 

methods was improved as the multidimensionality of the test decreased from ρ=.3 to ρ=.9, 

but they still hardly presented any advantages over traditional scoring methods. A similar 

effect of the multidimensionality was observed for the CM and SU calibrations. That is, 

estimated score showed higher correlation with true scores, especially in the short test, as 
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dimensions of the test converged toward the unidimension. Raw scores estimated with 

the CM and SU calibrations were still less accurate than scores estimated with the CU 

calibration. Again, alternative scores failed to show significant improvement over raw 

scores.  

 

Figure 15. Correlations between True and Estimated Scores for the IM Design with ρ=.3 

 

Figure 16. Correlations between True and Estimated Scores for the IM Design with ρ=.6 
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Figure 17. Correlations between True and Estimated Scores for the IM Design with ρ=.9 

Figure 18 to 20 compared scores for the PM designs with ρ=.3, .6 and .9. When 

the test was designed with multiple distinct dimensions (ρ=.3), subscores were poorly 

estimated with the CU calibration (correlating with true subscores at roughly .6), but 

nicely estimated with the CM calibration and SU calibration (correlating with true 

subscores at roughly from.70 to .90), which suggested that the multidimensionality could 

be recovered with the multidimensional or separate unidimensional calibration 

approaches but not the conventional unidimensional calibration approach. As it should, 

the score estimation was significantly improved as the multidimensionality of the test 

diminished from ρ=.3 to ρ=.9. For instance, in Figure 20 (the PM design with ρ=.9), the 

results looked almost identical to those in the UNI designs. Again, alternative scores 

either malfunctioned or barely presented advantages over raw scores. 
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Figure 18. Correlations between True and Estimated Scores for the PM Design with ρ=.3 

 

Figure 19. Correlations between True and Estimated Scores for the PM Design with ρ=.6 
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Figure 20. Correlations between True and Estimated Scores for the PM Design with ρ=.9 

Score Reliability 

Table 16 and 17 presented reliability coefficients for raw total score and subscores. 

As described in Chapter III, since true scores were known from the data generation, the 

reliability coefficient was computed as the ratio of the true score variance to the observed 

score variance. In Table 16, as it should, the reliability of the total score was a function of 

test length, that is, higher reliability observed for longer tests. Comparing across test 

designs, the total score in the UNI design (at least .84) and IM designs (at least .88) 

showed satisfactory reliabilities, yet unsatisfactory reliabilities in the PM designs (as low 

as .72). In addition, the effect of test dimensionality in the multidimensionality designs 

also interacted with the effect of test length. When dimensions were loosely correlated 

(ρ=.3), the difference between the short test and long test was approximately .9 for the IM 

designs and 1.9 for the PM designs. When dimensions were tightly correlated (ρ=.9), the 

difference was roughly .5 for the IM designs and 1.2 for the PM designs.  

Since subscores were rather homogeneous, only subscore 1 (ARI) was shown in 

Table 17 as an example. The reliability of subscores was sensitive to test length and test 
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design too. That is, higher reliability was observed for long tests, as predicted by the 

Spearman-Brown prophecy. Comparing across test designs, the reliabilities were lower in 

the PM designs than in the UNI and IM designs. Subscore reliability was affected by the 

calibration approach. In general, the CM and SU calibrations produced appreciably lower 

reliability than the CU calibrations. When the test was long enough, however, the 

reliability in the CM and SU calibrations rose to an acceptable level. 

Table 16. Reliability of Total Score 

 

CU Calibration 
 

CM Calibration 

 

SU Calibration 

 
N=5 N=10 N=20 

 
N=5 N=10 N=20 

 

N=5 N=10 N=20 

UNI .854 .925 .958 
 

.843 .920 .958 

 

.841 .920 .958 

IM, r=.3 .893 .945 .968 
 

.884 .941 .966 

 

.880 .941 .970 

IM, r=.6 .918 .956 .970 
 

.906 .953 .970 

 

.901 .953 .978 

IM, r=.9 .931 .960 .970 
 

.920 .958 .968 

 

.914 .958 .980 

PM, r=.3 .721 .841 .914 
 

.723 .846 .916 

 

.721 .846 .920 

PM, r=.6 .797 .891 .943 
 

.790 .889 .941 

 

.787 .889 .943 

PM, r=.9 .841 .916 .956 
 

.832 .912 .955 

 

.828 .912 .956 

 

Table 17. Reliability of Subscore 1 (ARI) 

 

CU Calibration 
 

CM Calibration 

 

SU Calibration 

 
N=5 N=10 N=20 

 
N=5 N=10 N=20 

 

N=5 N=10 N=20 

UNI .838 .917 .955  .596 .760 .860  .594 .759 .865 

IM, r=.3 .845 .900 .926  .681 .818 .888  .676 .819 .903 

IM, r=.6 .891 .935 .952  .733 .849 .899  .726 .855 .923 

IM, r=.9 .921 .954 .966  .765 .862 .902  .757 .871 .933 

PM, r=.3 .340 .421 .441  .587 .758 .858  .585 .758 .863 

PM, r=.6 .558 .637 .663  .586 .758 .860  .584 .758 .864 

PM, r=.9 .766 .843 .882  .590 .756 .859  .588 .756 .864 
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Subscore Utility 

In addition to accuracy, subscores should also be evaluated by their utilities. Table 

18 presented the chances that raw subscores showed added value to raw total score, by 

the criterion of PRMSE, in 30 replications of each condition. Because all four subscores 

showed added values in all conditions, only results regarding the CU calibration was 

showed. It was interesting to observe that the utility of subscore was a function of 

calibration approach instead of test design. In general, subscores estimated with the CU 

calibration were unlikely to supplement the total score with added diagnostic information. 

