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CHAPTER I: INTRODUCTION 

Heart disease is responsible for millions of deaths worldwide in 2019. Within the United 

States there were over 800,000 heart disease deaths in 20181.While regular medical visits can 

preemptively help diagnose or prevent heart disease there are still many cases which go 

undetected and cause major complications or death. Of all the heart diseases the worse is 

coronary heart disease (CHD), which is the narrowing of the coronary arteries and leads to 

ischemic heart disease (IHD). CHD/IHD accounts for 42.1% of heart disease deaths every year1. 

Previous studies have shown the ability to determine IHD using a 12-lead electrocardiogram 

(ECG)2. While other methods exist to determine ischemia, the ECG is preferred because it is 

non-invasive, inexpensive, and standard in most clinical settings. While the standard 12-lead 

ECG works well, if a smaller portable device could provide similar results as an ECG, then IHD 

deaths could be lowered. Unfortunately, not much work has been done to preemptively 

determine and track ischemia using a small device. 

For this work we will focus on theoretically determining and predicating IHD using non-

invasive measurements in conjunction with Artificial Intelligence (AI) and traditional methods. 

This work focuses on using reaction diffusion differential equations to represent the cellular and 

bulk dynamics of the myocardium to produce in silico ECGs. In silico ECGs are processed using 

AI and traditional methods for determining and predicting IHD. Simple geometries, which 

approximate the left ventricle, are used to produce ECGs. Using simple geometries allows for 

large amount of data to be produced while still providing accurate results. Typically, AI requires 

large amounts of data to train the model for predictions. 

AI will be defined as any method which allows a computer program to update itself to 

mimic human predictions. AI encompasses different methods such as decision trees, random 
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forests, linear and non-linear regression, k-nearest neighbors, neural networks, etc. Training of 

an AI model can be either supervised or unsupervised. Supervised learning focuses on 

connecting data based on inputs and outputs whereas unsupervised learning finds patterns of 

input data only. Roughly speaking, supervised learning is used to solve problems of the form 

𝑌 = 𝑓(𝑋) where the function is the supervised model. This work focuses on supervised deep 

learning with neural networks. 

Knowledge Gap 

The heart acts as a bioelectrical pump to move blood throughout the body. In humans the 

heart is composed of four chambers which expand and contract when electrically stimulated to 

pump blood Figure 1. 

 

Figure 1 – Anatomy of the human heart. Reproduced from Ellis3. 
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The four chambers are the left and right atriums (LA and RA, respectively) and the left 

and right ventricles (LV and RV, respectively). The LV has the greatest mass of all four 

chambers being 217% larger than the right ventricle which is the second largest chamber4. 

Having the greatest mass allows the LV to produce most of the electrical activity within the 

heart. Excitation of the ventricles is caused by neural muscular junctions which couple the 

myocardium to the Purkinje fibers (PF). PF are a fibrous network of nerves found within the sub-

endocardium region of the ventricle. PF have ionic waves which propagate at 2 − 3 
𝑚

𝑠
 which is 

about 10 times greater the speed of the ionic waves which propagate through the myocardium5. 

Ischemia is a cardiac disease in which the coronary arteries, which provide oxygenated 

blood to the heart, become occluded which disrupts the cellular function of the myocardium and 

can lead to injury or death. When ischemia occurs, it typically starts from a small region and 

grows outwards at an unpredictable rate. Ischemia can occur over a long period of time or can 

occur abruptly. When myocardial cells stop receiving oxygenated blood, they become less 

excitable until they become non-excitable, necrotic and fibrosis. Ischemia typically occurs in the 

LV and rarely occurs elsewhere. Ischemia in the RV rarely occurs without being in the LV as 

well 6–8. Typically, ischemia is diagnosed through lab tests or electrocardiogram (ECG). 

The ECG is a machine which determines the electrical activity of the heart based upon 

the body surface potential. Typical ECG use 12 leads which consist of 10 electrodes to determine 

the current that the heart produces in 12 different axes. Axes are determined based upon the 

location of the electrodes with respect to one another and the heart.  

Previous research has focused on using high resolution meshes to simulate the bio-

electrical activity of the heart. These meshes typically use finite element method (FEM) to 

compute in silico ECGs. FEM works well in complex geometries but requires more 
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computational power compared to finite difference method (FDM). This work makes use of 

simplified geometries that accurately reflect the shape of the left ventricle to compute in silico 

ECGs in a timely matter using FDM. 

Other research has been able to determine ischemic tissue in discrete locations using AI 

with real ECGs with high accuracy. The ECG data was previous annotated by clinicians with the 

location of ischemia in discrete placements. Typically, the AI will use classification methods to 

only determine where and if ischemia has occurred within the ventricles. No previous work has 

included ischemic zones that have different degrees of severity of ischemia in which the cells are 

in a state of less excitability. The work presented in this paper strives to apply AI methods to 

determine a continuous output of the location and severity of ischemia via regression. In 

addition, exploration into predicting future states of ischemia using AI or other methods are 

detailed in this work which may be able to track and preemptively predict an ischemic event. 

Background 

Numerical Approximations 

Many biophysical systems can be described using differential equations but normally 

feature non-linear functions. Typically, these non-linear systems, if they cannot be transformed, 

are not solvable by analytical method. Solutions to non-linear differential equations are usually 

solved using numerical approximations. Numerical approximations are mathematical schemes 

which use finite differences to solve differential equations in place of infinitesimal differences. 

Finite difference method (FDM) approximates a differential using a truncated version of a Taylor 

series expansion. A Taylor series expansion is described in (1). The difference between (1) using 

the + and – respectively is described by (2) and in the same manner the addition of the same two 

equations is described by (3). 
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𝒇(𝒙 ± 𝒉) = 𝒇(𝒙) ± 𝒉 𝒇′(𝒙) + 𝒉𝟐

𝒇′′(𝒙)

𝟐!
± ⋯ = ∑ 𝒉𝒏

𝒇(𝒏)(𝒙)

𝒏!

∞

𝒏=𝟎 

 
(1) 

 
𝒇(𝒙 + 𝒉) − 𝒇(𝒙 − 𝒉) = 𝟐 𝒉 𝒇′(𝒙) + 𝓞(𝒉𝟑) (2) 

 
𝒇(𝒙 + 𝒉) + 𝒇(𝒙 − 𝒉) = 𝟐 𝒇(𝒙) + 𝟐 𝒉𝟐

𝒇′′(𝒙)

𝟐!
+ 𝓞(𝒉𝟒) (3) 

 

Removing the truncation error, 𝒪, approximates (2) and (3) to an order of accuracy ℎ2. 

(2) and (3) can be used in place of a differential to numerically solve differential equations using 

discretized grids of a system both spatially and temporally. 

Cellular Dynamics 

Within the heart, there are specific cells that have proteins embedded in their membranes 

which control the concentration of ions in the extracellular and intracellular matrix. These 

proteins consist of ion channels, transporters and pumps and are collectively referred to as gates. 

Channels and transporters are usually passive and allow ions to move in the direction of the 

concentration gradient. Pump proteins are active and usually move ions across the cellular 

membrane in directions against the concentration gradient. 

Cells which contain gates are usually considered excitable and can typically perform 

mechanical functions or propagate bioelectrical signals depending on the state of the cell. The 

difference of ion concentrations inside and outside the cell cause a potential gradient across the 

membrane of the cell called the transmembrane potential (𝑉𝑚 or 𝑢) which is defined as 𝑢 =

𝑉𝑂𝑢𝑡 − 𝑉𝑖𝑛 where 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡 are the potentials inside and outside the cell, respectively. When 

excited, these cells exhibit a changing transmembrane potential due to the controlled flow of ions 
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inside and outside the cell which is called an action potential (AP). The dynamics of the gates 

have been shown to open and close based upon the transmembrane potential and the current state 

of the gate. The dynamics of the gates may be described using non-linear differential equations. 

These equations describe the permeability of the gates that are either closed or open defined as 0 

and 1, respectively. Typically, the kinetics of the gates are controlled by two function which 

describe the activation and inactivation dynamics of the gate. The permeability of the gates is 

described in the general form (4). 

 

 𝑑𝑛

𝑑𝑡
= 𝛼[𝑢] ∗ (1 − 𝑛) − 𝛽[𝑢] ∗ 𝑛 (4) 

 

𝑢 is the transmembrane potential and 𝑛 is the variable describing the permeability of the 

gate. The activation functions 𝛼 and 𝛽 are fitted from experimental data and are modeled by (5) 

and (6) 

 

 
𝛼[𝑢] =  

𝛼∞[𝑢]

𝜏𝛼[𝑢]
 

(5) 

 
𝛽[𝑢] =  

1 − 𝛽∞[𝑢]

𝜏𝛽[𝑢]
 (6) 

 

𝛼∞ and 𝛽∞ are the steady state of activation and inactivation, respectively. The steady 

state functions are fitted from experimental data as well. Both the activation and inactivation 

function have a period function, 𝜏𝛼 and 𝜏𝛽, that are fitted experimentally, and define how quickly 

the gates open and close depending on the transmembrane potential. 
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The total current across the cellular membrane is related to the transmembrane potential. 

Protein gates control the permeability of ionic currents across the cellular membrane. When all 

gates of a certain type are open then the conductivity approaches the maximum value found 

experimentally. The general relationship for an ionic current is described by (7). 

 

 𝐽 = 𝑔𝑚𝑎𝑥 ∗ 𝑓[�⃑� ] ∗ (𝑢 − 𝑢𝑜) 
(7) 

 

Where 𝑔𝑚𝑎𝑥 is the maximum conductance for the current, 𝑓[�⃑� ] is a permeability function 

in which a single or multiple gate variable are inputs and output is a scaler between 0 and 1, 𝑢 is 

the transmembrane potential and 𝑢𝑜 is the Nernst potential for the specific ion type. During an 

AP, when there is no net movement across a membrane of a particular ion the transmembrane 

potential is equal to the Nernst Potential. A summation of all the Nernst potentials, for all ions 

that cross the cellular membrane of a cell, is the resting potential.  

The total current across a cellular membrane is found using the superposition principle in 

which the total current across the membrane is the sum of all the individual ionic currents across 

the membrane. This is described by (8). 

 

 
𝐶𝑚

𝑑𝑢

𝑑𝑡
=  −∑𝐽𝑖

𝑖

= ∑𝑔𝑚𝑎𝑥,𝑖 ∗ 𝑓𝑖[�⃑� ] ∗ (𝑢 − 𝑢𝑜𝑖
)

𝑖

 (8) 

 

Where 𝐶𝑚 is the capacitance of the membrane and the summation is over all the ionic 

currents across the cellular membrane including a stimulus current. A stimulus current is an 

external current that raises the transmembrane potential enough to begin an AP cycle. In the 
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ventricles of the heart, the stimulus current comes from the neuromuscular junctions between the 

Purkinje fibers and the myocardium. Neuromuscular junctions release ions which stimulate the 

surrounding myocardial cells to begin an AP. 

Multicellular Dynamics 

When cells are connected to each other through gap junction, the ionic currents from one 

cell affect the surrounding cells. This changes the transmembrane potential of the surrounding 

cell and the surrounding cells become excited and begin their own AP. This process continues 

from cell to cell and creates a reaction-diffusion wave. A reaction-diffusion wave is described by 

adding a diffusive current to (8) and describes the propagation of ionic concentrations from one 

cell to another. This process is described by (9). 

 

 
𝐶𝑚

𝑑𝑢

𝑑𝑡
+ ∑𝐽𝑖

𝑖

= ∇ ∙ (�̃�∇𝑢) (9) 

 

Where �̃� is the diffusion tensor, ∇ is the gradient operator and ∇ ∙ is the divergence 

operator. The inclusion of the diffusive current describes the propagation of AP from cell to cell. 

In many situations, �̃� is equal in all directions and the diffusive current is defined as 

homogeneous in the form �̃�∇2𝑢. When diffusion is not equal in all directions the diffusive 

current may be expanded as described by (10). 

 

 ∇ ∙ (�̃�∇𝑢) = ∇𝑢 ∙ (∇ ∙ �̃�) + �̃� ∶ ∇(∇𝑢) 
(10) 

 

Where the operator : is a double dot or double contraction. 
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Fitzhugh-Nagumo 

One of the simplest systems of equations that can represent the electrophysiological 

dynamics of a cell is the Fitzhugh-Nagumo model (FN) 9–11. FN was originally developed to 

simplify the dynamics of nerve cells originally proposed by Hodgkin and Huxley in 195212. FN 

reflects the general dynamics of cardiomyocyte cells and uses two functions to represent all the 

ionic currents across the cellular membrane. This includes a non-linear transmembrane 

dependent current to describe the behavior of the cellular membranes’ excitation and a recovery 

current that returns an excited cell to a resting potential state. For a single cell, FN is described 

by (11) and (12). 

 

 
𝐶𝑚

𝜕𝑢

𝜕𝑡
=  −𝐴 (𝑢 − 𝑢𝑟𝑒𝑠𝑡)(𝑢 − 𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)(𝑢 − 𝑢𝑚𝑎𝑥) − 𝑣 + 𝐽𝑆𝑡𝑖𝑚 (11) 

 𝜕𝑣

𝜕𝑡
= 𝜀(𝛽𝑢 − 𝑣) (12) 

 

Where 𝐶𝑚 is the capacitance of the cellular membrane, 𝑢 is the transmembrane potential 

and 𝑣 is the recovery current, 𝐴 is the variable which scales the cubic current, 𝑢𝑟𝑒𝑠𝑡 is the resting 

potential value, 𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the potential that needs to be crossed to activate the quick Na 

channels to start an AP cycle, 𝐽𝑆𝑡𝑖𝑚 is the external current to excite the cell, 𝛽 is the period that 𝑢 

takes to change the recovery current and 𝜀 is the ratio between how quickly the ionic channels 

open to how slowly the ionic channels close and typically 𝜀 ≪ 1. 

To analyze the FN model, the nullclines and vector plot describe how the system will 

behave depending on the state of the system. Nullclines describe a differential system’s behavior 

when the change of all functions are zero. The vector plot describes the change in the systems’ 
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variables based upon the current state of the system. For FN model, the nullclines are found by 

solving (11) and (12) such that both 
𝜕𝑢

𝜕𝑡
 and 

𝜕𝑣

𝜕𝑡
 are equal to zero. Assuming that 𝐽𝑆𝑡𝑖𝑚 is zero for 

most of the AP, FN nullclines are defined by (13) and (14). 

 

 𝜕𝑢

𝜕𝑡
= 0  →   𝑣 =  −𝐴 (𝑢 − 𝑢𝑟𝑒𝑠𝑡)(𝑢 − 𝑢𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)(𝑢 − 𝑢𝑚𝑎𝑥) (13) 

 𝜕𝑣

𝜕𝑡
= 0  →   𝑣 = 𝛽𝑢 (14) 

 

The phase space between the variables 𝑢 and 𝑣 contain both the nullclines and vector 

fields and is shown in Figure 2. 

 

Figure 2 – FN phase space with nullclines and vector plot. Vector plot shows the system 

tends to approach the nullclines. 𝒖𝒓𝒆𝒔𝒕 = 𝟎, 𝒖𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 =. 𝟐, 𝒖𝒎𝒂𝒙 = 𝟏, 𝑨 = 𝟏 and 𝜷 =. 𝟓. 

