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In a plant-pollinator system, plants have a multitude of potential signals,

both visual and olfactory. Some signals are a by-product of pollen and nectar, while

other can be positively correlated through pollinator conditioning. Successful

pollinators are those able to cross reference signals with prior experiences to

determine the integrity of their sender. An honest signal is defined as a signal

correlated with an underlying characteristic; in this study: rewards. We examine

honest signaling a system where high-yield and low-yield plants compete for

visitation of pollinators. We model the scenario as a repeated Sir Philips Sidney

game and conclude that honest signaling, in which only high yield plants signal,

cannot be a Nash equilibrium because pollinators lose potential resources if they

choose to skip over plants during their foraging flights.
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CHAPTER I

GAME THEORY PRELIMINARIES

1.1 Introduction

Game theory can be thought of as an analytic tool kit, assisting in the

understanding the of interaction between decision making entities [OR94]. The

underlying assumptions include: all players (decision-makers) pursue well-defined

exogenous objectives (they are rational) and take into account their expectations of

other players’ decisions and behaviors (they reason strategically) [OR94]. The

games studied can take multiple forms: non-cooperative vs cooperative, sequential

games or single round, and perfect vs imperfect information. One of the strengths of

game theory comes from the abstractness of its models; allowing them to be used in

the study of various disciplines; from mating games in evoltionary Biology, to games

modeling disease growth in Epidemolgy, to bargaining in Economics. [BR13].

1.2 What is a Game?

A game is a mathematical description of an interaction between two or more

players that prescribes set of actions that each player can take and incentives to

each player [BR13]. While games are useful in studying the consequences/rewards

that follow from various decisions, they do not inherently tell us what actions player

do or should take. Formally:
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Definition 1.1. A Game consist of a set of players, N , for each player i there is a

strategy set, Ai, from which they select their actions, and for each outcome (or

strategy combination) of the game there is a payoff for each player.

Let a, b ∈ A1 × A2 × ...× An be two strategy combinations, that is:

a =

[
a1, a2, ..., ai, ..., an

]
, b =

[
b1, b2, ..., bi, ..., bn

]
(1.1)

where ai, bi are the actions chosen by player i, and n is the total number of players

(n = |N |). The function ui : A1 × A2 × ...× An → R, is the utility ,or payoff,

function for player i.

We further define a game with a finite number of players, and a finite

number of actions for each player, as a game in normal form. A natural

representation of these games is via an n-dimensional matrix. The matrix

representation of these games are called payoff matrices ; where the payoff for player

i, in the strategy combination S =

[
sa1 , sa2 , ..., san

]
, is the i-th component of the

a1, a2, ..., an entry of the matrix.
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Example 1.2. A classic example of decision making can be found in a game of

Rock-Paper-Scissor (R-P-S). Two players are placed in the situation of

simultaneously choosing between one of three strategies "Rock", "Scissor", or

"Paper". Players gain or lose points based on the conventions "Rock beats Scissor",

"Scissor beats Paper", and "Paper beats Rock". The results of such an engagement

can be represented by the following payoff matrix:

Player 2

R P S


R (0, 0) (−1, 1) (1,−1)

Player 1 P (1,−1) (0, 0) (−1, 1)

S (−1, 1) (1,−1) (0, 0)

where the first entry in each pair represents the payoff for Player 1 and the second

entry the payoff of Player 2.
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In Example 1.2, the strategy of playing Rock can be expressed as
[
1 0 0

]
.

Using standard matrix multiplication we can compute the payoffs for any

combination of actions, called the expected payoff ; for actions p, q,the expected

payoff is denoted E [p, q]. For a matrix game, E [p, q] = pAqT , where A is the payoff

matrix for the game. Thus, in R-P-S, the expected payoff for the actions of Rock vs

Paper (Player 1 and Player 2 respectively) is

[
1 0 0

]
(0, 0) (−1, 1) (1,−1)

(1,−1) (0, 0) (−1, 1)

(−1, 1) (1,−1) (0, 0)



0

1

0

 = (1.2)

[
(0, 0) (−1, 1) (1,−1)

]
0

1

0

 = (−1, 1). (1.3)

The result of (−1, 1) denotes that Player 1 lost one point and Player 2 gained one

point.

1.2.1 Strategies

In the Example 1.2, the actions described represented pure strategies. That is

a player using
[
1 0 0

]
will play Rock with a 100% certainty. The number of pure

strategies available to Player i is denoted k(i) = |Ai| However, these are not the

only types of strategies available to players.
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Figure 1. Strategy Simplex with Mixed Strategy p Adopted from [BR13].

For example, Player 1 may decide he would like to pick Paper or Scissor with equal

probability (chosen by a fictitious coin toss), this strategy could also be represented

in a matrix game as
[
0 1

2
1
2

]
. These strategies which do not conform to a single

pure strategy are called mixed strategies. In particular, a mixed strategy, p, for

Player i is a probability distribution on the set Ai, such that,
k(i)∑
j=1

pj = 1, where pj is

the probability of pure strategy aj being played.