When the test was short (N=5), Subscore 1 and 4 would be worth reporting in at most 28% 

and 17% of cases, while the other two subscores barely provided added diagnostic 

information to the total score. When the test was extended to 10 and 20 items per domain, 

Subscore 1 and 4 were more likely to provide added value in the UNI design and PM 

designs (at most 59%), whereas the other two subscores still struggled to be 

diagnostically informative (at most 11%). This might be because that Subscore 1 and 4 

were most likely heterogeneous to the total score, as they were, on average, the easiest 

and hardest domains. In the IM designs, subscores were diagnostically informative in at 

most 14.3% of cases.  
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Table 18. Percentage of Subscores Showing Add-valued in the CU Calibration 

 

N=5, % 
 

N=10, % 
 

N=20, % 

 

1 2 3 4 
 

1 2 3 4 
 

1 2 3 4 

UNI 20.0 .0 .0 16.7 
 

30.0 .0 .0 20.0 
 

58.6 .0 6.9 48.3 

IM, ρ=.3 6.7 6.7 3.3 10.0 
 

3.3 .0 10.0 6.7 
 

10.0 3.3 .0 6.7 

IM, ρ=.6 10.7 7.1 7.1 10.7 
 

3.6 .0 7.1 7.1 
 

14.3 3.6 .0 7.1 

IM, ρ=.9 6.9 6.9 3.4 6.9 
 

.0 .0 10.0 10.0 
 

14.3 .0 .0 14.3 

PM, ρ=.3 20.0 .0 .0 10.0 
 

34.5 .0 .0 24.1 
 

21.4 10.7 3.6 42.9 

PM, ρ=.6 23.3 .0 .0 10.0 
 

41.4 .0 .0 24.1 
 

46.7 6.7 3.3 53.3 

PM, ρ=.9 27.6 .0 .0 10.3 
 

44.8 3.4 3.4 27.6 
 

44.4 7.4 3.7 51.9 

 

Calibration Model Comparison 

Presented in Table 19 were percentages of Q3 outliers in all conditions. For the 

UNI designs, the percentages of Q3 outliers were at 25.4%, 10.2% and 9.1% for the CU, 

MC and SU calibration, suggesting that the latent abilities that drove test performance 

were adequately modeled by the calibration models. For the IM designs, the CU 

calibration showed a relatively large percentage of Q3 outliers, meaning that the response 

data were insufficiently modeled. In the best case where ρ=.3 and N=5, there were 26.6% 

Q3 outliers, while in the worst case where ρ=.9 and N=20, there were 53.7% outliers. 

Conversely, both the CM and SU calibration resulted in less than 7% outliers. For the PM 

designs, the response data were adequately modeled with the CM and SU calibration, 

with less than 10% outliers, whereas the percentage of outliers in the CU calibration 

could go up to 21%. Overall, as expected, the CM calibration left minimal amount of 

dependence in items, because it fit the data with more parameters. Interesting, the SU 

calibration achieved equivalent performance with the CM calibration but used less 

parameters, probably because the individual modeling of each subtest gave more 
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flexibility to the model than the concurrent unidimensional modeling. However, it should 

be remembered that better model fit was not the ultimate goal, and an overfitting model 

could even lead to the restriction on the generalizability.  

Table 19. Percentages of Q3 Outliers 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI .086 .171 .254 
 

.102 .034 .006 
 

.091 .030 .007 

IM, ρ=.3 .151 .241 .311 
 

.081 .023 .003 
 

.065 .018 .006 

IM, ρ=.6 .266 .363 .452 
 

.056 .010 .001 
 

.037 .009 .004 

IM, ρ=.9 .367 .451 .537 
 

.035 .005 .001 
 

.023 .006 .002 

PM, ρ=.3 .011 .084 .216 
 

.103 .034 .006 
 

.092 .029 .007 

PM, ρ=.6 .019 .055 .143 
 

.103 .034 .006 
 

.092 .029 .007 

PM, ρ=.9 .066 .136 .208 
 

.103 .032 .006 
 

.094 .028 .007 

 

Table 20 and 21 presented the AIC and BIC for calibration approaches in all 

conditions. According to AIC (see Table 19), the CM calibration fit the response data 

best for the short (N=5) and medium test (N=10) in all designs, whereas the SU 

calibration was the best model for the long test (N=20). An exception existed in the IM 

design with ρ=.9 and N=10, where the SU calibration was favored over the CM 

calibration. Again, it was not surprising to observe better model fit for the CM calibration, 

which incorporated more parameters than the other two calibrations. Interestingly, 

however, when the test was long enough (N=20), the SU calibration outperformed the 

CM calibration in terms of model fit. When a penalty of overparameterization was 

applied as in the BIC (see Table 21), the CU calibration was the best model for the short 

tests (N=5), the CM calibration the best model for the medium tests (N=10) with an 

exception for the PM design when ρ=.3 and N=10, and the SU calibration the best model 
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for the long tests (N=20). This might suggest that the multidimensional complexity was 

not significant enough in the short test to require a multidimensional model, and the 

multidimensionality in the long test was strong enough to form independent clusters so 

that the SU calibration could effectively model such multidimensionality. 

Table 20. Akaike Information Criterion 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI .00 .00 .00 
 

.97 1.00 .00 
 

.03 .00 1.00 

IM, ρ=.3 .00 .00 .00 
 

1.00 1.00 .00 
 

.00 .00 1.00 

IM, ρ=.6 .00 .00 .00 
 

1.00 .89 .00 
 

.00 .11 1.00 

IM, ρ=.9 .00 .00 .00 
 

1.00 .35 .00 
 

.00 .65 1.00 

PM, ρ=.3 .00 .00 .00 
 

.97 1.00 .00 
 

.03 .00 1.00 

PM, ρ=.6 .00 .00 .00 
 

.97 1.00 .00 
 

.03 .00 1.00 

PM, ρ=.9 .00 .00 .00 
 

.97 1.00 .00 
 

.03 .00 1.00 

 

Table 21. Bayesian Information Criterion 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI .93 .13 .00 
 

.07 .87 .00 
 

.00 .00 1.00 

IM, ρ=.3 1.00 .33 .00 
 

.00 .67 .00 
 

.00 .00 1.00 

IM, ρ=.6 1.00 .22 .00 
 

.00 .67 .00 
 

.00 .11 1.00 

IM, ρ=.9 1.00 .06 .00 
 

.00 .35 .00 
 

.00 .59 1.00 

PM, ρ=.3 1.00 .93 .00 
 

.00 .07 .00 
 

.00 .00 1.00 

PM, ρ=.6 1.00 .50 .00 
 

.00 .50 .00 
 

.00 .00 1.00 

PM, ρ=.9 .97 .10 .00 
 

.03 .90 .00 
 

.00 .00 1.00 
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CHAPTER V 

DISCUSSION 

Optimal Test Design 

 A well-designed dual-purpose test was defined as one being able to produce 

scores that were reliable, accurate, and diagnostically useful. It was implied in Chapter IV 

that total score was accurately estimated in the UNI and IM designs, irrespective of the 

test length and calibration approaches, while in the PM designs, the total score was only 

accurately estimated in tests with long lengths or highly correlated true abilities (see 

Figure 8 to Figure 10). The total score was generally estimated with high reliability in all 

designs but the PM designs with short test length (N=5) and high degree of 

multidimensionality (ρ=.3 and ρ=.6), implying that when clear multidimensionality was 

present and the test was not long enough, the equally-weighted summation of, probably 

unreliable, subscores failed to provide a satisfactory estimation of the total score.  