 

Intersection of the u and v nullclines (𝑢 = 0 and 𝑣 = 0) is a stable node in which the 

system will converge unless perturbed. Perturbing the system below the u nullcline (i.e., 𝑢 = 0.3 



 11 

and 𝑣 = 0) and following the vector plot shows the system beginning an AP cycle with an 

upstroke approaching the u nullcline from the left. Once at the 𝑢 nullcline, 𝑢 quits increasing and 

𝑣 begins to increase inducing the excited phase of the AP cycle. Following the 𝑢 nullcline, when 

the system reaches the top of the 𝑢 nullcline, the value of 𝑢 begins to decrease rapidly until 

reaching the 𝑢 nullcline again from the right and following the u nullcline again. The system will 

slowly return to the stable node at 𝑢 = 0 and 𝑣 = 0. Assuming the initial conditions of 𝑢(0) = 0 

and 𝑣(0) = 0, the system is solved numerically, with an instantaneous perturbation from 𝐽𝑆𝑡𝑖𝑚, 

and it demonstrates how the phase space describes the dynamics of the FN system in Figure 3. 

 

 

Figure 3 – FN solution and nullclines. Panel A shows the numerical solution to (11) and (12) 

as functions of time. Panel B shows 𝒖 and 𝒗 plotted against each other and overlapped over 
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the Figure 2 to demonstrate how the nullcline and vector plots describe the overall 

behavior of the FN model. 

 

Overall FN is a simple model which describes the cellular dynamics of an excitable cell. 

The model demonstrates that a mathematical model may simulate the behavior of excitable cells.  

Excitable cells are typically connected to each other through gap junctions or the 

extracellular matrix. The process of an excited cell stimulating surrounding cells may be 

simulated using a diffusive current. A diffusive current assumes that there is a flux of ions from 

one cell to another which changes the transmembrane potential of surrounding cells until 

surrounding cells become excited and propagate this behavior to next neighboring cells. 

Assuming that the conductivity of the extracellular matrix is equal to the conductivity of the 

interior of the cell, FN with a diffusive current is described by (15) and (16). 

 

 
𝐶𝑚

𝜕𝑢

𝜕𝑡
= ∇ ∙ (D̃∇𝑢) − 𝐴(𝑢 − 𝑢𝑟𝑒𝑠𝑡)(𝑢𝐸𝑥𝑐𝑖𝑡𝑎𝑏𝑙𝑒 − 𝑢)(1 − 𝑢) − 𝑣 + 𝐽𝑆𝑡𝑖𝑚 (15) 

 𝜕𝑣

𝜕𝑡
= 𝜀(𝛽𝑢 − 𝑣) (16) 

 

Applying the conditions that 𝐽𝑆𝑡𝑖𝑚 excites the cell above a set threshold, �̃� is 

homogeneous, the system is in a one dimensional cable, with the initial conditions 𝑢(𝑥, 0) = 0 

and 𝑣(𝑥, 0) = 0 and the boundary conditions 
𝜕𝑢(0,𝑡)

𝜕𝑥
= 0 and 

𝜕𝑢(𝐿,𝑡)

𝜕𝑥
= 0, (15) and (16) are 

numerically solvable and are shown in Figure 4. 
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Figure 4 – Traveling FN wave. Excitation of the 1D cable occurred by applying a current 

between the positions 0 and 10 and occurred between time=0 and time =20. Propagation of 

wave continued and at time=60 appearance of the wave back of the reaction-diffusion 

wave. Wave propagation continues until it interacts with the boundary at x=100. 

Progression of system returning to rest is shown at time=220 and time=260. 

 

Altogether FN model readily demonstrates the behavior of reaction-diffusion systems 

along with the traveling wave dynamics. More accurate models exist for cardiomyocytes, but all 
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follow the general behavior described by the FN model which includes a quick depolarization, an 

excited and repolarization phases. 

Artificial Intelligence/Neural Networks 

Artificial Intelligence (AI) is defined by Oxford dictionary as “the theory and 

development of computer systems able to perform tasks that normally require human 

intelligence, such as visual perception, speech recognition, decision-making, and translation 

between languages.”. Within AI there are subcategories, such as machine learning, which uses 

computer programs to improve their predictive ability based upon previous experience. 

Supervised learning is a machine learning task which uses labeled data to train a model. The data 

consists of inputs and targets/outputs. The goal of supervised learning is to train a model to 

recognize statistical patterns to correctly predict target outputs from inputs. Supervised learning 

can perform classification or regression predictions. 

Neural networks are very popular and have recently become a standard algorithm among 

scientists. Neural networks are mathematical models which are designed to mimic the neuronal 

activity with the brain. The brain is composed of neurons which interconnect and process signals 

depending on the synaptic strength between neurons. When connected neurons fire more often 

the synaptic strength between them increases. In neural networks the synaptic strength is 

commonly referred to as a weight. In neural networks the neurons are considered nodes. In 

supervised learning when a feature within the input is detected a node is activated and will fire 

causing the connected nodes to activate. Within neural networks nodes are typically placed in 

layers with other nodes. These layers are interconnected to neighboring layers to mimic the 

connected neurons in the brain. Typically, all the nodes in a layer are connected to every node in 
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neighboring layers. A layer which is between the input and output layers are considered hidden 

layers. A general diagram is shown in Figure 5. 

 

 

Figure 5 – Example of a general layout of a neural network. 

 

In Figure 5 the input layer connects to Hidden Layer #1 using an activation function. An 

activation function is typically a function that takes an input and controls the connection strength 

to the next node. There are numerous types of activation function such as hyperbolic tangent, 

sigmoid, rectified linear unit (ReLU), step, linear, etc. The input of the activation functions are 

represented by linear functions where the previous nodes value is multiplied by the weight of the 

connection plus a bias. A bias is a linear shift to the input that causes the connection between 

nodes to be stronger or weaker. An example of input and activation is described by (17) and (18) 

using the notation that subscript 𝑘 refers to the layer position. 

 

 𝑧𝑘−1 = 𝑤𝑘−1 ∗ 𝐴𝑘−1 + 𝑏𝑘−1 
(17) 
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 𝐴𝑘 = 𝑎[𝑧𝑘−1] 
(18) 

 

𝑤𝑘−1 are the weights connecting the nodes of layers 𝑘 and 𝑘 − 1, 𝐴𝑘−1 is the activation 

values of nodes of the pervious layer 𝑘 − 1, 𝑏𝑘−1 is the bias connecting the nodes of layers 𝑘 and 

𝑘 − 1, 𝑎 is any activation function used to activate nodes at layer 𝑘 and 𝐴𝑘 is the activation 

values of the nodes at layer 𝑘. The activation process continues through all the layers, using the 

previous layers activation values, until the output layer is calculated. This process is called a 

forward pass. The calculated output layer activation values, from a forward pass, are called the 

predicted outputs and are denoted �̂�. 

Training 

To determine the optimal values of the weights and biases, neural networks are trained. 

Training uses a process called back propagation to update the weights and biases within the 

network one layer at a time from the output layer to the input layer. All the initial values of the 

weights are determined stochastically from a random number generator and the biases are 

typically initialized to zero. Completing a forward pass, predicted outputs are obtained and a loss 

function is used to determine the difference between the predicted and target outputs. There are 

multiple types of loss functions such as mean absolute error, mean squared error, cross entropy, 

etc. Using the loss function and differential calculus, the weights and biases can be updated using 

back propagation. Back propagation allows for gradient descent in which the weights and biases 

are changed until the loss function is minimized. For updating the last hidden layer of a neural 

network (denoted 𝑛), this process is described by (19)-(22). 
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 𝑙𝑜𝑠𝑠 = L = 𝑔[𝑦 − �̂�] 
(19) 

 𝜕𝐿

𝜕𝑤𝑛−1
=

𝜕𝐿

𝜕�̂�

𝜕�̂�

𝜕𝑧𝑛−1

𝜕𝑧𝑛−1

𝜕𝑤𝑛−1
 (20) 

 𝜕𝐿

𝜕𝑏𝑛−1
=

𝜕𝐿

𝜕�̂�

𝜕�̂�

𝜕𝑧𝑛−1

𝜕𝑧𝑛−1

𝜕𝑏𝑛−1
 (21) 

 𝜕𝐿

𝜕𝐴𝑛−1
=

𝜕𝐿

𝜕�̂�

𝜕�̂�

𝜕𝑧𝑛−1

𝜕𝑧𝑛−1

𝜕𝐴𝑛−1
 (22) 

 

Using the values obtained from the forward pass, (19)-(22) can be calculated numerically. 

The weights and biases can be adjusted by (23) and (24). 

 

 
𝑑𝑤𝑛−1 = −𝛼

𝜕𝐿

𝜕𝑤𝑛−1
 (23) 

 
𝑑𝑏𝑛−1 = −𝛼

𝜕𝐿

𝜕𝑏𝑛−1
 (24) 

 

𝛼 is a learning rate which adjusts the rate of change of the weights and biases. Learning 

rates can be static or variable. A learning rate which is neither too high or low is used to 

converge to the optimal weight and bias values without “overshooting” or converging too slowly. 

A learning rate which is too high will not converge to an optimal weight and bias values. 

Backpropagation occurs through each hidden layer of the neural network starting from 

the last hidden layer to the first. In reference to (19)-(22), the next layers in the back propagation 

is updated by (25)-(27). 
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 𝜕𝐿

𝜕𝑤𝑛−2
=

𝜕𝐿

𝜕�̂�

𝜕�̂�

𝜕𝑧𝑛−1

𝜕𝑧𝑛−1

𝜕𝐴𝑛−1

𝜕𝐴𝑛−2

𝜕𝑧𝑛−2

𝜕𝑧𝑛−2

𝜕𝑤𝑛−2
=

𝜕𝐿

𝜕𝐴𝑛−1

𝜕𝐴𝑛−2

𝜕𝑧𝑛−2

𝜕𝑧𝑛−2

𝜕𝑤𝑛−2
 (25) 

 𝜕𝐿

𝜕𝑏𝑛−2
=

𝜕𝐿

𝜕�̂�

𝜕�̂�

𝜕𝑧𝑛−1

𝜕𝑧𝑛−1

𝜕𝐴𝑛−1

𝜕𝐴𝑛−2

𝜕𝑧𝑛−2

𝜕𝑧𝑛−2

𝜕𝑏𝑛−2
=

𝜕𝐿

𝜕𝐴𝑛−1

𝜕𝐴𝑛−2

𝜕𝑧𝑛−2

𝜕𝑧𝑛−2

𝜕𝑏𝑛−2
 (26) 

 𝜕𝐿

𝜕𝐴𝑛−2
=

𝜕𝐿

𝜕�̂�

𝜕�̂�

𝜕𝑧𝑛−1

𝜕𝑧𝑛−1

𝜕𝐴𝑛−1

𝜕𝐴𝑛−1

𝜕𝑧𝑛−2

𝜕𝑧𝑛−2

𝜕𝐴𝑛−2
=

𝜕𝐿

𝜕𝐴𝑛−1

𝜕𝐴𝑛−2

𝜕𝑧𝑛−2

𝜕𝑧𝑛−2

𝜕𝐴𝑛−2
 (27) 

 

Similar to (23) and (24), the weights and biases are updated at layer 𝑛 − 2 by (28) and 

(29). 

 

 
𝑑𝑤𝑛−2 = −𝛼

𝜕𝐿

𝜕𝑤𝑛−2
 (28) 

 
𝑑𝑏𝑛−2 = −𝛼

𝜕𝐿

𝜕𝑏𝑛−2
 (29) 

 

Continuing with more layers, a recursive pattern emerges where the next layer, 

propagating backwards, has the previous layers change in loss with respect to the previous 

layers’ change in activation. Noting the recursive piece of (25)-(29), the general formula for 

updating the weights and biases of any layer are defined by (30)-(34). 

 

 𝜕𝐿

𝜕𝑤𝑖−1
=

𝜕𝐿

𝜕𝐴𝑖

𝜕𝐴𝑖−1

𝜕𝑧𝑖−1

𝜕𝑧𝑖−1

𝜕𝑤𝑖−1
 (30) 

 𝜕𝐿

𝜕𝑏𝑖−1
=

𝜕𝐿

𝜕𝐴𝑖

𝜕𝐴𝑖−1

𝜕𝑧𝑖−1

𝜕𝑧𝑖−1

𝜕𝑏𝑖−1
 (31) 

 𝜕𝐿

𝜕𝐴𝑖−1
=

𝜕𝐿

𝜕𝐴𝑖

𝜕𝐴𝑖−1

𝜕𝑧𝑖−1

𝜕𝑧𝑖−1

𝜕𝐴𝑖−1
 (32) 
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𝑑𝑤𝑖−1 = −𝛼

𝜕𝐿

𝜕𝑤𝑖−1
 (33) 

 
𝑑𝑏𝑖−1 = −𝛼

𝜕𝐿

𝜕𝑏𝑖−1
 (34) 

 

(30)-(34) show the backpropagation method which updates all the weights in a neural 

network one layer at a time and stopping at the first hidden layer in the neural network. 

The weights and biases are adjusted through repeating the process of forward pass, 

calculate the loss function and updating the weights and biases using backpropagation. 

Backpropagation can either be performed on each instance individually or may be performed on 

a sum of multiple instances at a time called a batch. Each occurrence of updating using 

backpropagation on the entire test set is defined as an epoch. The process continues until the loss 

function passes a threshold of epochs or until the change in loss with respect to previous epochs 

stops decreasing. 

When the training process is completed, the neural network can be assessed using 

different statistical analysis. For classification the metrics are typically include accuracy, 

specificity, precision, recall, Receiver Operating Characteristic (ROC), etc. In a regression model 

the metrics are typically reported as mean square error (MSE), normalized root MSE (NRMSE), 

Coefficient of Determination or 𝑟2, calibration curves, etc13. 

Convolutional Layers 

Convolutional neural networks (CNN) are neural network with convolutional layers 

which contain filters to extract data from multidimensional images. In this section we will 

discuss the one-dimensional (1D) cases in which the multidimensional image is assumed to be a 

1D signal. Filters are vectors, made up of randomly distributed weights, which overlap the signal 
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to extract the features of the signal. Moving over the signal at a set stride length, the filter is 

convoluted at each step length of the signal. The more similar the filter is with the signal the 

higher the value of the convolution. The output of a convolutional layer is a vector containing all 

the convolutions over the signal. This process is visualized in Figure 6. 

 

 

Figure 6 – Visual description of convolution between signal and filter. Dot product occurs 

between each stride which is represented by each paired color lines and corresponds to the 

output vector value of the same color. 

 

The output of a convolution is then passed through an activation function, where each 

element of the convolution is treated as a node, and is typically connected to a dense neural 

layer, like Figure 5, to complete the neural network. The filters are updated using 

backpropagation of error where the filter values are the weights and are updated in a similar 

fashion in the training section. Each convolutional layer uses multiple filters in the same manner, 

and each have their own output vector which is passed to the next layer after being activated by 

an activation function. 
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A common technique on convolutional layer outputs is to reduce the data size using a 

pooling layer. A pooling layer will group the output data in a set range. The most common 

approach is to take the max value in a range. The max value is assumed to represent the entire 

range. An example of max pooling is shown in Figure 7. 