Definition 1.3. The support of a mixed strategy p, denoted S (p), is the set of

indices for which pure strategy i has a non-zero chance of being played. That is

S (p) = {j : pj > 0}.

We can describe the space of all strategies (mixed and pure) of a normal

form game, with n pure strategies, by the interior of an (n− 1)-dimensional unit

simplex. A simplex is a generalization of an equilateral triangle to arbitrary

dimensions. For R2 we have an equilateral triangle (see Figure 1), R3 a tetrahedron,

and R4 a 5-cell. In Figure 1, we can see mixed strategy p =

[
p1, p2, p3

]
5



represented as a point p with minimum distances p1, p2, p3 from the sides opposite

vertexes S1, S2, S3 respectively. An advantage to this representation is that we can

describe the set of mixed strategies as a close, convex, compact subset of Rn. In

particular as in [BR13], we can describe mixed strategy p as

p =

[
p1, p2, p3, ...

]

Motivated by this representation, we call a mixed strategy p an internal

strategy if every pure strategy has a non-zero chance of being played.

1.2.2 Solving a Game

So far, we’ve established representations for modeling the interactions

between individuals, but have yet to specify a method of "solving" a game.

Motivated by the variations that can occur in a player’s payoff depending upon the

actions of others (i.e. for two strategy combinations a and b ,ui(a) ≥ ui(b),

regardless of whether Player i has changed their move) we define the best response

of Player i, against the given actions of the other players.
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Definition 1.4. Let S be a strategy played by Player i and T ∗i be a strategy

combination with the ith entry removed; that is T ∗i is the combination of the

actions taken by all other players except Player i: T ∗i .

T ∗i =

[
a1, a2, ... ai−1, ai+1, ..., an

]
.

We call a strategy S Player i’s best response to strategy combination T ∗i if

Ei[S
′, T ∗i ] < Ei[S, T

∗i ], for all other startegies S ′ in Ai,

where Ei[S, T
∗i ] denotes the expected payoff for Player i using S against T ∗i . In

other words S is Player i’s best response to T ∗i if he achieves a higher payoff by

playing strategy S against T ∗i than he would if he played any other strategy S ′

available to him.

Example 1.5. In R-P-S, Player 1’s best response against Player 2 playing "Rock"

is to play "Paper", as :

1 = E1[P,R] > 0 = E1[R,R] > −1 = E1[S,R]. (1.4)

Example 1.6. We illustrate the concept of best response with the brief analysis of

the Hawk-Dove Game. In this game, two animals are fighting over a resource,

perhaps a piece of food. Both animal can choose between two behaviors,: an

aggressive hawkish behavior H, or an accommodating dovish behavior, D. The total

resource is worth 4 to each of them. When a hawk meets a dove, it gets all of the

resource without the need to fight. When two doves meet they split the prize evenly.
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When two hawks meet, due to the aggression of the interaction, each player incurs a

cost of (-4) in the course of fighting, before splitting the prize evenly. Shown as:

A =

H D H (−2,−2) (4, 0)

D (0, 4) (2, 2)

.

If Player 2 were to play strategy H, the Player 1’s best response would be to play

strategy D as 0 > −2; however if Player 2 was to play strategy D, then Player 1’s

best response would be to play strategy H, as 4 > 2, instead [LBS08].

Even with the concept of best response, a solution has yet to be realized; in a

normal form game, Player 1 may not know exactly what Player 2 will do. As in

Example 1.6, Player 1’s best response may change depending on which strategy

Player 2 is playing. What we would like to find is a stable state for this game. In

such a state, if reached, no player would benefit from switching their strategy; and

thus a further rounds of the game would replicate those decisions. This is the

motivation behind a Nash equilibrium.

A Nash equilibrium is an outcome of a game in which no player can profit

from any unilaterally deviation of their strategy. In terms of a best response, the

strategies each player implements must be their best response to all other players’

actions. Otherwise, at least one Player i( would prefer to change their strategy, in

order to achieve a higher payoff.
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Definition 1.7. For an n-player game, we say that strategy combination

a∗ =

[
a∗1, a

∗
2, ...a

∗
i , ..., a

∗
n

]
is a Nash equilibrium if for all player’s i

Ei(a
∗) ≥ Ei(a)

for all a =

[
a∗1, a

∗
2, ..., a

′
i, ..., a

∗
n

]
with a∗i 6= a′i and Ei is the expected payoff for Player

i [OR94].

In a two player game, we say [p∗, q∗] is a strict Nash equilibrium if :

E1[p
∗, q∗] >E1[p, q

∗], for all p 6= p∗ (1.5)

E2[q
∗, p∗] >E2[q, p

∗]. for all q 6= q∗. (1.6)

And [p∗, q∗] is a weak Nash equilibrium if:

E1[p
∗, q∗] ≥E1[p, q

∗], for all p 6= p∗ (1.7)

E2[q
∗, p∗] ≥E2[q, p

∗]. for all q 6= q∗. (1.8)

1.3 Games in Extensive Form

A game in extensive form, also called a sequential game, is a game governed

by a sequence of moves, where each action is decided upon by one of the players of

the game, or by chance [BR13]. With these games, player may no longer be required

to simultaneously make their decision, but do so in multiple stages [AC00].