On the other hand, the subscores needed to be estimated with at least ten items per 

domain in order to achieve satisfactory accuracy in almost all designs except the 

concurrently calibrated PM designs with high degree of multidimensionality (ρ=.3 and 

ρ=.6; see Figure 11 to Figure 13). When the test development was restricted by the 

limited item pool, the IM designs was the most promising design in producing accurately 

estimated subscores for the short test. Within the IM designs, subscores were better 

estimated when a higher correlation was presented between true abilities, lending itself to 
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borrowing more information across dimensions to improve estimation. This effect was 

absent in the PM designs, because the simple-structured item provided information only 

on its major dimension, leaving little information be borrowed across dimension. 

However, such results, namely score accuracy and reliability, should be interpreted in 

conjunction with the validity evidences, namely the (disattenuated) correlations between 

estimated subscores. Although the IM design allowed subscores to achieve high accuracy 

and reliability, the correlations of subscores substantially disagreed with their true values, 

meaning the underlying structure of subscores was not correctly recovered by either CM 

or SU calibration. Conversely, the PM design allowed the estimation of subscores to 

restore their true correlations, providing supportive evidence to the valid score use. 

Furthermore, subscores estimated with the traditional unidimensional IRT model were 

generally unlikely to provide additional diagnostic information to the total score. 

Regardless of test design, only subscores estimated with the multidimensional IRT model 

or separately with the unidimensional model were useful for the diagnosis purpose of the 

test (see Table 18).  

In summary, the unidimensionally designed dual-purpose test could produce good 

scores, even for the short test with as few as five items per domain, using the traditional 

unidimensional calibration, but subscores failed to be supportive to the diagnostic 

function of the test. This was congruent with findings in the literature (Haberman, 2008; 

Sinharay et al., 2007; Sinharay, 2010). As Haberman (2008) pointed out, this was either 

due to low subscore reliability or high correlation between subscores. Since subscores in 

this case were estimated with high reliability (see Table 17), the high correlation was a 
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more likely cause of the lack of diagnostic information (see Table 14). This also 

confirmed Luecht et al.’s (2006) and Wainer et al.’s (2001) assertion that items have to 

be multidimensional in order to realize the diagnostic function. Interestingly, however, 

when the unidimensional test was calibrated with the multidimensional or separate 

unidimensional approaches, diagnostic information was observed in subscores at the 

expense of score accuracy and reliability (see Figure 14). After considering the high 

disattenuated correlations between subscores, however, this did not justify the 

multidimensionally calibrated unidimensional test. 

In the test with idiosyncratic multidimensionality and loosely correlated true 

abilities, scores were estimated with high accuracy and reliability using the CU 

calibration irrespective of test length, but when estimated using the CM and SU 

calibrations, satisfactory scores were obtainable only in the long tests. The quality of the 

unidimensional estimation of multidimensional responses was beyond expectation, 

because the unidimensional estimation was only expected to collect information on the 

reference composite dimension but ignore extra information in original dimensions. 

However, because the true domain-specific subscore was defined in this study as the 

summed ERS over items within the subtest, the ERS of each item, as well as the subscore, 

was already an aggregation of all information in all domains in the IM design even 

though it might have been dedicated to one particular content domain. Take an item with 

a=(.62, .16, .32, .21) and d=.30 for example. The item was coded as an ARI item, for 

which the a-parameter was greatest, but the ERS for this item would be computed as 

follows: 
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     [     (                           )]
    (5.1) 

This computation resulted in highly correlated subscores in the IM design. Highly 

correlated subscores when they were not expected to be so (e.g. ρ=.3 or .6), nevertheless, 

cast doubt on their validity. Although subscores were estimated with precision with the 

unidimensional IRT model, they failed to provide added value to the total score, and thus 

were useless for the diagnostic purpose. Diagnostically useful subscores were obtainable 

at the expense of score accuracy and reliability if multidimensional or separate 

unidimensional model was used for calibration and scoring. For a long test, the sacrifice 

might be acceptably small, yet for a short test, the sacrifice might be too remarkable to 

ignore. 

 Compared with the IM design, the corresponding PM design (ρ=.3) showed 

dramatic inaccuracy in subscores estimated with the unidimensional model. Since the CU 

calibration failed to produce diagnostically informative subscores, the dramatic drop of 

score accuracy was not concerned. For the CM and SU calibrations, the accuracy and 

reliability were slightly smaller in the PM design than in the IM design, because of higher 

degree of multidimensionality. That is, even though the domain-specific abilities were 

correlated at the same degree in the IM and PM designs, less amount of information 

could be borrowed across dimension in the PM design than in the IM design due to the 

simple-structure in the PM design, and estimated subscores were consequently even more 

loosely correlated in the PM design than subscores in the IM design (see Table 14). It is, 

however, worth noting that the underlying structure of subscores was well restored in the 



 

 

90 

 

9
0
 

test with PM design. Thus, the slight lower accuracy and reliability compensated for the 

validity and rigor of interpretability and usability of subscores. 

 When the true abilities were correlated with one another at a higher degree, 

accuracy and reliability of subscores in the test of the IM design would increase, 

especially in the short test. This was because higher correlation allowed more information 

to be borrowed across domains to improve the estimation. It confirmed de la Torre et al.’s 

(2011) finding that the correlation-based information borrowing mechanism was most 

effective for highly-correlated short-length subtests. This effect of information borrowing 

was in absence in the PM design, due to the simple-structure constraint. Again, the 

accuracy and reliability declined without the borrowing of information, but the rigor of 

score interpretability increased in return.  