 

 

Figure 7 – Max pooling of a convolutional layer. The pool size is 2. 

 

Long-Short Term Memory Layers 

Long-Short Term Memory (LSTM) layers are a type of recurrent layer in which the input 

vector is operated upon each time step independently. Information from a previous cell is passed 

to the next cell which allows the layer to handle temporal data. Compared to a recurrent layer, an 

LSTM cell includes a memory gate to manage the vanishing gradient problem. The vanishing 

gradient problem occurs during backpropagation when a neural network has many layers and the 

weights of layers further from the output layer are not updated because the gradient of the loss 

function has diminished due to the nature of backpropagation from too many previous layers. 

This effect is enhanced in a recurrent neural network because each time step uses 

backpropagation of error. LSTM uses a memory gate to prevent the effects of the vanishing 

gradient problem. Memory gates use the previous LSTM cells’ outputs to control how much the 
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weights and memory gates in the current LSTM cell can change. This offsets the vanishing 

gradients effect and allows proper training of the neural network. An LSTM cell is described in 

Figure 8. 

 

 

Figure 8 – Description of LSTM cell. The Cell uses the previous LSTM cells output and 

state/memory to predict the current LSTM cells’ output and cell state/memory. 

Reproduced from Yan 14 

 

Overall LSTM neural networks can handle temporal data in a manner that allows proper 

training of the neural network. LSTM and convolutional layers can be used within the same 
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neural network, denoted as a CNN-LSTM neural network, to predict outputs from temporally 

discrete image data. 

Goals 

The overall hypothesis of this dissertation is that simplified 2D and 3D models of the left 

ventricle can provide valuable information for theoretically detecting or predicting myocardial 

ischemia within the human heart. Data collected from these models can be analyzed using 

traditional and deep learning methods to prevent severe ischemic diseases. 

The goals of this dissertation are as follows, 

1. Determine key characteristics of 2D ventricle model to determine 

transmural ischemic growth. 

2. Apply deep learning convolutional neural network to 3D ventricle 

model data to determine the volume and severity from ECG 

signals. 

3. Apply deep learning regression methods to 3D ventricle time series 

data to predict the future state of myocardial ischemia. 
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CHAPTER II: EVALUATION OF SEVERITY OF CARDIAC ISCHEMIA USING IN SILICO 

ECG COMPUTED FROM 2D REACTION DIFFUSION MODEL15 

Abstract 

This study focuses on the analysis of the bioelectrical activity of the left ventricle using a 

2D Bueno-Orovio-Fenton-Cherry monodomain reaction diffusion model. ECGs signals are 

simulated for normal and ischemic conditions of varying severity. Changes in ischemia are 

examined in a single precordial lead as the size of the ischemic area increases in various 

locations. Analyzing this single lead ECG, we determine the ratio between ST deviation and T-

wave amplitude and establish a threshold sufficient for monitoring acute ischemic event. This 

method may be potentially implemented to predict sudden cardiac death. 

Introduction 

Among all causes of mortality cardiovascular disease (CVD) ranks near the top 

representing 31% of all global deaths and amounts to 17.9 million people who died from CVD in 

2016 16. The CVD, which is an occlusion of coronary arteries, often results in a deficiency of 

oxygen supply known as cardiac ischemia. Acute form of this disorder poses a significant danger 

since it may frequently result in heart attack and cardiac death. 

A common approach to predict the development of cardiac ischemia is tracking a body 

surface electrocardiogram (ECG). Using the forward problem of electrocardiology 17, a body 

surface ECG may be simulated utilizing reaction diffusion (RD) equations which describe ionic 

processes inside a myocardium. The reaction part of these equations characterizes the flow of 

ions through cellular membrane channels. The diffusion part describes the diffusive flow of 

charges between the neighboring cellular membranes. Cumulatively, these processes determine 
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the dynamics of cellular transmembrane potentials (action potential, AP) and ascertain the 

magnitude of electric field of the heart induced at the surface of the body. 

Our approach is centered on numerical simulations of body surface ECGs signals by 

using the RD models with simplified geometries. Though detailed 3D models are commonly 

preferred18, the simplified 2D models have also been proved to provide valuable information by 

keeping intact fundamental features of excitation in normal and ischemic myocardium19. 

It is well known that myocardial ischemia raises cellular membrane resting potential, 

shortened AP duration and decreases the AP upstroke velocities 20,21. In turn, these changes 

affect the surface ECG by shifting its baseline voltage and altering the morphology of the ST 

segment, QRS complex and T-wave. We will study in silico ECG signals computed from the 2D 

reaction-diffusion model and will evaluate the severity of cardiac ischemia for various model 

parameters. 

Methods 

Model Geometry 

For the average adult male, the distance from the center of the base of the Left Ventricle 

(LV) to its inner wall is ~ 2 cm. It is shorter than the distance from the LV base to the inner wall 

of the apex ~ 6 cm. Generally, the myocardial thickness varies from ~1 cm at the base to ~ 2 cm 

at the apex. Using these dimensions, the coronal cross section of the LV may be approximated as 

a 2D symmetric horseshoe (Figure 9). The horseshoe is made of two concentric ellipses with the 

same axes. The inner and outer ellipses have semi-major and semi-minor axis of 6 and 2 cm and 

8 and 3 cm, respectively. Using these proportions, the following coordinate system can be 

utilized to approximate the coronal cross section of LV ((35) and (36)). 
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𝑎 =  √𝑥2 +
𝑦2

𝑠2
 (35) 

 𝜃 =  𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑠𝑥
) 

(36) 

 

Here, x and y are the Cartesian coordinates and  𝑠 is the scaling value to fit two concentric 

ellipses with different semi-major and semi-minor axes lengths. Parameter s is the slope of the 

regression line "𝑦 =  s𝑥", which is equal to 2.796 (𝑅2 = .84). Such fitting corresponds to semi-

minor axis of 2 and 3 cm and to semi-major axis of 5.54 and 8.30cm, respectively (Figure 9). 

 

 

Figure 9 - Horseshoe model geometry in a non-orthogonal basis (�̂�𝒂, �̂�𝜽). Intraventricular 

septum (IVS) and left ventricular free wall (LVFW) are located between angles θ varying 

from 0 to 0.3π and from 0.7π to π, respectively. The apex is located between IVS and 

LVFW. LVFW is divided at specific points θ= [0.5π,0.6π,0.7π,0.8π,0.9π, π]. 
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Using coordinate system ((35) and (36)) we generated a finite difference (FD) mesh with 

constant ∆𝑎 (0.01 cm) and ∆𝜃 (0.01π) mesh intervals, which spanned from 2 to 3 cm and from 0 

to π radians, respectively. 

Reaction Diffusion Model and Equations 

Simulations were done using the Bueno-Orovio-Fenton-Cherry reaction diffusion model 

(BOFC) 22. The main part of the RD BOFC model which includes isotropic diffusion and the 

Laplacian for the spatial coordinates described in (36) is defined by (37). 

 

 𝜕𝑢

𝜕𝑡
= 𝐷 ((cos2 𝜃 +

sin2 𝜃

𝑠2
)
𝜕2𝑢

𝜕𝑎2
+ (−sin 2𝜃

(𝑠2 − 1)

𝑎  𝑠2
)(

𝜕2𝑢

𝜕𝑎𝜕𝜃
−

1

𝑎

𝜕𝑢

𝜕𝜃
)

+ (
cos2 𝜃 + 𝑠2 sin2 𝜃

(𝑎  𝑠)2
)(

𝜕2𝑢

𝜕𝜃2
− 𝑎

𝜕𝑢

𝜕𝑎
)) − ∑ 𝐽𝑖(𝑣, 𝑤, 𝑠)

𝑖=𝑓𝑜,𝑠𝑜,𝑠𝑖

+ 𝐽𝑆𝑖𝑚 

(37) 

 

Here 𝑢 is a dimensionless variable which denotes a transmembrane potential. The 

magnitude of diffusion was set to 𝐷 = 4.7 𝑐𝑚2 𝑠𝑒𝑐⁄ . Values of  𝐽𝑖  represent the membrane ionic 

currents 22. 𝐽𝑆𝑡𝑖𝑚 indicates the stimulus current that excites the cells (see section 3.1). No flux 

Neumann boundary conditions were used in the direction normal to all the boundaries of the 

horseshoe geometry. 

Myocyte cells APs include high depolarization and low repolarization rates. We 

reproduced this behavior in all different parts of the LV including epicardial, endocardial and 

mid-myocardial zones. BOFC parameters were set in the way to reflect these changes within 

epicardial, and endocardial cells APs are normally shorter than in mid-myocardial cells (Figure 

10). 
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Figure 10 - APs for different cell types. Dashed black line represents an epicardial cell AP, 

dotted gray line denotes an endocardial cell AP and solid black line represents a mid-

myocardial cell AP. 

 

Simulating ECG 

Body surface ECG signals are calculated using Maxwell, Poisson, and continuity 

equations 17. By assuming the thorax as an infinite homogeneous conductor, the in silico ECG 

can be calculated at the body surface electrode using (38). 

 

 
𝐸𝐶𝐺(𝑡) =  ∭

𝐷𝛻𝑉𝑚 ⋅ 𝑟 

|𝑟|3
𝑑𝜏

𝜏

 (38) 

 

Where D is the diffusive tensor, 𝑉𝑚 is the transmembrane potential,  𝑟 is the position 

between the electrode and the point where 𝑉𝑚 is measured in the medium, and 𝑑𝜏 is the volume 

scaling factor. In our case the volume integral (38) was replaced with the area integral and was 

computed using trapezoidal method every 0.7 msec. 
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The diffusive currents that wrap around the LV in a direction perpendicular to �̂�𝑎 and �̂�𝜃 

(denoted as �̂�𝜙) are symmetric and are approximately perpendicular to a recording electrode (RE) 

placed outward from the apex in the direction approximately corresponding to precordial lead 

V4. Therefore, the  �̂�𝜙 diffusive current is much less than diffusive currents in the directions  �̂�𝑎 

and �̂�𝜃. 

Results 

Propagation in the 2D model 

The excitation which is initiated by a stimulus current 𝐽𝑆𝑡𝑖𝑚 raises the transmembrane 

potential above a threshold starting an AP sequence. We used a traveling 𝐽𝑆𝑡𝑖𝑚  that started at 

𝜃 =  0.25𝜋 and ended at 𝜃 =  0.9𝜋 with the excitation range 𝑎 = 2.05 − 2.17 𝑐𝑚 and 𝜃 ±

0.01𝜋, respectively. Velocity of the 𝐽𝑆𝑡𝑖𝑚 excitation wave was equal to 4
𝑚

𝑠
.  

All simulations were performed by implementing the second order spatial finite 

difference method (FDM) and the first order temporal FDM. 

 

 

Figure 11 - Propagation of the excitation within the 2D horseshoe model in Cartesian 

coordinates. Panel 1 shows JStim initial excitation of the medium at 𝜽 =  𝟎. 𝟐𝟓𝝅 and 𝒂 =
 𝟐. 𝟐, which initiates the wave front shown by the light grey changing to black boundary. 
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Panel 2 shows 𝑱𝑺𝒕𝒊𝒎 quickly depolarizing the LV at a constant 𝒂 =  𝟐. 𝟐 𝒄𝒎 and moving in 

the positive θ direction while the wave front continues to propagate at a slower speed 

outward from where 𝑱𝑺𝒕𝒊𝒎 has originally excited the myocardium. Panel 3 shows 𝑱𝑺𝒕𝒊𝒎 

stopping at 𝜽 =  𝟎. 𝟗𝝅. Panel 4 shows the wave back starting in the epicardium before the 

endocardium and mid-myocardium; wave back is denoted as the area in transition from 

the black to the grey region. Panel 5 shows 2 wave backs propagating from endocardium 

and epicardium towards the mid-myocardium. Panel 6 shows the entire medium returning 

to resting potential. 

 

Normal ECG 

Using the baseline parameters mentioned in Reaction Diffusion Model and Equations, 

(37) and (38) were solved under normal non-ischemic conditions. The RE was placed at 𝑟 =

(0, 10, 0) and the evolution of excitation was like that shown in Figure 11. A typical normal 

body surface ECG signal is depicted in Figure 12. 

 

 

Figure 12 - Normal ECG from the 2D model in Figure 9. The RE is placed at 𝒓 = (𝟎, 𝟏𝟎, 𝟎). 

The key feature of the normal left ventricle ECG is characterized by a tall and narrow 

QRS complex and a relatively low amplitude and broad T-wave. The Q wave in Figure 12 

is absent since only the left ventricle is being considered.  
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Transmural myocardial infarction (MI) 

We modeled ischemic myocardium by elevating the parameter 𝑢𝑜, which controls the 

cellular resting potential (RP), in a certain area of myocardium. Typically, ischemia starts in the 

endocardium and expands outwards rapidly towards the epicardium 23. To represent this growth 

at different regions of our horseshoe model, the width was centered and varied in the range of 

𝜃 = [0.5𝜋, 0.6𝜋, 0 .7𝜋, 0 .8𝜋, 0 .9𝜋, 𝜋] ± 0.05𝜋 radians. The ischemic area for all 𝜃 increased in 

the �̂�𝑎 direction from 𝑎 = 2 (endocardium) to 𝑎 = 3 (epicardium). The ischemic ECG signals 

were computed for the different angles within the range indicated above. 

 

 

Figure 13 - ECGs computed by increasing the ischemic area at  𝜽 = 𝟎. 𝟓𝝅. Blue curve (3%) 

is practically a normal ECG (Figure 12) and green curve represents a transmural MI. 

 

Similar simulations were done at the other angular positions described above. The value 

of  𝑢𝑜 was increased to .1 (-75 mV) in ischemic area for all simulations. We observed that the 

ratio between ST deviation and T-wave amplitude (γ) did not change significantly with ischemic 

area for ischemic center locations confined at the higher angles 𝜃 greater than 0.7π. On the 

contrary, at 𝜃 < 0.7π we noted a sharp increase in γ for ischemic areas greater than ~1.4cm2.  
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Figure 14 - Dependence of γ on the magnitude of ischemic area. Curves represent 

endocardium to epicardium growth at different locations in the LV apex and the LVFW. 

Legends show locations of the ischemic area center position. ST deviation was calculated as 

the ECG amplitude at the J60 point. The end of every curve designates the states of fully 

developed transmural ischemia designated as MI. 

 

Calculated Severity of Ischemia 

Severity of ischemia was defined as the rate of changes in ischemic area per unit time 

(39). 

 

 
𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ≡

∂𝐴𝑟𝑒𝑎

∂𝑡
=

∂Area

∂γ

∂γ

∂𝑡
 (39) 

 

The rate of changes in γ per unit ischemic area can be recalculated from data shown in 

Figure 15. 
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Figure 15 - Changes in γ per unit ischemic area are depicted for different ischemic growth 

at different angles 𝜽. The signals recorded at 𝜽 = 𝟎. 𝟓𝝅 𝒂𝒏𝒅 𝟎. 𝟔𝝅 demonstrate sharp 

changes like those shown in Figure 14. 

