
LI, MINGYAN, Ph.D. Penalized Weighted Methods for Robust Offline and Online
Learning. (2024)
Directed by Dr. Haimeng Zhang. 101 pp.

Data contamination is a prevalent issue in real-life data sets, with approximately

10% of observations being affected, as noted by Hampel et al. in 1986 [32]. The

presence of data contamination undermines the assumptions underlying existing

machine learning algorithms. In this dissertation, we address this challenge by

employing a penalized weighted method to enhance Stochastic Gradient Descent

(SGD) and Random Forest (RF) models for regression analysis, particularly when

mean-shift data contamination is present in the data set. The penalized weighted

method assigns individual weights to observations in the training data set, and a

Lasso-like penalty is applied to the individual weight. These individual weights,

ranging from 0 to 1, govern the contribution of each training observation to the

estimation of model parameters or the prediction of response variables. We present a

novel approach, Penalized Weighted Stochastic Gradient Descent (PWSGD), designed

for simultaneous outlier detection and accurate parameter estimation in regression

problems. Furthermore, we introduce the Penalized Weighted Random Forest (PWRF)

method, which adapts the RF model to enhance its robustness against systematic

or trend contamination present in the training set. Both methods assess the impact

of contamination in the training set based on the squared residual of each training

observation, providing flexibility in handling unknown data contamination. Through

numerical experiments and real data analysis, our observations indicate that the

proposed methods exhibit competent performance, either yielding comparable results

or outperforming benchmarking methods.

PENALIZED WEIGHTED METHODS FOR ROBUST OFFLINE AND ONLINE

LEARNING

by

Mingyan Li

A Dissertation
Submitted to the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Doctor of Philosophy

Greensboro
2024

Approved by

Haimeng Zhang
Committee Chair

To my dear parents for their unwavering love and faith in me. To myself for being

persistent. To the four-year journey for introducing me to valuable people and

challenges.

ii

APPROVAL PAGE

This dissertation written by Mingyan Li has been approved by the following

committee of the Faculty of The Graduate School at The University of North Carolina

at Greensboro.

Committee Chair
Haimeng Zhang

Committee Members
David Banks

Xiaoli Gao

Sat Gupta

Jianping Sun

Date of Acceptance by Committee

Date of Final Oral Examination

iii

ACKNOWLEDGMENTS

The fruition of this dissertation represents far more than my own dedication, it is a

testament to the unwavering support and encouragement I have received along this

journey.

I have always felt fortunate to have had such a well-rounded and supportive

committee for my dissertation. Dr. Xiaoli Gao provided early encouragement and

guidance that set me on the right path from the beginning of my research journey. Dr.

Haimeng Zhang’s meticulous attention to detail and organization kept me on track.

Dr. David Banks’ warm welcome and inclusion in his group project expanded my

horizons beyond my research area. The foundational knowledge imparted by Dr. Sat

Gupta through his challenging courses has been invaluable to my doctoral learning.

Dr. Jianping Sun’s infectious smile and encouraging words have always brightened

my day and motivated me to push forward. To each of you, I extend my heartfelt

thanks. Your support, insightful comments, and scholarly input have greatly enriched

this study. This dissertation would not have been possible without your contributions.

My deepest appreciation goes to my family for their unwavering belief in my

abilities and their endless encouragement. To my cherished friends, your unconditional

support, care, and companionship have been a constant source of strength throughout

this academic journey. I am indebted to my colleagues and collaborators, whose

encouragement and camaraderie have enhanced my academic experience and enriched

my research endeavors.

Finally, I extend my gratitude to all those who have contributed in various capacities.

Your belief in me, shared laughter during moments of stress, and shared experiences

have made this path more meaningful and memorable.

iv

Table of Contents

List of Tables . vii

List of Figures . viii

1. Introduction . 1

1.1. Regression/Linear Regression Background 1

1.2. Big Data and Challenges . 2

1.2.1. Data Contamination . 4

1.3. Stochastic Gradient Descent . 6

1.3.1. Robust SGD Using Re-weighting Method 10

1.4. Random Forest . 13

1.4.1. Robust random forest . 16

1.5. Penalized Weighted Method . 19

1.6. Main Contributions . 24

1.6.1. Robust stochastic gradient descent for online linear regression

learning . 24

1.6.2. Robust Random Forest . 25

2. Penalized Weighted SGD for Robust Online Linear Regression Learn-

v

ing . 27

2.1. Overview . 27

2.2. PWSGD for linear regression . 31

2.2.1. PWSGD Algorithm . 33

2.2.2. Tuning parameter selection . 35

2.3. Simulation Studies . 37

2.4. Real data analysis . 50

2.5. Summary . 57

3. Robust Random Forest . 59

3.1. Overview . 59

3.2. PWRF Regression . 63

3.2.1. Our Algorithm . 64

3.2.2. Tuning parameter selection . 64

3.3. Simulation studies . 67

3.4. Real data analysis . 79

3.4.1. The year 2020 . 83

3.5. Summary . 87

4. Conclusion and Future Work . 89

References . 93

vi

List of Tables

3.1. Example 1: Average MSPE and Average MAPE 71

3.2. Example 2: Average MSPE and Average MAPE 75

3.3. Example 3 Average MSPE and Average MAPE 75

3.4. Summary of real data analysis results of absolute prediction error of

Penalized Weighted Random Forest (PWRF), Random Forest with

Huber loss function, Random Forest with Tukey loss function, and the

Original Random Forest. 80

3.5. Mean squared prediction error (MSPE) of Penalized Weighted Random

Forest (PWRF), Random Forest with Huber loss function, Random

Forest with Tukey loss function, and the Original Random Forest. . . 81

vii

List of Figures

2.1. MSE of PWSGD and SGD with different fixed learning rate when λ

tuned only once with the first batch 43

2.2. Performance of PWSGD and SGD at all contamination levels when

γ = 0.08 and λ being tuned every 10 batches in Example 1. (a) is the

MSE values of both PWSGD and SGD at five different contamination

proportion rates over all mini-batches of size 20; (b) demonstrates the

ROC curve of classification of outliers using PWSGD; and (c) shows the

boxplot of all MSE’s from PWSGD and SGD at all five contamination

proportion rates. 45

2.3. Average MSE of PWSGD and SGD in Example 1 at all contamination

levels when λ tuned for the first batch only, for all batches, every 10

batches, and for the first 10 batches 47

viii

2.4. Performance of PWSGD and SGD at all contamination levels when

γ = 0.08 and λ being tuned every 20% batches in Example 2. (a) is the

MSE values of both PWSGD and SGD at five different contamination

proportion rates over all mini-batches of size 1000; (b) demonstrates the

ROC curve of classification of outliers using PWSGD; and (c) shows the

boxplot of all MSE’s from PWSGD and SGD at all five contamination

proportion rates. 49

2.5. Average MSE of PWSGD and SGD in Example 2 at all contamination

levels when λ tuned every 10% batches, every 20% batches, and every

30% batches . 51

2.6. Scatter plots of simple random sample of size 10, 000 from the chemical

sensors data. Z1 represent sensor 1, Z3 represent sensor 3, etc.. 53

2.7. MSPE of PWSGD and SGD applied to Ethylene CO Analysis when

γ = 0.08, tune very 20% batches. 55

2.8. Box plot of MSPE of PWSGD and SGD from all iterations applied to

Ethylene CO Analysis when γ = 0.08, tune very 20% batches. 56

3.1. Averaged MSPE of the original RF, PWRF, RFHuber and RFTukey in

Example 1 . 73

3.2. Averaged MSPE of the original RF, PWRF, RFHuber and RFTukey in

Example 2 . 74

3.3. Averaged MSPE of the original RF, PWRF, RFHuber and RFTukey in

Example 3 . 78

ix

3.4. Boxplots of Absolute Prediction Error of Penalized Weighted Random

Forest (PWRF), Random Forest with Huber loss function, Random

Forest with Tukey loss function, and the Original Random Forest for

Real Data Analysis . 82

3.5. Histogram of the response variable ‘RET’ with scatter plot matrix of

‘RET’ against other variables with data between 2014 and 2019 in gray

shade and data from 2020 with red shade. 84

3.6. Boxplots of Absolute Prediction Error of PWRF, RFHuber, RFTukey,

and the Original RF for Real Data Analysis with data before 2020

being split into three years of train set, one year of validate set, and

two years of test sets . 86

3.7. Boxplots of Absolute Prediction Error of PWRF, RFHuber, RFTukey,

and the Original RF for Real Data Analysis with 2020 data split into

seven months of train set, two months of validate set, and three months

of test sets . 86

x

Chapter 1: Introduction

1.1 Regression/Linear Regression Background

Regression analysis serves as a fundamental tool for estimating quantitative responses.

The term ‘regression’ was first coined by Galton in his 1886 paper [25], wherein he

investigated the correlation between the average of the height of father and the height of

the offspring. The widely utilized method in regression analysis, known as least squared

regression, predates the concept of regression itself and was independently explored

by scholars around the same time. Adrien-Marie Legendre [41] and Carl Friedrich

Gauss [29] are notably credited for their contributions to the least squared method.

The late 18th century, Karl Pearson [51] introduced correlation coefficient to measure

the direction and strength of the linear association between two quantitative variables.

George Udny Yule [75] furthered the understanding of regression and correlation,

where Yule also introduced the concept of partial correlation. By far, regression

analysis was confined to simple regression involving two quantitative variables, one

response variable and one explanatory variable.

The advent of analysis of variance (ANOVA) by Sir Ronald A. Fisher in 1935

[21] marked the beginning of multiple regression analysis commenced. This laid the

1

groundwork for the contemporary format expressed by the equation:

y|X = Xβ + ε, (1.1)

where y represents the response variable vector, X is the matrix of explanatory

variables (also known as independent variables or covariates), β denotes the model

parameter vector, and ε signifies the random error vector. The post-World Wide

Web era and widespread computer usage propelled the significance and popularity of

regression analysis. Its applications burgeoned across diverse fields such as economics,

social sciences, engineering, and data science. Despite the introduction of various

algorithms with advancements in computing power and statistical methodologies,

regression analysis remains a pivotal tool in numerous applications and forms the

backbone of many advanced machine learning tools.

1.2 Big Data and Challenges

With the booming of technologies to collect data, store the data, and analyze the

data, the time for big data had came. We have been immersed in this paradigm

for over three decades, with the term ‘big data’ first gaining prominence in the

1990s, thanks to John Mashey’s contributions. Since then, the concept has become

integral to our technological landscape. The fundamental characteristics of big data,

as succinctly outlined by Laney in a 2001 Meta Group research publication, encompass

volume, velocity, and variety. Later on, more characteristics are used to describe the

fast changing data format and credibility. As the landscape has evolved, additional

characteristics have been identified to encapsulate the dynamic nature of data, including

2

its rapid changes in format and the imperative of ensuring data credibility.

Large data sets have become pervasive in various fields, including clinical, epi-

demiological, financial, and psychological or sociological studies. The widespread

availability of the internet has further expanded the scope of data, incorporating

sources such as search prompts to optimize search engine efficiency. One illustrative

example encompassing all three fundamental characteristics of big data is derived

from social media data sets. Social media data sets are characterized by their vast

volume, containing a wealth of information in the form of texts, images, voices, and

more. The sheer magnitude of data generated every second, often in the tens of

thousands, presents a rich opportunity for studying and optimizing user behavior

or social interactions to enhance retention rates. E-commerce, facilitated by the

internet, has given rise to transactional data that provides valuable insights into

consumer behavior. In clinical research, data sets may involve thousands of genetic

markers studied for their associations with specific diseases. Alternatively, data sets

in the medical field might include vast numbers of magnetic resonance images with

information from hundreds of subjects, providing a comprehensive view for research

and diagnosis. The ubiquity of data in diverse domains underscores that big data has

become the new norm. Harnessing the potential of these extensive data sets is crucial

for making informed decisions, gaining insights, and driving advancements in various

fields.

As data continues to grow in both size and complexity, the traditional regression

analysis method may prove inefficient not only due to inherent algorithmic limitations

but also because of other constraints, the memory to store data as an example.

To address these challenges, various algorithms have been proposed to tackle these

issues. In cases where memory poses an obstacle or when the data set is not static

3

but generated dynamically over time, iterative methods have been devised to store

only a subset of the data. Examples include stochastic gradient descent, adaptive

gradient, and adaptive moment estimation. To accommodate data in diverse formats,

the development of algorithms such as random forest, neural networks, and natural

language processing has been pursued. However, as data generation accelerates, issues

may arise within the data itself. The speed at which data is produced can potentially

introduce challenges that need to be carefully addressed in the analytical process.

1.2.1 Data Contamination

Data contamination refers to the phenomenon within a data set where specific obser-

vations deteriorates the analysis performance. Data contamination may arise from

various sources, including outliers, missing values, or concept drift. The existence of

data contamination pose a substantial impact in regression analysis, since regression

analysis assumes homogeneity. For example, a contaminated observation may come

from the same type of distribution as the majority of the data set but have a higher

or lower mean, exhibit a heavier tail, or even follow an entirely different distribution.

Neglecting data contamination can introduce bias in the estimation of the mean of

the parameters, resulting in less accurate predictions of the mean responses. This is

particularly critical because regression analysis for means is highly sensitive to data

contamination, making it imperative to address and account for such issues for more

robust and reliable predictions.

In this dissertation, we focus on a specific type of data contamination characterized

by a mean shift in the response variable, with the term ’outlier’ used interchangeably.

Outliers can arise from human-induced errors or observations originating from a

4

different population. Additionally, outliers may result from changes in the variability

of the data, warranting careful consideration as they can provide valuable information

and reveal potential lurking variables. In the context of regression analysis, an outlier

is also referred to as a regression outlier [55], indicating a departure from the same

linear pattern followed by the majority of the data set. This scenario occurs when

contaminated observations and uncontaminated observations share similar covariates,

while the response variable in the contaminated observations deviates from that

in the uncontaminated observations. Proper handling of such outliers is crucial,

distinguishing between those indicating potential insights and those resulting purely

from errors should be down-weighted. A linear regression model with outliers can be

expressed as follows:

y|X = Xβ + ε+ o, (1.2)

where o being a contamination vector that is sparse with most of the values in

this vector being zero, while the value of the contaminated observations being a

specific number, the rest remains the same as Equation (1.1). Various methods

have been developed to identify outliers, such as cook’s distance [14], studentized

residuals [70], or Difference in Fits (DFFITS) [10]. While these methods are effective in

identifying one outlier, they may falter when multiple outliers are present in the data set.

Conventionally, one might delete the potential outliers and proceed with the analysis

with the remaining data set. However, this approach has its limitations, as outliers

may contain valuable information that warrants special treatment. Consequently, a

more nuanced strategy is required to appropriately handle outliers throughout the

analysis.

5

1.3 Stochastic Gradient Descent

Stochastic gradient descent (SGD), introduced in the 1950s by Robbins and Monro

[53], is a widely employed method for iterative procedures in estimation problems.

Its applicability extends to various models, including linear regression model, logistic

regression, support vector machine, neural networks, etc. SGD stands out as one of the

most utilized algorithms in modern data-driven problem-solving [5]. Furthermore, SGD

serves as a proximal operator, engaging in iterative optimization with one observation

at a time. Proximal operators project points to the minimum of convex functions,

which can be viewed as a generalized projection. These operators find applications in

statistical learning and model estimation algorithms, where optimization forms the

core of the models.

These problems involve finding the optimal estimation that minimizes the expecta-

tion of a loss function. Let θ∗ ∈ Rp represent the underlying model parameter, where

p is the dimensionality of the covariate matrix, X ∈ RN×p denotes the observed data

set, where N is the size of the data set. The statistical estimation can be formulated

as follows:

θ∗ = argmin
θ∈Rp

E(ρ(θ, X)), (1.3)

where E(·) is the expectation function, and ρ(·) is a loss function defined for the specific

problem. Given its iterative nature, proximal operators like SGD are particularly

well-suited for streaming data scenarios, as they do not require the entire data set.

Additionally, SGD is a valuable tool for efficiently handling large data sets that may

pose computational challenges. These characteristics of SGD makes it numerical con-

venient and memory efficient. These characteristics make SGD numerically convenient

6

and memory-efficient. Furthermore, SGD operates with minimal assumptions, offering

a cost-effective solution for solving non-smooth objectives.

SGD calculates the gradient of the objective function using one data observation at

a time, the same process is repeated each time a new observation is generated to update

the estimate of the model parameter. In Equation (1.3), the expectation is taken with

respect to the entire covariate matrix. In an SGD procedure, the expectation is taken

with respect to a stream of i.i.d. covariate vectors, xn, where n = 1, 2, ..., N , and N

is the size of all oberved data set. For each new observation with covariate vector

and response pair (xn, yn) from a streaming data set, the SGD update for the model

parameters, θ̂, is produced using the following method:

θ̂n = θ̂n−1 − γn∇ρ(θ̂n−1;xn, yn), (1.4)

where θ̂n is the updated parameters after processing the nth iterate of observations,

and γn, the learning rate, is a non-increasing sequence of positive real numbers. The

learning rate is computed as γn = γn−α, where γ > 0 and α ∈ (1/2, 1], this setting of

learning rate can be traced back to the introduction of this stochastic approximation

by Robins and Monro [53].