  

Calibration  

The effect of the calibration approach on the estimation of the total score was 

almost negligible across various test designs. In the UNI and IM designs, the total score 

was accurately estimated with all three calibration approaches, regardless of the test 

length. While this finding met the expectation for the unidimensional calibration (e.g., 

CU) of unidimensional test (e.g., UNI) and the multidimensional calibration (e.g., CM 

and SU) of multidimensional test (e.g., IM), the good estimation results of the total score 

in the crossed conditions (i.e., the multidimensional calibration of unidimensional test 

and the unidimensional calibration of multidimensional test) was also not entirely 

unexpected. Extraordinary high ability correlation estimated in the multidimensional 
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calibration (see Table 9) might explain why the multidimensional calibration was still 

good for the unidimensional test, and highly correlated true scores in the 

multidimensional test (see Table 7) might explain why the unidimensional calibration 

was sufficient for the multidimensional test.  

The three calibration approaches functioned very comparably in the PM designs 

in terms of the totals score too. However, unlike in the UNI and IM designs, the 

estimation quality was a function of test length and true ability correlations. This was 

because the PM deigns was a “truly” multidimensional design in the sense that an item, 

by design, solely provided measurement information in the major dimension, leaving 

other three minor dimensions blank. Consequently, when the subscores were inaccurately 

and unreliably estimated with limited items in subtests, the total score, which simply 

summed up distinct subscores, was not expected to be a good estimator of the true total 

score.  

When subscores were highly correlated in the UNI and IM designs, the 

unidimensional calibration proved to be effective in estimating subscores. Yet in the PM 

designs where subscores were relatively distinct, the item characteristics on the reference 

composite dimension capture by the CU calibration failed to provide good estimations for 

subscores. On the other hand, subscores were accurately estimated with the CM and SU 

calibrations for the long test, but just decently for the short test in all designs. 

Furthermore, a subtle disparity between the CM and SU calibrations appeared in the IM 

designs. When items were complex-structured in IM designs, the CM calibration 

exploited that information, borrowing it across dimension to improve subscore estimation 
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and resulting in better subscores than the SU calibration. When subscores were simple-

structured in PM designs, the CM and SU calibrations were nearly identical.  

 Both the CM and SU calibration proved to fit the response data better than the CU 

calibration in all test designs, as AIC statistics implied (see Table 19). It was expected so 

for the CM calibration, which incorporated more parameters and ought to yield better 

model fit. The SU calibration used equal number of parameters with the CU calibration, 

yet it still outperformed the CU calibration in terms of model fit, possibly because the 

separate unidimensional calibration approach gave the model more flexibility in fitting 

the response data. An interesting pattern was implied by BIC statistics, after penalizing 

models for overparameterization: The CU calibration generally fit the response data in 

the short test best and the SU calibration fit the long test best. It might suggest that the 

multidimensionality was too weak to ask for a multidimensional model in the short test 

and strong enough to form multiple independent clusters in the long test.   

 In practice, some practitioners analyzed the same response data set with both 

unidimensional and multidimensional approaches to realize the dual purposes of the test, 

for which the unidimensional analysis produced the total score and the multidimensional 

analysis subscores (Brandt, 2008, 2010). In spite of the difficulty of explaining the 

methodology and results of this practice to the public, results in this study might justify 

that this practice was psychometrically sound. That is, both the total score produced from 

the CU calibration and subscores produced from the CM or SU calibration were accurate 

and reliable. More important, the total score and subscores were on the same raw score 

scale when the ERS was used. 
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Alternative Scoring Methods 

 Generally, alternative scoring methods were either unnecessary or ineffective. 

The scoring methods based on Kelley’s true score regression (i.e., Longford’s composite 

total score and Wainer et al.’s augmented scores) malfunctioned in the CU calibration, in 

which unidimensional subscores were highly correlated as they should and thus confused 

the alternative scoring methods with multicollinearity (see Figure 14 to Figure 20). With 

the CM and SU calibrations, the scoring methods for the total score were almost identical 

to the raw total scores, probably because the total score was too good to be improved. 

The augmented subscores provided some improvements to raw subscores, especially for 

the test with few items and high dimensional correlation, as found in de la Torre et al.’s 

(2011) study. The improvements, however, were practically trivial. The results also 

implied that the score augmentation was ineffective when scores were already very 

reliable and accurate to their true values. 
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CHAPTER VI 

CONCLUSIONS 

 Inspired by the increasing demands for psychometrically sound dual-purpose tests 

in practice, the present study explored how to design and analyze the dual-purpose test 

through systematical comparisons of various plausible test developmental and analytic 

options. In order to obtain accurate and reliable total score and subscores from the test, 

the test should be designed with multidimensionality and at least 10 items per domain and 

be analyzed with the multidimensional or separate unidimensional IRT model. 

Specifically, the unidimensional dual-purpose test was able to produce reliable and 

accuracy but not diagnostically meaningful scores. Subscores obtained from an 

essentially unidimensional test were either unable to provide added value to the total 

score according to the PRMSE criterion or homogeneous to each other according to 

disattenuated correlations. The idiosyncratic multidimensional design was able to yield 

accurate, reliable, and diagnostically useful scores, but the validity of the diagnostic 

subscores was questionable, whose correlation disagreed with the true correlational 

structure. Consequently, even though subscores were identified distinct from the total 

score according to the PRMSE criterion, they were still nearly identical to each other 

according to the disattenuated correlations. On the other hand, the principled 

multidimensional design showed slightly lower accuracy and reliability in scores due to 

principled “simple structure” of test design, but this sacrifice of accuracy and reliability 



 

 

95 

 

9
5
 

ensured the interpretability and validity of diagnostic subscores, whose empirical 

correlational structure approximated the true structure.  

 Furthermore, with respect to the calibration methods, the unidimensional 

calibration was found failing to distinguish subscores, and thus failing to give subscores 

useful diagnostic information, even though the subscores sometimes appeared more 

accurate and reliable than subscores obtained with the other two calibrations. The 

confirmatory multidimensional calibration and separate unidimensional calibration 

delivered very comparable results, confirming previous findings that suggested the 

plausibility of analyzing multidimensional response data using unidimensional IRT 

approach (Luecht & Miller, 1992; Luecht et al., 2006). Alternative scoring methods were 

found either inappropriate to use or offering insignificant improvements over the raw 

scores. 