 

A coefficient (
∂γ

∂Area
)
−1

 (see Figure 15) can be considered in conjunction with another 

coefficient  
∂γ

∂𝑡
 determined from the original V4-type ECG signal. Combined these coefficients 

can be used for the estimates of severity of ischemia. Specifically, the average half maximum 

value of the .5𝜋 curves in Figure 15 (𝐴 = 1.04 𝑐𝑚−2) is a sufficiently accurate threshold to 

designate the fastest, and consequently the most dangerous ischemic growth.  

Discussion 

We demonstrated that it is possible to quantify the rate of ischemic growth using a single 

precordial lead aligned with the �̂�𝜃 direction in a 2D model of myocardium. Using (𝐴)−1 instead 

of the  
∂Area

∂γ
 in (39) one can calculate a critical value of 

∂γ

∂t
 . For instance, if the thickness of the 

myocardium is 1cm and ischemic area extends in the �̂�𝜃 direction by 2 cm then the value of  
∂γ

∂t
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may become greater than  0.018 min−1 indicating a quick spread of ischemia typical for the MI 

like ischemic event. 

Finally, our model can be used in conjunction with machine learning to better understand 

more complex ischemic events.  

Conclusions 

Overall, we implemented a 2D reaction diffusion model to simulate the propagation of 

electrical excitation in the ischemic myocardium. It has been determined that the growth of the 

ischemic area results in increasing of the ratio 𝛾. We found that the maximum 
∂γ

∂Area
 value of 

2.25 𝑐𝑚−2 indicates the strongest progression of the ischemic area. The critical (alert) value can 

be used to predict severe MI like ischemic growth if the value of  
∂γ

∂t
 is greater than 0.183 𝑚𝑖𝑛−1. 
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CHAPTER III: REACTION-DIFFUSION INFORMED APPROACH TO DETERMINE 

MYOCARDIAL ISCHEMIA USING STOCHASTIC IN SILICO ECGS AND CNNS24 

Abstract 

Every year, nine million people die globally from ischemic heart disease (IHD). There 

are many methods of early detection of IHD which can help prevent death, but few are able to 

determine the configuration and severity of this disease. Our study aims to determine the severity 

and configuration of ischemic zones by implementing the reaction-diffusion analysis of cardiac 

excitation in a model of the left ventricle of the human heart. Initially, this model is applied to 

compute twenty thousand in silico ECG signals with stochastic distribution of ischemic 

parameters. Furthermore, generated data is effectively (𝑟2 = 0.85) implemented for training a 

one-dimensional convolutional neural network to determine the severity and configuration of 

ischemia using only two lead surface ECG. Our results readily demonstrate that using a 

minimally configured portable ECG system can be instrumental for monitoring IHD and 

allowing early tracking of acute ischemic events. 

Introduction 

According to the World Health Organization, 17.3 million people around the world die 

every year due to heart disease. Ischemic heart disease (ischemia for short) is a major contributor 

to these deaths25,26. Ischemia is when oxygenated blood is unable to reach the myocardium, 

which causes the myocardial cells to die. When ischemia goes undetected it can lead to 

myocardial infarction (commonly referred to as a heart attack or MI). When an MI occurs, there 

is a “golden hour” in which a person is more likely to survive if they receive treatment quickly 

after the onset of an acute MI 27. Detection of ischemic events is still a challenge in 
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electrocardiology. Early detection of ischemic events could improve and prevent death caused by 

ischemic events.  

Currently there is very limited work that involves the preemptive detection of ischemic 

events. Typically, when ischemia is suspected, there are only a few tests (Electrocardiograms 

(ECGs), nuclear imaging, CT scans, blood tests, etc.) available to confirm it.  However, these 

tests are typically performed using specialized instruments in a controlled setting. Ischemia can 

be silent where there are no ischemic symptoms and is sometimes only noticed after an MI. A 

simple device that is versatile, inexpensive and can determine early stages of ischemia could help 

to reduce the number of deaths due to heart disease.  

Previous research to determine ischemia has mostly focused on studies of abnormalities 

in body surface ECG signals. These studies typically use 12 lead ECG and compare the 

differences between electrocardiographic leads to determine the general location and size of 

ischemic zones 28,29. However, the use of in silico ECGs to determine the location of ischemia is 

limited and focuses predominantly on evaluation of bulk ischemic sizes (small, medium, large) 

considered only in specific discrete placements 30.  

Based upon Helmholtz reciprocal principle, the bioelectrical current produced by the 

heart can be determined using an ECG lead which uses two electrodes as a source and a sink of 

charge 31,32. By inducing a potential difference between the two electrodes, it is possible to 

observe the heart’s bioelectrical currents that are in alignment with the ECG lead. This procedure 

is known as the forward problem of electrocardiology. The reverse of the forward problem is the 

inverse problem of electrocardiology, which is associated with certain constraints (regularization 

procedures) upon the ECG to provide information about the bioelectrical activity of the heart17,33. 
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Common constraints placed on the inverse problem are solving only for epicardial potentials, 

which would not provide information about the remaining portion of the myocardium. 

An alternative approach to regularization for the inverse problem of electrocardiology is 

in using artificial intelligence. Previous research tends to use the MIT-BIH database 34 which 

contains multi-lead ECGs that have been annotated by clinicians with different heart conditions 

35–39. The body surface ECGs are processed for data extraction or used as a time series signal to 

be implemented in an artificial intelligence framework to determine heart diseases. The signals 

are suitable for the analysis with a one- or two-dimensional convolutional neural network (CNN) 

which use kernels to convolute with ECG signals to extract the key ECG topological features and 

predict cardiac conditions. CNNs, like any other neural network, need a significant volume of 

input data to be properly trained. The MIT-BIH database does not contain ECG signals with 

corresponding ischemic information, such as configuration and severity. Currently, no such large 

database with this data exists. 

To avoid the methodological challenges of the inverse problem, we introduce a simplified 

model of the hearts’ left ventricle to generate in silico ECG signals suitable for training a CNN. 

In general, the left ventricle is shaped like an ellipsoid. The long axis length, from base to apex, 

is typically reported from 7.5 to 9.5 cm in diastole and the inner and outer diameter at the base is 

approximately 4 and 6 cm, respectively 40–42. The thickness of the muscle is approximately 1cm 

through the entire left ventricle with some small variations. The ratio in mass of the left to right 

ventricle is approximately 2.5:1 43. Using previously determined values the mean volume of the 

left ventricular myocardium is 105mL 44,45. Compared to the right ventricle, the left ventricle 

produces a noticeably greater amount of bioelectrical activity due to the larger mass. Using only 



 38 

the left ventricle can give significant ischemic information as ischemia rarely occurs in the right 

ventricle alone 7,8,46.  

In summary, we propose to implement an in silico reaction-diffusion (RD) model to 

compute the data necessary to train a one-dimensional (1D) CNN via regression to determine the 

configuration and severity of ischemia within the left ventricle.  

Method 

Three-Dimensional Modeling 

To describe the propagation of electrical excitation in the in silico model of the hearts’ 

left ventricle we consider RD equations defined in the skewed spherical coordinate system. 

These coordinates are an extension to the two-dimensional coordinates used in our previous 

work 15. The skewed spherical coordinates are described in (40)-(42). 

 

 𝑥 = 𝑎 𝐶𝑜𝑠[𝜃]𝑆𝑖𝑛[𝜙] 
(40) 

 𝑦 = 𝑠 𝑎 𝑆𝑖𝑛[𝜃]𝑆𝑖𝑛[𝜙] 
(41) 

 𝑧 = 𝑎 𝐶𝑜𝑠[𝜙] 
(42) 

 

𝑎, 𝜃, 𝜙 are inverse functions given by (43)-(45). 

 

 

𝑎 = ±√𝑥2 + (
𝑦

𝑠
)
2

+ 𝑧2 (43) 

 𝜃 = 𝑎𝑟𝑐𝑇𝑎𝑛 [
𝑦

𝑠 𝑥
] 

(44) 
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𝜙 = 𝑎𝑟𝑐𝑇𝑎𝑛
[√𝑥2 + (

𝑦
𝑠)

2

𝑧

]
 

(45) 

 

In these equations the coordinate system behaves like spherical coordinates but is skewed 

in the 𝑦 direction by the factor 𝑠. The factor 𝑠 can be determined using the least squares estimate 

of the form 𝐴 = 𝑠𝐵, where 𝐴 are the positions 𝐴 =  [𝐴𝑝𝑒𝑥 𝐼𝑛𝑛𝑒𝑟, 𝐴𝑝𝑒𝑥 𝑂𝑢𝑡𝑒𝑟] = [6, 8]𝑐𝑚 and 

𝐵 are the positions 𝐵 =  [𝐵𝑎𝑠𝑎𝑙 𝐼𝑛𝑛𝑒𝑟, 𝐵𝑎𝑠𝑎𝑙 𝑂𝑢𝑡𝑒𝑟] = [2, 3]𝑐𝑚. All positions are measured 

from the origin which is located at the center of the base of the left ventricle (Cartesian position 

(0, 0, 0)). 𝑠 was found as 2.71. The bounds of the coordinates were 𝑎 = [2, 3], 𝜃 = [0, 𝜋] and 

𝜙 = [0, 𝜋]. These boundaries form the shape shown in Figure 16 panel a with a reported volume 

of 108 𝑚𝐿. 

 

Figure 16 - a) Model of the myocardium. Model boundaries are shown in blue (𝒂 = 𝟐 ) and 

black (𝒂 = 𝟑 ), respectively. b) A surface of myocardium depicted in skewed spherical 

coordinates with corresponding base vectors �̂�𝒂, �̂�𝜽 and �̂�𝝓 at point 𝒂 = 𝟐, 𝜽 =
𝝅

𝟒
 and 𝝓 =

𝝅

𝟒
. 
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The bioelectrical activity of the myocardium is represented using the Bueno-Orovio-

Fenton-Cherry RD model (BOFC) 22. BOFC assumes there are three major currents, fast inward, 

slow inward, and slow outward. BOFC is described by (46)-(52). 

 

 𝑑𝑢

𝑑𝑡
= D∇2𝑢 − (𝐽𝑓𝑖 + 𝐽𝑠𝑜 + 𝐽𝑠𝑖)  + 𝐽𝑆𝑖𝑚 (46) 

 𝑑𝑣

𝑑𝑡
=

(1 − 𝐻[𝑢 − 𝜃𝑣])(𝑣∞ − 𝑣)

𝜏𝑣
−

−
𝐻[𝑢 − 𝜃𝑣]𝑣

𝜏𝑣
+  (47) 

 𝑑𝑤

𝑑𝑡
=

(1 − 𝐻[𝑢 − 𝜃𝑤])(𝑤∞ − 𝑤)

𝜏𝑤
−

−
𝐻[𝑢 − 𝜃𝑤]𝑤

𝜏𝑤
+

 (48) 

 
𝑑𝑠

𝑑𝑡
=

(
(1 + 𝑡𝑎𝑛ℎ[𝑘𝑠(𝑢 − 𝑢𝑠)])

2 − 𝑠)

𝜏𝑠
 

(49) 

 
Jfi = 

−v H[u − θv](u − θv)(uu − u)

τfi
 (50) 

 
Jso = 

(u − uo)(1 − H[u − θw])

τo
+

H[u − θw]

τso
 (51) 

 
Jsi = 

−H[u − θw]ws

τsi
 (52) 

 

The four variables are 𝑢, 𝑣, 𝑤 𝑎𝑛𝑑 𝑠. 𝑢 represents the transmembrane potential and 𝑣, 𝑤, 

and 𝑠 are gating variables that model the protein gating dynamics of myocardial cells. The 

function 𝐻 is the Heaviside or step function. 𝐷 is the diffusion coefficient and was considered 

homogeneous throughout the myocardium. In our study, 𝐷 was set to 4.7 
𝑐𝑚2

𝑠𝑒𝑐
. This value of 𝐷 is 

higher than the diffusivity proposed by Bueno-Orovio et al. (1.2 
𝑐𝑚2

𝑠𝑒𝑐
) 22 to allow wave 

propagation through the areas of myocardium with higher curvature imposed by the skewed 
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spherical coordinates.  𝐽𝑆𝑡𝑖𝑚 represents the Purkinje fibers which provide a stimulus current that 

raises the transmembrane potential  above a threshold to initiate an AP. 𝐽𝑆𝑡𝑖𝑚 traveled in the 𝜃 

direction with a constant speed of 3 
𝑚

𝑠𝑒𝑐
 and stimulated the volume enclosed by 𝑎 =

[2.05, 2.15] 𝑐𝑚 and 𝜙 = [. 5, 2.5] 𝑟𝑎𝑑𝑠 and 𝜃 ±
𝜋

40
 𝑟𝑎𝑑𝑠 starting at 𝜃 = 0 𝑟𝑎𝑑𝑠 and ending at 

𝜃 = 3 𝑟𝑎𝑑𝑠. These boundaries approximate the location and activation sequence of the Purkinje 

fibers within the LV 47. The parameters used are described in Table 1. Remaining BOFC 

equations are shown in Appendix A. 

Laplacian operator for the coordinates (43)-(45) is shown by (53). 

 

 
∇2𝑢 =  𝑔𝑎𝑎

𝜕2𝑢

𝜕𝑎2
+ 𝑔𝜃𝜃

𝜕2𝑢

𝜕𝜃2
+ 𝑔𝜙𝜙

𝜕2𝑢

𝜕𝜙2
+ 2𝑔𝑎𝜃

𝜕2𝑢

𝜕𝑎𝜕𝜃
+ 2𝑔𝑎𝜙

𝜕2𝑢

𝜕𝑎𝜕𝜙

+ 2𝑔𝜃𝜙
𝜕2𝑢

𝜕𝜃𝜕𝜙
+ ( 𝑔𝜃𝜃 𝑎 + 𝑔𝜙𝜙𝑎 𝑆𝑖𝑛[𝜙]2)

𝜕𝑢

𝜕𝑎

−  2 (
𝑔𝑎𝜙

𝑎
+ 𝑔𝜃𝜙𝐶𝑜𝑡[𝜙])

𝜕𝑢

𝜕𝜃
+ (

𝑔𝜙𝜙𝑆𝑖𝑛[2𝜙]

2
−

2 𝑔𝑎𝜃

𝑎
)

𝜕𝑢

𝜕𝜙
 

(53) 

 

(53) contains elements from the inverse metric tensor (𝑔𝑖𝑗) and Christoffel coefficients 

(Γ𝑖𝑗
𝑘) which are reported in Appendix A. No-flux boundary conditions reflect the absence of 

diffusive fluxes at the boundaries of the myocardium and are defined by (54). 

 

 ∇𝑢 ∙ �̂�  = 0       𝑜𝑛 𝜕Ω 
(54) 

 

  



 42 

Cell Types 

Model parameters were defined to approximate the cellular characteristics of different cell types 

within the myocardium. Three different cell types were considered for the model which include 

Epicardial, Endocardial and Mid-Myocardial cells. All parameters were originally set for mid-

myocardial cells 22 and subsequently modified for epicardial and endocardial cells to reflect 

shorter and longer APD, respectively (Figure 17). By varying 2 parameters, τ𝑠𝑜1
 and 𝑘𝑠, three 

different AP were considered for each cell type. The APD gradient increased from Epicardial to 

Endocardial area of myocardium in a linear fashion as previously shown 48,49. The parameters 

used are listed in Table 1. 