Sequential games are closely tied with a graph representation, called a game tree.
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Figure 2. Sharing Game Tree. Here, (2, 0) means that after Player 1 played 2 − 0

and Player 2 played yes, Player 1 receives payoff of 2 and Player 2 receives payoff of

0. Similarly for other entries.

Definition 1.8. A tree (which is a simple directed, connected graph which contains

no cycles) is said to be an n-person game tree if

(a) each non-terminal node of the tree is "owned" by exactly one player, and

(b) at each terminal node, v, of the tree has an n-dimensional "payoff" vector

p(v) =

[
p1(v), p2(v), ..., pn(v)

]
,

where the pi(v) represent the payoff for player i at vertex v, is assigned [AC00].

Each non-terminal node is called a decision node; during the course of a

game, the player who "owns" a decision node makes an action if that node is

reached. Actions in game trees are signified by edges of the graph. It is possible, in

an sequential game, for a player to not own any nodes at all. Figure 2 the game tree

for the sharing game.
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1.3.1 Extensive Form with Perfect Information

With the introduction of sequential consequences, the ideas of histories and

available actions must be discussed. For now a history can be intuitively thought of

as a recollection of some, but not necessarily all, previous actions of the game and

available actions are the notion that, depending on what has transpired in the game,

a player’s actions might differ from turn to turn. Some common examples of

extensive form games can be found in the conventional games of chess, checkers, and

poker, others in the realm of free market economies with games of price war and

auctions. In each of these games, the actions players take can be seen to follow in

sequence.

Before defining a sequential game, we first introduce the concept of

information partitions.

Definition 1.9. In a game tree, the set of nodes Ij = {N1, N2, ..., NL} is called an

information partition, or information set, for Player j if:

(a) all nodes in Ij are non-terminal and belong to Player j

(b) if Nx and Ny are members of Ij then Nx and Ny are not related; i.e. Nx is

neither a successor nor an ancestor of Ny; that is Nx comes neither directly

before, nor directly after Ny.

(c) all nodes in Ij are equivalent; that is for all Nx and Ny in Ij, Nx and Ny have

the same number of edges starting from them, and the set of edges starting

from Nx is "identical" to the set of edges starting from Ny.

[AC00]
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The intuition behind these information partitions comes from the idea of

uncertainty. Two nodes are in the same information partition of Player j if he

cannot discern, due to some lack of information, which node he is at. For example

in a two player game of texas hold’em, Player 2 does not know what cards Player 1

has, however he is fully aware of what cards he holds himself. When make the

decision of how much to bet, his cards are the only information Player 2 has. An

information partition in this game is the set of all nodes in which Player 2 holds

those exact same cards, while all Player 1’s cards are the various two card

combination which Player 1 could start with.

Definition 1.10. A sequential game, or game in extensive form, is an

n-player game tree such that the decision nodes are partitioned into information

sets that belong to the players [AC00].

We further define a sequential game with perfect information as a sequential

game in which the information sets of Player j, for all Players in the game, contain

only one node each. In other words, all players know exactly what node he or she is

making a decision at, during all points of the game. Chess or checkers are example

of these types of games.

In sequential games, there is a notion of prior actions, a list of which is

captured in the notion of histories. Histories are vectors which account prior actions

taken in a game. As the game progresses, these vectors my update to reflect the

actions taken. In games with perfect information, each player is capable of complete

recollection.
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Example 1.11. [LBS08] Imagine a brother and sister are sharing two indivisible

presents from their parents. The brother suggest a potential distribution of the

gifts: either he keeps both (2-0), they split fairly (1-1), or she gets both (0-2). The

sister then can accept the offer or decline. If she agrees then the presents are

distributed as prescribed, if she does not then neither receives any gifts; resulting in

a payoff of 0 for both of them. The set of actions, Ai available to each player are as

follows; the brother is Player 1 and the sister is Player 2,

• A1 = {(2− 0), (1− 1), (0− 2)}, |S1| = 3

• A2 = {(yes, yes, yes), (yes, yes, no), (yes, no, yes), (no, yes, yes),

(yes, no, no), (no, yes, no), (no, no, yes), (no, no, no)}, |S2| = 23

Before the game is played, the sister does not know what her brother may do.

Therefore the strategies available to the sister are the decisions she is willing to

make given any possible action of her brother. The strategy (yes, no, yes) means

that she will agree to either her brother or her getting both gifts, but will disagree

to splitting them. Figure 2 is the game tree representation of this game.

1.3.2 Finding Solutions

A natural question that arises is how does one begin to find, say, a Nash

equilibrium for an extensive form game? To begin, we first define a subgame of

game G.