 There were three major methodological limitations in this study. The first 

limitation concerned the definition of true scores in multidimensional designs. In 

multidimensional designs, true scores were the expected raw scores aggregated over the 

subtest or the complete test. This avoided the conversion between subscores and total 

scores on the θ scale, but whether this true score mirrored the ability of true latent trait 

was questionable. Each item’s expected raw score, namely the probability of getting a 

correct response given by the M3PL model, was an aggregated score, accounting for 

information on all dimensions. As a result, true subscores were correlated with one 

another at a high degree, even though true latent abilities were correlated at a far lower 

degree. In this sense, results of this study indicated how adequately different test designs 
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recovered true “scores” instead of true abilities. However, it should be remembered that 

using the true latent ability for comparison would have avoided this discrepancy between 

scores and abilities but encountered the conversion problem, for which there had not been 

a perfect solution. Moreover, this scoring method used in this study, though not flawless, 

resembled the scoring practice used in most test batteries or tests with subtests so that 

results obtained in this study might be illuminating to practitioners. 

 Next, the complexity of multidimensionality was not manipulated in the 

idiosyncratic multidimensional design, which would have shown an impact on the results. 

Measurement information was randomly allotted into minor assessment dimensions in the 

IM designs. This treatment made the information borrowing mechanism ambiguous. 

Should item development strive to leave minimal information in minor assessment 

dimensions or evenly allot information to both major and minor assessment dimensions? 

Question of this kind was not addressed, but essential to interpretations of findings in this 

study. 

 Lastly, as a common limitation to virtually all simulation studies, this study was 

limited by the data generation mechanism. While the simulation was an efficient and 

economic research method, it never assured the generalizability of results and findings 

obtained from the simulated data. Thus, findings of this study would be greatly 

supplemented by evidences obtained from analyses using real data. 
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APPENDIX A 

GENERATION OF MULTIDIMENSIONAL ITEM PARAMETERS 

 The probability of getting a correct response to an item in the unidimensional 3PL 

model was given by 

 (     |           )     
    

     [      (     )]
 

Generalizing of the unidimensional 3PL model to the compensatory multidimensional 

3PL model, the probability of getting a correct response to an m-dimensional item was 

given by 

 (     |           )     
    

     [    ∑    (       )
 
   ]

 

Multiplying through the term  (   ) by a-parameter and replacing –    with d, the 

above equation was identical to  

 (     |           )     
    

     [    (∑       
 
      )]

 

where 

   ∑      
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The above equation was often called the slope/intercept form of the IRT model, which 

reduced the number of item parameters from 2m to m+1.  

Since the d-parameter was a derivative from dimensional a- and b-parameters, its 

distribution is unclear. This posed a question to the generation of multidimensional item 

parameters: How should d-parameters be generated? By theory, its distribution was a 

complex mixture of lognormal and normal distributions, On the other hand, it might be 

reasonable to assume a normal distribution for d-parameters, assuming it as a 

multidimensional difficulty parameter that is analogous to the unidimensional difficulty 

parameter. Therefore, a small simulation study was conducted to compare two item 

parameter generation methods. Both methods generated a-parameters from the lognormal 

distribution. Yet, the first method directly generated d-parameters from the normal 

distribution, whereas the second method generated dimensional b-parameters and 

converted them to d-parameters. Generated item parameters were used to replicate the 

rest of the study described in this study with one simulation replication. Results regarding 

score estimation were presented in Table 21 and Table 22. Statistics in these two tables 

were almost identical, meaning these two methods of generating multidimensional item 

parameters were equivalent.  
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Table 22. Correlations between True and Estimated Scores when d-parameters were Directly Generated 

  
CU Calibration 

 
CM Calibration 

 
CU Calibration 

   Subscore   Subscore   Subscore 

Design N Total 1 2 3 4 
 

Total 1 2 3 4 
 

Total 1 2 3 4 

UNI 5 .93 .92 .93 .93 .93 
 

.92 .75 .78 .77 .76 
 

.92 .76 .78 .77 .76 

UNI 10 .96 .96 .96 .96 .96 
 

.96 .88 .86 .87 .86 
 

.96 .88 .86 .87 .85 

UNI 20 .98 .98 .98 .98 .98 
 

.98 .93 .93 .93 .92 
 

.98 .93 .93 .93 .93 

IM, ρ=.3 5 .96 .93 .94 .93 .94 
 

.95 .86 .87 .83 .82 
 

.95 .86 .86 .83 .81 

IM, ρ=.3 10 .97 .95 .93 .95 .95 
 

.97 .92 .90 .91 .91 
 

.97 .92 .90 .90 .91 

IM, ρ=.3 20 .98 .96 .97 .95 .96 
 

.98 .94 .94 .94 .94 
 

.99 .95 .95 .95 .95 

IM, ρ=.6 5 .96 .95 .96 .95 .95 
 

.96 .88 .89 .86 .85 
 

.95 .87 .88 .85 .84 

IM, ρ=.6 10 .98 .96 .96 .97 .97 
 

.98 .93 .92 .93 .91 
 

.98 .94 .92 .93 .93 

IM, ρ=.6 20 .99 .98 .98 .97 .97 
 

.98 .95 .95 .94 .94 
 

.99 .96 .96 .96 .96 

IM, ρ=.9 5 .97 .96 .97 .97 .97 
 

.96 .89 .90 .88 .86 
 

.96 .88 .89 .88 .86 

IM, ρ=.9 10 .98 .97 .98 .98 .98 
 

.98 .93 .93 .93 .92 
 

.98 .94 .93 .93 .94 

IM, ρ=.9 20 .98 .98 .98 .98 .98 
 

.98 .95 .95 .95 .94 
 

.99 .97 .97 .97 .97 

PM, ρ=.3 5 .88 .60 .64 .54 .61 
 

.87 .80 .82 .79 .78 
 

.87 .80 .82 .79 .78 

PM, ρ=.3 10 .92 .57 .63 .72 .62 
 

.93 .87 .87 .89 .88 
 

.92 .87 .88 .89 .88 

PM, ρ=.3 20 .96 .65 .65 .65 .68 
 

.96 .92 .93 .93 .93 
 

.96 .92 .93 .93 .93 

PM, ρ=.6 5 .91 .76 .78 .72 .77 
 

.91 .81 .81 .79 .79 
 

.91 .81 .81 .78 .79 

PM, ρ=.6 10 .95 .78 .80 .81 .81 
 

.95 .87 .88 .89 .89 
 

.95 .87 .88 .89 .88 

PM, ρ=.6 20 .97 .81 .81 .82 .83 
 

.97 .92 .93 .93 .93 
 

.97 .93 .93 .93 .93 

PM, ρ=.9 5 .93 .89 .90 .89 .90 
 

.93 .81 .81 .80 .79 
 

.93 .80 .81 .79 .79 

PM, ρ=.9 10 .96 .91 .92 .93 .92 
 

.96 .86 .88 .89 .88 
 

.96 .86 .88 .89 .88 

PM, ρ=.9 20 .98 .94 .94 .94 .94 
 

.98 .92 .93 .93 .93 
 

.98 .92 .93 .93 .93 
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Table 23. Correlations between True and Estimated Scores when d-parameters were Indirectly Generated 