Using the parameters in Table 1, the APs vary as shown in Figure 17. 

 

 

Figure 17 - Action potentials computed in different areas of myocardium. The AP curves 

represent the linear growth of APD from the shortest value of 325ms in the Epicardial area 

to its longest value of 450ms in the Endocardial area. 

 

  



 43 

Table 1. Parameters for epicardial, endocardial and mid-myocardial cells which are used in 

the BOFC equations (46)-(52). All parameters are equal except 𝛕𝒔𝒐𝟏
 and 𝒌𝒔. 

  

 Epicardial 

Endo-

cardial 

Mid-Myo-

cardial 

 Epicardial 

Endo-

cardial 

Mid-Myo-

cardial 

𝑢𝑜 0.000 0.000 0.000 τ𝑓𝑖 0.078 0.078 0.078 

𝑢𝑢 1.610 1.610 1.610 τ𝑜1
 410.000 410.000 410.000 

θ𝑣 0.300 0.300 0.300 τ𝑜2
 7.000 7.000 7.000 

θ𝑤 0.130 0.130 0.130 τ𝑠𝑜1
 41.250 52.500 45.000 

θ𝑣
− 0.100 0.100 0.100 τ𝑠𝑜2

 0.800 0.800 0.800 

θ𝑜 0.005 0.005 0.005 𝑘𝑠𝑜 2.100 2.100 2.100 

τ𝑣1
−  80.000 80.000 80.000 𝑢𝑠𝑜 0.600 0.600 0.600 

τ𝑣2
−  1.451 1.451 1.451 τ𝑠1 2.734 2.734 2.734 

τ𝑣
+ 1.451 1.451 1.451 τ𝑠2 4.000 4.000 4.000 

τ𝑤1
−  70.000 70.000 70.000 𝑘𝑠 1.500 1.250 1.250 

𝜏𝑤2
−  8.000 8.000 8.000 𝑢𝑠 0.9087 0.9087 0.9087 

𝑘𝑤
− 200.000 200.000 200.000 τ𝑠𝑖 3.385 3.385 3.385 

𝑢𝑤
−  0.016 0.016 0.016 τ𝑤∞

 0.010 0.010 0.010 

τ𝑤
+  280.000 280.000 280.000 𝑤∞

∗  0.500 0.500 0.500 
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The APD for the Epicardial is the shortest and the APD for Endocardial is the longest. 

The difference between the Endocardial and Epicardial was calculated to be approximately 

100ms apart. The thicknesses of the Endocardium and Epicardium were considered 20% of the 

thickness of the entire myocardium with the mid-myocardium covering the remaining 60% 

between the Epicardium and Endocardium. Thickness is associated with the coordinate 𝑎 in the 

skewed spherical coordinates. All three cell types were considered to cover the span of the 3D 

model where span consists of the coordinates 𝜃and 𝜙 and from bounds 0 to 𝜋 for both. 

Numerical Solutions 

To solve (46)-(52) we implemented first and second order finite difference approximation 

with respect to temporal, ∆𝑡, and spatial, ∆𝑥, grid steps, respectively ((55)-(57)). 

 

 𝜕2𝑢

𝜕𝑥2
=

𝑢(𝑥 + ∆𝑥) − 2𝑢(𝑥) + 𝑢(𝑥 − ∆𝑥)

∆𝑥2
+ 𝒪(∆𝑥2) (55) 

 𝜕𝑢

𝜕𝑥
=

𝑢(𝑥 + ∆𝑥) − 𝑢(𝑥 − ∆𝑥)

2∆𝑥
+ 𝒪(∆𝑥2) (56) 

 𝜕𝑢

𝜕𝑡
=

𝑢(𝑡 + ∆𝑡) − 𝑢(𝑡)

∆𝑡
+ 𝒪(∆𝑡) (57) 

 

Denoting a temporal node using a superscript 𝑡 and spatial nodes 𝑎, 𝜃, and 𝜙 using 

subscripts 𝑖𝑗𝑘, one can derive a discretized set of (46)-(52) as (58)-(64). 

 

 𝑢𝑖𝑗𝑘
𝑡+1 = 𝑢𝑖𝑗𝑘

𝑡 + ∆𝑡(𝐷∇̂2𝑢𝑖𝑗𝑘
𝑡 − (𝐽𝑓𝑖 + 𝐽𝑠𝑜 + 𝐽𝑠𝑖) + 𝐽𝑆𝑡𝑖𝑚) 

(58) 

 
𝑣𝑖𝑗𝑘

𝑡+1 = 𝑣𝑖𝑗𝑘
𝑡 + ∆𝑡 (

(1 − 𝐻[𝑢𝑖𝑗𝑘
𝑡 − 𝜃𝑣])(𝑣∞ − 𝑣𝑖𝑗𝑘

𝑡 )

𝜏𝑣
−

−
𝐻[𝑢𝑖𝑗𝑘

𝑡 − 𝜃𝑣]𝑣𝑖𝑗𝑘
𝑡

𝜏𝑣
+ ) (59) 
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𝑤𝑖𝑗𝑘

𝑡+1 = 𝑤𝑖𝑗𝑘
𝑡 + ∆𝑡 (

(1 − 𝐻[𝑢𝑖𝑗𝑘
𝑡 − 𝜃𝑤])(𝑤∞ − 𝑤𝑖𝑗𝑘

𝑡 )

𝜏𝑤
−

−
𝐻[𝑢𝑖𝑗𝑘

𝑡 − 𝜃𝑤]𝑤𝑖𝑗𝑘
𝑡

𝜏𝑤
+

) (60) 

 

𝑠𝑖𝑗𝑘
𝑡+1 = 𝑠𝑖𝑗𝑘

𝑡 + ∆𝑡

(

 
 

(
(1 + 𝑡𝑎𝑛ℎ[𝑘𝑠(𝑢𝑖𝑗𝑘

𝑡 − 𝑢𝑠)])

2 − 𝑠𝑖𝑗𝑘
𝑡 )

𝜏𝑠

)

 
 

 

(61) 

 
Jfi =  

−𝑣𝑖𝑗𝑘
𝑡  H[𝑢𝑖𝑗𝑘

𝑡 − θv](𝑢𝑖𝑗𝑘
𝑡 − θv)(uu − 𝑢𝑖𝑗𝑘

𝑡 )

τfi
 (62) 

 
Jsi = 

−H[𝑢𝑖𝑗𝑘
𝑡 − θw]𝑤𝑖𝑗𝑘

𝑡 𝑠𝑖𝑗𝑘
𝑡

τsi
 (63) 

 
Jso = 

(𝑢𝑖𝑗𝑘
𝑡 − uo)(1 − H[𝑢𝑖𝑗𝑘

𝑡 − θw])

τo
+

H[𝑢𝑖𝑗𝑘
𝑡 − θw]

τso
 (64) 

 

∇̂2𝑢𝑖𝑗𝑘
𝑡  represents the discretized Laplacian (58) which is presented in Appendix A. The 

spatial discretization values are Δ𝑎 =  .025 𝑐𝑚, Δ𝜃 =  .025𝜋 𝑟𝑎𝑑𝑠 and Δ𝜙 =  .025𝜋 𝑟𝑎𝑑𝑠 and 

the temporal discretization step is Δ𝑡 =  .02 𝑚𝑠. The no-flux boundary conditions incorporated 

an imaginary node which was extended beyond the boundaries to keep the second order of 

numerical approximation of the boundary conditions. 

In silico ECG 

Calculating the ECGs was performed assuming that the human torso is a homogeneous 

infinite conductor31,32. The myocardium was considered as an aggregate of multiple dipoles 

which induced surface quasistatic electric field with a potential described by (65). 

 

 
𝛷 =

1

4𝜋𝜎
∫ 𝐽 𝑖 ∙ 𝛻 (

1

𝑟
)

𝜏

𝑑𝜏 (65) 
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τ is volume, 𝐽𝑖 is the source current which is defined as 𝐷∇u, 𝑟 is the position from the 

source current to the recording electrode and 𝜎 is the conductivity of the homogenous torso. (65) 

was solved numerically using trapezoidal method.  

Recording Electrode Placement 

Using (65), a potential difference or lead voltage between two recording electrodes was 

computed for 4 electrodes located outwards from the apex of the left ventricle as shown in Figure 

18 and Table 2. 

Table 2. Electrode positions E1, E2, E3 and E4 calculated in cartesian coordinates and 

measured relative to the origin located at the center of the base of the left ventricle model. 

All positions measured in centimeters. The area enclosed between the electrodes is equal to 

100 𝒄𝒎𝟐. 

Electrode # - (x, y, z) cm 

E1 – (5, 15, -5) E2 – (-5, 15, -5) 

E3 – (5, 15 ,5) E4 – (-5, 15, 5) 

 

 

Figure 18 - The positions of four electrodes with respect to the location of the left ventricle 

model. 
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Four lead voltages (ECG signals) were computed as shown in Table 3.  

Table 3. Description of leads L1, L2, L3 and L4. Each lead is composed of two of the four 

electrodes E1, E2, E3 and E4.  

Leads 

L1 = E4 – E3 L2 = E4 – E1 

L3 = E4 – E2 L4 = E2 – E1 

Stochastic in silico ischemia and QT Interval 

We implement stochastic parameters to generate data suitable for training a 1D CNN. 

These parameters control the severity and configuration of ischemic zones and ischemic APD. 

We define severity of ischemia as the magnitude of changes of parameter 𝑢𝑜 inside an ischemic 

zone (Table 1). The difference between the increased value of resting potential, 𝑢𝑜
′ , and its initial 

value 𝑢𝑜 is defined as a severity of ischemia and is denoted as a 𝛾 = u𝑜
′ − 𝑢𝑜. Figure 19 

demonstrates that the action potential upstroke practically does not depend on 𝛾. However, only 

10% increase in 𝛾 yields to two-fold decrease in APD which signifies the growth of the 

myocardial ischemic zone.  

Values of parameter 𝛾 are stochastically produced using a continuous uniform random 

number generator (CURNG) within the range between 0 and 0.2. Examples of action potentials 

for cells with different severity of ischemia are shown in Figure 19. 
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Figure 19 - Dependence of action potential on parameter 𝜸 in Endocardium. 

 

Configuration and volumes of ischemic zones which include conglomerates of ischemic 

cells are determined by (66). 

 

 

𝑉𝑜𝑙𝑢𝑚𝑒 =  ∫ ∫ ∫ 𝑠 𝑎2𝑆𝑖𝑛[𝜙] 𝑑𝑎  𝑑𝜃 𝑑𝜙

𝜙2

𝜙1

𝜃2

𝜃1

𝑎2

𝑎1

 
(66) 

 

Integral limits are determined stochastically. 𝑠𝑎2𝑆𝑖𝑛[𝜙] is the volume element calculated 

from the determinate of the metric tensor for skewed spherical coordinates that is described in 

Appendix A. The limits are determined by measuring six arc lengths with respect to coordinates 

of the point P located within the boundaries of the left ventricle model (Figure 16 Panel a). These 

stochastic coordinates are determined by applying a CURNG. Using point P as an origin, the 

CURNG determines an arc length within the range of 0 to .5 which corresponds to half of the 

length of the ventricle model boundaries between 𝑎 = 2 and 𝑎 = 3. This length is added and 
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subtracted to the 𝑎 coordinate of the point P and produces the limits 𝑎1 and 𝑎2, respectively. The 

limits 𝑎1 and 𝑎2 are used to calculate an arc length 𝑠𝑎 (67). The arc lengths 𝑠𝜃 and 𝑠𝜙 are also 

determined using a CURNG which in this case is implemented in the range between 𝑠𝑎 and 2 𝑠𝑎. 

Like for limits 𝑎1 and 𝑎2, half of the lengths of 𝑠𝜃 and 𝑠𝜙 are added and subtracted from the 

coordinates of stochastic point P to determine the limits 𝜃1, 𝜃2, 𝜙1 and 𝜙2. Finally, all arc 

lengths can be obtained by (67)-(69). 

 

 
𝑠𝑎 = ∫  √𝑔𝑎𝑎𝑑𝑎

𝑎2

𝑎1

 (67) 

 
𝑠𝜃 = ∫ √𝑔𝜃𝜃𝑑𝜃

𝜃2

𝜃1

 (68) 

 
𝑠𝜙 = ∫ √𝑔𝜙𝜙𝑑𝜙

𝜙2

𝜙1

 (69) 

 

𝑔𝑎𝑎, 𝑔𝜃𝜃 and 𝑔𝜙𝜙 denote components of the metric tensor for the skewed spherical 

coordinates. Example of arc lengths are depicted in Figure 20. The limits 𝑎1, 𝑎2, 𝜃1, 𝜃2, 𝜙1 and 

𝜙2 in the integrals in (67)-(69) define the boundaries of the ischemic zone. Factor 𝛾 and the 

boundaries of the ischemic zone will be referred to as ischemic zone parameters. 
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Figure 20 - Arc lengths 𝒔𝒂, 𝒔𝜽 and 𝒔𝝓 are shown in green, blue, and maroon, respectively. 

Ischemic zone is defined within the volume enclosed by the black curves. Intersection of the 

three arcs denote is denoted as point P. Grey surface reflects the endocardial surface at 𝒂 =
𝟐. 

 

Stochastic APDs (QT interval) variations are controlled by varying τ𝑠𝑜1
 from 0.6τ𝑠𝑜1

 to 

τ𝑠𝑜1
 in all cell types inside and outside the ischemic zone using CURNG (Table 1, Figure 20). 

This allowed the QT interval to fluctuate between 250ms and 400ms.  

Solving (58)-(65) we compute ECG signals which demonstrate the effects of an ischemic 

zone placed at the apex of the model with a QT interval of 400ms (Figure 21) 
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Figure 21 - Normal vs Ischemic ECG computed in lead L1 (see Table 3 and (46)-(52)). 

Ischemic mass (green) is in the apex of the myocardium. Parameters of ischemic zone are 

as follows: 𝜸 =. 𝟐, 𝒂𝟏 = 𝟐. 𝟐𝟓, 𝒂𝟐 = 𝟐. 𝟕𝟓, 𝜽𝟏 =. 𝟒𝝅, 𝜽𝟐 =. 𝟔𝝅, 𝝓𝟏 =.𝟒𝝅 and 𝝓𝟐 =. 𝟔𝝅. 

 

1D CNN 

Using the methods described above, we computed 20,000 in silico ECGs like those 

depicted in Figure 21 with stochastic ischemic zones parameters. The values of the stochastic in 

silico ischemic zone parameters and corresponding ECG signals were stored in a database for 

training a 1D CNN. 