Definition 1.12. Given an extensive form game G, the subgame of G rooted at

node h is the restriction of the tree of G to the successors of h [LBS08].

In Example 1.11 the subgame formed from the node following the "1-1" edge,

and the nodes that below it. This subgame can be solved by Player 2 simply
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choosing which ever option yields the greatest payoff. More generally, at any

terminal vertex, the prior acting player will benefit most by choosing their best

response to the current history. When the entire game is considered, with perfect

information, any extensive form game can be solved by an application of this logic,

called subgame perfect equilibrium.

Definition 1.13. A subgame perfect equilibrium of an extensive form

game is a set of strategies which produce a Nash equilibrium. More specifically, it

is a set of strategies in which no player can unilaterally benefit from changing any of

their actions.

By definition, a subgame perfect equilibrium is also a Nash equilibrium. A

convenient method of finding these subgame perfect equilibrium is backwards

induction. The basic idea of backwards induction involves examining the

"bottom-most" subgames, identify equilibrium in those, and then work back up and

consider increasingly larger tree [OR94]. Since this is a game with perfect

information, each player is rationally able to identify their best responses in any

given scenario.
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Figure 3. Solution to Sharing Game. Subgame perfect equilibrium to example 1.14.

Example 1.14. From Example 1.11, the game tree in Figure 2 was constructed.

We will solve this game using backwards induction. Starting from the bottom

subtree of the "0− 2" route. For Player 2, the action of "yes" strictly dominates the

action of "no" as 2 > 0. In the subtree of the "1− 1" route, the action of "yes",

again, strictly dominates the action "no" as 1 > 0. In the subtree of "2− 0", Player

2 is indifferent in her decision, as 0 = 0; she may threaten the action of "no", as it

would reduce Player 1’s payoff, but this is not a credible threat (i.e. she has no

incentive built in for it). Now Player 1 rationalizes all these scenarios and is now

able to make his first action based on the potential payoff he receives, should those

scenarios be carried out by Player 2. There are two subgame perfect equilibria to

this game: (2− 0, yyy)and (1− 1, nyy). This result can be seen in Figure 3.
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1.3.3 Extensive Form with Imperfect Information

We now extend our definition of an extensive form game to one in which not

all players are fully informed about various positions of the game. In particular,

extensive games with imperfect information focus on games in which players may

not be informed as to some (or all) the actions that have all ready occurred. A

natural extension of definition 1.10 follows.

Definition 1.15. A sequential, or game in extensive form, with imperfect

information is any sequential game which does not have perfect information.

The game tree of a sequential game with imperfect information denotes the

nodes within the same information by connecting them with dashed lines. In Figure

4, all nodes available to Player 2 are within the same information set. A

consequence that follows from these information partitions is that backwards

induction may no longer be possible. If two nodes are in the same information set,

then the player who owns them cannot distinguish what results may follow. In

Figure 4, it can be seen that Player 2’s best response cannot be determined, as at

each node he does not know what outcome may follow.
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Figure 4. Extensive Game with Imperfect Information. Game of R-P-S.

Example 1.16. In Figure 4, the dashed line denotes that at that node, the acting

player does not have information to previous actions. All histories for Player 2 are

in the same information partition. At each, he/she knows that Player 1 has picked a

move (though they do not know what action) and now they must chose one for

them self.

In some extensive form games with imperfect information, an indifferent

randomizer agent, "Nature", is included with the set of players. When a node is

owned by Nature, the action chosen is decided by some probability distribution on

the set of available actions. An example of this can be found in the dealer in a game

of poker. The actions of the dealer are non-bias and random based on the

composition of the deck of cards.
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CHAPTER II

BIOLOGY

Apis mellifera, the honeybee, is a prime example of the advantages of

cooperation and organization. These social insects live and work together, without

the need of an central organizer, to create a functional unit whose abilities transcend

those of the individuals [See10]. As a human body is sustained through the fuctions

of various cells, so too is a hive sustained by the efforts of its denizens. Though it is

easy for one to think of a single bee an organism, a fuller understanding of the honey

bees’ potential comes from viewing the hive as a thoroughly integrated unit [See09].

A colony is composed of three types of individuals: a relatively small

population of drones- males whose primary purpose is reproduction, an

overwhelming majority of workers- females which fill a wide array of roles, and a

single queen- a larger female whose sole purpose is to mate and lay eggs. The

workers execute the vast majority of tasks for the hive. Workers regulate the

internal temperature of the hive. During cold winter months heat-producing bees

are allocated to central brood rearing area of the hive [See10]; increased clustering

has also been observed. During the summer workers increase water collection and

allow evaporation to cool the hive. Workers determine when a queen in getting too

old to serve the colony by monitoring her pheromone levels and egg laying abilities;

they note when it is time to raise new queens. They build the hive, constructing

and repairing its various combs, and during swarms they ultimately choose the
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location of the new hive. Of course, they are also the foragers who set out and

retrieve the pollen and nectar stores to sustain the hive.