  
CU Calibration 

 
CM Calibration 

 
CU Calibration 

   Subscore   Subscore   Subscore 

Design N Total 1 2 3 4 
 

Total 1 2 3 4 
 

Total 1 2 3 4 

UNI 5 .93 .92 .92 .93 .92 
 

.92 .78 .80 .75 .74 
 

.92 .78 .80 .75 .74 

UNI 10 .97 .96 .96 .96 .97 
 

.96 .88 .88 .88 .88 
 

.96 .88 .88 .88 .88 

UNI 20 .98 .98 .98 .98 .98 
 

.98 .94 .93 .92 .92 
 

.98 .94 .94 .92 .92 

IM, ρ=.3 5 .94 .91 .91 .92 .89 
 

.94 .82 .83 .80 .82 
 

.94 .82 .83 .80 .82 

IM, ρ=.3 10 .98 .96 .96 .95 .95 
 

.97 .91 .90 .91 .91 
 

.97 .92 .90 .91 .91 

IM, ρ=.3 20 .98 .97 .97 .96 .97 
 

.98 .95 .94 .94 .94 
 

.99 .96 .95 .95 .95 

IM, ρ=.6 5 .96 .94 .94 .95 .93 
 

.95 .85 .85 .84 .85 
 

.95 .84 .85 .83 .84 

IM, ρ=.6 10 .98 .97 .97 .97 .97 
 

.98 .93 .92 .93 .92 
 

.98 .94 .92 .93 .93 

IM, ρ=.6 20 .98 .98 .98 .97 .98 
 

.98 .95 .95 .95 .95 
 

.99 .96 .96 .96 .96 

IM, ρ=.9 5 .96 .96 .96 .96 .96 
 

.96 .87 .87 .86 .87 
 

.96 .86 .87 .86 .87 

IM, ρ=.9 10 .98 .97 .98 .98 .97 
 

.98 .93 .92 .92 .92 
 

.98 .94 .93 .93 .93 

IM, ρ=.9 20 .99 .98 .98 .98 .98 
 

.98 .95 .95 .95 .95 
 

.99 .97 .96 .97 .96 

PM, ρ=.3 5 .85 .58 .68 .52 .56 
 

.85 .77 .79 .74 .76 
 

.85 .77 .79 .74 .76 

PM, ρ=.3 10 .93 .66 .64 .63 .61 
 

.93 .88 .87 .87 .87 
 

.93 .88 .87 .87 .87 

PM, ρ=.3 20 .95 .74 .58 .70 .60 
 

.96 .94 .91 .93 .92 
 

.96 .94 .92 .93 .92 

PM, ρ=.6 5 .90 .74 .78 .72 .74 
 

.89 .74 .80 .75 .77 
 

.89 .75 .80 .74 .77 

PM, ρ=.6 10 .95 .81 .79 .79 .78 
 

.95 .88 .87 .87 .86 
 

.95 .88 .87 .87 .86 

PM, ρ=.6 20 .97 .83 .81 .82 .78 
 

.97 .93 .93 .92 .91 
 

.97 .93 .93 .93 .91 

PM, ρ=.9 5 .92 .88 .89 .88 .88 
 

.91 .76 .80 .74 .76 
 

.91 .76 .80 .73 .76 

PM, ρ=.9 10 .95 .92 .91 .91 .92 
 

.95 .87 .84 .84 .86 
 

.95 .87 .84 .84 .86 

PM, ρ=.9 20 .98 .94 .94 .94 .93 
 

.98 .93 .93 .92 .91 
 

.98 .93 .93 .93 .91 
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APPENDIX B 

TRUE SCORE DISTRIBUTIONS 

 

Figure 21. True Score Distributions when N=5 
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Figure 22. True Score Distributions when N=20 

 

  



 

 

111 

 

1
1
1

 

APPENDIX C 

ESTIMATED SCORE DISTRIBUTIONS 

 

Figure 23. Distributions of Raw Scores Estimated with the CU Calibration when N=5 
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Figure 24. Distributions of Alternative Scores Estimated with the CU Calibration when 

N=5 
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Figure 25. Distributions of Raw Scores Estimated with the CM Calibration when N=5 
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Figure 26. Distributions of Alternative Scores Estimated with the CM Calibration when 

N=5 
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Figure 27. Distributions of Raw Scores Estimated with the SU Calibration when N=5 
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Figure 28. Distributions of Alternative Scores Estimated with the SU Calibration when 

N=5 
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Figure 29. Distributions of Raw Scores Estimated with the CU Calibration when N=20 
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Figure 30. Distributions of Alternative Scores Estimated with the CU Calibration when 

N=20 
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Figure 31. Distributions of Raw Scores Estimated with the CM Calibration when N=20 
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Figure 32. Distributions of Alternative Scores Estimated with the CM Calibration when 

N=20 
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Figure 33. Distributions of Raw Scores Estimated with the SU Calibration when N=20 
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Figure 34. Distributions of Alternative Scores Estimated with the SU Calibration when 

N=20 
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APPENDIX D 

SUPPORTING COMPARISON RESULTS 

Table 24. Correlations between True and Estimated Raw Total Scores 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI .924 .962 .979 
 

.918 .959 .979 
 

.917 .959 .979 

IM, r=.3 .945 .972 .984 
 

.940 .970 .983 
 

.938 .970 .985 

IM, r=.6 .958 .978 .985 
 

.952 .976 .985 
 

.949 .976 .989 

IM, r=.9 .965 .980 .985 
 

.959 .979 .984 
 

.956 .979 .990 

PM, r=.3 .849 .917 .956 
 

.850 .920 .957 
 

.849 .920 .959 

PM, r=.6 .893 .944 .971 
 

.889 .943 .970 
 

.887 .943 .971 

PM, r=.9 .917 .957 .978 
 

.912 .955 .977 
 

.910 .955 .978 

Table 25. Correlations between True and Estimated Raw Subscore 1 (ARI) 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI .916 .958 .977 
 