Inputs of a 1D CNN are composed of a single beat in silico RD signal projected to one or 

more corresponding ECG lead (Table 3). The inputs are used to predict the outputs correlated 

with the 7 in silico ischemic zone parameters. Inputs are initially processed using four 1D 

convolutional layers (Figure 22, Part A). Part A is connected to a dense neural network via a 

dropout, flatten and pooling layers (Figure 22, Part B). Part B is connected to four dense layers 

and an output layer of size seven (Figure 22, Part C). The size of the output layer correlates with 

the stochastic in silico ischemic zone parameters described above. The input signals are scaled to 
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the max voltage of lead 1 (L1) and the in silico ischemic zone parameters are normalized using 

respective model boundaries of 𝑎 = [2, 3], 𝜃 = [0, 𝜋] and 𝜙 = [0, 𝜋]  

 

 

Figure 22 - Framework of the 1D CNN. Part A represents the Convolutional cluster. Part B 

is the processing cluster to connect part A to part C. Part C is the cluster of dense neural 

layers relating the convolutions to the in silico ischemic zone parameters. 

 

The first layer in Figure 22 convolutes the input layer using 132 different filters with 

kernel sizes of 10. The convolution between these filters is passed to the next layer of 64 filters 

with kernel of size 5. This process continues through two more convolutional layers of 32 and 16 

filters and of kernel size 3 and 2, respectively. All the convolutional layers used rectified linear 

unit (ReLU) activation functions. To allow slower and better training, a dropout layer was 

included with a drop out value of 0.5.  This correlates with half of the previous layer’s nodes 

being randomly selected to update the next layer. The following layer is a max pooling layer 

which reduces data by selecting the max value in set pool sizes to prevent overfitting. The pool 
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size was set to 2. The data was flattened to an array to connect the dense network to the 

convolutional network. The dense network is a serial connection of four dense neural layers. 

They decreased in size from 100, 50, 25 to 10 nodes, respectively. All dense layers use the ReLU 

activation function. The output layer has 7 nodes correlating with the prediction of the in silico 

ischemic zone parameters. The implementation of a described above 1D CNN is completed using 

Python IDE 50 with Keras deep learning package 51. 

The in silico ECG database has been split for training, validating, and testing the 

performance of the 1D CNN in prediction of the in silico ischemic zone parameters. In 

particular, the 80:20 ratio is used for training and testing sets while a validation set is taken from 

the training set in the same 80:20 proportion. An instance refers to an occurrence of an in silico 

ischemic zone parameters within any of these sets. Mean absolute error (MAE) is determined 

with respect to the in silico ischemic zones parameters of the validation set and the predicted 

ischemic zone parameters of the 1D CNN. Training of the 1D CNN continues until the MAE 

stops decreasing. MAE, squared error (𝑆𝐸𝑖) and mean squared error (MSE) are metrics used to 

validate the 1D CNN and are defined by (70)-(72). 

 

 
𝑀𝐴𝐸 =

1

𝑛
∑∑𝐴𝑏𝑠[𝑦𝑖𝑗 − 𝑓𝑖𝑗]

𝑚

𝑗

𝑛

𝑖

 (70) 

 
𝑆𝐸𝑖  =  ∑(𝑦𝑖𝑗 − 𝑓𝑖𝑗)

2

𝑚

𝑗

 (71) 

 
𝑀𝑆𝐸 = 

1

𝑛
∑𝑆𝐸𝑖

𝑛

𝑖

 (72) 
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𝑦𝑖𝑗 are the in silico ischemic zone parameters and 𝑓𝑖𝑗 are the 1D CNN predicted ischemic 

zone parameters. 𝑖 is the index for instance and 𝑗 is the index for the ischemic zone parameters. 

Values of 𝑛 are equal to the number of instances in the set and 𝑚 is equal to 7.  

Once training is completed, the efficacy of 1D CNN predictions is assessed using the 

coefficient of determination (COD) or 𝑟2. 𝑟2 is used to quantify the effect of number of leads 

utilized in training of the 1D CNN. It is defined by (73)-(76). 

 

 
𝑦𝑗 =

1

𝑛
∑𝑦𝑖𝑗

𝑛

𝑖=1

 (73) 

 
𝑆𝑗

0 = ∑(𝑦𝑖𝑗 − 𝑦𝑗)
2

𝑛

𝑖=1

 (74) 

 
𝑆𝑗 = ∑(𝑦𝑖𝑗 − 𝑓𝑖𝑗)

2
𝑛

𝑖=1

 (75) 

 
𝑟𝑗

2 = 1 −
𝑆𝑗

𝑆𝑗
0 (76) 

 

𝑖, 𝑗, 𝑛 and 𝑚 are the same as (70)-(72). 𝑟𝑗
2 is determined for each ischemic zone 

parameter, 𝑗, individually. The indices of 𝑗, from 1 to 7, represent the in silico ischemic zone 

parameters in the order 𝛾, 𝑎1, 𝑎2, 𝜃1, 𝜃2, 𝜙1 and 𝜙2, respectively. 

Results and Discussion 

𝒓𝟐 and number of leads 

Using the database of in silico ECGs and the associated stochastic ischemic zone 

parameters, described above, we trained the 1D CNN using cases with varying number of input 

ECG leads. The 𝑟𝑗
2 values for different cases are shown in Table 4. 
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Table 4. List of the 𝒓𝒋
𝟐 and 𝒓𝟐 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 values for the ischemic zone parameters predicted 

by trained CNNs. 

Case 

# 

# Of 

Leads 

𝑟1
2 (𝛾) 𝑟2

2 (𝑎1) 𝑟3
2 (𝑎2) 𝑟4

2 (𝜃1) 𝑟5
2 (𝜃2) 𝑟6

2 (𝜙1) 𝑟7
2 (𝜙2) 𝑟2𝐴𝑣𝑒𝑟𝑎𝑔𝑒 

1 1 0.54 0.75 0.79 0.77 0.77 0.79 0.78 0.74 

2 1 0.58 0.75 0.79 0.77 0.78 0.85 0.84 0.77 

3 2 0.62 0.82 0.86 0.87 0.87 0.91 0.90 0.84 

4 2 0.71 0.82 0.91 0.92 0.90 0.95 0.95 0.88 

5 2 0.69 0.83 0.88 0.85 0.86 0.92 0.92 0.85 

6 3 0.73 0.85 0.88 0.89 0.90 0.91 0.91 0.87 

7 3 0.70 0.83 0.87 0.84 0.83 0.93 0.93 0.85 

8 4 0.70 0.83 0.88 0.82 0.83 0.92 0.92 0.84 

9 4 0.72 0.86 0.90 0.89 0.90 0.93 0.93 0.87 

Figure 23 explains the effect of number of leads on efficacy of training the 1D CNN. It 

shows that 𝑟2 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 practically saturates for numbers of leads ranging between two and four 

increasing only by 3.5%. It’s worth to notice that the  𝑟2
2 (𝑎1) is lower in than the 𝑟3

2 (𝑎2) which 

indicates that our approach determines in silico ischemic zone edges near the epicardial surface 

(𝑎 = 3) better than near the endocardial surface (𝑎 = 2). As the number of leads increases, the 

theoretical maximum of 𝑟2 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 can be evaluated as a horizontal asymptote of the function 

𝑎 +
𝑏

𝑥2 shown in Figure 24. 

 



 56 

 

Figure 23 - Dependence of 𝒓𝒋
𝟐 and 𝒓𝟐 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 on the number of leads. Table 4 columns 

are averaged over cases with the same number of leads. 

 

 

 

Figure 24 – Dependence of theoretical 𝒓𝟐 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 on number of leads (𝒙). Blue curve is 

determined by fitting the function 𝒇(𝒙) =  𝒂 +
𝒃

𝒙𝟐 . The value of 𝒂 is equal to 𝟎. 𝟖𝟕𝟐𝟏. 



 57 

Analysis of 2-lead trained 1D CNN 

Figure 25 shows an example of stochastic in silico ischemic zones parameters and 

predicted ischemic zones parameters generated by a 2-lead trained 1D CNN (Table 4, case 4) 

with 𝑀𝑆𝐸 of 0.2404. 

 

 

Figure 25 - Two different views of the in silico and predicted ischemic zones shown in blue 

and green, respectively. Predicted and in silico values of 𝜸 are equal to 0.1191 and 0.1307, 

respectively. Grey surface reflects the Endocardial surface at 𝒂 = 𝟐. 

 

A validation of such training is attained by comparing the 𝑆𝐸𝑖 to the 𝑀𝑆𝐸. Figure 26 

shows that most of the instances (82.35%) in the test set have 𝑆𝐸𝑖 below the 𝑀𝑆𝐸. 

 



 58 

 

Figure 26 - Histogram of S𝑬𝒊 for all instances in the test set for case 4. 

 

It should be noted that when the in silico ischemic zone is characterized by a lower 𝛾 

value, the predicted ischemic zone has a higher value of 𝑆𝐸𝑖. In particular, the average values of 

𝛾 for instances with 𝑆𝐸𝑖 higher and lower than 𝑀𝑆𝐸 are 0.070 and 0.106, respectively. In turn, 

the average volumes (see (66)) for instances with 𝑆𝐸𝑖 higher and lower than 𝑀𝑆𝐸 are equal to 

2.57 𝑐𝑚3 and 2.39 𝑐𝑚3, respectively. 

Figure 27 shows how 𝑀𝑆𝐸 varies in response to changes in values of 𝛾 and volume of 

the in silico ischemic zone. One can see those instances with very low 𝛾 have the greater 𝑀𝑆𝐸 

ranging between 1 and 3. Instances with very small ischemic volumes also have higher MSE.  

On the contrary, for 𝛾 greater than 0.01 and for volumes greater than 2 𝑐𝑚3 the 𝑀𝑆𝐸 decreases 

on the order of magnitude, proving that the 2-lead trained CNN is more effective in predicting 

ischemia for greater values of 𝛾 and ischemic zone volume parameters. 
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Figure 27 - Dependence of 𝑴𝑺𝑬 on values of 𝜸 and volume of the in silico ischemic zone. 

 

Conclusions 

Overall, we have demonstrated the feasibility of using a 1D CNN to detect the 

configuration and severity of myocardial ischemia based on ECG measurements using just a few 

surface leads. Unlike previous studies, we include severity of ischemia in our CNN to predict 

ischemia during early stages of IHD. We found that the major improvement of 𝑟2 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 by 

12.58% occurs when the number of leads increases from one to two. Further increase of the 

number of leads does not results in feasible improvement of accuracy of ischemia detection. 

Based on these observations, we conclude that a two-lead configuration is sufficient to determine 

the ischemic zone parameters within an in silico left ventricle if the severity and volume are 

greater than 0.01 and 2 𝑐𝑚3, respectively. This may pave the road for broader use of miniature 

wearable ECG devices applied in outpatient settings.   

It should be noted that our numerical simulations most accurately predict ischemia in the 

left ventricle, so if the ischemia occurrs outside that area, the neural network described above 
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will most likely locate ischemia within the model bounds closest to the actual ischemia site. 

Similarly, the size of our model’s left ventricle is exaggerated near the apex. Nonetheless, our 3D 

model allows for useful ischemia prediction since the maximum rRMSe has been shown to be 

minimal in a thick walled heart model compared to a normal wall model 52. 

In our simulations, ischemia was approximated by a single variable 𝛾 which allowed us 

to adequately quantify major ischemic effects, but caused an overestimation of the ionic effects 

within the ischemic volume 21. Likewise, non-homogenous volume conductors are known to 

affect the ECG amplitude 53 but were not explored in this research.  

Finally, this  approach to detect ischemia is based on the analysis of a single heartbeat. 

However, training of the neural network can be significantly more effective if implemented using 

a set of successive heartbeats. An inclusion of real ECG signals can increase the merit of the 

model by incorporating natural variability within the ECG signal. We plan to include discussed 

features in our future studies. 
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CHAPTER IV: PREDICTING FUTURE STATES OF ISCHEMIA VIA NEURAL 

NETWORKS: AN IN SILICO STUDY 

Introduction 

Ischemic heart disease (IHD) is one of the largest threats to public health. Every year 

over 9 million people die from IHD26. These deaths could be preventable with constant 

monitoring of the heart and invasive action. Currently, feasibility of constant monitoring is 

limited by cost, practicality, and current technology. Introduction of a process to monitor IHD 

and preemptively predict the changes in IHD could prove to reduce deaths worldwide 

significantly. 

IHD typically occurs when coronary arteries around the heart become occluded and 

reduce the blood flow to the myocardium. When the input flow of oxygenated blood is less than 

the demand for oxygenated blood by the myocardium, the myocardial cells begin to die and 

exhibit electrophysiological changes54. When the coronary artery becomes completely occluded, 

or occluded for an extended period, the myocardial cells quickly die and may result in a 

myocardial infarction (MI) or heart attack. The location of the ischemic zone within the heart 

depends on where the occlusion of the coronary artery occurs. As the occlusion of the coronary 

arteries continue, the ischemic zone continues to expand, and the electrophysiological changes 

become more severe until the cells become completely necrotic55,56 and become scar tissue. 

The configuration of an ischemic zone varies depending on many factors such as 

duration, percent of coronary artery occluded, occlusion location, etc57,58. The general shape of 

ischemic zones are complex and are typically simulated using simple geometries59. The change 

from ischemic cells, within the ischemic zone, to healthy cell outside the ischemic zone are 

abrupt. The abrupt changes are called border zones. Border zones are typically thin and are 
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reported from .8 to 8 mm in width and coincide with the gradient of ionic concentrations which 

control the electrophysiological dynamics of myocardial cells60,61. 

IHD is normally determined using the Electrocardiogram (ECG). The ECG is a time 

series signal which is calculated based upon electrodynamic principles62,63 in which the 

propagation of bioelectrical waves throughout the myocardium are recorded from different 

observation locations. Using the potential difference between multiple recording locations, called 

leads, clinicians can determine changes in the ECGs to approximate the configuration and 

severity of IHD based upon normal statistics of heart disease. Recently artificial intelligence (AI) 

has been applied to ECGs via deep learning/neural networks to determine heart diseases 

including IHD35,64,65. Most work has focused on classification issues to determine if IHD has 

occurred or classifies discrete location of ischemic zones. Unfortunately, to the authors 

knowledge, there is no work which peruses predicting continuous ischemic configurations in real 

time using AI or deep learning. 

Currently, the large amount of data to train a deep learning system to predict ischemic 

conditions is not available due to the complexity of observing and recording ischemic events 

while they are occurring. The largest study, known to the authors, had 29 subjects, and used 

specialized devices to record the electrical activity of the heart57. Therefore, the use of an in 

silico model is desired to produce the data for deep learning. 

As ischemia progresses, the volume and severity of ischemic zones typically increase. 

Determining the growth of ischemia would intel using time series data at set intervals to 

determine the progression of underlining characteristics within ECG signals. Convolutional 

neural networks (CNN) use convolutions of filters with images or signals to extrapolate data. 

Long-Short Term Memory66 (LSTM) neural networks are a type of recurrent neural network 
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(RNN) which incorporate memory gates which allow for back propagation to occur without the 

vanishing gradient problem. The vanishing gradient problem occurs in an RNN when the 

gradient of the loss function is operated upon too many times by previous layers and the effect of 

backpropagation fails to update the weight of layer too far from the output layer. An LSTM, as a 

type of RNN, allows a neural network to use temporal data in which the previous time step 

affects the output of the next time step in temporally discrete data. 

