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ABSTRACT 

LANDIS, WILLIAM HATHAWAY, Ph.D. Calcium Balances of Premenopausal 
Women Consuming Cheese- Compared to Spinach- and Tofu-Containing Diets. 
(1987). Directed by Michael Liebman, Ph.D. 102 pp. 

Two individual 8-week metabolic balance studies were conducted to 

compare the calcium bioavailability from cheese to that from spinach and 

tofu (soybean curd) in adult women. Subjects consumed each of 2 controlled 

diets for 3-week periods in a crossover experimental design. Calcium 

balance, oxalate excretion, urinary hydroxyproline, and serum alkaline 

phosphatase were determined from urine and fecal, and 2 fasting blood 

samples collected during the final 2 weeks of each 3-week dietary period. 

In the first study (n=7), experimental diets were identical except 

for the inclusion of either 453 g of spinach (providing 600 mg of calcium) 

or 93 g of cheese (providing 670 mg of calcium). Mean fecal wet (p<0.05) 

and dry (p<0.01) weights were significantly greater during consumption 

of the spinach compared to the cheese feeding periods. Mean calcium balances 

of -168 (spinach) and -98 mg/day (cheese) were not statistically different 

although mean urinary calcium levels were greater (p<0.01) during cheese 

(212) compared to spinach (136 mg/day) periods. Mean urinary (101 vs 17 mg/ 

day, p<0.01) and fecal oxalate (322 vs 13 mg/10 g dry wt, p< 0.05) were 

significantly greater during consumption of the spinach (high oxalate) 

compared to cheese (low oxalate) diets. Significant correlations were 

observed between mean urinary and fecal oxalate (r=0.89, p<0.01), and 

corrected fecal oxalate and fecal calcium(rs=0.71, p<0.05) during the 



spinach dietary periods. Individual data suggested a possible relationship 

between fecal oxalate levels and calcium balance. Urinary hydroxyproline 

was significantly higher (p<0.01) during spinach (15.8) compared to 

cheese (13.4 mg/day) periods;Serum alkaline phosphatase did not differ 

significantly between treatments. 

In the second study (n=9), tofu- (280 g providing 543 mg of calcium) 

were compared to cheese-containing diets (80 g providing 515 mg of calcium) 

for calcium availability. Significantly greater mean fecal calcium levels 

(829 vs 767 mg/day, p 0.05), and lower mean calcium balances (-135 vs 

-73 mg/day, p 0.05) were observed during consumption of the tofu- (providing 

1900 mg phytate) compared to the cheese-containing (providing 1130 mg 

phytate) diet. Mean urinary phosphorus levels were significantly greater 

(p<0.05) during the cheese (620) versus tofu (515 mg/day) periods. Urinary 

hydroxyproline and serum alkaline phosphatase did not differ significantly 

between dietary treatments. 
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CHAPTER I 

INTRODUCTION 

While dairy products supply the majority of calcium in the U.S. diet 

and calcium is relatively well absorbed from these foods (Allen, 1982), 

growing concern over the adequacy of calcium intakes has renewed interest 

about other less prominent sources of dietary calcium. Vegetable sources 

constitute the next best quantitative source of calcium after dairy products 

but in the U.S. make up only a small percentage of dietary calcium. Certain 

populations of the world which consume virtually no dairy foods and depend 

upon calcium of vegetable origin appear to display no symptoms of poor 

calcium nutriture (Hodgkinson, 1979). Generally the availability of calcium 

from plant foods is low relative to that from dairy foods due to the presence 

of various inhibitory compounds in plants (Allen, 1982). 

Spinach has been generally regarded as a good source of calcium based 

upon its high calcium content relative to other plant foods. A limited number 

of studies have assessed calcium bioavailability from spinach and other 

green leafy vegetables in humans with the majority conducted over 35 years 

ago. Early studies shared a number of methodological limitations including 

small sample sizes, short balance periods, low calcium intakes or no sta

tistical analysis. Data from this early research suggested that the daily 

feeding of large quantities of spinach (approximately 200 g or more) can 

adversely affect calcium balance in humans. Amounts less than 200 g.appeared 

to have little or no effect upon calcium balance. Oxalic acid is a major 

constituent of spinach which forms calcium-oxalate salts of low solubility 

(Oke, 1969). The inhibition of calcium absorption by oxalate has been 
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attributed to the precipitation of insoluble calcium-oxalate salts in the 

small intestinal lumen (Earnest, Williams, & Admirand, 1979). Fiber, also 

found in large amounts in spinach, has been demonstrated to inhibit the 

absorption of calcium (Allen, 1982). 