SGD has been extensively studied in literature and has evolved from the original

work since its inception. Numerous researchers, including but not limited to Sakrison

[60], Ruppert [58], and Polyak and Juditsky [52], have explored the methodology,

establishing consistency and asymptotic normality. Sakrison [60] applied SGD method

to estimate the parameters of the covariance function, or the model parameters, of a

gaussian process for a regression task. The covariance function is particularly relevant

in tasks involving the modeling of correlations, such as in signal processing, geostatistics,

7

and environmental science. Nagumo and Noda [48] discussed the application of SGD

as a learning method in system identification in the automatic control field, which

laid the foundation for the modern control theory and machine learning.

Nagumo and Noda applied SGD for estimation in the normalized least-mean

squares filter, and the update is very similar to an implicit SGD, which can be

expressed as:

θn = argmin
θ∈Rp

{
1

2γn
||θ − θn−1||2 + ρ(θ, X)

}
. (1.5)

This same update was discussed in incremental proximal method in optimization

by Bertsekas [4]. His aim was to enhance the efficiency of optimization algorithms,

allowing them to handle large-scale (both massive data sets and high-dimensional data

sets) convex optimization problems common in machine learning, signal processing,

and other fields. Other researchers, including Toulis [68], Défossez and Bach [16],

Toulis and Airoldi [67] have demonstrated that implicit SGD is more stable than

SGD while maintaining comparable convergence rates. Related work on implicit SGD

includes contributions from Kivinen et al. [38], Kulis and Bartlett [40] in the online

learning literature, Cheng et al. [12] on implict SGD with kernels, and Duchi and

Siner [15], Parikh and Boyd [50], and Rosasco et al. [54] introducing a stochastic

proximal gradient algorithm that involves forward step with SGD and backward step

with implicit SGD. Although the stochastic proximal gradient algorithm may bring

about instability while reaching for accelerating convergence.

Averaging of the SGD updates has been discussed by several scholars, including

Ruppert [58], Bather [2], Polilyak and Juditsky [52], among others. Instead of regard

θ̂n in Equation (1.4) as the estimate of the model parameters after the nth observation,

8

an average is taken on the SGD estimates over all previous SGD estimates:

θ̄n =
1

n

n∑
i=1

θ̂n. (1.6)

This method does not require all estimates being stored, but only the latest averaged

SGD estimate, θ̄n−1, and the total number of previous SGD estimates, n. With these

values, the newest averaged SGD estimate can be updated as follows:

θ̄n =
(n− 1)θ̄n−1 + θ̂n

n
(1.7)

The discussions around averaged SGD argue that averaging can invoke statistical

optimality, leading to better estimation. The asymptotic optimality of averaging

the SGD estimations is also demonstrated in these discussions indicating that slow-

convergent stochastic approximation with a large learning rate benefits from averaging.

Zhang [76], Shamir and Zhang [62], and Bach and Moulines [1] have shown the

superiority of averaged SGD. Toulis et al. [69] combined the implicit SGD with

averaging methodolody, further enhancing the efficiency and stability of SGD.

Bottou and Bousquet in 2008 [6] discussed the scalability of batch learning in

face of big data. They advocated the use of SGD with mini-batches to improve

efficiency compared to using the entire data set when the data set is massive. Mini-

batch SGD leverages the computational efficiency of SGD, converges rapidly, and

requires less memory. It enhances the stability of traditional SGD methods and

reduces sensitivity to the choice of learning rate. Additionally, the use of mini-batches

decreases the likelihood of SGD getting trapped in local minima since each iteration

involves multiple observations rather than just one. The use of mini-batches in SGD

9

remains a conventional method for statistical learning with SGD after its introduction.

Statistical inference for model parameter applying SGD for estimation has also

been studied by Fang et al. [19]. They proposed an online bootstrap method for

constructing confidence intervals for the model parameters. The method generates a

set of randomly perturbed SGD estimations, θ̂
⋆

n, for each new observation added to the

data stream with a set of i.i.d. non-negative random variable W = {Wi, i = 1, ..., N},

θ̂
⋆

n = θ̂
⋆

n−1 − γnWn∇ρ(θ̂n−1;Xn,yn), (1.8)

θ̄
⋆
n =

1

n

n∑
i=1

θ̂
⋆

n. (1.9)

By demonstrating that
√
n(θ̄n − θ0) and

√
n(θ̄

⋆
n − θ̄n) converge in distribution, Fang

et al.were able to construct confidence regions for the model parameters with a large

amount of bootstrap samples from the perturbed SGD estimates.

1.3.1 Robust SGD Using Re-weighting Method

SGD can be significantly influenced by outliers in the data set, given the relatively

small amount of data used in each iteration. This effect is particularly pronounced in

traditional SGD, where only one observation is utilized to update the estimate in each

iteration, causing the SGD estimate to deteriorate if the observation is contaminated.

The presence of outliers can also lead to overfitting issues, as SGD highly relies on the

observed data [33], overfitting is another issue that practitioners and scholars dedicate

to avoid. Although addressing overfitting is important, it is not the primary focus

of this dissertation. The impact of outliers on SGD estimation becomes even more

pronounced when the mean is the focal point of the analysis, as the mean is highly

10

sensitive to outliers. While applying mini-batch and averaging the previous estimates

may provide some help in this case, the estimate of expectations is still likely to be

skewed. However, the impact might be less compared to traditional SGD. To mitigate

the influence of outliers, scholars have dedicated efforts to developing robust SGD

methodologies.

Needell et al. [49] employed importance sampling for SGD to alleviate the high

dependency of the estimation variance on the random error, ε. The re-weighting

method diverges from the traditional SGD which uniformly selects observations for

estimation updates. While uniform sampling provides an unbiased estimator, it often

leads to high variance. Needell et al. [49] proposed implementing importance sampling

via rejection sampling, where each observation is assigned a weight (w) such that the

expectation of all weights equals one (E[w(i)] = 1), where i is the observation index.

They determined the weights using a partially biased sampling method corresponding

to the Huber contamination model [35] defined as:

wλ(i) = λ+ (1− λ)
Li

L̄
, λ ∈ [0, 1],

where Li represents the Lipschitz constant of the ith iteration, L̄ denotes the averaged

Lipschitz constant, and λ is a parameter that controls the proportion. The acceptance

probability is w(i)/W , for some W ≥ sup
i

w(i), and the accepted samples are used to

update SGD estimates with the reciprocal of the weight multiplying the gradient in

Equation (1.4). This importance sampling technique involves re-sampling observations

using a re-weighting distribution, increasing the likelihood of outlier rejection. However,

this method applies to each iteration of the update and faces challenges in online

settings where mini-batches lack sufficient data, as the entire data set is unavailable.

11

Zhao and Zhang [77] worked at the same time on proposing importance sampling

specifically on Proximal Stochastic Gradient Descent (or general proximal stochastic

mirror descent) and Proximal Stochastic Dual Coordinate Ascent, their goal was also

to reduce the variance of stochastic gradient descent. Xiao and Zhang [73] proposed

a multi-stage proximal stochastic gradient method to reduce the estimate variance

when solving the regularized empirical risk minimization problems. They both have

the same issue as Needell et al. [49].

Shah et al. [61] proposed MKL-SGD method, is a weighted sampling method

based on residuals. This method assumes that there is a small portion of data may

be contaminated, and these observations are typically associated with elevated loss

values. The approach involves selecting a set of k samples and identifying the sample

with the smallest loss within this set. Subsequently, the gradient of this chosen

sample is utilized in Equation (1.4) for updating the model parameter estimation.

The fundamental concept of the method revolves around choosing one sample in each

batch that provides the most information and leveraging this information to update

the model parameters estimation. However, there remains a possibility that the chosen

sample may still contain outliers, potentially compromising the performance of the

SGD estimation. MKL-SGD requires that a sample undergo the loss calculation step

to be selected among the k samples first. The probability of the ith sample being

selected, denoted as pi, is determined by the following method:

pi =

(n−i
k−1)
(nk)

without replacement,

(n−(i−1))k−(n−i)k

nk with replacement,

where n is the total number of observations in a batch. The selection process excludes

12

the observations that are not in the chosen sample from the batch, resulting in a loss

of more information than gain. This process may resemble outlier detection, where

potential outliers are identified and subsequently removed from the analysis.

1.4 Random Forest

Random forest (RF) [7] is an ensemble method that is based on Breiman’s earlier

work with some other distinguished scholars on the decision trees (classification and

regression trees) [8]. It is an extension of his prior work on the bagging method [9].

In a decision tree, observations are categorized into groups using a combination of

grouping criteria, with each criterion leading to the partitioning of the covariate space

into rectangles or hyper-rectangles. Each criterion serves as a splitting node in the

tree, and observations with covariates in the same rectangle or hyper-rectangle fall into

the same leaf of the tree. For a classification tree, the estimation of a new observation

using a decision tree involves assigning it the dominant category within the leaf to

which it belongs. In a regression tree, it entails calculating the average value of the

response variable for all observations in the same node. While an individual tree

predictions are low bias but high variance, it has been proved that an ensemble or

boosting method can effectively reduce the variance but maintain low bias [9], [24].

A RF comprises many decision trees, each of which trains on a bootstrapped

sample of the training data set and a subset of the covariates. The estimation or a

prediction of the RF for a classification task is the majority category predicted by all

trees, while for regression task it is the averaged prediction of all trees. Lin and Jeon

[44] argued that a RF is akin to an adaptive neighbor method. In this dissertation

emphasizes the regression RF. The utilization of bootstrapped samples of observations

13

and subsets of covariates renders RF a robust method, addressing randomness from

both a data and an information perspective. Averaging across trees reduces estimation

and prediction variance through the law of large numbers, enhancing algorithm

stability and mitigating the risk of overfitting without introducing additional bias.

RF’s robustness to noisy data sets, particularly those with heavily-tailed noise, stems

from its invariance to such noise. Moreover, as each tree employs a randomly selected

subset of covariates, RF takes an alternative approach in high-dimensional data sets,

avoiding challenges associated with the curse of dimensionality. Consequently, RF

proves powerful when addressing high-dimensional problems.

RF has long been perceived as a somewhat mysterious method due to its lack of

interpretability. This limitation arises from its inability to be explicitly formulated like

a linear model or traced down like one would do for a decision tree. However, it has

been demonstrated that RF models can indeed be expressed in a familiar mathematical

format. In 2006, Meinshausen and Ridgeway [46] showed that an RF model can be

represented by a mathematical equation, where the prediction is a weighted sum of

the training responses. Let θt be the random subset of covariates for tree t, with a

total of m trees in a RF model. Let (Xi, yi) be observation i in the training set, where

there are n training observations in total, the RF prediction for a new observation

with X = x can be expressed as follows:

ŶRF (x) =
n∑

i=1

w(Xi,x)yi, (1.10)

w(Xi,x) =
1

m

m∑
t=1

w(Xi,x,θt), (1.11)

where w(Xi,x,θt) is the weight of training observation i from tree t, and it is easy to

14

show that
∑n

i=1w(Xi,x) = 1. The weight w(Xi,x) varies for each new observation X =

x, and it is adaptively assigned to observations in the same leaf based on the similarity

among covariates. This weight tends to be larger when the conditional distribution

of the response given an observation is similar to the conditional distribution of the

response given the new observation [44]. This is analogous to the process of assigning

nearest neighbors. About ten years later, Li and Martin [42] demonstrated that RF

prediction can be expressed in generalized loss function form:

ŶRF (x) = argmin
S∈F

n∑
i=1

w(Xi,x)ρ(yi,S(xi)), (1.12)

where F is a family of functions and ρ(·) is a general loss function. When using the

least squared method, the loss function becomes the sum of the squared response

residuals, i.e. ρ(·) = ||y − ŷRF ||2, where ŷRF is the RF estimation.

RF is widely acclaimed for its adaptability to both categorical covariate and

quantitative variables, as well as its ability to perform effectively in both classification

and regression tasks. Its popularity is further heightened by its ease of application,

requiring only two user inputs: the number of covariates to be randomly selected for

each tree and the number of trees to be grown in the model. Scholars and practitioners

across various academic disciplines and industries have successfully applied the RF

method, demonstrating its robust performance. Liaw and Wiener published their work

using R language applying RF method quickly after the publication of Brieman’s work

[43]. An attractive feature of RF is its capability to provide practitioners with insights

into the importance of covariates after model fitting. This attribute, along with its

resilience to heavy-tailed distributions and capacity to handle both categorical and

quantitative covariates, contributes to RF’s widespread adoption in both academic

15

and industrial settings.

RF’s robustness to data sets with response values that exhibit heavy tails, indicating

the presence of extreme cases, suggests its resilience to outliers. However, this

assumption holds true only when both the training and testing observations originate

from the same distribution. RF loses its robustness if the training and testing

responses stem from different distributions. This occurs when response values of

some observations in the training set are contaminated, causing the contaminated

response variable to follow a distinct distribution with a different mean compared

to the uncontaminated distribution. Furthermore, the RF weight w(Xi,x) is larger

when two observations have stronger similarity. However, if the training obesrvation is

contaminated, then the weight can become extremely misleading. Consequently, the

prediction from a RF model for an uncontaminated new observation with covariates

similar to the contaminated observation may be impacted, leading to a less accurate

prediction.

1.4.1 Robust random forest

Several scholars have delved into addressing the sensitivity of RF to outliers, aiming to

enhance its robustness in the face of diverse data contamination. An effective strategy

to bolster robustness, particularly in the presence of outliers, involves leveraging

order statistics, such as using the median instead of the mean to characterize the

central tendency of a distribution. Meinshausen and Ridgeway [46] proposed a

novel approach to mitigate the impact of outliers by estimating quantile, denoted as

F (y|X = x) = P (Y ≤ y|X = x) = E(1{Y≤y}|X = x), instead of the expectation of the

response variable, E(Y |X = x). This method, known as Quantile Regression Forest

16

(QRF), focuses on the weighted distribution of responses rather than the weighted

mean. The estimated cumulative conditional distribution, denoted as F̂ (y|X = x), is

expressed as the following:

F̂ (y|X = x) =
n∑

i=1

w(Xi,x)1{Yi≤y}, (1.13)

the weight w(Xi,x) shares the same definition as in RF. By estimating the conditional

distribution of the response variable, QRF not only provides a robust prediction

interval but also detects potential outliers using either conditional median absolute

deviation or the conditional interquartile range. Roy and Larocque [56] demonstrated

that applying robust aggregation methods to RF, especially through QRF, enhances

robustness against outliers. While QRF proves to be a versatile tool, it does not offer

a solution when the objective is to estimate the mean response in the presence of

outliers.

Li and Martin [42] advocated for enhancing the robustness of RF to outliers by

employing robust loss functions. They established a connection between RF and

k-potential nearest neighbors proposed by Lin and Jeon [44], expressing the loss

function of RF in the form of Equation (1.12). They reformulated the QRF in the

format of Equation (1.12) using the τ -th quantile loss function defined by Koenker

[39]:

ρτ (y − ŷ) = (y − ŷ)(τ − 1{y−ŷ≤0}).

They then proposed that using robust loss function can improve robustness of RF.

They introduced a smooth approximation of the Huber loss function [35], known as

17

the pseudo-Huber loss function by Charbonnier et al. [11],

ρδ(y − ŷ) = δ2

√
1 +

(
y − ŷ

δ

)2

− 1

 ,

where δ is the tuning parameter to control the penalization strength, and Tukey’s

biweight function, a non-convex redescending loss by Huber [36]:

ρδ(y − ŷ) =
d

d(y − ŷ)
=

(y − ŷ)

(
1− (y−ŷ)2

δ2

)2

for |y − ŷ| ≤ δ,

0 elsewhere.

The pseudo-Huber loss function adapts the RF weight and shrinks closer to zero for

observations with disparate responses. Tukey’s biweight function diminishes to zero

for large dissimilarities between response values. Through simulations and real-world

data, Li and Martin demonstrated the effectiveness of these proposed robust RF

methods, particularly in providing robust point estimates for mean responses even

in the presence of outliers. However, it is noted that their computational approach

requires repetition for new observations, as the loss function relies on the proximity

between the predicted responses of new observations and the training set.

In the following year, Sage [59] proposed the method, RF-LOWESS, assigning an

individual weight for each training case based on the training residuals using Tukey’s

bisquare function to enhance the robustness of RF. Tukey’s bisquare function is applied

to the ratio of the residual of a training observation and the median of all absolute

residuals:

B
(e

αm

)
=

(
1−

(
e

αm

))2
if

∣∣ e
αm

∣∣ < 1,

0 if
∣∣ e
αm

∣∣ ≥ 1,

18

where e is the residual of a training observation, m is the median of all absolute

residuals, and α is a tuning parameter. Sage argued that α should be smaller

with substantial contamination in training data set, as a smaller value aggressively

weakens the contribution of potential outliers aggressively. Therefore, Sage’s method

can stabilize the impact of outliers while simultaneously detecting outliers from

the training observations. Additionally, the weights depend solely on the residuals

of the training observations, allowing for one-time calculation when building the

RF model and applying it to all new observations. This save the computation

cost and differs from the method by Li and Martin, where the weight is calculated

based on the discrepancy between the new observation’s predicted response and the

training observations’ responses, which varies for each new observation. Although

Sage demonstrated improvement of RF-LOWESS against QRF by Meinshausen and

Ridgeway, RF with Huber loss function by Li and Martin, and the original RF, the

performance of RF-LOWESS did not show superiority on real data sets.