We propose using a simplified model for in silico stochastic growth of ischemic zones to 

train a deep learning neural network to predict the future states of ischemia. Effectiveness of the 

neural network will be determined via regression analysis. Analysis of the neural networks will 

include merit based on the number of leads applied to train the neural network. Performance of 

neural network will also be assessed using common ischemic type growth. 

Methods 

Modeling 

Three-dimensional modeling of the electrophysiological dynamics of the left ventricle 

were completed using the same method proposed in our previous work24 (Chapter III). The 

previous method approximated the electrical activity of the left ventricle while including 

dynamics for both normal and ischemic cells. Due to the simplistic nature of the model, 

simulating large amount of stochastic data is possible in a timely and efficient manner. 

Simulating ischemia was done in the same manner of raising the single variable 𝑢𝑜 to produce 

severity (𝛾 = 𝑢0
′ − 𝑢0) within a desired region to approximate the effects that ischemia has 

within the myocardium. 

  



 64 

Stochastic Ischemic Growth and Severity 

The directed random walk uses methods like previous work67 in which a preferred 

direction is chosen but allows stochastic changes within specific bounds such that a defined 

direction is preferred. An ischemic zone is defined as the bounds which make up a volume 

(𝑎1, 𝑎2, 𝜃1, 𝜃2, 𝜙1, and 𝜙2) and corresponding severity (𝛾) within a bounded domain. Initial 

ischemic zone (𝐼𝑍𝑡+∆𝑡) is computed via stochastic methods shown in Chapter III. After an initial 

ischemic zone is computed, a directed random walk is applied to allow for non-linear isotropic 

growth of the ischemic zone by scaling the arc lengths which comprise the ischemic zone 

(𝑆𝑎, 𝑆𝜃 𝑎𝑛𝑑 𝑆𝜙). 

A random step is applied within bounds of the directed direction. The direction is chosen 

to correlate with the slope of the line from start point (𝑆𝑃) to end point (𝐸𝑃). Time between 𝑆𝑃 

and 𝐸𝑃 is normalized to 0 and 1, respectively. SP is randomly chosen using a continuous 

uniform random number generator (CURNG) such that 0 ≤ 𝑆𝑃 ≤ 1.1. The bounds of 𝑆𝑃 

represent the amount of scaling with respect to 𝐸𝑃 which is chosen to be 1 in all simulations and 

represent the parameters of 𝐼𝑍𝑡+∆𝑡 previously calculated. Including the bound 1.1 allows for 

shrinking of the ischemic zone. The directed random walk uses the slope (𝑚) between SP and EP 

to bound the random walk. The step size is bounded by the variable 𝜀 which allowed step size of 

the random step to deviate from the linear slope 𝑚. A value of 𝜀 = 0 indicates the random walk 

is completely linear and increasing 𝜀 allows for non-linearity scaling of the ischemic zone 

growth Each step changes temporally by an arbitrary amount where Δ𝑡 =
1

𝑁
 where N is the 

number of steps being taken. For this research, 𝜀 was picked using a CURNG such that . 25 ≤

𝜀 ≤  .75 for each simulation individually. Starting at 𝐸𝑃 (𝑆𝑛 = 1) and walking backwards, a 

random change in scale is computed and added to the previous scale value. The next scale value 
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is determined by using the current scaling value and shifting by the slope to the next time step to 

determine the new directed scaling value. The process is continued until all steps are taken. The 

process is described by (77). 

 

 𝑆𝑛−1 = 𝑆𝑛 + {𝑌(𝑥): 𝑥 ∈ [−𝜀 𝑚, 𝜀 𝑚]} − 𝑚∆𝑡 
(77) 

 

𝑆𝑛 is the current scaling value, 𝑆𝑛−1 is the previous scaling value and {𝑌(𝑥): 𝑥 ∈

[−𝜀 𝑚, 𝜀 𝑚]} is a random real number in the domain of [−𝜀 𝑚, 𝜀 𝑚]. In each previous step 𝑆𝑛−1 

becomes the new 𝑆𝑛. Using this method, the scaling factors are determined in a fashion like 

Figure 28. 

 

 

Figure 28 – Directed random walk. The scaling value will be used to create stochastic 

ischemic growth by varying parameters 𝒔𝒂, 𝒔𝜽 and 𝒔𝝓.  
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Applying the scaling factors to the three arc lengths, mentioned earlier, in an isotropic 

manner, results in a growing ischemic zone volume. All ischemic zones were bounded to be 

within the boundaries of the model. An example of increasing size is shown in Figure 29. 

 

 

Figure 29 – Example of growing ischemic zones. The volume contained in light blue 

represents the IZ at 𝒕 − 𝟒∆𝒕, the red represents the IZ at 𝒕 and blue represents the IZ at 

𝒕 + ∆𝒕. 

 

Using the same method, the variable 𝛾 is scaled in the same manner except the bound for 

𝑆𝑃 vary depending on the slope of the random walk of the size scaling. If the slope, 𝑚, is 

positive, then 0 ≤ 𝑆𝑃 ≤ 1 and if the slope is negative then 1 ≤ 𝑆𝑃 ≤ 1.1. This method allows 

for more variation between the scaling of the volume and severity. 

Using the stochastic directed random walk methods, the ECGs can be simulated for each 

temporally discrete ischemic zone. Assuming the torso as an infinite homogeneous conductor we 

can simulate a body surface potential by (78). 
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 𝛷 =
1

4𝜋𝜎
∫ 𝐽 𝑖 ∙ 𝛻 (

1

𝑟
)

𝜏

𝑑𝜏 
(78) 

 

Where 𝜎 is the conductivity of the torso, 𝐽𝑖⃑⃑  is the current dipole at each point in the 

myocardium, 𝑟 is the distance from 𝐽𝑖⃑⃑  to the recording electrode and 𝜏 is the volume of the 

myocardium. Extracellular potential, 𝛷, is calculated at discreate time instances. Recording 

electrodes and leads were placed in the same positions as Chapter III. Using these methods, 

Figure 30 depicts the ECGs associated with lead L1 for the ischemic zones shown in Figure 30 

(color coordinated). 

 

 

Figure 30 – ECG signals associated with the increasing size of ischemic zones in Figure 29.  
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1D CNN-LSTM Neural Network 

To process the ECG time series data, a 1D CNN-LSTM neural network is applied to 

capture both the temporal and signal variations of the ischemic zones. The 1D CNN-LSTM 

neural network will use previous time distributed ECGs signals from multiple leads as the inputs 

to predict ischemic zone configuration 𝐼𝑍𝑡+∆𝑡 of the next time step. Denoting the next time step 

with subscript 𝑡 + ∆𝑡, the 1D LSTM uses {𝐸𝐶𝐺𝑡, 𝐸𝐶𝐺𝑡−∆𝑡, … , 𝐸𝐶𝐺𝑡−𝑁∆𝑡} to predict 𝐼𝑍𝑡, where 

N is the total number of previous ECGs. In this work 𝑁 = 4 for 5 previous time steps. Each set 

contained six ischemic zone parameters and the corresponding ECGs. Using Figure 29 as a 

reference, the dark blue ischemic zone represents 𝐼𝑍𝑡+∆𝑡 and using Figure 30 for reference, all 

ECGs, except the dark blue, were {𝐸𝐶𝐺𝑡 , 𝐸𝐶𝐺𝑡−∆𝑡, … , 𝐸𝐶𝐺𝑡−𝑁∆𝑡} for that set. 

Using these inputs and outputs, the layout of the 1D CNN-LSTM is displayed in Figure 

31. The first layer is the input of multiple ECG leads which are time distributed for 𝑁 + 1 

previous time steps. The four 1D Convolutional layers (purple) decrease in number of filters and 

kernel size. The convolutional layers are connected to a dropout, pooling and flatten layers which 

slow training, decrease data size and flatten the data, respectively. The four dense layers (orange) 

decrease in number of nodes and process data from the convolutional layers to be used with the 

LSTM layer. The LSTM layer (gray) uses time distributed data from the dense layers in 

sequential order to predict the next time steps ischemic zone. The final layer is the output layer 

which correlates with the ischemic zone parameters 𝐼𝑍𝑡+∆𝑡. 
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Figure 31 – Layout of the 1D CNN-LSTM. The multiple ECG lead inputs are distributed 

across different times and are processed by all the layers separately until the LSTM layer 

which process the incoming data sequentially.  

 

Results and Discussions 

Performance of 1D CNN-LSTM 

Using the method presented above, over 10,000 stochastic in silico growing ECGs were 

computed. After training different neural network layouts, the layout shown in Figure 31 had the 

optimal performance. Using this layout, the performance with respect to number of leads used in 

training was recorded in Table 5. 
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Table 5 – Coefficient of determination (𝒓𝟐) for multi-regression analysis of the 1D CNN-

LSTM for all IZ parameters. Different cases show the performance of the 1D CNN-LSTM 

depending on the number of leads used in the training process. 

Case 

Number 

Number 

of Leads 

𝑟2 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 

𝑟1
2 (𝛾) 𝑟1

2 (𝑎1) 𝑟1
2 (𝑎2) 𝑟1

2 (𝜃1) 𝑟1
2 (𝜃2) 𝑟1

2 (𝜙1) 𝑟1
2 (𝜙2) 

1 2 0.598 0.32 0.52 0.67 0.65 0.65 0.68 0.69 

2 2 0.703 0.54 0.67 0.72 0.70 0.70 0.80 0.80 

3 3 0.701 0.50 0.63 0.65 0.73 0.74 0.83 0.82 

4 3 0.702 0.49 0.66 0.73 0.71 0.73 0.80 0.79 

5 4 0.764 0.58 0.71 0.78 0.79 0.79 0.85 0.85 

6 4 0.767 0.55 0.77 0.80 0.77 0.78 0.84 0.85 

7 4 0.805 0.65 0.77 0.79 0.83 0.83 0.89 0.88 

Averaging the cases which had the same number of leads used resulted in a general trend 

of mostly linear increase in 𝑟2 as the number of leads increased. These overall trends are shown 

in Figure 32. 
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Figure 32 – Average 𝒓𝟐 for all IZ parameters vs number of leads used to train the 1D CNN-

LSTM. Increasing the number of leads increases all the 𝒓𝟐 values. Values are found by 

averaging 𝒓𝟐 values in Table 5 of case numbers with the same amount of number of leads. 

 

Overall, the 𝑟2 of all ischemic zone parameters increased as the number of leads used in 

training increased. 𝑟1
2 (𝛾) was the lowest in all circumstances which was noted in previous 

research (Chapter III). When predicting future states of ischemia, the performance of the 1D 

CNN-LSTM model increased as the number of leads increased. Noting the 𝑟2 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 as the 

overall performance of the neural network, the theoretical maximum 𝑟2 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 was found by 

assuming a maximum value of 𝑎, in which 𝑎 ≤ 1, and assuming the 𝑟2 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 approaches an 

asymptote as the number of leads increases. The maximum 𝑟2 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is found with the 

equation 𝑓(𝑥) = 𝑎 +
𝑏

𝑥
 where 𝑥 is the number of leads used in training. Maximum 𝑟2 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

is shown as 𝑎 in Figure 33. 
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Figure 33 - 𝒓𝟐 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 vs number of leads. Assuming an asymptotic maximum value 𝒂, 

the points were fitted using the equation 𝒇(𝒙) = 𝒂 +
𝒃

𝒙
. Theoretical maximum 𝒓𝟐 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 

was found to be 𝒂 = 𝟎. 𝟖𝟗. 

 

Calibration of the four-lead trained model (Case 7, Table 5) was completed on the 

predicted values against the true values for both volume and 𝛾 in Figure 34. Volume was 

calculated using (66). 
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Figure 34 – Calibration of the four-lead trained model (Case 7, Table 5). The model tends 

to underpredict the volume. Calibration shows the prediction of the model for the variable 

𝜸 performed well with some outliers. 

 

For the four-lead trained model (Case 7, Table 5) the normalized root mean square error 

(NRMSE or 𝑄) between the predicted and in silico (True) data are reported for each individual 

parameter individually as 𝑄𝛾 = 0.17, 𝑄𝑎1
= 0.11, 𝑄𝑎2

= 0.11, 𝑄𝜃1
= 0.12, 𝑄𝜃2

= 0.12, 𝑄𝜙1
=

0.10 and 𝑄𝜙2
= 0.10. Overall, the models performance for predicting 𝛾 was less than the other 

ischemic zone parameters. 

Predicting early stages of LAD occlusion 

Simulating occlusion of the left descending artery (LAD) is completed through assuming 

quick growth from the mid-myocardial region outward57. Typically, LAD effects the region 

around the apex and interventricular region of the heart68. This growth may be approximated by 

assuming an initial point of growth and expands outwards through logistic type growth. We 

assumed from a starting point for the ischemic zone configuration parameters are varied using a 

scaling factor until the end values are obtained. For the volume parameters, an initial point of 

𝑆 =  0 of the final value is assumed and ends at 𝑆 = 1 for the end value of the ischemic zone 
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volume. Likewise, the parameter 𝛾 was varied from 𝛾 = .01 to 𝛾 = .15. Figure 35 shows the 

logistic derived scaling value for the ischemic zone parameters. 

 

 

Figure 35 – Logistic scaling factor for simulating LAD IZ growth. Logistic growth is 

normalized for scaling 𝜸. 

 

Figure 36 depicts the simulated LAD growth with a beginning center point of 𝑎𝑐𝑝 =

2.5 𝑐𝑚, 𝜃 = .6 𝜋 𝑟𝑎𝑑𝑠 𝑎𝑛𝑑 𝜙 = .5 𝜋 𝑟𝑎𝑑𝑠 and expanding out to 𝑎1 = 2.25 𝑐𝑚, 𝑎2 =

2.75 𝑐𝑚, 𝜃1 = .5 𝜋 𝑟𝑎𝑑𝑠, 𝜃2 = .7 𝜋 𝑟𝑎𝑑𝑠, 𝜙1 = .4 𝜋 𝑟𝑎𝑑𝑠 𝑎𝑛𝑑 𝜙2 = .6 𝜋 𝑟𝑎𝑑𝑠. The volume 

starts from 0 𝑐𝑚3 and ends at 3.4 𝑐𝑚3. 
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Figure 36 – Simulated LAD IZ growth. 

 

Using the controlled ischemic growth, a database of ischemic parameters and the 

associated ECGs was created. The trained 1D CNN-LSTM (case 7 in Table 5) was used to 

predict the next time step of the LAD ischemic growth dataset. The ischemic zone parameters for 

the next step predictions are shown in Figure 37. 

 

 

Figure 37 – 1D CNN-LSTM predictions for 𝑰𝒁𝒕+𝟏 parameters. Data was smoothed for 

clarity using a moving mean over 10 time steps. 



 76 

Volume was calculated using IZ parameters 𝑎1, 𝑎2, 𝜃1, 𝜃2, 𝜙1 and 𝜙2 and (66). Figure 38 

shows the predictions of the simulated LAD growth for both volume and 𝛾. 

 

 

Figure 38 – Predicted and in silico (True) values for volume and 𝜸 of 𝑰𝒁𝒕+𝟏. The 𝒓𝟐 for 

volume and 𝜸 are 0.91 and 0.40, respectively. 