.772 .872 .927 
 

.771 .871 .930 

IM, r=.3 .919 .949 .962 
 

.825 .904 .942 
 

.822 .905 .950 

IM, r=.6 .944 .967 .976 
 

.856 .921 .948 
 

.852 .924 .961 

IM, r=.9 .960 .977 .983 
 

.875 .929 .950 
 

.870 .933 .966 

PM, r=.3 .583 .649 .664 
 

.766 .870 .926 
 

.765 .871 .929 

PM, r=.6 .747 .798 .814 
 

.765 .871 .927 
 

.764 .871 .930 

PM, r=.9 .875 .918 .939 
 

.768 .869 .927 
 

.767 .869 .930 

Table 26. Correlations between True and Estimated Raw Subscore 2 (ALG) 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI .921 .961 .979  .774 .868 .928  .772 .867 .931 

IM, r=.3 .922 .948 .960  .824 .900 .942  .821 .900 .949 

IM, r=.6 .947 .967 .975  .854 .918 .948  .849 .919 .960 

IM, r=.9 .962 .977 .983  .873 .927 .950  .867 .930 .966 

PM, r=.3 .603 .627 .666  .773 .865 .926  .772 .865 .929 

PM, r=.6 .749 .786 .813  .773 .864 .927  .771 .864 .930 

PM, r=.9 .881 .919 .940  .775 .865 .927  .773 .864 .930 



 

 

124 

 

1
2
4

 

Table 27. Correlations between True and Estimated Raw Subscore 3 (GEO) 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI .924 .961 .979 
 

.763 .865 .924 
 

.761 .864 .926 

IM, r=.3 .919 .948 .959 
 

.821 .902 .941 
 

.818 .902 .949 

IM, r=.6 .946 .967 .975 
 

.850 .920 .947 
 

.846 .922 .959 

IM, r=.9 .962 .977 .983 
 

.871 .928 .949 
 

.867 .931 .966 

PM, r=.3 .584 .627 .665 
 

.759 .866 .926 
 

.756 .866 .928 

PM, r=.6 .744 .786 .810 
 

.761 .867 .926 
 

.758 .866 .928 

PM, r=.9 .880 .919 .940 
 

.757 .865 .926 
 

.754 .864 .929 

 

Table 28. Correlations between True and Estimated Raw Subscore 4 (STA) 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI .921 .961 .979 
 

.747 .862 .919 
 

.744 .861 .921 

IM, r=.3 .922 .949 .961 
 

.821 .904 .940 
 

.818 .904 .947 

IM, r=.6 .947 .968 .976 
 

.850 .920 .948 
 

.844 .922 .959 

IM, r=.9 .963 .978 .983 
 

.870 .930 .949 
 

.864 .933 .964 

PM, r=.3 .565 .614 .637 
 

.754 .860 .920 
 

.750 .859 .922 

PM, r=.6 .739 .781 .802 
 

.753 .859 .920 
 

.749 .858 .922 

PM, r=.9 .878 .919 .938 
 

.752 .860 .920 
 

.748 .860 .922 

 

Table 29. RMSEs between True and Estimated Raw Total Scores 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI 1.854 2.537 3.579 
 

1.799 2.662 3.835 
 

1.942 2.828 3.906 

IM, r=.3 1.835 2.483 3.655 
 

1.876 2.714 4.008 
 

2.038 2.890 3.921 

IM, r=.6 1.793 2.493 3.921 
 

1.924 2.784 4.337 
 

2.095 2.953 3.975 

IM, r=.9 1.761 2.523 4.227 
 

1.957 2.820 4.694 
 

2.131 2.965 4.016 

PM, r=.3 1.825 2.581 3.618 
 

1.754 2.604 3.728 
 

1.891 2.746 3.773 

PM, r=.6 1.825 2.540 3.539 
 

1.760 2.613 3.741 
 

1.898 2.761 3.804 

PM, r=.9 1.836 2.530 3.526 
 

1.779 2.641 3.780 
 

1.920 2.796 3.848 
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Table 30. RMSEs between True and Estimated Raw Subscore 1 (ARI) 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI .503 .680 .952 
 

.842 1.253 1.786 
 

.899 1.306 1.781 

IM, r=.3 .555 .836 1.393 
 

.891 1.274 1.894 
 

.946 1.321 1.796 

IM, r=.6 .521 .759 1.255 
 

.890 1.283 1.990 
 

.945 1.305 1.762 

IM, r=.9 .487 .684 1.151 
 

.887 1.276 2.094 
 

.937 1.270 1.760 

PM, r=.3 .827 1.581 3.096 
 

.811 1.219 1.762 
 

.866 1.264 1.760 

PM, r=.6 .701 1.276 2.428 
 

.814 1.220 1.764 
 

.870 1.266 1.760 

PM, r=.9 .556 .871 1.455 
 

.820 1.226 1.764 
 

.878 1.274 1.759 

 

Table 31. RMSEs between True and Estimated Raw Subscore 2 (ALG) 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI .496 .658 .939 
 

.885 1.299 1.858 
 

.946 1.357 1.863 

IM, r=.3 .542 .822 1.422 
 

.890 1.280 1.884 
 

.944 1.330 1.798 

IM, r=.6 .496 .744 1.265 
 

.886 1.278 1.982 
 

.936 1.312 1.760 

IM, r=.9 .466 .676 1.141 
 

.883 1.290 2.052 
 

.933 1.307 1.739 

PM, r=.3 .895 1.664 3.189 
 

.878 1.291 1.826 
 

.937 1.348 1.829 

PM, r=.6 .757 1.339 2.509 
 

.877 1.292 1.829 
 

.937 1.350 1.834 

PM, r=.9 .570 .874 1.491 
 

.875 1.286 1.825 
 

.935 1.344 1.827 

 

Table 32. RMSEs between True and Estimated Raw Subscore 3 (GEO) 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI .478 .658 .908 
 

.915 1.323 1.885 
 

.977 1.384 1.901 

IM, r=.3 .547 .822 1.432 
 

.908 1.296 1.909 
 

.961 1.345 1.827 

IM, r=.6 .500 .744 1.259 
 

.905 1.287 2.006 
 

.957 1.320 1.790 

IM, r=.9 .457 .676 1.140 
 

.897 1.287 2.094 
 

.943 1.300 1.747 

PM, r=.3 .910 1.664 3.273 
 

.905 1.337 1.888 
 

.965 1.399 1.901 

PM, r=.6 .759 1.339 2.577 
 

.901 1.336 1.890 
 

.961 1.399 1.906 

PM, r=.9 .558 .874 1.519 
 

.905 1.334 1.884 
 

.967 1.397 1.899 
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Table 33. RMSEs between True and Estimated Raw Subscore 4 (STA) 