1.5 Penalized Weighted Method

The application of penalized weighted methods has been instrumental in enhancing the

robustness of various algorithms against outliers, described as Equation (1.2). Within

the framework of a penalized weighted approach, individual weights are allocated

to each training observation, thereby regulating their influence on the estimation or

prediction process. These weights are subject to penalization, which dictates their

assignment. It is noteworthy that the concept of penalization in this context diverges

from its conventional application in high-dimensional data analysis. In the latter,

penalization typically involves constraining parameters to achieve variable selection

19

by shrinking certain parameters towards zero or near-zero values. Within the context

of penalized weighted methods, the penalty is applied to the weights assigned to each

training observation. This mechanism serves the purpose of regulating the influence

of outliers by adjusting the weights allocated to training observations.

Gao and Fang [26] proposed penalized weighted least square (PWLS)as a method

to enhance least square regression’s robustness against data contamination and identify

outliers simultaneously. They applied a lasso-type penalty on the log-transformed

weight, and assumed a linear model as the following:

yi = x′
iθ

∗ + εi/w
∗
i ,

where x′
i ∈ Rp is the covariate vector of observation i = 1, 2, ..., N , N denotes the size

of the training data set, yi is the corresponding response of training observation i;

θ∗ = (θ∗1, θ
∗
2, ..., θ

∗
p)

′ is the coefficient vector; εi’s are independent random error with

zero mean and constant variance if homogeneity is assumed; w∗
i is the underlying

weight of this training observation. w∗
i < 1 indicates an outlier and w∗

i = 1 indicates a

non-outlier. The objective function for this linear model under the penalized weighted

method is

(θ̂, ŵ) = arg min
θ,w

{
n∑

i=1

w2
i (yi − x′

iθ)
2 +

n∑
i=1

λ| log(wi)|

}
, (1.14)

where λ is a tuning parameter that controls outlier detection, they also proved that

PWLS is an M-estimator. Gao and Fang extended PWLS to the adaptive Lasso

method, incorporating it into PWLS as aPWLS. The objective function of aPWLS is

20

given by:

(θ̂, ŵ) = arg min
θ,w

{
n∑

i=1

w2
i (yi − x′

iθ)
2 +

n∑
i=1

λϖi| log(wi)|

}
, (1.15)

where ϖi is a pre-defined penalty scale factor for an observation. PWLS is a special

case of aPWLS when all ϖis being 1. Furthermore, they extended extended PWLS to

heterogeneous model (H-PWLS) where the random error εi = g(x′
iϑ)ϵi, where g(·) is

a known function, ϑ is the estimation parameter, and E(ϵi) = 0 and E(|ϵi|) = 1. The

objective function of H-PWLS is

(θ̂, ŵ) = arg min
θ,w

{
n∑

i=1

w2
i (yi − x′

iθ)
2/g(x′

iϑ̂) +
n∑

i=1

λϖi| log(wi)|

}
. (1.16)

They conducted simulation studies in both homogeneous and heterogeneous settings,

and applied the method to three real-life data sets for comparison with the hard-

IPOD method proposed by She and Owen [64]. PWLS outperforms HIPOD in all

homogeneous setting in terms of the joint outlier detection rate (the fraction of zero

masking phenomenon) and overall masking rate. Moreover, H-PWLS significantly

outperformed both PWLS and HIPOD in all heterogeneous settings, even when the

variance function was misspecified. Additionally, PWLS accurately identified outliers

in the real data sets while HIPOD exhibited tendencies to mask outliers or swamp

non-outliers.

Around the same timeframe, Gao [27] proposed penalized weighted low-rank

approximation method (WPLA) method aimed at robustly recovering recurrent copy-

number variations (CNVs), a critical research area in genomics study essential for

understanding complex disease. Data contamination in this domain may arise from

21

non-Gaussian random noise, heteroscedasticity among some probes, or pure errors.

WPLA applied a penalized weighted approach akin to the previously mentioned

method to an existing robust technique for recurrent CNV detection. In this method,

each probe of every sample was assigned a weight, with a weight value of 1 indicating

a normal probe, while other values signaled potential data contamination due to

individual-specific effects (heteroscedasticity). Gao demonstrated the superiority of

WPLA over two existing robust recurrent CNV recovery methods using synthetic data

sets associated with both Gaussian and t-distributed random errors (contaminated

cases). WPLA successfully recovered the recurrent CNVs and exhibited robustness

even under misspecified model assumptions. Furthermore, WPLA outperformed the

two existing robust recurrent CNV recovery methods on real data sets by efficiently

detecting recurrent CNVs and data contamination arising from individual-specific

effects. These findings highlight that WPLA is not constrained by assumptions of

Gaussian random errors nor does it necessitate homogeneity in the random error

distribution.

Gao and Feng [28] proposed penalized weighted least absolute deviation (PWLAD)

method, aiming to enhance the robustness of traditional least absolute deviation

(LAD) method in the presence of outliers in the response variable or leverage points

(outliers in covariates). PWLAD, like the other penalized weighted methods, a weight

to each observation. However, it enforces a lasso-type penalty on 1−w, where w is the

weight. This weight is utilized to detect outliers or leverage points in a data set. They

demonstrated that PWLAD outperforms LAD, weighted absolute deviation method

(WLAD), and PWLS. It was shown to correctly detect outliers through numerical

experiments with homogeneous random errors and maintained robustness even in the

presence of heterogeneous and heavy-tailed random errors. The real data analysis

22

presented in the paper further demonstrated that PWLAD exhibited robustness in

the presence of outliers compared to LAD and WLAD, achieving high accuracy in

outlier detection.

Luo et al. [45] have recently employed the penalized weighted method to the

Cox proportional hazards (PH) regression to improve robustness for censored survival

outcomes. This method addresses the challenge of exceptional responders in precision

medicine, where these responders are considered outliers. It raises a concern in

precision medicine as the PH method is very sensitive to these exceptional responders,

where these exceptional responders are outliers in this field. The proposed method,

termed Penalized Adaptive Weighted Proportional Hazards (PAWPH), introduces a

weight to the hazard function. It applies a lasso-type penalty on the log-transformed

weight to accurately identify influential outliers. Additionally, it enforces a lasso-type

penalty on the regression parameters for variable selection, resulting in more robust

estimation. Unlike other penalized weighted methods, in PAWPH, the weight w,

signifies a long survivor when w < 1, w > 1 indicates an short survival, and w = 1

refers to regular survival time. The authors demonstrated the robustness and accuracy

of PAWPH by applying it to both high-dimensional and low-dimensional settings

and comparing the results with those obtained using the Cox method and robust

Cox method. The findings indicated that PAWPH successfully detected influential

observations in both high and low-dimensional scenarios, achieving high accuracy

in variable selection. Furthermore, when applied to two different real-life data sets,

PAWPH demonstrated the ability to detect most outliers with a low false rate.

23

1.6 Main Contributions

1.6.1 Robust stochastic gradient descent for online linear re-

gression learning

In Chapter 2 we explore improvement of stochastic gradient descent (SGD) with

potential data contamination in the response variable. We propose penalized weighted

stochastic gradient descent (PWSGD) method for online linear regression learning.

This method entails assigning individual weights, denoted as w > 0, to each training

observation while imposing a Lasso-type penalty on 1 − w. The individual weight

wserves to gauge the influence of each observation on the estimation of the linear

regression model parameter. If an observation is suspected to be an outlier, a small w

is assigned to that observation, otherwise, w = 1. PWSGD simultaneously estimates

the individual weight alongside the model parameter based on the residual of each

observation, thereby rendering the weight determination entirely data-dependent. The

penalty shrinks the individual term to 1, thus mitigating the risk of over-identification

of outliers. PWSGD is based on stochastic gradient descent (SGD) where we follow

the mini-batch framework and utilize the averaged SGD as the SGD estimator. The

proposed method is able to simultaneously perform outlier detection and linear

regression model parameter estimation, accommodating both fixed large data set and

streaming data in an online setting.

We compare PWSGD to SGD using synthetic data with different synthesized levels

of data contamination. The results show that PWSGD improves SGD estimation

performance by accurately identifying outliers. Additionally, when applied to a

real-world data set, the results provide compelling evidence that PWSGD exhibits

24

significantly higher robustness compared to SGD.

1.6.2 Robust Random Forest

In Chapter 3 we delve into RF method in the presence of outlying responses among

training observations. We propose penalized weighted random forest (PWRF) method,

designed to detect outliers in the training data set and improve prediction accuracy

compared to the original RF. In this method, an individual weight, 0 < w ≤ 1,

is assigned to each training observations. A shrinkage rule is applied to the log-

transformed individual weight vector to govern the amount of outliers. PWRF

simultaneously estimates both the individual weight w and the response variable for

all training observations. The individual weight estimation is based on the residuals

of the training observations; a large individual weight is assigned to observations with

small residuals, and vice versa. Consequently, an observation is flagged as a suspected

outlier if the estimated individual weight is small, with the ideal scenario being w = 1

for non-outliers. Importantly, the weight depends solely on the training residuals and

needs to be calculated only once for all new observations. This stands in contrast to

the approach by Li and Martin [42], where weights depend on the dispersion between

the response variable of training observations and the predicted response variable

for each new observation, necessitating recalculation for each new observation. This

efficiency contributes to computational cost savings in real-life applications.

PWRF demonstrates superior robustness compared to the original RF in robustness

across extensive simulation study examples with synthetic data contamination at

various proportions. Furthermore, it exhibits performance on par with two widely used

robust RF methods. Additionally, in a real-life data application, PWRF, alongside

25

the other two robust RF methods and the original RF model, is deployed. Notably,

PWRF outperforms all three methods in prediction accuracy and performance in this

real-life scenario.

26

Chapter 2: Penalized Weighted SGD

for Robust Online Linear Regression

Learning

2.1 Overview

Many machine learning algorithms involve optimizing an objective function across

the entire data setwhich can be computationally exhaustive and memory inefficient,

particularly with large data sets, often leading to computational failures. Stochastic

gradient descent (SGD) is well recognized by its efficiency in estimating model param-

eters in large-scale data due to its reduced memory requirements and computational

efficiency. SGD was initially proposed by Robin and Monro in 1951 [53] as a stochastic

approximation method, also referred to as Robbins–Monro method. Since then, it has

been extensively studied in academia and integrated into various machine learning

approaches. SGD is considered a special case of online learning algorithms [34], since

it iteratively processes the data one observation at a time. Wang et al. [71] reviewed

some achievements on application of SGD to big data and streaming data, particularly

27

its utilization in advanced machine learning algorithms such as neural networks. The

versatility of SGD extends to various domains, including but not limited to regression

analysis, classification problems, image recognition, time series analysis, and functional

analysis.

Suppose we aim to estimate the model parameter θ by minimizing the loss function

ρ(θ;X,y). Given an initial estimate θ̂0, SGD updates the estimate iterativelly with

the following method:

θ̂n = θ̂n−1 − γn∇ρ(θ̂n−1;xn, yn), (2.1)

where n = 1, 2, ..., N , N is the total number of observations in the data set, γn is the

learning rate, and ∇ρ(θ̂n−1;xn, yn) is the gradient of the loss function. Conventionally,

the learning rate is calculated with the following formula:

γn = γn−α, (2.2)

where γ > 0 and α ∈ (0.5, 1).

The asymptotic properties of SGD estimators have been well established in the

literature. Kiefer and Wolfowitz [37] were among the first to rapidly apply the SGD

method to regression function and proved its asymptotic properties. Sahrison [60]

proposed a modified SGD method and demonstrated its stability by deriving the limit

of mean squared error, while also elucidating the asymptotic properties of SGD in their

study. Ruppert [58] extensively discussed the convergence rate of the SGD process in

relation to the learning rate. Additionally, Polyak and Juditsky [52] formalized the

average SGD estimate for linear regression, providing rigorous proof of the asymptotic

28

normality of the averaged SGD estimates, emphasizing almost sure convergence.

The aforementioned desirable properties of SGD estimates are established under the

assumption that consecutive observations are identically and independently distributed

with homogeneous noise. Here, homogeneous noise is assumed to follow an identical

and independent normal distribution.

As data comes in sequentially, the possibility of data contamination increases.

Similar to many other online learning algorithms, SGD does not account for the data

“veracity” issue and assumes the perfect quality of all incoming data [34]. In the

presence of contaminated data, SGD incorporates this information into the model

parameter update as if it were uncontaminated. Consequently, this can negatively

impact estimation accuracy and result in poor predictions for future instances. As

discussed by Goodfellow et al. [30], algorithms with higher complexity are more

susceptible to the impact of outliers. Hence, it becomes crucial to safeguard complex

models against deterioration caused by outliers.

In this chapter, we propose a novel method called penalized weighted stochastic

gradient descent (PWSGD) method, designed for simultaneously detecting data

contamination and accurately estimating model parameters θ using SGD method in

the least square regression setting. Our proposed method controls the impact of the

identified outliers by assigning a very small weight, while the non-outliers are assigned

weights equal to one. These weights are regulated by a tuning parameter λ, and are

updated together with the model parameters θ. The optimal tuning parameter λ̂ is

determined with a random weighting procedure. The inspiration for our approach

is drawn from Fang et al. [19]. Their work proposed a random perturbation online

bootstrap method for SGD estimator statistical inference. This method generates a

large bootstrap sample of perturbations,W = {W+i, i = 1, ..., N}, from a distribution

29

with an expectation and variance both equal to 1. The SGD update incorporates

these perturbation, modifying Equation (2.1) as follows:

θ̂
⋆

n = θ̂
⋆

n−1 − γnWn∇ρ(θ̂n−1;Xn,yn), (2.3)

θ̄
⋆
n =

1

n

n∑
i=1

θ̂
⋆

n. (2.4)

Their proof demonstrates that the Kolmogorov-Smirnov distance between
√
n(θ̄n−θ∗)

and
√
n(θ̄

⋆
n − θ̄n) converges to zero in probability. This allows the construction of

confidence regions for the model parameters θ using the bootstrap-perturbed SGD

estimates. While similar resampling techniques were initially introduced by Rubin [57]

and Shao abd Tu [63], they were applied in a traditional offline setting, not an online

one. While the primary focus of this chapter is not statistical inference for model

parameters using SGD estimates, we adapt the logic of perturbation, applying it to

introduce small weights to each observation as a label for outliers. The perturbation

concept is also utilized in the tuning parameter selection step of our proposed method

to create two sets of perturbed observations.

The remaining of this chapter is organized as follows. We provide a detailed

analytical exposition of PWSGD method analytically in Section 2.2. This includes

elucidating our approach to select the optimal tuning parameter λ̂ and assess the

stability of our proposed method. In Section 2.3, we present the simulation results

with various data settings using PWSGD and compare its estimation performance

to that of the SGD method. In addition, we showcase the performance of PWSGD

on real data in Section 2.4. In Section 2.5, we summarize the findings and outline

potential avenues for future research.

30

2.2 PWSGD for linear regression

SGD is a powerful method that facilitates the development of complex models for

finding optimal solutions in a scalable manner. However, its performance can be

significantly affected by outliers or shift data contamination. In order to mitigate

the influence of outliers, we introduce individual weights, w ∈ [0, 1], to each training

observations. Ideally, these weights would be 1 for non-outliers and 0 for outliers.

However, in real-world examples, due to the presence of noise in the data sets, the

estimated true weights typically fall within the range of 0 and 1, inclusively. These

individual training weights serve as mediators, determining the contribution of each

observation to the overall model during training. A smaller weight implies a potential

outlier, thereby constraining the observation contribution to the model parameter

estimation. Conversely, a larger weight indicates a lower likelihood that an observation

is an outlier, thereby imposing less restriction on the contribution of the observation

to the overall model estimation.

Assume a regression linear model:

y = θX′ + ε, (2.5)

where y ∈ Rn is the response variable vector, n is the size of the data set, X ∈ Rn×p

is the covariate matrix, or the independent variable matrix, p is the dimension of the

model or the number of independent variables, θ ∈ Rp is the model parameter vector,

and ε ∈ Rn is the random error, or noise in the data set.

The traditonal SGD processes individual observations one at a time, where each

observation has an equal probability of being selected to update the parameter vector

31

estimation using Equation (2.1). However, a more prevalent approach involves dividing

the training set into mini-batches, with each mini-batch having an equal likelihood of

being chosen for updating the parameter vector estimation using Equation (2.1). The

goal of SGD for a linear regression model is to minimize the objective function:

θ̂ = argmin
θ∈Rp

{
n∑

i=1

(yi − x′
iθ)

2

}
. (2.6)

PWSGD adopts mini-batch method to update estimations of the model parameters,

and the final estimate is obtained by taking the average of all previous updated esti-

mations. With an individual weight, w ∈ [0, 1], assigned to each training observation,

the goal of PWSGD is to estimate the model parameters along with the individual

weight. A Lasso-like penalty is added to the objective function on the individual

weight with a tuning parameter λ to discourage assigning too many observations with

small individual weights. The objective function can be reformulated as follows:

(ŵ, θ̂) = argmin
θ∈Rp,w∈Rn

{
n∑

i=1

w2
i (yi − x′

iθ)
2 + λ

n∑
i=1

|1− wi|

}
. (2.7)

The update for the model parameters using the nth mini-batch of the training data

changes accordingly to the change in the objective function:

θ̂n = θ̂n−1 − γn∇ρ(θ̂n−1;Xn,yn)

= θ̂n−1 − 2γnX
′
nW

′
nWn(yn −Xnθ̂n−1),

(2.8)

where θ̂n is the update for the model parameters using the nth mini-batch of the

training data. θ̂n−1 is the update for the model parameters using the (n − 1)th

mini-batch of the training data. γn is the learning rate for the nth update. (Xn is

32

the covariate matrix of the nth mini-batch, yn) is the response variable vector of the

nth mini-batch. Wn is a diagonal matrix with wn on the diagonal, and wn is the

individual weight vector for the nth mini-batch. For individual weight estimation, the

assignment is shown in Equation (2.9):

ŵi =

1 if (yi − x′

iθ)
2 ≤ 0.5λ,

λ
(yi−x′

iθ)
2 if (yi − x′

iθ)
2 > 0.5λ,

(2.9)

where i, i = 1, 2, ..., nb, is the index of the training observations in a mini-batch, nb is

the total amount of training observations in a mini-batch.