 

The mean square error (MSE) between in silico and predicted for both volume and 𝛾, in 

Figure 38, was 0.41 and 0.0021, respectively. The NRMSE between in silico and predicted for 

both volume and 𝛾 in Figure 38 was 0.19 and 0.36, respectively. 𝑟2 between the predicted and in 

silico curves for volume and 𝛾 in Figure 38 is 0.91 and 0.40, respectively. In the initial growth 

when the volume is less than 1.5 𝑐𝑚3, before the first 150-time steps, the 1D CNN-LSTM model 

consistently underestimated the volume and overestimate 𝛾. After the volume passes 1.5 𝑐𝑚3 the 

1D CNN-LSTM predicted the volume with lower error but continued to underpredicted 𝛾. The 

results for volume are consistent with the calibration shown in Figure 34 as the trained model 

showed to underestimate the volume. 𝛾 appears to fit poorly initially but after volume passes the 

threshold of 1.5 𝑐𝑚3 the performance predicting 𝛾 appears to become more stable but continued 
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to underpredict as well. In general, when the predicted volume was higher, the predicted 𝛾 

shifted lower and vice versa. While undesired, the balance between over and under predicting 

volume and 𝛾 is understandable through normal electrocardiography theory. Smaller gradients, 

induced by a smaller 𝛾, within a larger ischemic zone can produce ECG signal alternans like 

larger gradients within a smaller ischemic zone. Therefore, the 1D CNN-LSTM attempts to 

predict correctly by adjusting around the true value. 

Conclusions 

In conclusion, the 1D CNN-LSTM has shown to correlate previous ECG signals with 

future ischemic zone parameters well. The model fit training data from a directed random walk 

method well with the best performance using 4 leads to train a 1D CNN-LSTM with a mean 

𝑟2 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 0.78. Continuing to increase the number of leads was shown to improve the 

performance of the 1D CNN-LSTM to a theoretical maximum of 𝑟2 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 0.89. The 1D 

CNN-LSTM model has been shown to have the ability to predict some forms of cardiac ischemia 

induced by LAD occlusion. 

It should be noted that the current 1D CNN-LSTM can predict on ischemia away from 

the endocardial and epicardial boundaries, 𝑎 = 2 and 𝑎 = 3 respectively. Predictions near the 

boundary condition tend to underperform due to the size of the training data set and low 

occurrence of ischemic zones incorporating the boundary conditions in the training dataset. This 

issue could easily be addressed in future studies by incorporating more training instances that 

incorporate the boundaries. Performance could also be improved if the number of ischemic zone 

parameters was reduced but may impede further investigations into the workings of the 1D 

CNN-LSTM. All issues noted in previously studies still stand but were also previously 

addressed. All possible hindrances plan to be addressed in future studies.
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CHAPTER V: CONCLUSIONS 

The work presented investigated using in silico ECGs to theoretically determine 

myocardial ischemia within the left ventricle. The foundations are clearly laid out how to 

approach the problem of predicting the configuration, severity, and future sates of ischemia in 

Chapter II, Chapter III and Chapter IV. Using the materials from the introduction (Chapter I), 

Chapter II, Chapter III and Chapter IV show the multi-disciplinary approaches to theoretically 

predict myocardial ischemia using a non-invasive procedure. 

In Chapter II it is demonstrated that a 2D model of the left ventricle can be used to 

simulate the electrical activity of the left ventricle using the BOFC reaction diffusion equations. 

Transmural ischemic scenarios can be impressed upon the 2D model by increasing 𝑢𝑜 within the 

ischemic zone. Assuming the ischemic zone to propagate from the endocardial to epicardial 

region, ECG signals from a single lead were computed at various angles relative to the recording 

electrode. A single ratio between the T-wave amplitude and the ST segment deviation was 

defined. Using analytical methods, a threshold of 
𝜕𝛾

𝜕𝑡
> 0.018 𝑚𝑖𝑛−1 was determined to be used 

in conjunction with typical ischemic growth to detect the early stages of transmural ischemic 

growth which are aligned with a single recording electrode. 

Chapter III demonstrated that a simplified 3D geometry made through using skewed 

spherical coordinates can approximate the left ventricle. The simplified geometry is applicable to 

use finite difference method to solve the BOFC reaction diffusion equation. Within the 

boundaries of the model an ischemic zone was defined through stochastic measure to represent 

numerous different configurations and severity combinations. Ischemic zones induced ECG 

alternans that could be detected from multiple lead positions. Using 20,000 stochastically defined 
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ischemic zone configurations the corresponding ECGs were recorded and stored into a database. 

A 1D CNN was applied to predict the ischemic zone configuration from varying number of input 

ECG leads. It was shown that the 1D CNN stopped improving on 𝑟2 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 when increasing 

above two leads. The two-lead trained 1D CNN had a mean 𝑟2 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 0.85. In addition, it 

was shown that most of the error in the predictions by the 1D CNN was due to low 𝛾 and/or 

volume under 0.02 and 2 𝑐𝑚3, respectively. 

Chapter IV focused on predicting future states of ischemia using a 1D CNN-LSTM. 

Through similar methods to Chapter III, ischemic zones were generated with changing isotopic 

volumes and severity. The volumes and severity were scaled using a directed random walk 

method where a scaling parameter was associated with each time step. Using the stochastic 

growing ischemic zones, the associated ECGs were generated for each time step which included 

multiple leads. A 1D CNN-LSTM was trained using five previous time steps and the associated 

ECG signals to predict the ischemic zone parameters for the next time step. The best 

performance was shown using four leads to train the 1D CNN-LSTM with an 𝑟2 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =

0.78. The 1D CNN-LSTM was used to predict in silico LAD growth in which volume and 𝛾 was 

predicted with 𝑟2 = 0.91 and 𝑟2 = 0.40, respectively. 
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APPENDIX A: ADDITIONAL INFORMATION FOR CHAPTER III: REACTION-

DIFFUSION INFORMED APPROACH TO DETERMINE MYOCARDIAL ISCHEMIA 

USING STOCHASTIC IN SILICO ECGS AND CNNS24 

Metric Tensor 

Metric tensor is presented in matrix form with “i” and “j” vary by a, θ, φ, respectively.  

𝑔𝑖𝑗 =

𝐶𝑜𝑠[𝜙]2 + (𝐶𝑜𝑠[𝜃]2 + 𝑠2𝑆𝑖𝑛[𝜃]2)𝑆𝑖𝑛[𝜙]2 𝑎(𝑠2 − 1)𝐶𝑜𝑠[𝜃]𝑆𝑖𝑛[𝜃]𝑆𝑖𝑛[𝜙]2 𝑎(𝑠2 − 1)𝐶𝑜𝑠[𝜙]𝑆𝑖𝑛[𝜃]2𝑆𝑖𝑛[𝜙]

𝑎(𝑠2 − 1)𝐶𝑜𝑠[𝜃]𝑆𝑖𝑛[𝜃]𝑆𝑖𝑛[𝜙]2 𝑎2(𝑠2𝐶𝑜𝑠[𝜃]2 + 𝑆𝑖𝑛[𝜃]2)𝑆𝑖𝑛[𝜙]2 𝑎2(𝑠2 − 1)𝐶𝑜𝑠[𝜃]𝐶𝑜𝑠[𝜙]𝑆𝑖𝑛[𝜃]𝑆𝑖𝑛[𝜙]

𝑎(𝑠2 − 1)𝐶𝑜𝑠[𝜙]𝑆𝑖𝑛[𝜃]2𝑆𝑖𝑛[𝜙] 𝑎2(𝑠2 − 1)𝐶𝑜𝑠[𝜃]𝐶𝑜𝑠[𝜙]𝑆𝑖𝑛[𝜃]𝑆𝑖𝑛[𝜙] 𝑎2(𝐶𝑜𝑠[𝜙]2(𝐶𝑜𝑠[𝜃]2 + 𝑠2𝑆𝑖𝑛[𝜃]2) + 𝑆𝑖𝑛[𝜙]2)

 

Inverse Metric Tensor 

Inverse metric tensor is presented in matrix form with “i” and “j” vary by a, θ, φ, 

respectively. 

𝑔𝑖𝑗 =

𝐶𝑜𝑠[𝜙]2 +
(𝑠2𝐶𝑜𝑠[𝜃]2 + 𝑆𝑖𝑛[𝜃]2)𝑆𝑖𝑛[𝜙]2

𝑠2
−

(−1 + 𝑠2)𝐶𝑜𝑠[𝜃]𝑆𝑖𝑛[𝜃]

𝑎𝑠2
−

(−1 + 𝑠2)𝐶𝑜𝑠[𝜙]𝑆𝑖𝑛[𝜃]2𝑆𝑖𝑛[𝜙]

𝑎𝑠2

−
(−1 + 𝑠2)𝐶𝑜𝑠[𝜃]𝑆𝑖𝑛[𝜃]

𝑎𝑠2

𝐶𝑠𝑐[𝜙]2(𝐶𝑜𝑠[𝜃]2 + 𝑠2𝑆𝑖𝑛[𝜃]2)

𝑎2𝑠2
−

(−1 + 𝑠2)𝐶𝑜𝑠[𝜃]𝐶𝑜𝑡[𝜙]𝑆𝑖𝑛[𝜃]

𝑎2𝑠2

−
(−1 + 𝑠2)𝐶𝑜𝑠[𝜙]𝑆𝑖𝑛[𝜃]2𝑆𝑖𝑛[𝜙]

𝑎𝑠2
−

(−1 + 𝑠2)𝐶𝑜𝑠[𝜃]𝐶𝑜𝑡[𝜙]𝑆𝑖𝑛[𝜃]

𝑎2𝑠2

𝐶𝑜𝑠[𝜙]2(𝑠2𝐶𝑜𝑠[𝜃]2 + 𝑆𝑖𝑛[𝜃]2) + 𝑠2𝑆𝑖𝑛[𝜙]2

𝑎2𝑠2

 

Christoffel Symbol 

The Christoffel symbols are presented in a matrix form for each upper index. “i” and “j” 

vary by a, θ, φ, respectively. 

Γ𝑖𝑗
𝑎  =  (

0 0 0
0 −𝑎 0
0 0 −𝑎 𝑆𝑖𝑛[𝜃]2

) Γ𝑖𝑗
𝜃  =  (

0 0 𝑎−1

0 0 𝐶𝑜𝑡[𝜑]

𝑎−1 𝐶𝑜𝑡[𝜑] 0

) 

Γ𝑖𝑗
𝜑
 =  (

0 𝑎−1 0
𝑎−1 0 0

0 0
−𝑆𝑖𝑛[2𝜃]

2

)  
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∇̂2𝑢𝑖𝑗𝑘
𝑡 = 𝑔𝑎𝑎

𝑖𝑗𝑘

𝑢𝑖+1𝑗𝑘
𝑡 − 2 𝑢𝑖𝑗𝑘

𝑡 + 𝑢𝑖−1𝑗𝑘
𝑡

∆𝑎2
+ 𝑔𝜃𝜃

𝑖𝑗𝑘

𝑢𝑖𝑗+1𝑘
𝑡 − 2 𝑢𝑖𝑗𝑘

𝑡 + 𝑢𝑖𝑗−1𝑘
𝑡

∆𝜃2

+ 𝑔𝜙𝜙
𝑖𝑗𝑘

𝑢𝑖𝑗𝑘+1
𝑡 − 2 𝑢𝑖𝑗𝑘

𝑡 + 𝑢𝑖𝑗𝑘−1
𝑡

∆𝜙2

+ 2𝑔𝑎𝜃
𝑖𝑗𝑘

𝑢𝑖+1𝑗+1𝑘
𝑡 − 𝑢𝑖+1𝑗−1𝑘

𝑡 − 𝑢𝑖−1𝑗+1𝑘
𝑡 + 𝑢𝑖−1𝑗−1𝑘

𝑡

4∆𝑎∆𝜃

+ 2𝑔𝑎𝜙
𝑖𝑗𝑘

𝑢𝑖+1𝑗𝑘+1
𝑡 − 𝑢𝑖+1𝑗𝑘−1

𝑡 − 𝑢𝑖−1𝑗𝑘+1
𝑡 + 𝑢𝑖−1𝑗𝑘−1

𝑡

4∆𝑎∆𝜙

+ 2𝑔𝜃𝜙
𝑖𝑗𝑘

𝑢𝑖𝑗+1𝑘+1
𝑡 − 𝑢𝑖𝑗+1𝑘−1

𝑡 − 𝑢𝑖𝑗−1𝑘+1
𝑡 + 𝑢𝑖𝑗−1𝑘−1

𝑡

4∆𝜃∆𝜙

+ ( 𝑔𝜃𝜃
𝑖𝑗𝑘

 𝑎𝑖𝑗𝑘 + 𝑔𝜙𝜙
𝑖𝑗𝑘

𝑎𝑖𝑗𝑘 𝑆𝑖𝑛[𝜙𝑖𝑗𝑘]
2
)
𝑢𝑖+1𝑗𝑘

𝑡 − 𝑢𝑖−1𝑗𝑘
𝑡

2∆𝑎

−  2 (
𝑔𝑎𝜙

𝑖𝑗𝑘

𝑎𝑖𝑗𝑘
+ 𝑔𝜃𝜙

𝑖𝑗𝑘
𝐶𝑜𝑡[𝜙𝑖𝑗𝑘])

𝑢𝑖𝑗+1𝑘
𝑡 − 𝑢𝑖𝑗−1𝑘

𝑡

2∆𝜃

+ (
𝑔𝜙𝜙

𝑖𝑗𝑘
𝑆𝑖𝑛[2𝜙𝑖𝑗𝑘]

2
−

2 𝑔𝑎𝜃
𝑖𝑗𝑘

𝑎𝑖𝑗𝑘
)

𝑢𝑖𝑗𝑘+1
𝑡 − 𝑢𝑖𝑗𝑘−1

𝑡

2∆𝜙
 

Other BOFC Equations 

𝜏𝑣
− = (1 − 𝐻[𝑢 − 𝜃𝑣

−])𝜏𝑣1
− + 𝐻[𝑢 − 𝜃𝑣

−]𝜏𝑣2
−  

𝜏𝑤
− = 𝜏𝑤1

− + (𝜏𝑤2
− − 𝜏𝑤1

− )(1 + tanh[𝑘𝑤
−(𝑢 − 𝑢𝑤

−)])/2 

𝜏𝑠𝑜 = 𝜏𝑠𝑜1
+ (𝜏𝑠𝑜2

− 𝜏𝑠𝑜1
)(1 + tanh[𝑘𝑠𝑜(𝑢 − 𝑢𝑠𝑜)])/2 

𝜏𝑠 = (1 − 𝐻[𝑢 − 𝜃𝑤])𝜏𝑠1 + 𝐻[𝑢 − 𝜃𝑤]𝜏𝑠2 

𝜏𝑜 = (1 − 𝐻[𝑢 − 𝜃𝑜])𝜏𝑜1
+ 𝐻[𝑢 − 𝜃𝑜]𝜏𝑜2

 

𝑣∞ = 1 − 𝐻[𝑢 − 𝜃𝑣
−] 

𝑤∞ = (1 − 𝐻[𝑢 − 𝜃𝑜]) (1 −
𝑢

𝜏𝑤∞

) + 𝐻[𝑢 − 𝜃𝑜]𝑤∞
∗  