On average, the hive must meet a yearly quota of 20 kg of pollen and 120 kg

of nectar in order to ensure survival during the winter months [See09]. It must

achieve this while also supplying the colony with its daily nutrition. Coordinating

an effective foraging operation assist in achieving these quotas. Hives have been

seen to forage in areas larger than 100 km2 [See09]. The scope of this achievement

can be recognized when one considers the size of these gatherers. Honey bees must

locate high yield plants shortly after they bloom, else risk losing them to

neighboring colonies. Once located, foragers return to the hive and communicate

the location, relative to the sun, of these resources by use of the waggle or

recruitment dance. This means of communication is also utilized when determining

the location of new hives.

Honey bees have shown the ability to be selective among their potential food

sources. The recruitment dance provides the hive with an avenue of coordinating

foraging patterns. This process has been observed to be reactive to daily changes in

food sources. Foraging patterns can be completely altered in as little as four hours

[?]. Natural causes of resource changes can be caused by varying amounts of

sunlight or soil moisture, but can also be due to increased competition between

other pollinators. The threshold for what is considered a resource worth visiting to

can be raised or lowered depending on the needs of the hive.

In addition to selecting among their available resources, honey bees are able

to identify signals which are associated with high quality of resources [KS15].

Phenylactaldehyde is an olfactory compound correlated with high quality nectar;
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while it may be hypothesized that honey bees rely heavily on this scent, honeybees

have been observed to forgo this signal, developing preference for others signals, if it

deemed dishonest [KS15].

It is well known that flowers exhibit various signals in order to attract

visitation from pollinators. An honest signal can be thought of as one which reliably

reflects the underlying qualities of the signaler [DG91]. Patterns of pigmentation,

such as those displayed by the common snapdragon [WMR+13], directly correlated

to high quality nectar, as an example. Dishonest signaling, those that do not reflect

quality, also exist. Ophrys apifera, the bee orchid, emits a scent that mimics female

a female bee during mating season; as a result, male bees, attempting to copulate,

visit and inadvertently pollinate the orchids [Dod76]. Dishonest signals are often

produced by individuals who lack some characteristics to prosper in their systems

normally. Many conventional signaling systems, due to the energy cost associated

with the receiver probing the signalers, are susceptible to cheating.
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CHAPTER III

REPEATED SIR PHILIPS SIDNEY GAME

3.1 Biological Question

In a signaling game, both players are capable of manipulating the information

available to the each other. In a plant-pollinator system, plants are able to advertise

the quantity/quality of their nectar (or other reward) through various visual or

olfactory signals. The pollinator is able to decide its general response to these

signals. If a signal leads a pollinator to a high quality reward, then the pollinator

will learn to respond to the signal with greater frequency. If an abundance of false,

or dishonest, signals are conveyed, then the pollinator will eventually ignore the

signal all together; by decreasing the probability of visiting plants using that signal.

Pollinators can be conditioned to learn the correlation between a signal and rewards.

We search for the parameters, defined in Table 1, which encourage honest

signaling to be evolutionarily stable. In the plant-pollinator system, we define

honest signaling as the signaling tendency where high yield plants signal and low

yield do not.
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PlH High yielding plant
PlL Low yielding plant
Pol Pollinator

Parameters
α High yield proportion of plant population (1 ≥ α≥ 0)

NB Number of pollinators that would potentially visit a
flowering plant

CL Cost for low yielding plant to signal(CL< 1)
CH Cost for high yielding plant to signal(CH< CL< 1)
VH Reward for pollinator visiting a high yield plant (VH> 0)
VL Reward for pollinator visiting a low yield plant

(VH> VL> 0)
R Number of rounds the pollinator can visit a plant
ωS Probability for a pollinator to visit a signaling plant
ωN Probability for a pollinator to visit a non-signaling plant
t Number of rounds a pollinator can retain information

Strategies
S Plant of a given type will signal
N Plant of a given type will not signal

XY PlH , PlL will perform strategies X,Y respectively.
X, Y ∈ {S,N}

PSL
Probability deducted from ωS per low yield signaling
plant in last t rounds(PSL

≤ 1)
PN0 Initial probability for pollinator to visit a non-signaling

plant(PN0≤ 1)
PNH

Probability added to ωN per high yield non-signaling
plant in last t rounds(PNH

≤ 1−PN0)

Table 1. Table of Notation
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3.2 The Mathematical Model

Let α be the proportion of high yield plants in the environment and 1− α be

the proportion of low yield plants. Initially, the pollinator does not know whether a

plant it is considering is high or low yield. The plant can take the action to signal to

the pollinator, which incurs a cost on the plant CH or CL,; where CH is the cost for

a high yield plant to signal and CL is the cost for a low yield plant to mimic that

signal.

The pollinator then decides to visit the plant or not based on the probability

of visiting a signaling plant, ωS, or the probability of visiting a non-signaling plant,

ωN . These probabilities are determined based on the results of previous encounters

experienced by the pollinator. If the pollinator decides to visit the plant, it receives

a payoff of VH or VL, depending on whether a high yield or low yield plant was

visited respectively. The visited plant receives a payoff of 1. Figure 5 is the game

tree representation of a single round of the game.