2.2.1 PWSGD Algorithm

Algorithm 1 provides an overview of the proposed method for processing one mini-

batch of new iterations. We obtain model parameter initial value, θ0, from applying

robust linear regression to a given training set. Subsequently, the algorithm computes

the current residuals using the initial model parameter value (θ0) and a mini-batch

of new observations, and proceeds to update the individual weights, w. This update

is performed using Equation (2.9), starting with the initial weights, w0, which are

assumed to be uniformly 1. Following this, the algorithm employs the updated

individual weights to update the model parameter, θ. The update for the individual

weights and model parameter is iterated until convergence is achieved for both. The

PWSGD estimate of the model parameter after processing this mini-batch of data

is computed as the average of all previously converged model parameters, and the

individual weights is the PWSGD estimate for each new observation.

33

Input: Initial model parameter for this iteration θ̂
(0)

, λ, γ, α, n
Data: (Xn,yn) - the nth iteration of the entire data set
Result: wn = w

(j)
n and θ̂PWSGD = θ̂

(j)

w0 ← 1 and γ ← γn−α

Compute initial individual weight by
if (yi − x′

iθ̂
(0)
)2 > 0.5λ then

w
(0)
i ← 0.5λ

(yi−x′
iθ̂

(0)
)2

;

else
w

(0)
i ← 1;

end
let j = 1 ;
while not converge do

[Update θ̂]
θ̂
(j)

= θ̂
(j−1)

− 2γ(w
(j−1)
i)2(yi − x′

iθ̂
(j−1)

)xi ;

[Update w] if (yi − x′
iθ̂

(j)
)2 > 0.5λ then

w
(j)
i ← 0.5λ

(yi−x′
iθ̂

(j)
)2

;

else
w

(j)
i ← 1;

end

converge← max(||θ̂
(j)
− θ̂

(j−1)
||∞, ||w(j) −w(j−1)||∞) < ϵ ;

j ← j + 1 ;
end
ŶPWSGD(xn)← 1

n

∑n
k=1 θ

converged
n

Algorithm 1: The PWSGD for the nth batch

34

2.2.2 Tuning parameter selection

The tuning parameter plays a pivotal role in controlling the amount of outlier identifi-

cations and the penalty in the objective function, thereby significantly influencing the

performance of PWSGD. As depicted in Equation (2.9), the value of the individual

weight w is governed by λ. Specifically, as λ decreases, an observation is more likely

to be classified as an outlier with a smaller individual weight w. On the other hand,

Equation (2.7) illustrates that λ regulates the strength of the penalty imposed on the

individual weight w. Consequently, a larger λ results in a more substantial penalty on

the individual weight w. To balance the individual weight w and the penalty strength,

it is imperative to determine the optimal value for λ.

One of the outputs from PWSGD is a list of potential outliers from the data

set. By employing stability selection, we aim to find the optimal tuning parameter

that produces the most stable outlier detection. Several popular stability selection

methods have been widely discussed, including data splitting, bootstrap, and random

weighting. While all of them have proven to be useful for stable variable selection,

random weighting [63] [65] is the most appropriate for performing outlier detection,

as we need to obtain weights for all observations in each mini-batch, while the other

two methods leave some observations out during the process. The random weighting

method is also used in the paper by Gao and Fang [26] to perform tuning parameter

selection. Given a λ value, the subset O(λ;Z) denotes the outlier selection from the

input data set Z. Suppose that the data set Z is perturbed into two data sets, Z∗1

and Z∗2, then ideally the output outlier selection of these two perturbed data sets,

O(λ;Z∗1) and O(λ;Z∗2), should be similar. If O(λ;Z∗1) and O(λ;Z∗2) turn out to

be very different, neither of the output is reliable. Therefore, we seek the λ value that

35

produces the most agreement between the two outlier selections from two perturbed

data sets.

We employ the perturbation method in Fang et al. [19], which is akin to the

resampling random weighting method introduced by Rubin [57] referred to as the

Bayesian bootstrap in the offline setting —- to perturb the input data set Z. Let

ω1, ω2, ..., ωn be random weights from i.i.d. distributions with the first moment and

variance being ones (i.e. E(ωi) = 1 and V ar(ωi) = 1). Notice that this is a common

condition on random weights [20]. Additionally, as discussed in Fang et al. [19], we can

use a Poisson distribution Poisson(1) as n→∞ to generate the desired perturbed

samples. Denoting ω as a set of all random weights, we derive the objective function

to estimate the model parameters and individual weight with perturbation as follows:

(ŵ(λ,ω), θ̂(λ,ω)) = argmin
θ∈Rp,w∈Rn

{
n∑

i=1

ωiw
2
i (yi − x′

iθ)
2 + λ

n∑
i=1

|1− wi|

}
. (2.10)

For any two sets of random weights, ω1 and ω1, we obtain the corresponding estimate

for the individual weight for all observations, ŵ(λ,ω1) and ŵ(λ,ω2), which yield the

respective outlier sets, O(λ;ω1) and O(λ;ω2). To measure the agreement between

the two sets of outliers, we adopt the idea of finding the degree of agreement between

two judges’ nominal judgement on multiple events proposed by Jacob Cohen [13], the

Cohen’s kappa coefficient:

κ((λ;ω1),O(λ;ω2)) =
p(agreement)− p(chance)

1− p(chance)
. (2.11)

In other words, we use Cohen’s kappa coefficient to measure the proportion of agreement

between two sets with the agreement by chance being factored out. When the agreement

36

between the two sets equals to the agreement by chance, κ((λ;ω1),O(λ;ω2)) = 0.

The larger the coefficient, the more agreement there is between the two sets of outliers.

The largest coefficient can be 1, indicating that the two sets of outliers are completely

identical. When the two sets are in large disagreement, κ could be less than zero, which

is of less interest, as discussed by Cohen. Repeating the same process B times to find

the agreement between two outlier sets being perturbed by ωb1 and ωb2, b = 1, 2, ..., B,

we acquire the estimated stability of the outlier detection by averaging Cohen’s kappa

coefficients for a given λ:

Ŝ(λ) =
1

B

B∑
b=1

κ((λ;ωb1),O(λ;ωb2)). (2.12)

The repetition process guarantees stable selection of outliers. We secure the optimal

λ value that maximizes the stability, Ŝ(λ).

2.3 Simulation Studies

We demonstrate the proposed method through simulation studies and compare its

performance with SGD.

Example 1

We design our data set to have a dimensionality of 10, i.e., p = 10. The covaraites

vector of each observation i, xi ∈ Rp, where i = 1, 2, ..., n, and n is the total number of

observations in a batch or in the entire data set, is generated from a ten-dimensional

independent normal distribution, i.e. xi ∼ N10(0, I10), where I10 is a ten-by-ten

identity matrix. We set the underlying model parameter following the example from

37

Fang [18]:

θ∗ = (

q components︷ ︸︸ ︷
µ, ..., µ ,

q components︷ ︸︸ ︷
−µ, ...,−µ, 0, ..., 0)′, (2.13)

where q determines the amount of informative covariates, and is randomly selected

between 1 and half of the total dimensionality, i.e. 5 in our case. µ is the effective size,

which determines the strength of information provided by the informative covariates.

A smaller µ implies less impact of covariates on predicting future observations. In this

simulation study, we set µ = 3. The underlying response variable for each observation

i, yi, where i = 1, 2, ..., n0, is calculated using the underlying model parameter with a

linear model system:

yi = X ′
iθ

∗ + εi, (2.14)

where εi, the random error of observation i, is generated from a standard normal

distribution, i.e. εi ∼ N (0, 1). The size of the initial batch, n0, is set to be 100. A 20%

contamination proportion is introduced into the initial batch to mimic the real-life

situation with the following method:

Ycontaminated = Y + Ymax, (2.15)

and the contamination observations are randomly selected. Subsequently, we obtain

the initial estimation of the model parameter vector, θ̂0, by applying linear regression

method with the R function lm() for SGD, and by applying robust linear regression

model with the R function rlm() for PWSGD. This differentiation arises from our

assumption that potential outliers exist in the data set, a scenario not considered by

SGD.

We perform SGD and PWSGD following mini-batch mechanism. After the first

38

batch, mini-batches with a fixed size continue to be fed to the two algorithms to

simulate the SGD process. Each mini-batch has the same dimensionality as the initial

batch, p = 10, with a size of n = 20, and there are B = 200 batches in total. For each

new batch, we use the same contamination method in Equation (2.15) to contaminate

at a certain level, we denote this level, or the contamination proportion, as pcont. In

Example 1, we explore five different contamination levels to demonstrate the algorithm

performance, including 0%, 10%, 20%, 30%, and 40%, or pcont = 0, 0.1, 0.2, 0.3, and

0.4. Additionally, we include a scenario where the contamination level is random in

each mini-batch. In this case, we randomly select one contamination level from all the

aforementioned proportions and use the randomly selected percentage for the current

mini-batch. With each batch, we update the model parameter using both PWSGD

and SGD, and evaluate the method performance using mean squared error (MSE) of

the model parameters defined as follow:

MSEi =

∑p
j=1(θ̂ij − θ∗ij)

2

p
, i = 1, 2, ..., B. (2.16)

The same process is repeated 50 times, and the average is taken over the repetitions

on the MSEs for each iteration.

A byproduct from our method is creating outlier labels. The proposed method

produces the corresponding estimated individual weight in each mini-batch using

Equation (2.9). We then provide a cutoff value, wc, to classify outliers. If the

individual weight is less than the threshold wc, the corresponding observation is

classified as a contaminated case, otherwise, an uncontaminated case. A grid of cutoff

values are explored in this simulation study, and a graph of sensitivity (or true positive

rate) against the cutoff value is produced. Sensitivity measure the proportion of the

39

outliers correctly identified as contaminated cases. This metric is also known as the

recall rate elsewhere, providing a measure of the accuracy of the classification method

conditioned on the positive cases. Sensitivity can be calculated as the follows:

Sensitivity =
|Outliers being correctly identified|

|True outliers|
, (2.17)

where | · | is the cardinality of the enclosed set. The higher the sensitivity, the more

accurate the classifier. The final sensitivity for each cutoff value is the average over

50 repetitions. We also examine the receiver operating characteristic (ROC) curve, a

graph of sensitivity against the false positive rate. The false positive rate measures

the proportion of non-outliers that are misclassified as outliers and can be expressed

as 1− specificity. The specificity (or the true negative rate) measures the proportion

of non-outliers that are correctly classified as non-outliers and is calculated with the

following formula:

Specificity =
|Non-outliers being correctly identified|

|Non-outliers|
(2.18)

The ROC curve illustrates the performance of the classifier at all cutoff values, and the

area enclosed by the ROC and the horizontal axis is called the area under curve (AUC).

A concave-down ROC curve with a larger AUC indicates high accuracy in identifying

outliers without misclassifying non-outliers, signifying good classifier performance.

Conversely, if accuracy in classifying both outliers and non-outliers is low, the ROC

curve appears concave up with a smaller AUC, suggesting worse performance than a

random guess. A diagonal line with a slope of 1 corresponds to a random guess on

the graph. If an ROC curve is above the line, then we say the classifier works better

40

than a random guess, otherwise, it performs worse. A larger AUC signifies better

identification of true outliers and true non-outliers. Specificity values, using all cutoff

values, are also averaged over 50 repetitions, similar to the sensitivity values.

As important is the tuning parameter λ being discussed in Section 2.2.2, we

investigate how different timing for tuning the optimal λ could affect the efficiency

and accuracy of the proposed method. We consider four different timings:

1. Tune only the first batch after the initial batch;

2. Tune every batch after the initial batch;

3. Tune every kth batch after the initial batch; or

4. Tune only the first kth batch after the initial batch.

When tuning the λ value, we assume a contamination proportion. We believe that 20%

is a reasonable assumption for the contamination level, despite the actual contamination

proportion. The learning rate for SGD and PWSGD updates in Equation (2.1) and

Equation (2.8), respectively, is of common interest among early scholars as it plays a

vital role in the SGD procedure for determining the update step size. Both Benveniste

et al. [3] and Moulines and Bach [47] discussed that a misspecified learning rate result

in divergence in the mean squared error (MSE) with respect to convexity and Lipschitz

parameter of the function. Toulis et al. [68] argued that the information loss depends

on the learning rate. Toulis et al. [69] demonstrated and Fang et al. [19] discussed that

α = 2/3 yields optimal results in convergence rate in both cases where the objective

function is strongly convex and non-strongly convex. This extends the results from

Ruppert [58], Xu [74], and Moulines and Bach [47]. For a fixed batch size, if the the

fixed learning rate is small, the learning rate sequence will be pair-wisely small, leading

41

to a small update step size. This may prolong computation time to reach the optimal

value and sometimes result in a local optimal value rather than a global optimal value.

Conversely, if the fixed learning rate is large, the learning rate sequence will be pairwise

large. Although this could expedite reaching the optimal value, it may also cause

erratic behavior in the updating process and result in non-convergence. Therefore,

PWSGD and SGD are quite sensitive to the learning rate, and a misspedified learning

rate value could lead to divergence in both cases. We have compared the result using

several values of the fixed learning rate value, from 0.07 to 0.12 with an increment

of 0.01, when random contamination proportion is applied to the mini-batches. In

all tuning parameter timings, the results are quite similar. The MSE curves of SGD

and PWSGD using different γ values when λ is tuned only in the first mini-batch are

displayed in Figure 2.1. PWSGD appears relatively insensitive to changes in the γ

values in the graph, however, a minor variation can still be observed. If we increase

the tuning frequency, PWSGD appears even less sensitive to the change of γ value.

We observe that as the learning rate increases, the MSE of both SGD and PWSGD

increases to respective extend. For all following analysis, we demonstrate the result

using a fixed learning rate γ = 0.08. The learning rate for both the proposed method

and the SGD method follow that described in Equation (2.2) with α = 2/3, aligning

with the conventional setting as those on SGD.

Example 2

Example 2 is an extension of Example 1 where the tuning parameter λ is tuned

every k batches. Example 1 illustrates a scenario with a relatively small data set,

however, SGD proves more beneficial for handling larger data sets. Therefore, we

design Example 2 to have a larger data set than Example 1. For large data sets,

42

Figure 2.1. MSE of PWSGD and SGD with different fixed learning rate when λ tuned
only once with the first batch

43

tuning the parameter in every batch may be time-consuming, as observed in Example

1. However, tuning the parameter only once for the entire data set or for the first k

observations may be overly optimistic. Therefore, in Example 2, we consider only the

third tune timing, where λ is tune for every k batches. To accommodate varying data

sizes without specifying a fixed k value, we employ a percentage, denoted as pk. This

allows us to tune λ once for every pk ×B batches, providing adaptability for data sets

of different sizes. Notice that a higher pk implies less frequent tuning for λ over the

entire data set. In addition, we increase the initial batch size from 100 to 5000 to

maintain the ratio of batch sizes. We investigate the impact of the tuning parameter

frequency with several settings in this example:

1. let pk = 0.1, i.e. tune 10% of the entire data set, and generate B = 2, 000

mini-batches in total with each mini-batch having a size n = 1, 000;

2. let pk = 0.2, i.e. tune 20% of the entire data set, and generate B = 2, 000

mini-batches in total with each mini-batch having a size n = 1, 000;

3. let pk = 0.3, i.e. tune 30% of the entire data set, and generate B = 2, 000

mini-batches in total with each mini-batch having a size n = 1, 000.

All other settings not explicitly mentioned remain consistent with those of Example 1.

Results

The results obtained from tuning λ with different timings in Example 1, with all other

parameters held constant, show subtle differences. This is likely due to the fact that

the generated data is very clean, with all observations are from the same distribution

and being mutually independent. While this may not be representative of real-life data,

44

(a) Learning Curve

(b) ROC Curve (c) Boxplot of MSEs of all batches

Figure 2.2. Performance of PWSGD and SGD at all contamination levels when
γ = 0.08 and λ being tuned every 10 batches in Example 1. (a) is the MSE values
of both PWSGD and SGD at five different contamination proportion rates over all
mini-batches of size 20; (b) demonstrates the ROC curve of classification of outliers
using PWSGD; and (c) shows the boxplot of all MSE’s from PWSGD and SGD at all
five contamination proportion rates.

45

we consider tuning every k observations to be the most time-efficient while maintaining

adequate performance. Figure 2.2 exhibits the results with γ = 0.08, where λ value

is tuned every 10 batches. Results with other tune timing are demonstrated in

Supplementary Material.