Soybeans and soybean derived products are also relatively rich plant 

sources of calcium but are less widely consumed in the typical U.S. diet 

than spinach or dairy foods. Little research has been conducted regarding 

calcium availability from soy products. In particular, tofu, a coagulated 

soy protein product, has received little scientific attention. Research has 

suggested that the calcium availability from whole cooked soybeans is less 

than that from soy milk, although calcium from soy milk was well absorbed 

relative to that from milk (Schroeder, Cahill, & Smith, 1946). The discre

pancy in calcium bioavailability between whole soybeans and soy milk could 

be due to the presence of fiber in the whole soybeans. Tofu contains no 

fiber and therefore the calcium from tofu may be more available than products 

derived from whole soybeans. Soy products generally contain high levels 

of phytic acid which has been suggested to bind calcium, via the formation 

of insoluble calcium-phytate complexes in the intestinal lumen, thereby 

inhibiting its absorption. 

Recent recommendations for increased calcium intake have been directed 

mainly toward women because of their high rate of bone mineral loss after 

menopause and the fact many women have calcium intakes below the Recommended 

Dietary Allowance (RDA) of 800 mg per day. If calcium intakes are to be 

increased to meet current recommendations, calcium bioavailability from 

alternate calcium-rich foods needs to be assessed. 
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At the periphery of investigations regarding calcium bioavailability 

of foods is the issue of to what degree does the daily intake of calcium 

affect calcium balance and bone turnover, and over the long term, risk of 

severe bone mineral loss in older adults. Adequate absorption and utilization 

of calcium from the diet is essential for the maintenance of bone health. 

When the entry of calcium into the body is deficient during periods of 

low intake and/or poor absorption, calcium balance may be sufficiently 

negative to induce increased bone resorption to m^et homeostatic needs. A 

lifelong history of poor calcium nutrition could in this manner seriously 

deplete bone mineral reserves. The assessment of short term changes in bone 

turnover rates could help clarify the relationship between diet and progressive 

bone loss in the aged. 
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CHAPTER II 

REVIEW OF LITERATURE 

Much of the data on calcium availability from plant foods, in particular 

spinach and soy products, are from studies conducted before 1952 with several 

conducted during the early part of this century. Calcium availability from 

tofu, a coagulated soy protein, was last assessed in humans over 50 years 

ago (Adolph & Chen, 1931). Important factors influencing calcium availability 

from some plant foods are oxalic acid and phytic acid, found in large quan

tities in spinach and soy products, respectively. There is evidence that 

both of these plant constituents have the capacity to bind and possibly 

interfere with its absorption by the human gastrointestinal tract. 

Studies Regarding Calcium Bioavailability from Spinach 

Because of its high calcium content and popularity, spinach has been 

the most extensively studied green leafy vegetable with regard to the bio

availability of calcium. Calcium bioavailability from spinach was assessed 

in several early studies conducted during the first half of this century. 

These studies were characterized by one or more of the following limitations: 

short balance periods, small sample sizes, low calcium intakes and/or 

lack of statistical analysis. The effect of spinach upon calcium balance 

observed in these early studies appeared to be dose dependent. Studies 

feeding 200 g or more of spinach per day reported adverse effects on 

calcium balance (Sherman & Hawley, 1922; Mclaughlin, 1927; Fincke & 

Garrison, 1938) while those studies feeding less than 200 g of spinach 
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did not observe this effect (Schlutz, Morse, & Oldham, 1933; Bonner, 

Hummel, Bates, Horton, Hunscher, & Macy, 1938; Johnston, McMillan, & 

Falconer, 1952). 

Fincke and Garrison (1938) assessed the effects of spinach or kale 

on calcium balance in two adult women. The kale diet contained 134 g of 

kale contributing approximately 85% of 400 mg of total dietary calcium 

and the spinach diet contained 490 g of cooked spinach contributing 80% 

of 445 mg of total dietary calcium. Calcium balance on the kale diet was 

-26 and -49 mg of calcium per day for the 2 subjects in contrast to -149 

and -164 mg of calcium per day for the same subjects on the spinach diet. 