If the game is played a single time, it does not benefit the pollinator to ever

skip a plant because the reward is always positive (VH > VL > 0). By transitioning

to a finitely repeated game, in which the pollinator is allowed to visit R plants, the

pollinator can benefit in the long term by skipping a plant in order to condition the

plant population’s signaling tendencies. The pollinator develops the behavior to

skip some plants, based on the plants’ actions, and visit others; despite the fact that

the pollinator will get less reward in the singular round than in it would otherwise.

For the plants, the repeated game provides multiple opportunities to be visited by a

potential pollinator, thus the chance of being visited for both signaling and not

signaling are available.
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Figure 5. Plant-Pollinator Extensive Form Game. A pollinator arrives at a high

yield or low yield plant, with probability α or 1 − α respectively, depending on the

proportion of high yield and low yield plants in the population respectively. The plant

is either signaling (S) or not signaling (N). The pollinator then visits the plant with

probability ωS or ωN ; depending whether the plant is signaling or not.

3.3 Updating ωS and ωN

In any particular round, the pollinator must decide whether or not to visit a

plant which is signaling or non-signaling. The pollinator references the outcomes of

the previous rounds by means of two history vectors: HS and HN , which contain

the information of the outcomes of the previous t signaling flowers visited and the

previous t non-signaling flowers visited, respectively. Depending upon their entries,

a pollinator may visit or skip a plant accordingly.

At the beginning of the game, HS and HN are both empty. After a

pollinator visits a plant, it is able to assess its reward, and categorizes the plant as a
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high yield or low yield. Bases on this assessment, if the plant was a low yield plant

and was signaling, then HS is updated by the concatenating HS _ [L]; denoting

that a signaling low yield plant was visited. If HS already has t entries, then the

first entry is is discarded ((HS) 7→ (HS)
∗1), all remaining entries are index down by

one ((HS)i,1 7→ (HS)i−1,1), then concatenation occurs normally. Updating HN is

conducted likewise. It is from these history vectors that the pollinator calculates ωS

and ωN .

The general form of ωS and ωN are as follows:

ωS = 1− KL

t
PSL

(3.1)

ωN = PN0 +
KH

t
PNH

. (3.2)

KL represents the number of signaling low yield plants visited in the last t

signaling plants visited (the number of L’s in HS); and KH is the number of

non-signaling high yield plants visited in the last t non-signaling plants (the number

of H’s in HN). PN0 , PNH
, and pslm are as defined in Table 1.

3.4 Calculating Average ωS and ωN

A plant strategy XY is a strategy in which high yield plants play strategy X

and low yield plant play strategy Y ; X and Y , can take the the values of S or N .

For each combination of plant strategies, an average ωS and ωN can be calculated.
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As the strategies that high and low yield plants vary, so too does the values

of KL and KH . Particularly, the expected values of KL and KH take the following

values

E[KL] =


(1− α)t SS,

t NS,

0 else.

(3.3)

E[KH ] =


αt NN,

t NS,

0 else

. (3.4)

3.4.1 Average Value of ωS and ωN in SS Plant Population

With all plants signaling, we examine the general formula for ωS. As both

plants are signaling, KL ∼ Binomial((1− α), t), and KH = 0.

E[ωS] = 1− E[KL]

t
PSL

= 1− (1− α)t
t

PSL
= 1− (1− α)PSL

. (3.5)

Since high yield plants are signaling ωN has no chance to improve. By equation 3.4

E[ωS] = PN0 +
E[KH ]

t
PNH

= PN0 + 0 = PN0 . (3.6)
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3.4.2 Average Value of ωS and ωN in SN Plant Population

Since no low yield plant will be signaling, so KL = 0, ωN will never be

penalized and thus

E[ωS] = 1− E[KL]

t
PSL

= 1− 0 = 1. (3.7)

Similar to the previous case, as all high yield plants are signaling, KH = 0, and ωN

will never grow and

E[ωN ] = PN0 +
E[KH ]

t
PNH

= PN0 + 0 = PN0 . (3.8)

3.4.3 Average Value of ωS and ωN in NS Plant Population

Since only low yield plants will be signaling, ωS will always be penalized. By

equation (3.3),

E[ωS] = 1− E[KL]

t
PSL

= 1− PSL
. (3.9)

Since low yield plants are signaling and high yield are not, KH = t, ωN achieves

maximum benefit and

E[ωN ] = PN0 +
E[KH ]

t
PNH

= PN0 + PNH
. (3.10)

27



3.4.4 Average value of ωS and ωN in NN plant population

Since no low yield plants will be signaling, ωS will incur no penalty, KL = 0

E[ωS] = 1− E[KL]

t
PSL

= 1− 0 = 1. (3.11)

As both types of plants are non-signaling, KH ∼ Binomial(α, t). By (3.2),

E[ωN ] = PN0 +
E[KH ]

t
PNH

= PN0 +
αt

t
PNH

= PN0 + αPNH
. (3.12)

3.5 Calculating Payoffs for Plant

3.5.1 Expected Payoff for SS

For a plant, the payoff depends on whether or not the plant is visited at all.