Figure 2.2(a) provides the MSE change in both methods over the number of batches

at five contamination proportions. The solid line indicates the result of the proposed

method and the dashed line presents the performance of SGD. It is evident that our

method outperforms SGD by a significant margin when there is data contamination in

the data set. Despite SGD initially performing better than our method when there is

no contamination in the data set, our method quickly surpasses SGD within the first

10 batches and maintains a consistently superior performance. This can be observed

from Figure 2.2(c), where, when the contamination proportion is 0%, there are several

MSE’s on the higher end of the boxplot for PWSGD that exceed the highest MSE

boxplot of SGD, but overall, PWSGD achieves lower MSE than SGD. When there

is data contamination, MSE obtained by PWSGD distinctly surpasses SGD. Figure

2.2(b) demonstrates the ROC curve of PWSGD method on outlier recognition. It

shows that almost the outliers and non-outliers are correctly being identified at a

very high rate. The false positive rate or 1 - Specificity barely exceeds 0.2, indicating

that our method rarely misclassifies non-outliers. Assuredly, tuning λ every k batches

seems the most reasonable approach for real data analysis. Therefore, it is important

that we examine if changing the frequency would affect the performances of the two

methods. The comparison of MSEs also turns out to be similar to Figure 2.2(a).

We observed that, across all contamination proportions, PWSGD consistently

achieves the highest sensitivity of 1 with the smallest provided cutoff value, 0.05.

The AUC of the ROC curves remains very large and similar for all contamination

46

Figure 2.3. Average MSE of PWSGD and SGD in Example 1 at all contamination
levels when λ tuned for the first batch only, for all batches, every 10 batches, and for
the first 10 batches

proportions. The AUC of the ROC curves remains very large and similar for all con-

tamination proportions. Even misspecifying the contamination proportion, PWSGD

demonstrates stability in the face of increasing contamination disturbance.

Figure 2.3 demonstrates the comparison of the change in average MSE when

applying SGD and PWSGD over contamination levels in all tuning time scenarios

mentioned in Example 1 (2.3) with k = 10. In the figure, the black solid line is the

average MSE of PWSGD and the red dashed line is the average MSE of SGD. All

scenarios have a fixed learning rate γ = 0.08. It is evident that PWSGD exhibits

47

robustness compared to SGD across all scenarios. The average MSEs of SGD remain

relatively consistent, whether dealing with random contamination proportions or a

fixed contamination proportion of 20%. This consistency is primarily attributed to the

expected contamination proportion rate being 20% when the contamination proportion

is uniformly selected.

We experimented with different batch sizes to assess their impact on the perfor-

mance of both methods. Starting with n = 20, then slowly increased to n = 50, 100,

and n = 1000 to address the challenges of the big data era in Example 2. Despite

the relative similarity in results, it became apparent that SGD is more sensitive to

increases in batch size, whereas PWSGD demonstrates remarkable stability. This

observation is evident when comparing the MSE learning curve plot and the MSE

boxplot.

In our various attempts with different γ values, a noteworthy finding is that

PWSGD performs poorly when the γ value is excessively large, while SGD tends to

exhibit better learning. This observation aligns with the discussion in Section 2.3,

highlighting PWSGD’s sensitivity to the choice of the learning rate. Our experiments

indicate that PWSGD is more sensitive than SGD to the learning rate, with a

preference for smaller values to converge effectively. If the learning rate becomes too

large, the performance of PWSGD becomes erratic. Additionally, our experimental

findings suggest that the learning rate is influenced by the mini-batch size, the initial

batch size to mini-batch size ratio, and the tuning frequency. As the mini-batch size

increases, while keeping other settings, including initial batch size and the tune timing,

constant, an optimal γ value should be smaller to maintain stable performance.

Similar to Example 1, the variance in tuning frequency did not yield significant

differences in outcomes. Figure 2.4 presents the result with γ = 0.08, and λ value is

48

(a) Learning Curve

(b) ROC Curve (c) Boxplot of MSEs of all batches

Figure 2.4. Performance of PWSGD and SGD at all contamination levels when
γ = 0.08 and λ being tuned every 20% batches in Example 2. (a) is the MSE values
of both PWSGD and SGD at five different contamination proportion rates over all
mini-batches of size 1000; (b) demonstrates the ROC curve of classification of outliers
using PWSGD; and (c) shows the boxplot of all MSE’s from PWSGD and SGD at all
five contamination proportion rates.

49

tuned every 20% batches, the result with other tuning frequencies are demonstrated in

Supplementary Material. In Figure 2.4(a), it appears that the overall and converged

MSE are smaller than those in Example 1, and the MSE of SGD converges faster

than it does in Example 1. This faster convergence may be attributed to a larger

mini-batch size. In accordance with Example 1, PWSGD consistently outperforms

SGD in all contamination proportion settings by acquiring smaller MSEs. The boxplot

of the MSEs in Figure 2.4(c) shows that when the data set is large PWSGD and SGD

performs very similarly when there is no contamination in the data set. However,

PWSGD achieves a slightly smaller MSE compared to SGD. With contamination

present, the performance of SGD deteriorates, whereas PWSGD maintains a high

level of accuracy. The outlier detection accuracy is outstanding, as indicated by the

ROC curve having a very large AUC in Figure 2.4(b). This suggests that PWSGD

detects outliers correctly with a very low false positive rate.

We compare the average MSEs of both methods in the three settings in Example 2.

The comparison mirrors that in Example 1, although we observe minimal variations in

the average MSE from PWSGD as the contamination proportion increases in Example

2. Through the simulations with both small and large data sets, we demonstrate the

robust stability of the proposed method across different data scenarios. Furthermore,

the outlier detection performance remains consistently stable.

2.4 Real data analysis

In this section, we apply PWSGD to the gas sensor array under dynamic gas mixtures

data set available on UCI machine learning repository [22]. The data was collected at

the ChemoSignals Laboratory in the BioCircuits Institute, University of California San

50

Figure 2.5. Average MSE of PWSGD and SGD in Example 2 at all contamination
levels when λ tuned every 10% batches, every 20% batches, and every 30% batches

51

Diego by Fonollosa et al. [23]. The purpose was to improve the accuracy for detecting

chemical mixtures from the sensor measurements as early as possible in time. We take

the data set that contains the time series readings from 16 chemical sensors exposed

to ethylene and Carbon Monoxide (CO) gas mixtures at different concentration levels,

with concentration levels changing randomly. The chemical sensor arrays were placed

in a 60 ml measurement chamber, where the gas sample was injected at a constant

flow of 300 ml/min, and the readings are continuous signals over approximately 12

hours without interruption, resulting in 4, 208, 261 measurements in total from all

sensors. The 16 chemical sensors contains four different types: TGS-2600, TGS-2602,

TGS-2610, TGS-2620, and there are four of each type.

The use of the chemical sensor data set is inspired by Wang et al. [72], who applied

a novel subdata method to overcome potential covariance issues and computational

challenges associated with large-sized data when employing linear regression analysis.

Eo et al. [17] also leveraged this data set in their research, with a primary focus on

data pre-processing for neural network techniques. In their study, SGD was adopted

as the optimizer. The data set was utilized to investigate their method for improving

gas concentration estimation accuracy using various neural network methods and the

proposed data pre-processing method. For this real data analysis, we compare the

estimation performance of our proposed method to that of SGD assuming a linear

regression model.

Following Wang et al. [72], all readings from the second sensor were excluded

due to mainly containing negative readings for unknown reasons. Additionally, only

the readings after the first 4 minutes, which is the system run-in time, were used.

A log-transformation was applied to all readings since trace concentration generally

follows a lognormal distribution. The readings from the last sensor (sensor 16) were

52

Figure 2.6. Scatter plots of simple random sample of size 10, 000 from the chemical
sensors data. Z1 represent sensor 1, Z3 represent sensor 3, etc..

selected as the response variable, while the rest were considered as covariates. Applying

the same data preprocessing steps, the data set used for data analysis consists of

4, 188, 261 observations with 14 covariates from the other sensors except sensor 16.

Randomly select 10, 000 observations from the data set, Figure 2.6 demonstrate the

scatter plot of these obervations. Notably, some sensor readings exhibit strong linear

relationships with sensor 16. This may be attributed to these sensors being of the

same type as sensor 16 or similar types. The other sensor readings do not hold

strong linear associations with sensor 16, but a moderate linear association may

exist.

We apply both PWSGD and SGD to implement the linear regression analysis,

investigating the correlation between sensor 16 with the other sensors. The estimation

performance of the two methods is compared using the mean squared prediction error

53

(MSPE). MSPE is calculated in the following method:

MSPE =
1

n

n∑
i=1

(ŷi − yi)
2, (2.19)

where n is the number of observations being estimated, ŷi is the estimated logged

reading of sensor 16 by either the proposed method or SGD for observation i =

1, 2, ..., n, and yi is the true logged reading of sensor 16 for the ith observation. The

initial batch contains the 8, 261 instances and each mini-batch after the first batch

contains 2000 observations, resulting in 2, 090 mini-batches. We assume the initial

estimation for the model parameters is zero for both methods, let γ = 0.08, and

assume a contamination proportion of 20% in each batch. The tuning parameter

λ is tuned every 20% of the batches, that is, we tune λ once for every 418 batches.

With each mini-batch, we update the estimation of the model parameters and use

the updated model parameter to estimate the logged reading of sensor 16 for the

next mini-batch. The true logged reading from sensor 16 of the next mini-batch

is compared against the estimations from the two methods, and a MSPE value is

calculated using Equation (2.19).

Figure 2.7 demonstrates the MSPE of both methods over all iterations in varying

scales. In the top left corner, all MSPEs from both methods are displayed, highlighting

the substantial difference in the initial estimation using SGD from the underlying

logged readings of sensor 16. The top right corner provides a zoomed-in view of the

MSPEs of both methods. Notably, the MSPE behavior from SGD appears erratic,

and it remains challenging to observe the variation in MSPE using PWSGD. Moving

to the bottom left corner, we present the MSPEs from both methods zoomed in to

the scale of PWSGD only. In this view, the information from SGD is absent. The

54

Figure 2.7. MSPE of PWSGD and SGD applied to Ethylene CO Analysis when
γ = 0.08, tune very 20% batches.

55

Figure 2.8. Box plot of MSPE of PWSGD and SGD from all iterations applied to
Ethylene CO Analysis when γ = 0.08, tune very 20% batches.

56

maximum MSPE is observed from the first batch. Given that we assumed all zero

values for the model parameters in the initial batch, the spike in MSPE in the first

mini-batch is reasonable. Finally, the bottom right graph illustrates the MSPEs from

both methods after 100 batches. The MSPEs from SGD exhibit increased stability

compared to the top left graph. However, the scale remains large.

Figure 2.8 displays MSPEs using both methods to estimate the logged readings of

sensor 16 in boxplots. The top left graph illustrates all MSPEs from the two methods,

where it is evident that the variation using the proposed method is significantly lower

than with original SGD. From the bottom right graph, it can be seen that the largest

MSPE using PWSGD is approximately the same as the smallest MSPE applying SGD.

It is evident that even when the relationships between the response variable and

the covariates appear to be linear, PWSGD outperforms SGD when assuming a linear

regression model in a real-life data set.

2.5 Summary

PWSGD builds upon SGD, which is a potent optimization tool for handling large

amounts of data or streaming data. In a least squares regression setting, SGD

alleviates the challenges of inverting covariance matrices caused by huge data sets or

the inability of least squares regression models to handle data streams. However, SGD

is susceptible to the impact of outliers or data contamination. PWSGD incorporates

penalized weighted methods by assigning an individual weight to each observation

and enforcing a lasso-like penalty on the individual weight. The individual weight

acts as a regulator to control the influence of each observation on the estimation of

the model parameters based on the residual. Thus, when an observation appears to

57

be a potential outlier, its contribution to the estimation is limited. Meanwhile, when

the individual weight is very small, indicating a potential outlier, the corresponding

observation is labeled by our algorithm, allowing for further analysis and actions based

on this information. The penalization on the individual weight regulates the amount

of data contamination identified by the algorithm, with the penalization strength

controlled by a hyperparameter λ. These modifications based on SGD enhance

its robustness to data contamination, thereby improving the estimation of model

parameters. Consequently, predictions using the estimated model parameters become

more accurate. This improvement is evident from our experiments with simulated

data and real data analysis using the chemical sensor data set, where in all examples,

PWSGD outperforms SGD in terms of MSE and MSPE.

We believe refined algorithm is valuable, given the widespread use of SGD across

various machine learning methods and its broad adoption in many fields. PWSGD has

demonstrated its effectiveness in improving estimation or prediction under a linear

regression setting, as well as in the estimation or prediction of other algorithms. A

future avenue for exploration involves applying PWSGD to a heterogeneous model

with a variance function, moving beyond the homogeneous setting covered in this

chapter. This extension is particularly relevant for scenarios where outlying responses

may not be solely due to error but rather stem from intrinsic variability in the response

variable.

58

Chapter 3: Robust Random Forest

3.1 Overview

Random Forest (RF) by Breiman [7] is very popular in the industry, especially in

finance, where complex and messy data exist. This popularity is attributable to its

flexibility, which allows it to adapt to various types of data. RF consists of many

individual regression or classification trees, each trained on a bootstrapped sample

with a randomly selected subset of explanatory variables. The RF prediction for

a new observation is the average of the results from all trees in RF. Let θt be the

random parameter set for tree t, where there are m trees in total in RF. Let (Xi, yi)

be observation i in the training set, where there are n training observations in total.

Meinshausen and Ridgeway [46] demonstrated that the prediction from RF for a

new observation with X = x can be written as the weighted average response of the

training observations as follows:

ŶRF (x) =
n∑

i=1

w(Xi,x)yi, (3.1)

w(Xi,x) =
1

m

m∑
t=1

w(Xi,x,θt), (3.2)

59

where w(Xi,x,θt) is the weight of training observation i from tree t.

The prediction of RF is highly local and, therefore, robust to data from heavily

tailed distributions. However, RF is not robust if the training responses and the

testing responses are from different distributions. One phenomenon that could lead to

different distributions is when the response variable is contaminated in the training set.

In this chapter, we consider the situation where there exists mean-shift contamination

on the response variable in the training set. A mean-shift contaminated response

variable follows a distinct distribution that has a constant difference in the mean

compared to the true distribution. The observations with this type of contamination

are normally called outliers. Consequently, the prediction from the RF for a new

observation may be affected by the contamination if the outliers are not addressed.

According to Hample et al. [32], a data set can contain 1% to 10% contaminated

observations. She and Owen [64] discussed that traditional methods to identify outliers,

such as studentized residuals or leave one out methods (with Cook’s distance or with

difference in fits (DFFITS)), work well when dealing with a single outlier but might

fail when there are multiple outliers. These traditional methods fail in two ways. One

is called masking, where outliers are not identified. The other way is called swamping,

where non-outliers are misclassified as outliers. As data is collected from various

resources and in different forms at an increasing speed in the era of big data, the

issue of outliers becomes more conspicuous. Therefore, identifying outliers and being

resistant in the face of data contamination becomes remarkably important.

Numerous scholars have endeavored to enhance the robustness of RF against diverse

data contamination. Roy and Larocque [56] showed that applying robust aggregation

methods for RF often assists in mitigating the impact of outliers. They illustrated that

replacing the mean of the response variable with its rank improves the robustness of RF.

60

Meinshausen and Ridgeway [46] introduced quantile regression forest (QRF), which

substitutes the mean of the response variable with quantiles. Additionally, Meinshausen

established that the distribution of QRF prediction approximates, point-wise, the

underlying distribution of the response variable. Li and Martin [42] demonstrated

that RF predictions can be formulated in generalized loss function form:

ŶRF (x) = argmin
S∈F

n∑
i=1

w(Xi,x)ρ(yi,S(xi)), (3.3)

where F is a family of functions and ρ(·) is a general loss function. Li and Martin

showed that the original RF and the QRF can be expressed by the generalized loss

function with squared error loss function and quantile loss function, respectively.

Furthermore, Li and Martin proposed robust RF with adaptive weights using pseudo

Huber loss function and using Tukey’s biweight loss function (hereinafter referred to as

RFHuber and RFTukey, respectively). Sage [59] proposed the method that introduces

a weight for each training case to enhance the robustness of classification RF. Unlike

the approach by Li and Martin, where adaptive weights are recalculated for each new

observation, Sage’s method computes the weights for the training observations only

once, making it applicable to all new observations.

In this chapter, we propose the penalized weighted robust random forest (PWRF)

method drawing inspiration from the penalized weighted method from Gao [27], Gao

and Fang [26], Gao and Feng [28], and Luo et al. [45]. These studies have demonstrated

that the penalized weighted method robustly identifies outliers in the training set,

thereby enhancing the estimation and prediction of the corresponding algorithms.

PWRF modifies the loss function in Equation (3.3) with a residual based individual

weight, d, and introduces a Lasso-like penalty on the logged weight term to regulate the

61

individual weight assignment. Additionally, given that our method is residual-based,

it exhibits versatility in handling various types of data. Moreover, it can be extended

to enhance the robustness of other algorithms.

Moreover, PWRF is computational efficient, in theory, compared to RFHuber

and RFTukey introduced in Li and Martin [42], when continuously predicting for

streaming in new observations in different batches. This efficiency stems from the fact

that the individual weight for a training observation in the proposed method is based

on the difference between the its estimated response and its underlying response. In

contrast, Li and Martin’s method derives from the deviation between the estimated

response of the new observation and each training observation. Consequently, our

method evaluates individual weights and hyperparameters only once for all new cases,

while other robust RF methods recalculate their corresponding hyperparameters each

time new cases arrive. In experiments conducted in Section 3.3, PWRF consistently

achieves highly competitive or even superior results compared to the two robust

RF methods, RFHuber and RFTukey. Particularly in simulation studies, PWRF

demonstrates stability across different data settings.