 

CU Calibration 
 

CM Calibration 
 

SU Calibration 

 

N=5 N=10 N=20 
 

N=5 N=10 N=20 
 

N=5 N=10 N=20 

UNI .449 .621 .873 
 

.856 1.284 1.881 
 

.912 1.342 1.912 

IM, r=.3 .533 .817 1.399 
 

.902 1.278 1.941 
 

.952 1.325 1.868 

IM, r=.6 .491 .726 1.234 
 

.908 1.277 2.003 
 

.950 1.307 1.812 

IM, r=.9 .451 .658 1.100 
 

.897 1.271 2.092 
 

.936 1.278 1.791 

PM, r=.3 .878 1.660 3.223 
 

.868 1.292 1.883 
 

.924 1.351 1.911 

PM, r=.6 .729 1.324 2.504 
 

.865 1.297 1.876 
 

.920 1.357 1.909 

PM, r=.9 .540 .857 1.468 
 

.870 1.295 1.885 
 

.926 1.353 1.915 

 

Table 34. Reliability of Subscore 2 (ALG) 

 
CU Calibration 

 
CM Calibration 

 

SU Calibration 

 

N=5 N=10 N=20 

 

N=5 N=10 N=20 

 

N=5 N=10 N=20 

UNI .848 .923 .958 

 

.600 .753 .861 

 

.597 .752 .866 

IM, r=.3 .849 .899 .921 

 

.679 .809 .888 

 

.674 .809 .901 

IM, r=.6 .898 .935 .951 

 

.730 .842 .899 

 

.721 .845 .923 

IM, r=.9 .925 .955 .966 

 

.762 .859 .902 

 

.752 .866 .932 

PM, r=.3 .364 .394 .444 

 

.598 .748 .858 

 

.596 .748 .863 

PM, r=.6 .561 .617 .661 

 

.598 .747 .859 

 

.595 .746 .864 

PM, r=.9 .775 .844 .884 

 

.600 .748 .860 

 

.597 .747 .865 

 

Table 35. Reliability of Subscore 3 (GEO) 

 
CU Calibration 

 
CM Calibration 

 

SU Calibration 

 

N=5 N=10 N=20 

 

N=5 N=10 N=20 

 

N=5 N=10 N=20 

UNI .854 .923 .959 
 

.583 .748 .854 
 

.578 .747 .858 

IM, r=.3 .845 .899 .920 
 

.674 .814 .886 
 

.668 .814 .900 

IM, r=.6 .895 .935 .950 
 

.722 .846 .897 
 

.716 .850 .921 

IM, r=.9 .926 .955 .966 
 

.758 .860 .901 
 

.752 .867 .934 

PM, r=.3 .341 .394 .442 
 

.576 .751 .857 
 

.572 .749 .862 

PM, r=.6 .554 .617 .655 
 

.579 .752 .857 
 

.574 .751 .861 

PM, r=.9 .775 .844 .883 
 

.574 .749 .858 
 

.569 .747 .862 
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Table 36. Reliability of Subscore 4 (STA) 

 
CU Calibration 

 
CM Calibration 

 

SU Calibration 

 

N=5 N=10 N=20 

 

N=5 N=10 N=20 

 

N=5 N=10 N=20 

UNI .849 .924 .959 

 

.559 .743 .844 

 

.553 .742 .848 

IM, r=.3 .850 .902 .924 

 

.674 .817 .883 

 

.669 .817 .896 

IM, r=.6 .897 .938 .952 

 

.722 .847 .898 

 

.712 .850 .920 

IM, r=.9 .927 .956 .967 

 

.758 .865 .900 

 

.747 .870 .930 

PM, r=.3 .319 .378 .406 

 

.568 .740 .846 

 

.562 .738 .850 

PM, r=.6 .546 .610 .643 

 

.566 .738 .847 

 

.560 .737 .851 

PM, r=.9 .771 .845 .879 

 

.566 .740 .846 

 

.559 .739 .849 

 

 

Figure 35. Conditional Biases of Estimated Raw Total Scores for the UNI Design 
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Figure 36. Conditional Biases of Estimated Raw Total Scores for the IM Design with 

ρ=.3 
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Figure 37. Conditional Biases of Estimated Raw Total Scores for the IM Design with 

ρ=.6 
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Figure 38. Conditional Biases of Estimated Raw Total Scores for the IM Design with 

ρ=.9 
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Figure 39. Conditional Biases of Estimated Raw Total Scores for the PM Design with 

ρ=.3 
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Figure 40. Conditional Biases of Estimated Raw Total Scores for the PM Design with 

ρ=.6 
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Figure 41. Conditional Biases of Estimated Raw Total Scores for the PM design with 

ρ=.9 
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Figure 42. Conditional Biases of Estimated Raw Subscore 1 for the UNI design 
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Figure 43. Conditional Biases of Estimated Raw Subscore 1 for the IM Design with ρ=.3 
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Figure 44. Conditional Biases of Estimated Raw Subscore 1 for the IM Design with ρ=.6 
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Figure 45. Conditional Biases of Estimated Raw Subscore 1 for the IM Design with ρ=.9 
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Figure 46. Conditional Biases of Estimated Raw Subscore 1 for the PM Design with ρ=.3 



 

 

139 

 

1
3
9

 

 

Figure 47. Conditional Biases of Estimated Raw Subscore 1 for the PM Design with ρ=.6 
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Figure 48. Conditional Biases of Estimated Raw Subscore 1 for the PM Design with ρ=.9 
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Figure 49. RMSEs between True and Estimated Scores for the UNI Design 

 

 

Figure 50. RMSEs between True and Estimated Scores for the IM Design with ρ=.3 
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Figure 51. RMSEs between True and Estimated Scores for the IM Design with ρ=.6 

 

 

Figure 52. RMSEs between True and Estimated Scores for the IM Design with ρ=.9 
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Figure 53. RMSEs between True and Estimated Scores for the PM Design with ρ=.3 

 

 

Figure 54. RMSEs between True and Estimated Scores for the PM Design with ρ=.6 
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Figure 55. RMSEs between True and Estimated Scores for the PM Design with ρ=.9 

 