To capture this, we will sum all the probabilities of being visited by the ith

pollinator and then consider the consequence of not being visited.

For a low yield plant

EPlL [SS] =

NB−1∑
i=0

(Probability of being visited at
round i+1

)(reward-cost) + ( Probability of
not being visited

)(cost of signaling) (3.13)

=

NB−1∑
i=0

(1− E[ωS])
iE[ωS](1− CL) + (1− E[ωS])

NB(−CL). (3.14)

As this is a truncated geometric series, whose sum has denominator E[ωS],

EPlL [SS] =(1− E[ωS])
NB(1− CL) + (1− E[ωS])

NB(−CL). (3.15)
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By substituting from (3.5) for E[ωS] for the SS case we have:

EPlL [SS] =(1− ((1− α)PSL
))NB(1− CL) + (1− (1− α)PSL

)NB(−CL) (3.16)

=(1− CL)− ((1− α)PSL
)NB . (3.17)

By a similar derivation. The expected payoff of high yielding plant is

EPlH [SS] = (1− CH)− ((1− α)PSL
)NB . (3.18)

3.5.2 Expected Payoff for SN

The expected payoff for PlL in this case is similarly done, with the notable

exception that the plant incurs not cost for not-signaling.

EPlL [SN ] =( Sum of the probabilities of
being visited

)(reward-cost) + ( Probability of not being
visited at all

)(no cost) (3.19)

=

NB−1∑
i=0

(1− E[ωN ])
i(E[ωN ])(1) + (1− E[ωN ])

NB(0). (3.20)

Similarly to the SS case, this is a truncated geometric series, whose sum’s

denominator is E[ωN ]. Thus

EPlL [SN ] =1− (1− E[ωN ])
NB . (3.21)
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By (3.8)

EPlL [SN ] = 1− (1− PN0)
NB . (3.22)

For high yield plants

EPlH [SN ] =

NB−1∑
i=0

(1− CH)(E[ωS])(1− E[ωS])
i + (1− E[ωS])

NB(−CH) (3.23)

=
(1− CH)(E[ωS])(1− (1− E[ωS])

NB)

(1− (1− E[ωS]))
(3.24)

=(1− CH)(1− (1− E[ωS])
NB). (3.25)

By (3.7)

EPlH [NS] = (1− CH)(1− (1− 1)NB) = (1− CH). (3.26)
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3.5.3 Expected Payoff for NS

Through similar derivations, by (3.9)

EPlL [NS] =(1− CL)(1− (1− E[ωS])
NB) + (−CL)(1− E[ωS])

NB (3.27)

=(1− CL)(1− (1− (1− PSL
))NB) + (−CL)(1− (1− PSL

))NB) (3.28)

=(1− CL)(1− (PSL
)NB) + (−CL)(PSL

)NB (3.29)

=(1− CL)− (1− CL)(PSL
)NB + (−CL)(PSL

)NB (3.30)

=(1− CL)− (PSL
)NB + (CL)(PSL

)NB + (−CL)(PSL
)NB . (3.31)

Thus,

EPlL [NS] = (1− CL)− (PS)
NB . (3.32)

For high yield

EPlH [NS] =(1)(1− (1− E[ωN ])
NB). (3.33)

By (3.10)

EPlH [SN ] = 1− (1− (PN0 + PNH
))NB . (3.34)
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3.5.4 Expected Payoff for NN

For this last strategy, we have a unique case were the payoff for high and low

yield plants are identical. Since neither incurs a cost, their payoffs are simply due to

the probability that a pollinator will visit them.

EPlL [NN ] = 1− (1− PN0 + αPNH
))NB = EPlH [NN ]. (3.35)

3.6 Calculating Payoffs for Pollinator

For the Pollinator, its payoff is determined by the number of high and low

yield plants it visit over the course of R rounds. The pollinator does have the

chance to skip a plant entirely with probability 1− ωS for signaling plants, and

1− ωN for non-signaling. The Pollinator may decide how much it punishes, through

reducing the probability of visiting signaling plants, deceptive or dishonest signals

PSL
; namely low yield plants signaling. The pollinator chooses it’s initial probability

of visiting a non-signaling plant PN0 , and how much it learns to "trusts"

non-signaling plants when it experiences high yield plants not signaling, PNH
.
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3.6.1 Expected Payoff in SS Plant Population

The expected payoff of the pollinator is based on the expected payoff of a

single round, multiplied R times. In a single round, the payoff for the pollinator is

given by the probability of visiting a signaling plant times the reward associated,

plus the probability of visiting a non-signaling plant times the reward associated. In

the SS case, since both plants are signaling, the reward for visiting a non-signaling

plant is 0. Thus,

EPol[PSL
, PN0 , PNH

] = R[(E[ωS])(αVH + (1− α)VL) + E[ωN ](0)] (3.36)