The remainder of this chapter is organized as follows. In Section 3.2, we introduce

our proposed method, PWRF, demonstrate the framework of the algorithm, and

discuss how the tuning parameter is selected. In Section 3.3, we conduct numerical

studies to compare the performance of PWRF to three other RF methods (RFHuber,

RFTukey, and the original RF). In Section 3.4, we apply all four methods to a real-life

financial data set to further investigate and compare their performance. Finally, in

Section 3.5 we conclude by summarizing the observations from both the numerical

studies and real data analysis.

62

3.2 PWRF Regression

PWRF alleviates the impact from the outliers in the training set based on the residuals

of the training observations. We employ the squared error loss function, ||y − ŷ||22,

in Equation (3.3), and introduce a weight, d ∈ [0, 1]. This weight, distinct from

the weight in the original RF, w, in Equation (3.3),is referred to as the individual

weight, denoted as d. The individual weight di assigned to an observation xi is directly

related to its training squared error, (yi − ŷi)
2, where ŷi is the estimated response for

observation xi. The assignment of the individual weight d to each training observation

is described in Equation (3.4):

d̂i =

1 if (yi − ŷi)

2 ≤ λ,

λ
(yi−ŷi)2

if (yi − ŷi)
2 > λ,

(3.4)

where ŷi is the estimated response for observation xi. In an ideal scenario, di = 0 for

outliers and di = 1 for non-outliers. Nonetheless, the individual weight typically range

between zero and one: the larger the error, the smaller the individual weight, resulting

in less impact on the prediction from new observations Additionally, an ℓ1 penalty is

applied to the log-transformed individual weights to control the number of training

observations considered as outliers. The estimation of the individual weight, d̂, can

be summarized as in Equation (3.5):

d̂ = argmin
d

{
n∑

i=1

w(Xi,x)di(yi − ŷi)
2 + λ

n∑
i=1

| log(di)|

}
. (3.5)

63

Furthermore, the prediction from PWRF is a modified version of Equation (3.1):

ŶPWRF (x) =
n∑

i=1

w(Xi,x)diyi. (3.6)

3.2.1 Our Algorithm

Algorithm 2 outlines the framework of the proposed method. With a given training set,

we first use the original RF to obtain the Out-of-Bag (OOB) prediction weights, wOOB,

and the initial OOB prediction, ŷ(0)OOB, for all training observations. Then, the initial

OOB prediction is computed as the weighted average of the training observations

as described in Equation (3.1). Assuming that the observations are not outliers –

assigning 1 to the individual weight d – we update the OOB predictions with Equation

(3.6) . At the same time, d is being updated using Equation (3.4) with a given λ. The

update process continues until both the prediction and the individual weights converge.

The prediction for a new observation X = x is calculated using the prediction weights

wk from the original RF and the converged individual weights.

3.2.2 Tuning parameter selection

The hyperparameter, λ, plays a crucial role in the PWRF algorithm. This parameter

controls both the individual weight in Equation (3.4) and the strength of lasso-like

penalty in Equation (3.5). Achieving optimal performance in our method hinges on

selecting an appropriate value for λ. In Equation (3.4), λ essentially functions as

an outlier classification rule, determining the assignment of individual weights for

training observations. If the squared residual of a training observation is less than

λ, we classify it as a non-outlier by assigning an individual weight of 1. However, if

64

Input: out-of-bag (OOB) prediction weights wOOBk ̸=i
(i) and RF prediction

weights wk from RF, and λ.
Data: x
Result: di = d

(j)
i and ŶPWRF (x)

Compute initial OOB predictions by
ŷ
(0)
OOB(i)←

∑
k ̸=i wOOBk

(i)yk, for i = 1, 2, ..., n.

let j = 1, d(0)i = 1 ;
while not converge do

[Update ŷOOB]

ŷ
(j)
OOB(i)←

∑
k ̸=i wOOBk

(i)d
(j−1)
i yk∑n

k ̸=i wOOBk
(i)d

(j−1)
i

;

[Update d]
if (yi − ŷ

(j)
OOB(i))

2 > λ then
d
(j)
i ← λ

(yi−ŷ
(j)
OOB(i))2

;

else
d
(j)
i ← 1;

end
converge← ||ŷ(j)OOB − ŷ

(j−1)
OOB ||∞ < ϵ ;

j ← j + 1 ;
end
ŶPWRF (x)←

∑n
k=1 wk(x)diyk∑n
k=1 wk(x)di

Algorithm 2: The PWRF

65

the squared residual exceeds λ, indicating a higher potential for contamination or

being an outlier, we set the individual weight as the ratio of λ to the squared residual.

The magnitude of λ influences the classification rule’s strictness. A larger λ increases

the likelihood of an observation being classified as a non-outlier, resulting in a looser

rule. Conversely, a smaller λ raises the chances of an observation being considered a

contaminated case, leading to smaller individual weights for such observations and a

stricter rule. Moreover, λ controls the penalty strength on the individual weight in

Equation (3.5). A larger λ results in a larger individual weight but a weaker penalty,

| log(di)|, and vice versa. In essence, λ acts as a lever to balance the behavior of

individual weights and the penalty, making it crucial to select an appropriate value

for accurate predictions in the algorithm.

Cross-validation is prevalent in machine learning to determine optimal tuning

parameters. However, it operates under the assumption that both training and testing

observations are drawn from the same distribution. This assumption becomes invalid

when outliers are present in the training set but absent in the testing set. To mitigate

the impact from the outliers, Sage [59] employed a weighted cross validation method

which involves training two additional smaller trees, which requires more computation

power. To attain the optimal value for λ given a set of fine grid λ values, we perform

a k-fold cross-validation on the training set with all λ values using trimmed mean

squared validation error. First, we randomly assign the training observations into k

subsets, or k folds, and designate one of the folds as the validation set while the rest

compose the “training set”. Subsequently, we train a PWRF model on the “training set”

with each λ value from the fine grid and evaluate its performance on the validation

set to obtain the validation error for this fold. Here, we deviate from the conventional

cross-validation method by computing the trimmed mean squared validation error for

66

each fold instead of the mean squared validation error. This adjustment helps mitigate

the impact of outliers. We iterate through each fold to compute k trimmed mean

squared validation errors, and then calculate the average trimmed mean validation

error across the k folds for each λ. This process is repeated for all λ values several

times to reduce randomness. The λ value that yields the smallest average trimmed

mean squared validation error across repetitions is selected as the optimal λ value.

3.3 Simulation studies

We conduct numerical studies to compare the performance of our method with three

other methods: RFHuber (Li and Martin [42]), RFTukey Li and Martin ([42]), and

the original RF (Breiman [7]). These studies comprise three simulation examples,

inspired by similar ideas from Sage [59]. The first two examples are based on work

by Roy and Larocque [56], and the third example originated from Li and Martin [42].

Example 1 simulates a tree-like mechanism, Example 2 creates a combined non-linear

response variable, and Example 3 generates linear response variable. In Example 3,

the covariates are correlated with a correlation coefficient of 0.7, unlike in the first

two examples, where the covariates are independent. Across all examples, we vary the

proportion of data contamination in the training set, demonstrating the prediction

performance of the methods under different scenarios. In contrast to the mean (or

“shift”) contamination from Roy and Larocque [56], where only the random error is

contaminated with a larger mean value, in this chapter, we define a mean-shift type of

contamination in the response variable. Specifically, we add three times the maximum

of the responses to randomly selected observed responses, with the number of selected

observations varying by the contamination proportion level. The subsequent sections

67

provide detailed descriptions of the setting for each of the three examples in detail.

Example 1

In the first example, explanatory variable data is generated from a six-dimensional

independent normal distribution, i.e. X ∼ N6(0, I6), where I6 is a six-by-six identity

matrix. To mimic a seven-leaf tree mechanism, the response variable is generated as

follows:

Yi =m(1((X1i ≤ 0), (X2i ≤ 0))

+ 21((X1i ≤ 0), (X2i > 0), (X4i ≤ 0))

+ 31((X1i ≤ 0), (X2i > 0), (X4i > 0), (X6i ≤ 0))

+ 41((X1i ≤ 0), (X2i > 0), (X4i > 0), (X6i > 0))

+ 51((X1i ≤ 0), (X3i ≤ 0))

+ 61((X1i ≤ 0), (X3i ≤ 0), (X5i ≤ 0))

+ 71((X1i ≤ 0), (X3i ≤ 0), (X5i > 0)) + εi

(3.7)

m is a signal-to-noise ratio, regulating the size of the signal with respect to the random

error, ε. As m increases, the signal in the data becomes stronger, resulting prediction

is less influenced by the random error. Different levels of signal-to-noise ratio can

have varying effect on algorithm performance, and when there is data contamination

in the training set, this effect may be magnified. In this example, we utilize four

different signal-to-noise ratios: m = 0.2, 0.4, 0.6, 0.8, to compare the performance of

the methods as the signal in the data set transitions from weak to strong. 1(·) is an

indicator function, returning 1 if the logic inside the function is true and 0 otherwise.

The random error, ε, is generated from an identical and independent standard normal

68

distribution, i.e. ε ∼ N (0, 1).

Example 2

Covariates for the second example are generated in the same manner as in Example

1. The response variable is generated with the following function, which creates a

combination of linear, non-linear, and tree-like response:

Yi = m(X1i + 0.707X2
2i + 1(X3i > 0) + 0.873 log(|X1i|)X3i

+ 0.894X2iX4i + 21(X5i > 0) + 0.464eX6i) + εi,

(3.8)

where m and ε are defined the same as in Example 1, but for Example 2, the

values of m are set to 0.15, 0.3, 0.45, and 0.6.

For both examples, we generate 500 and 1000 observations for the training and the

testing set, respectively. We randomly contaminate a proportion, pcont, of the training

observations, where pcont = 0, 0.1, 0.2, 0.3, with the following method:

Ycontaminated = Y + 3 ∗ Ymax, (3.9)

where Ymax is the maximum of all observed responses. pcont = 0 indicates 0% data con-

tamination in the training set, pcont = 0.1 means that 10% of the training observations

are contaminated, etc.. While complete absence of contamination is nearly impossible

in real-life data, we include this scenario in our study to provide a basis for comparison

with situations involving data contamination. Exploring different combinations of

signal-to-noise ratios and contamination levels allows us to observe the varying effects

when these different levels are applied.

69

Example 3

In the third example, the explanatory variables are generated from a ten-dimensional

normal distribution with the covariance matrix being a Toeplitz matrix with a cor-

relation of 0.7, i.e. X ∼ N10(0,Σ), where Σ is a Toeplitz matrix with ρ = 0.7. The

response variable is generated using the following function, which creates a linear

response:

Yi =
10∑
j=1

X2
ji + εi, (3.10)

where ε, the random error, is generated from an identical and independent standard

normal distribution as in the previous two examples, i.e. ε ∼ N (0, 1).

In Example 3, we generate 1000 training observations and 1000 testing observations.

Similar to Example 1 and 2, we once again randomly contaminate a proportion pcont

of the training observations using Equation (3.9) with pcont = 0, 0.1, 0.2, 0.3.

Both robust RF methods from Li and Martin [42] contain a hyperparameter similar

to our method. Thus, we apply the method mentioned in Section 3.2.2 to obtain the

optimal hyperparameter values for all three robust RF methods. The procedure for

RFHuber and RFTukey follows very similar steps as described in Algorithm 2, and

the package ‘grf’ ([66]) is employed to perform the original RF algorithm.

70

M
SP

E
M

A
P

E
m

p c
on

t
P

W
R

F
R

F
H

ub
er

R
F
Tu

ke
y

O
ri

gi
na

lR
F

P
W

R
F

R
F
H

ub
er

R
F
Tu

ke
y

O
ri

gi
na

lR
F

0.
2

0
1.

08
2

1.
07

9
1.

08
0

1.
07

9
0.

82
8

0.
82

8
0.

82
8

0.
82

7
0.

2
0.

1
1.

29
6

1.
39

3
1.

29
2

4.
10

3
0.

90
6

0.
94

3
0.

90
4

1.
72

3
0.

2
0.

2
1.

65
0

1.
83

1
1.

43
7

12
.0

40
1.

03
6

1.
09

8
0.

95
4

3.
21

5
0.

2
0.

3
6.

86
7

9.
03

5
20

.6
20

25
.7

84
2.

31
3

2.
69

9
4.

30
3

4.
86

7
0.

4
0

1.
26

8
1.

25
5

1.
26

1
1.

25
2

0.
87

1
0.

86
9

0.
87

0
0.

86
9

0.
4

0.
1

1.
80

6
1.

94
3

1.
78

7
8.

50
7

1.
04

5
1.

10
1

1.
04

1
2.

56
9

0.
4

0.
2

2.
89

7
3.

07
6

2.
31

3
27

.3
46

1.
40

3
1.

45
4

1.
18

9
4.

93
5

0.
4

0.
3

16
.2

56
21

.3
64

47
.8

79
59

.7
70

3.
63

7
4.

22
9

6.
62

6
7.

47
8

0.
6

0
1.

56
9

1.
54

0
1.

55
6

1.
52

7
0.

92
1

0.
91

9
0.

91
9

0.
91

9
0.

6
0.

1
2.

65
1

2.
82

1
2.

61
2

15
.2

11
1.

21
8

1.
29

2
1.

21
7

3.
49

4
0.

6
0.

2
4.

84
1

4.
99

1
3.

72
2

50
.4

63
1.

84
7

1.
87

9
1.

47
6

6.
73

8
0.

6
0.

3
29

.6
11

40
.2

90
86

.1
79

10
9.

60
5

4.
93

1
5.

83
7

8.
85

0
10

.1
48

0.
8

0
1.

95
4

1.
93

5
1.

95
8

1.
88

9
0.

96
9

0.
97

0
0.

97
0

0.
97

2
0.

8
0.

1
3.

76
0

4.
02

0
3.

76
0

24
.2

02
1.

40
0

1.
49

2
1.

40
5

4.
44

3
0.

8
0.

2
7.

50
6

7.
52

5
6.

40
4

81
.8

64
2.

33
6

2.
32

8
1.

85
9

8.
60

9
0.

8
0.

3
48

.1
56

63
.9

47
13

9.
84

8
17

7.
11

3
6.

29
7

7.
37

2
11

.2
86

12
.9

15
Ta

bl
e

3.
1.

E
xa

m
pl

e
1:

Av
er

ag
e

M
SP

E
an

d
Av

er
ag

e
M

A
P

E

71

Once we obtain the predictions from all four methods, we compare the results and

evaluate the performance using mean squared prediction error (MSPE) and mean

absolute prediction error (MAPE). MSPE is defined as:

MSPE =
1

ntest

ntest∑
i=1

(yi − ŷi)
2, (3.11)

and MAPE is defined as:

MSPE =
1

ntest

ntest∑
i=1

|yi − ŷi|, (3.12)

where ntest is the testing set size and ŷ is the predicted response. Lower MSPE and

MAPE indicate better prediction performance. To avoid bias, each condition in the

three examples is repeated 50 times, and the average MSPE and MAPE over the 50

repetitions are calculated for each simulation.

Results

Table 3.1 summarizes the mean MSPE and the mean MAPE of the four methods

over the 50 simulations in Example 1. The MSPE change of the four methods in

Example 1 is presented in Figure 3.1. Table 3.2 summarizes the mean MSPE and

the mean MAPE of the four methods over the 50 simulations in Example 2, and the

MSPE change and comparison of the four methods is demonstrated in Figure 3.2. In

the MSPE and MAPE tables for both Example 1 and Example 2, the smallest mean

MSPE and smallest mean MAPE for each scenario is in bold. The best methods

among the four by comparing MSPE and MAPE in these two examples agree most of

the time, although in some cases, they could give different judgements. When there is

72

Figure 3.1. Averaged MSPE of the original RF, PWRF, RFHuber and RFTukey in
Example 1

no contamination in the training set in both examples, the original RF performs the

best in all cases on MSPE but most cases on MAPE. The MSPE and MAPE of the

robust methods are extremely comparable with the original RF in the cases where the

original RF performs the best. As the contamination proportion increases, the mean

MSPE and mean MAPE of all methods begin to increase, and the performance of the

original RF worsens exponentially. In contrast, gradually performs better than the

other methods. PWRF exhibits the best performance in terms of MSPE and MAPE

73

Figure 3.2. Averaged MSPE of the original RF, PWRF, RFHuber and RFTukey in
Example 2

when there is high data contamination (pcont = 0.3) in the training set. Additionally,

there are occasional cases where PWRF performs the best on MAPE when there is zero

contamination and moderate contamination (i.e. pcont = 0.1 and pcont = 0.2) in the

training set. In Figure 3.1 and Figure 3.2, PWRF demonstrates significant robustness

improvement compared to all other methods, while the original RF completely loses

robustness as the data contamination grows.

74

M
SP

E
M

A
P

E
m

p c
on

t
P

W
R

F
R

F
H

ub
er

R
F
Tu

ke
y

O
ri

gi
na

lR
F

P
W

R
F

R
F
H

ub
er

R
F
Tu

ke
y

O
ri

gi
na

lR
F

0.
15

0
1.

09
6

1.
09

3
1.

09
3

1.
09

2
0.

83
5

0.
83

4
0.