= R[(E[ωS])(αVH + (1− α)VL). (3.37)

By (3.6) and (3.5)

EPol[PSL
, PN0 , PNH

] = R[(1− (1− α)PSL
)(VL + α(VH − VL)]. (3.38)

3.6.2 Expected Payoff in SN Plant Population

Similarly to the SS case,

EPol[PSL
, PN0 , PNH

] =R[E[ωS]α(VH) + E[ωN ](1− α)(VL)]. (3.39)

By (3.8) and (3.7)

EPol[PSL
, PN0 , PNH

] = R[PN0VL + α(VH − PN0VL)]. (3.40)
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3.6.3 Expected Payoff in NS Plant Population

EPol[PSL
, PN0 , PNH

] =R[E[ωS](1− α)(VL) + E[ωN ]αVH ]. (3.41)

By (3.10) and (3.9)

EPol[PSL
, PN0 , PNH

] =R[(1− PSL
)(1− α)VL + (PN0 + PNH

)αVH ] (3.42)

=R[(1− PSL
)VL + α((PN0 + PNH

)VH − (1− PSL
)VL)]. (3.43)

3.6.4 Expected Payoff in NN Plant Population

EPol[PSL
, PN0 , PNH

] =R[E[ωS](0) + E[ωN ]((α)(VH) + (1− α)(VL))]. (3.44)

By (3.12) and (3.11)

EPol[PSL
, PN0 , PNH

] =R[(PN0 + α(PNH
)((α)(VH) + (1− α)(VL))] (3.45)

=R[(PN0 + α(PNH
)(VL + α(VH − VL))]. (3.46)

34



3.7 Deriving Conditions for SN Dominance

For SN to be a Nash equilibrium, it is sufficient to find the conditions on the

parameters in which S dominates N for PlH and N dominates S for PlL . Namely,

EPlH [NN ] <EPlH [SN ] (3.47)

and

EPlL [SS] <EPlL [SN ] (3.48)

respectively.

3.7.1 Conditions for SN be Better than NN for High Yield Plants

By (3.35) and (3.26)

EPlH [NN ] <EPlH [SN ] (3.49)

is true when

1− (1− (PN0 + αPNH
))NB < 1− CH (3.50)

(1− (PN0 + αPNH
))NB > CH (3.51)

1− (PN0 + αPNH
) > C

1
NB
H (3.52)

35



i.e. when

1− C
1

NB
H > PN0 + αPNH

. (3.53)

3.7.2 Conditions for SN be Better than SS for Low Yield Plants

By (3.17) and (3.22)

EPlL [SS] <EPlL [SN ] (3.54)

(1− CL)− ((1− α)PSL
)NB <1− (1− PN0)

NB (3.55)

−CL − (1− α)NBPNB
SL

<− (1− PN0)
NB (3.56)

i.e. when

(CL + (1− α)NBPNB
SL

)
1

NB >(1− PN0). (3.57)
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3.8 SN Dominance

From these derivations we find four condition which are required for SN to

be a Nash equilibrium.

1− C
1

NB
H > PN0 + αPNH

(3.58)

(CL + (1− α)NBPNB
SL

)
1

NB > 1− PN0 . (3.59)

Now, considering the pollinator’s payoff for SN case, given by equation (3.40),

EPol[PSL
, PN0 , PNH

] =R[PN0VL + α(VH − PN0VL)] (3.60)

=R[(1− α)PN0VL + αVH ]. (3.61)

It is strictly increasing with PN0 . So it is in the pollinator’s benefit to choose PN0 as

high as possible. By definition, the pollinator should choose PN0 = 1.

However, when PN0 = 1 inequality (3.58) is never satisfied. Thus SN cannot

be a Nash equilibrium.
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CHAPTER IV

BIOLOGICAL CONCLUSION

Pollinators walk a fine line in their attempt to condition their resource

providers. The more likely they are to visit non-signaling plants, the less incentive

high yield plants have to signal; while the less likely they are to visit non-signaling

plants, the more likely low yield plants are to attempt deception in order to be

visited.

While our result seems to indicate that an honest system of communication

cannot be established between plants and pollinators, we feel this is a reflection of

the absence of a crucial feature in our model. One such flaw can be found in the

pollinator’s payoffs. In the model, a pollinator is allowed to visit R plants through

the course of the game. When a pollinator chooses to skip a plant, the model treats

this as visiting one of the R flowers and receiving a payoff of 0. As it stands, if a

pollinator decides to skip a plant it is essentially leaving resources behind. In

reality, pollinators choosing to skip a flower do not expend as much energy as it

does visiting. A more realistic model would allow the pollinator to replay the round,

a finite number of times; one of the R rounds is concluded when the pollinator visits

the plant or surpasses some threshold of skips.

In essence, the pollinator is playing the "One-shot" version of the game R

times. In each of the individual rounds, it is always better to visit than skip.
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