83
4

0.
83

3
0.

15
0.

1
1.

11
1

1.
15

8
1.

11
1

2.
52

8
0.

83
9

0.
85

7
0.

83
9

1.
31

6
0.

15
0.

2
1.

20
8

1.
33

0
1.

09
5

7.
79

4
0.

87
7

0.
92

3
0.

83
5

2.
44

9
0.

15
0.

3
3.

94
7

4.
36

0
8.

48
9

13
.1

48
1.

71
6

1.
81

1
2.

56
8

3.
42

1
0.

30
0

1.
31

2
1.

31
2

1.
31

3
1.

31
2

0.
90

4
0.

90
4

0.
90

5
0.

90
4

0.
30

0.
1

1.
35

8
1.

42
7

1.
34

3
4.

39
0

0.
91

8
0.

94
5

0.
91

3
1.

78
7

0.
30

0.
2

1.
55

2
1.

78
3

1.
33

8
17

.3
07

0.
99

3
1.

06
8

0.
91

4
3.

55
7

0.
30

0.
3

7.
02

9
9.

29
3

20
.4

70
25

.8
85

2.
35

0
2.

73
2

4.
24

8
4.

85
1

0.
45

0
1.

65
9

1.
65

8
1.

66
1

1.
65

4
0.

99
9

0.
99

9
0.

10
0

0.
99

8
0.

45
0.

1
1.

73
2

1.
84

9
1.

71
7

7.
55

3
1.

02
1

1.
06

4
1.

01
7

2.
39

8
0.

45
0.

2
2.

07
4

2.
53

3
1.

73
4

33
.2

05
1.

14
3

1.
27

0
1.

02
4

4.
87

2
0.

45
0.

3
10

.1
62

18
.0

31
38

.5
80

48
.3

00
2.

87
4

3.
89

4
5.

86
1

6.
65

2
0.

60
0

2.
13

1
2.

12
4

2.
12

5
2.

11
6

1.
11

0
1.

10
9

1.
10

9
1.

10
7

0.
60

0.
1

2.
26

3
2.

42
2

2.
22

9
11

.9
62

1.
14

6
1.

20
2

1.
13

8
3.

05
7

0.
60

0.
2

2.
77

2
3.

51
5

2.
28

2
54

.6
59

1.
31

6
1.

49
9

1.
15

3
6.

21
7

0.
60

0.
3

11
.1

51
32

.6
81

64
.8

19
80

.1
05

2.
97

1
5.

26
1

7.
67

8
8.

58
4

Ta
bl

e
3.

2.
E

xa
m

pl
e

2:
Av

er
ag

e
M

SP
E

an
d

Av
er

ag
e

M
A

P
E

M
SP

E
M

A
P

E
p c

on
t

P
W

R
F

R
F
H

ub
er

R
F
Tu

ke
y

O
ri

gi
na

lR
F

P
W

R
F

R
F
H

ub
er

R
F
Tu

ke
y

O
ri

gi
na

lR
F

0
14

.6
06

14
.6

36
14

.5
38

14
.5

35
2.

42
2

2.
42

4
2.

41
8

2.
41

8
0.

1
18

.9
82

22
.5

49
18

.5
28

34
6.

23
1

2.
81

0
3.

19
5

2.
74

8
17

.4
94

0.
2

44
.5

09
46

.1
00

22
.8

17
12

58
.8

45
5.

86
5

5.
99

9
3.

05
5

34
.3

88
0.

3
22

.7
72

32
.2

96
68

.1
27

27
38

.1
69

3.
16

0
4.

52
3

4.
15

9
51

.2
81

Ta
bl

e
3.

3.
E

xa
m

pl
e

3
Av

er
ag

e
M

SP
E

an
d

Av
er

ag
e

M
A

P
E

75

The median and the standard deviation of the 50 MSPE and MAPE of both

examples are also calculated and exhibited in Supplementary Material. The smallest

median MSPE, median MAPE, MSPE standard deviation, MAPE standard deviation

are in bold in the tables. The best method, when comparing the median MSPE and

median MAPE, aligns with that when comparing the averaged MSPE and averaged

MSPE. PWRF obstains comparable MSPE and MAPE standard deviation with

the other methods. All methods perform similarly to each other when there is no

contamination in the training set. The original RF obtains slightly lower MSPE

and MAPE, and the variation in MSPE and MAPE among the 50 simulations are

very similar as well. However, once the training set is contaminated, the prediction

performance of the original RF cannot compete with the robust methods. As signal

becomes stronger in both the tree-like response variable and non-linear response

variable, PWRF secures better performance than the other methods with less variation

in MSPE and MAPE. The mean and median of MAPE and MSPE of original RF

deteriorate significantly compared to the robust methods, and the range of MAPE and

MSPE of the original RF is considerably wider than that of the robust methods. When

there is ample contamination in the training set, all other methods except PWRF

are unable to maintain a stable level of performance, leading to an expansion in their

range, and the mean and median of MAPE and MSPE of PWRF are both lower than

the other methods. An interesting observation from Example 1 and Example 2 is that

as the signal-to-noise ratio increases, all methods worsen in prediction performance in

terms of both the center and the scale.

Table 3.3 presents the mean MSPE and mean MAPE over the 50 simulations

in Example 3. The result pattern follows what we observed from the other two

examples as the contamination proportion increases. All methods preform comparably

76

in mean MSPE and in mean MAPE when no contamination presents in the training

set. RFTukey obtains the least mean MAPE and mean MSPE when there is moderate

contamination (pcont = 0.1 and pcont = 0.2) in training set; however, PWRF appears

to be very competent, being the second lowest in mean MSPE and mean MAPE with

little difference to RFTukey. When there is high data contamination in the training set,

PWRF shows its privilege in both mean MSPE and mean MAPE. The performance

of the original RF deteriorate significantly as the contamination proportion increases.

Figure 3.3 presents the change of average MSPE and average MSPE of the four

methods and compares the changes. The average MSPE and MAPE of the original

RF worsens so much that the change in the other methods is negligible, although

RFTukey seems to be more robust than PWRF and RFHuber in average MAPE when

pcont = 0.2. Additional information on median and standard deviation of the 50 MSPE

and MAPE for Example 3 are also recorded in the table in Supplementary Material.

From all examples, we observe that our method consistently outperforms the

original RF method when there is contamination present in the training set, and

PWRF remains robust even as the contamination proportion in the training set

increases. Furthermore, PWRF is competent with the other robust methods when

it does not outperform the other methods. It is worth noting that PWRF is the

most robust in scenarios involving high data contamination across all examples and

scenarios. This demonstrates that our method consistently provides better results

than the other methods across a broad variety of data settings without sacrificing

precision.

77

Figure 3.3. Averaged MSPE of the original RF, PWRF, RFHuber and RFTukey in
Example 3

78

3.4 Real data analysis

The result from the simulations studies provides convincing evidence that our method

is highly competitive across different contamination levels. It would yield more

meaningful results when applying the methods to real-life data, as we may not know if

there is contamination in the dataset, what kind of contamination exists, or the level of

contamination present. To assess the effectiveness of our method in practical scenarios,

we apply PWRF to a financial dataset containing stock exchange records. We then

compare its performance to the same methods used in the simulation studies outlined

in Section 3.3: RFHuber, RFTukey, and the original RF. In the paper by Gu et al.

[31], a similar data set was used. They compared the performance of several machine

learning models to the baseline ordinary linear regression model to predict equity risk

premium. These machine learning models include, but not limit to, generalized linear

model, penalized regression models (eg. elastic-net), dimension reduction methods

(eg. principal component regression), tree based models (eg. RF), and layered models

(eg. neural network). Our goal in the data analysis is also to predict the future

stock return using economic and financial indicators. These indicators include the

industry momentum strategies based on Fama-French 49 industries (IND49), national

saving (NS), adjusted cost base (ACB), book-to-market ratio (logbm), asset growth

(AG), gpta, IKxing, net operating assets (NOA), Ohlson’s O-Score (Oscore), return on

assets (roaq), Volume (logvolume), stock volatility (lagsvol), beta coefficient (lagbeta),

Amihud (lagamihud), collection effectiveness index (lagcei), momentums (mom2,

mom2m1, lagindmom), and distress (lagdistress). The data set contains monthly total

individual equity returns from CRSP for all firms listed on the NYSE, AMEX, and

NASDAQ from July 2004 to December 2020. The variable ‘RET,’ the realized excess

79

PWRF RFHuber RFTukey Original RF
Mean - MAPE 0.095 0.096 0.096 0.097

Standard Deviation 0.089 0.089 0.089 0.090
Median 0.071 0.072 0.071 0.073

Table 3.4. Summary of real data analysis results of absolute prediction error of
Penalized Weighted Random Forest (PWRF), Random Forest with Huber loss function,
Random Forest with Tukey loss function, and the Original Random Forest.

stock return, is the response variable in the data analysis.

The variable ‘idx’ is the month index, starting from 31 and ending with 228, with

an increment of 1, these month indices correspond to a span of 198 months. The

entire data set contains 44, 959 records of monthly stock information in the 198-month

span. For our analysis, we select data from January 2017 to December 2018 as the

training data set, data from January 2019 to December 2019 as the validation set,

and data from January 2020 to December 2020 as the testing data set. We include all

19 economic indicators as the covariates in the analysis. As one of the assumptions

of an RF model is that all variables are from the same distribution, we standardize

all the covariates using their mean and standard deviation from the training set. To

ensure optimal performance, we tune the hyperparameters for all robust methods,

including PWRF, RFHuber, and RFTukey. However, our data set contains time-series

financial data set, performing cross-validation as discussed in Section 3.2.2 would be

impractical. This is because cross-validation randomizes the observations, and we may

inadvertently use future data to predict past data during this process. Alternatively,

we use the validation set that contains data in 2019 to tune for the hyperparameters

to avoid creating time confusion. The optimal hyperparameters should minimize the

validation error.

All models are evaluated on their prediction performance by comparing the predic-

80

PWRF RFHuber RFTukey Original RF
MSPE 0.017 0.017 0.017 0.017

Table 3.5. Mean squared prediction error (MSPE) of Penalized Weighted Random
Forest (PWRF), Random Forest with Huber loss function, Random Forest with Tukey
loss function, and the Original Random Forest.

tion errors, MAPE, and MSPE. The calculation of MSPE and MAPE is consistent with

the simulation studies to compare the performance of all four methods. A summary

of the absolute prediction error is presented in Table 3.4, and the MSPE is provided

in Table 3.5. All three robust RF methods outperform the original RF by at least

1.06% in MAPE, and 1.33% in MSPE. The best performance comes from our proposed

method. Specifically, MAPE from PWRF is 1.895% lower than that of the original

RF, and 0.178% lower than that of the second best method, RFTukey. The median of

the absolute prediction errors from PWRF is 2.822% better than the original RF and

0.352% better than RFTukey. The results from MSPE in 3.5 and from MAPE in 3.4

are consistent. MSPE from PWRF is 2.553% lower than that from the original RF and

0.334% lower than that from RFTukey. Our method collectively performs better than

all other three methods on MAPE and MSPE by aquiring smaller variation in the

prediction errors. The standard deviation of the absolute prediction errors of PWRF is

the least among all methods, 0.146% smaller than RFTukey. The range of all absolute

prediction errors using PWRF (0.442) is the minimum among all methods, 5.506%

narrower than the range using original RF and 2.714% narrower than the RFTukey.

While the smallest minimum prediction error is obtained by RFHuber (2.42× 10−6),

PWRF acquires the smallest maximum prediction error (0.442). Both the standard

deviation and range provide evidence that PWRF is more stable and more consistent.

Figure 3.4 displays a boxplot of the absolute prediction error from all four methods,

81

Figure 3.4. Boxplots of Absolute Prediction Error of Penalized Weighted Random
Forest (PWRF), Random Forest with Huber loss function, Random Forest with Tukey
loss function, and the Original Random Forest for Real Data Analysis

providing a visual representation of the median and range discussed above. The dashed

lines indicate the minimum MAPE among the methods, and the red dots label the

MAPE for each method. The figure on the left is the boxplot of all absolute prediction

errors from the real data analysis. The difference in median among the methods is

negligible, nonetheless, it is evident that PWRF exhibits the least range in absolute

prediction errors. The boxplot on the right zooms into the boxplot on the left near the

median and the mean. Evidently, the median absolute prediction error and MAPE

of PWRF is lower than those of the original RF, but they are very close to those

of RFTukey. The number in blue above the median lines are the median absolute

prediction error of PWRF and that of RFTukey, with the former being lower. The

number in red below the red dots are the MAPE of PWRF and that of RFTukey,

with PWRF having a slightly lower MAPE. The above observations from the boxplot

aligns with the numeric summary discussed earlier, providing empirical evidence that

82

our method is consistent and stable.

One conclusion from Gu et al. [31] is that the tree-based models, including

the original RF, exhibit the most significant performance improvement over linear

regression models. This is particularly true for financial data, which is highly sensitive

to unforeseeable news, resulting in a low signal-to-noise ratio. Additionally, financial

returns and stock-level variables are known to be heavy-tailed. The original RF proves

to be robust in scenarios characterized by a low signal-to-noise ratio and heavy-tailed

distributions. Its robustness prevents easy overfitting of noise over the signal, as

observed in Example 1 and Example 2 in Section 3.3 where the performance of the

original RF remains sustainable as the value of m decreases. Despite the inherent

robustness of the original RF, the robust RF models outperform it in this real data

analysis. This suggests that the robust RF methods effectively alleviate the impact of

data contamination, with PWRF demonstrating the best robustness.

3.4.1 The year 2020

The year 2020 was indeed exceptional due to the global pandemic, which significantly

altered the way people lived and worked. The financial landscape also experienced

turmoil, potentially leading to a dataset for 2020 that follows a different distribution

compared to previous years. This discrepancy could significantly affect prediction

performance and render the results less representative. We can observe this potential

difference in data distribution by examining the histogram of the response variable

‘RET’, the stock excessive return, and the scatter plot of ‘RET’ against all other

covariates. Figure 3.5 are the histogram and scatter plots using data from 2014 to

2020, with the year 2020 separated. In the overlaying histogram on the top left corner

83

Figure 3.5. Histogram of the response variable ‘RET’ with scatter plot matrix of
‘RET’ against other variables with data between 2014 and 2019 in gray shade and
data from 2020 with red shade.

84

of Figure 3.5, the gray histogram represents data from 2014 to 2019, while the red

histogram depicts the distribution of data in 2020. Although both histograms appear

to be normally distributed, it’s evident that the data in 2020 exhibits heavier tails

compared to the data from 2014 to 2019. In all the scatter plots, the gray data points

correspond to data from 2014 to 2019, and the red shaded data points represent data

from the year 2020. These plots further illustrate that the data from 2020 has a larger

standard deviation, along with more outliers in both directions. Given the robustness

of the original RF to heavy-tailed distributions, using the year 2020 as the testing

set may not significantly impact its performance. Consequently, we may not observe

substantial improvement with the robust RF methods compared to the original RF.

To address this issue, we treat 2020 and the other years as two distinct cases: applying

the four methods to the data before 2020 and the data during 2020 separately. This

approach allows us to assess the performance of the four methods across different

economic periods.

For data preceding 2020, we use information from 2014 to 2016 as the training set,

data from 2017 as the validation set, and data from 2018 to 2019 as the test set. The

remaining settings remain the same as previously mentioned in Section 3.4. Figure 3.6

demonstrates the boxplot of the absolute prediction errors applying the four methods,

indicating comparable results from all four methods. his observation suggests that

when there are only few outliers in the data set, the original RF can be quite robust,

and therefore, less improvement from the robust methods.

For the data during 2020, we use data from January through July as the training

set, from August to September as the validate set, and October through December as

test set. The remaining settings remain the same as previously mentioned in Section

3.4. Figure 3.7 are the boxplots of absolute prediction errors applying four methods,

85

Figure 3.6. Boxplots of Absolute Prediction Error of PWRF, RFHuber, RFTukey,
and the Original RF for Real Data Analysis with data before 2020 being split into
three years of train set, one year of validate set, and two years of test sets

Figure 3.7. Boxplots of Absolute Prediction Error of PWRF, RFHuber, RFTukey,
and the Original RF for Real Data Analysis with 2020 data split into seven months of
train set, two months of validate set, and three months of test sets

86

demonstrating that PWRF outperforms all other methods with the lowest MAPE

and lowest median absolute prediction error. Additionally, PWRF boasts the smallest

standard deviation among the absolute prediction errors. This suggests that PWRF

effectively mitigates the impact of abnormal behavior in the data, demonstrating

robust predictive performance even in the presence of more outliers and variations in

the distribution of the response variable.

3.5 Summary

PWRF inherits the flexibility and the robustness in face of heavy-tailed data from the

original RF method. In addition, PWRF introduces individual weights to training

observations and enforces a lasso-like penalty on the individual weights to regulate

them. This new amendment in PWRF further improves the robustness of a RF

model, especially when faced with mean-shift data contamination in the training

dataset. Demonstrated in three different simulation study examples, each synthetically

contaminated by proportions of 10%, 20%, and 30%, PWRF consistently outperforms

the original RF method. Furthermore, PWRF exhibits competence comparable to

other two robust RF methods (the RFTukey and the RFHuber). Moreover, PWRF

consistently achieves comparable results with the original RF method when there is no

contamination present in the training dataset in these examples. In the analysis of stock

return data, PWRF consistently outperforms all other RF methods, demonstrating

superiority by at least 0.334% in MSPE and at least 0.178% in MAPE, without

treating the year 2020 as a special case. Excluding the year 2020, PWRF achieves

predictions that are comparable to other methods. It is noteworthy that, when using

only the 2020 data, the proposed PWRF method significantly outperforms all other

87

methods. This empirical evidence underscores the robustness of PWRF when dealing

with unexpectedly abnormal data, a phenomenon that is inherently non-predictable.

We believe that PWRF holds broad applicability across various fields, including

finance, e-commerce, healthcare, and more. Our simulation studies demonstrate the

remarkable stability of PWRF when applied to different types of data characterized by

non-linearity, low signal-to-noise ratio, or contamination. In future investigations, it

would be worthwhile to explore PWRF’s capability to label contaminated observations

and examine how it can effectively cooperate with contamination labeling while

identifying variable importance. Our method integrates the penalized weighted

approach with RF to enhance RF’s robustness in the presence of mean-shift type data

contamination. The penalized weighted method has proven effective in improving

model robustness to data contamination across various algorithms. It holds great

potential for pairing with several other methods to address issues related to data

variability.

88

Chapter 4: Conclusion and Future

Work

In the big data era, the speed of data generation is astonishingly rapid. The sheer

volume of data being generated is colossal, encompassing a diverse array of types and

formats. With this abundance of data, transparency is heightened, allowing us to model

future events and predict outcomes for unseen data. In this competitive landscape,

scholars and practitioners vie with each other to create algorithms that accurately

perform prediction and estimation data, accommodating various formats and types.

Stochastic Gradient Descent (SGD) emerges as a valuable tool for scenarios involving

data streaming or large datasets that surpass the limits of traditional methods due

to assumption constraints. SGD excels in handling high-dimensional datasets, as it

imposes no limitations on dimensionality. By processing one or a small batch of data

at a time and updating iteratively, SGD proves effective in reducing computational

costs. A simple application of SGD is on the linear regression model, where it updates

parameter estimates using one or a mini-batch of data in each iteration. Random

Forest (RF) stands out as a versatile tool for predictions in both classification and

regression tasks. At its core, RF leverages the synergistic effect of numerous decision

trees with bootstrapped training samples and randomly selected covariates. The use

89

of bootstrapped training samples and the random selection of covariates in each tree

contribute to RF’s robustness, particularly in handling heavy-tailed data.

The downside of living in this era is the diminishing assurance of data quality. While

data contamination has existed since the inception of data, the big data era is likely

to perpetuate this issue unless measures are taken to mitigate its growth. Statistical

and machine learning methods are susceptible to the impact of data contamination

due to the assumptions inherent in each method. The estimation or prediction of the

mean or expectation can be severely affected when data contamination is present, as

it violates these assumptions. SGD for linear regression is particularly sensitive to

data contamination, given the small amount of data used to update model parameters

in each iteration. RF may experience a reduction in robustness if the training

observations include outlying data points with covariate vectors similar to those of

uncontaminated training observations, while the testing data remains uncontaminated.

Despite advanced data wrangling methods aimed at cleaning data before applying

existing methods, keeping pace with the speed at which data is generated necessitates

the ability to account for data contamination during method execution.

This dissertation discusses the application of the penalized weighted method to

two machine learning methods, SGD and RF. The penalized weighted method aims

to mitigate the impact of outliers or data contamination on the SGD estimates for

model parameters and RF predictions. In Chapter 2, we propose the PWSGD method.

This method assigns an individual weight to each training observation, which is

calculated based on the residual of the training observation estimations using the

model parameters estimated from the previous iteration. The value of this individual

weight indicates the likelihood of the observation being an outlier, with smaller values

indicating a higher likelihood. Consequently, observations with smaller individual

90

weights contribute less information to the estimation of model parameters. To control

the assignment of individual weights, a Lasso-like penalty is imposed on the individual

terms, with a tuning parameter governing the strength of the penalty. We demonstrate

the superiority of PWSGD over SGD in terms of model parameter estimation and

response estimation using both synthetic and real data examples. Simulation studies

on synthetic data, considering both small and large data settings, reveal that as data

contamination increases, SGD’s performance deteriorates, while PWSGD remains

robust to data contamination. Furthermore, real data analysis using the gas sensor

dataset [23] highlights the superiority of PWSGD over SGD in utilizing all sensor

readings to estimate the last sensor reading.

In Chapter 3, we present PWRF to overcome the limitations of RF when facing data

contamination in the training set in a regression task. An individual weight is assigned

to each training observation based on residual of the leave-one-out prediction of that

observation. The individual weight is smaller for the observations that are potential

outliers. PWRF demonstrates comparable results with mild data contamination and

exhibits strong robustness with higher data contamination in the simulated examples.

Furthermore, it performs comparable to the real data analysis on the financial data set.

An interesting observation from the real data analysis is that PWRF outperforms all

other methods, including the original RF method and two other robust RF methods

when the data appears to be irregular. However, it remains comparable to other

methods when the data tends to be “clean”.

For future projects, I will focus on proving the stability of the outlier detection

properties for both methods. Additionally, there is potential to extend the PWSGD

simulation examples by incorporating heterogeneous models. Moreover, we plan to

evaluate how PWRF performs when categorical explanatory variables are introduced,

91

requiring adjustments to the ‘grf‘ library or code modifications to accommodate

categorical features. Investigating the application of the two proposed methods to

high-dimensional data analysis is also on the agenda. Looking ahead, we aim to extend

the application of the penalized weighted method to other machine learning techniques

that are sensitive to data contamination.

92

References

[1] Francis R. Bach and Eric Moulines. Non-strongly-convex smooth stochastic

approximation with convergence rate o(1/n). CoRR, abs/1306.2119, 2013.

[2] J.A. Bather. Stochastic Approximation: A Generalisation of the Robbins-Monro

Procedure, volume 89. 1989.

[3] Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms

and stochastic approximations. In Applied Mathematics, 1990.

[4] Dimitri P. Bertsekas. Incremental proximal methods for large scale convex

optimization. Mathematical Programming, 129(2):163–195, 2011.

[5] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[6] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In

Advances in Neural Information Processing Systems, pages 161–168, 2008.

[7] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[8] L. Breiman, Jerome H. Friedman, Richard A. Olshen, and C. J. Stone. Classifica-

tion and regression trees. Biometrics, 40:874, 1984.

93

[9] Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

[10] Raymond J. Carroll and David Ruppert. Transformation and Weighting in

Regression. Chapman and Hall, London, 1981.

[11] Pierre Charbonnier, Laure Blanc-Féraud, Gilles Aubert, and Michel Barlaud.

Deterministic edge-preserving regularization in computed imaging. IEEE Trans-

actions on image processing, 6(2):298–311, 1997.

[12] Li Cheng, S. V. N. Vishwanathan, Dale Schuurmans, Shaojun Wang, and Terry

Caelli. implicit online learning with kernels. In Neural Information Processing

Systems, 2006.

[13] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and

psychological measurement, 20(1):37–46, 1960.

[14] R. Dennis Cook. Detection of influential observations in linear regression. Tech-

nometrics, 19(1):15–18, 1977.

[15] John Duchi and Yoram Singer. Efficient online and batch learning using forward

backward splitting. Journal of Machine Learning Research, 10(99):2899–2934,

2009.

[16] Alexandre Défossez and Francis Bach. Averaged least mean-squares: Bias-variance

trade-offs and optimal sampling distributions. In Proceedings of the Eighteenth

International Conference on Artificial Intelligence and Statistics, pages 205–213,

2015.

94

[17] Moonjung Eo, Jeongyun Han, and Wonjong Rhee. Deep learning framework

with essential pre-processing techniques for improving mixed-gas concentration

prediction. IEEE Access, 11:25467–25479, 2023.

[18] Yixin Fang. Scalable statistical inference for averaged implicit stochastic gradient

descent. Scandinavian Journal of Statistics, 46(4):987–1002.

[19] Yixin Fang, Jinfeng Xu, and Lei Yang. On scalable inference with stochastic

gradient descent, 2017.

[20] Yixin Fang and Lincheng Zhao. Approximation to the distribution of lad estima-

tors for censored regression by random weighting method. Journal of Statistical

Planning and Inference, 136(4):1302–1316, 2006.

[21] Ronald A. Fisher. The Design of Experiments. Oliver and Boyd, Edinburgh,

1935.

[22] Jordi Fonollosa. Gas sensor array under dynamic gas mixtures. UCI Machine

Learning Repository, 2015. DOI: https://doi.org/10.24432/C5WP4C.

[23] Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago Marco. Reservoir

computing compensates slow response of chemosensor arrays exposed to fast

varying gas concentrations in continuous monitoring. Sensors and Actuators B:

Chemical, 215:618–629, 2015.

[24] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting

algorithm. In icml, volume 96, pages 148–156. Citeseer, 1996.

[25] Francis Galton. Regression towards mediocrity in hereditary stature. The Journal

of the Anthropological Institute of Great Britain and Ireland, 15:246–263, 1886.

95

[26] X. Gao and Y. Fang. Penalized weighted least squares for outlier detection

and robust regression. Journal of Business Statistics and Economics, 2016.

https://arxiv.org/abs/1603.07427.

[27] Xiaoli Gao. Penalized weighted low-rank approximation for robust recovery of

recurrent copy number variations. BMC Bioinformatics, 16:407, 2015.

[28] Xiaoli Gao and Yang Feng. Penalized weighted least absolute deviation regression.

Statistics and Its Interface, 11:79–89, 2018.

[29] Carl Friedrich Gauss. Theory of Motion of the Heavenly Bodies Moving about the

Sun in Conic Sections. Perthes et Besser, Hamburg, 1809.

[30] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples, 2015.

[31] Shihao Gu, Bryan Kelly, and Dacheng Xiu. Empirical Asset Pricing via Machine

Learning. The Review of Financial Studies, 33(5):2223–2273, 02 2020.

[32] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust

Statistics: The Approach Based on Influence Functions. New York: Willey, 1986.

[33] Douglas M. Hawkins. The problem of overfitting. Journal of Chemical Information

and Computer Sciences, 44(1):1–12, 2004.

[34] Steven C.H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A

comprehensive survey. Neurocomputing, 459:249–289, Oct 2021.

[35] Peter J. Huber. Robust estimation of a location parameter. Annals of Mathemat-

ical Statistics, 35:492–518, 1964.

96

[36] Peter J. Huber. Robust Statistics, volume 523. John Wiley & Sons, 2004.

[37] J. Kiefer and J. Wolfowitz. Stochastic Estimation of the Maximum of a Regression

Function. The Annals of Mathematical Statistics, 23(3):462 – 466, 1952.

[38] Jyrki Kivinen, Manfred K. Warmuth, and Babak Hassibi. The p-norm general-

ization of the lms algorithm for adaptive filtering. IEEE Transactions on Signal

Processing, 54(5):1782–1793, 2006.

[39] Roger Koenker. Quantile Regression. Econometric Society Monographs. Cam-

bridge University Press, 2005.

[40] Brian Kulis and Peter L. Bartlett. Implicit online learning. In Proceedings of the

27th International Conference on Machine Learning (ICML-10), pages 575–582,

2010.

[41] Adrien-Marie Legendre. Nouvelles méthodes pour la détermination des orbites

des comètes. Mémoires de l’Académie Royale des Sciences, Volume Number:Page

Range, 1805.

[42] Alexander Hanbo Li and Andrew Martin. Forest-type regression with general

losses and robust forest. In International conference on machine learning, pages

2091–2100. PMLR, 2017.

[43] Andy Liaw and Matthew Wiener. Classification and regression by random forest.

R News, 2:18–22, 2002.

[44] Yi Lin and Yongho Jeon. Random forests and adaptive nearest neighbors. Journal

of the American Statistical Association, pages 578–590, 2006.

97

[45] Bin Luo, Xiaoli Gao, and Susan Halabi. Penalized weighted proportional hazards

model for robust variable selection and outlier detection. Statistics in Medicine,

2022.

[46] Nicolai Meinshausen and Greg Ridgeway. Quantile regression forests. Journal of

machine learning research, 7(6), 2006.

[47] Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approxi-

mation algorithms for machine learning. In J. Shawe-Taylor, R. Zemel, P. Bartlett,

F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Pro-

cessing Systems, volume 24. Curran Associates, Inc., 2011.

[48] Jin-Ichi Nagumo and Atsuhiko Noda. A learning method for system identification.

IEEE Transactions on Automatic Control, 12(3):282–287, 1967.

[49] Deanna Needell, Nathan Srebro, and Rachel Ward. Stochastic gradient descent,

weighted sampling, and the randomized kaczmarz algorithm, 2015.

[50] Neal Parikh and Stephen P. Boyd. Proximal algorithms. Found. Trends Optim.,

1:127–239, 2013.

[51] Karl Pearson. Note on regression and inheritance in the case of two parents.

Proceedings of the Royal Society of London, 58:240–242, 1895.

[52] Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation

by averaging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[53] Herbert Robbins and Sutton Monro. A stochastic approximation method. The

annals of mathematical statistics, pages 400–407, 1951.

98

[54] Lorenzo Rosasco, Silvia Villa, and Bang Công Vũ. Convergence of stochastic

proximal gradient algorithm, 2014.

[55] Peter J. Rousseeuw and Mia Hubert. Robust statistics for outlier detection.

WIREs Data Mining and Knowledge Discovery, 1(1):73–79, 2011.

[56] Marie-Hélène Roy and Denis Larocque. Robustness of random forests for regres-

sion. Journal of Nonparametric Statistics, 24(4):993–1006, 2012.

[57] Donald B. Rubin. The bayesian bootstrap. Annals of Statistics, 9:130–134, 1981.

[58] David Ruppert. Efficient estimations from a slowly convergent robbins-monro

process. 1988.

[59] Andrew Sage. Random forest robustness, variable importance, and tree aggrega-

tion. Iowa State University Capstones, Theses, and Dissertations, 2018.

[60] David J. Sakrison. Efficient recursive estimation; application to estimating the

parameters of a covariance function. International Journal of Engineering Science,

3(4):461–483, 1965.

[61] Vatsal Shah, Xiaoxia Wu, and Sujay Sanghavi. Choosing the sample with lowest

loss makes sgd robust, 2020.

[62] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth

optimization: Convergence results and optimal averaging schemes. CoRR,

abs/1212.1824, 2012.

[63] Jun Shao and Dongsheng Tu. The jackknife and bootstrap. Springer Science &

Business Media, 2012.

99

[64] Y. She and A.B. Owen. Outlier detection using nonconvex penalize regression.

JASA, 106(494):626–639, 2011.

[65] Wei Sun, Junhui Wang, and Yixin Fang. Consistent selection of tuning parameters

via variable selection stability. The Journal of Machine Learning Research,

14(1):3419–3440, 2013.

[66] Julie Tibshirani, Susan Athey, Erik Sverdrup, and Stefan Wager. grf: Generalized

Random Forests, 2022. R package version 2.2.0.

[67] Panos Toulis and Edoardo M. Airoldi. Implicit stochastic approximation. arXiv

preprint arXiv:1510.00967, 2015.

[68] Panos Toulis, Jason Rennie, and Edoardo M. Airoldi. Statistical analysis of

stochastic gradient methods for generalized linear models. In Proceedings of the

31st International Conference on International Conference on Machine Learning

- Volume 32, ICML’14, page II–667–II–675. JMLR.org, 2014.

[69] Panos Toulis, Dustin Tran, and Edoardo M. Airoldi. Towards stability and

optimality in stochastic gradient descent, 2015.

[70] Grace Wahba. A least squares estimate of satellite attitude. SIAM Review,

17(3):449–462, 1975.

[71] Chun Wang, Ming-Hui Chen, Elizabeth Schifano, Jing Wu, and Jun Yan. Statis-

tical methods and computing for big data. Statistics and its interface, 9(4):399,

2016.

100

[72] HaiYing Wang, Min Yang, and John Stufken. Information-based optimal subdata

selection for big data linear regression. Journal of the American Statistical

Association, 114(525):393–405, June 2018.

[73] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive

variance reduction, 2014.

[74] Wei Xu. Towards optimal one pass large scale learning with averaged stochastic

gradient descent. CoRR, abs/1107.2490, 2011.

[75] George Udny Yule. On the theory of correlation. Journal of the Royal Statistical

Society, 60:812–854, 1897.

[76] Tong Zhang. Solving large scale linear prediction problems using stochastic

gradient descent algorithms. In Proceedings of the Twenty-First International

Conference on Machine Learning, ICML ’04, page 116, New York, NY, USA,

2004. Association for Computing Machinery.

[77] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling,

2015.

101

	List of Tables
	List of Figures
	Introduction
	Regression/Linear Regression Background
	Big Data and Challenges
	Data Contamination

	Stochastic Gradient Descent
	Robust SGD Using Re-weighting Method

	Random Forest
	Robust random forest

	Penalized Weighted Method
	Main Contributions
	Robust stochastic gradient descent for online linear regression learning
	Robust Random Forest

	Penalized Weighted SGD for Robust Online Linear Regression Learning
	Overview
	PWSGD for linear regression
	PWSGD Algorithm
	Tuning parameter selection

	Simulation Studies
	Real data analysis
	Summary

	Robust Random Forest
	Overview
	PWRF Regression
	Our Algorithm
	Tuning parameter selection

	Simulation studies
	Real data analysis
	The year 2020

	Summary

	Conclusion and Future Work
	References