Balance figures were averages of two 3-day balance periods. Given equal 

fiber contents on the 2 diets, the markedly lower calcium balances observed 

in the subjects during spinach consumption are probably the result of 

the higher oxalic acid content of spinach compared to kale. 

McLaughlin (1927) compared the effect of 275 g of spinach and comparable 

levels of calcium from milk on calcium balance of 7 adult women. Each 

metabolic balance period was 6 days in duration. Total daily calcium 

intakes on the milk and spinach diets were 493 and 509 mg, respectively. 

Mean calcium balance was positive on both diets, however, mean daily 

calcium balance on the spinach diet was lower than that on the milk diet 

by 55 mg of calcium. 

Sherman and Hawley (1922) assessed the utilization of calcium from 

vegetables in 3 female subjects aged 5, 6 and 13 years. Mixed diets con

taining 500 mg of calcium from milk were fed for 27 days. During days 

10-18, an average of 266 g of spinach and 264 g of carrots were added to 
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the diet contributing an additional 400 mg of calcium to the overall 

intake. The investigators assumed that if the calcium in spinach and 

carrots was roughly equal in bioavailability to that from milk, the addition 

of 400 mg of calcium from spinach and carrots would cause calcium balances 

to increase markedly above levels observed during the milk-only balance 

periods. Mean calcium balance of the 3 subjects during the spinach supple

mented period was roughly equivalent to that observed during the milk-only 

test period, suggesting that very little if any of the calcium from spinach 

and carrots was available for absorption. 

Sherman and Hawley (1922) conducted another feeding experiment using 

3 different children of similar age to the previous experiment (aged 6, 

10, & 13 years) to compare the utilization of calcium from spinach and 

carrots with that from milk. Using essentially the same study design as 

previously described, milk supplied the majority of calcium during the 

first 9 and final 6 days of the metabolic balance experiment. For 15 days 

between the milk-only dietary periods, milk was replaced with an amount 

of spinach (255 g) and carrots (121 g) equal in calcium content to that 

supplied by half of the original milk serving. Overall calcium intakes on 

the spinach-carrot-milk and milk-only diets were 957 and 996 mg per day. 

Calcium balance was considerably lower on the vegetable (+142 mg calcium/ 

day) compared to that on the milk-only diet (+311 mg calcium/day). 

Another set of early studies where spinach was.fed at levels less than 

200 g per day reported no apparent adverse effects on overall calcium balance. 

Bonner et al. (1938) reported no deleterious effects of dietary spinach 
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on calcium retention in children. Ten children, aged 5 to 8 years, were 

fed basal diets with and without 100 g of pureed spinach for 15 days. 

No difference in mean calcium balance was observed between diets. Total 

daily calcium intakes on each diet were approximately 800 mg although 

calcium intakes were slightly higher on the spinach diet due to the inclusion 

of the spinach supplement which represented 5 to 7 percent of the total 

calcium intake. A third diet was fed after the spinach diet in which oxalic 

acid and calcium, as calcium acetate, were added to the basal diet at 

levels equal to that found in the spinach supplement. The addition of 

pure oxalic acid had no apparent effect on calcium balance. 

Johnston et al. (1952) demonstrated poor calcium absorption from 

spinach but overall calcium balance was unaffected with spinach feeding. 

Calcium balance was assessed in 6 adult women, aged 20-31 years, fed 120 g 

spinach daily for 8 weeks. All subjects consumed a basal diet for an initial 

4-weeks, after which half of the subjects received the basal diet plus . 

120 g of spinach (containing 160 mg of calcium) at breakfast and the other 

half consumed the spinach with the evening meal. During the final 4 weeks, 

subjects switched and consumed spinach at the alternate time of day. The 

basal and spinach diets supplied approximately 820 and 980 mg of calcium 

per day, respectively. Fecal calcium during the spinach periods was greater 

than that during the basal period by an amount roughly equivalent to that 

contained in the spinach serving, suggesting that very little of the 

calcium in spinach was available for absorption. However, mean calcium 

balance on the spinach diets (-40 mg/day) was only slightly lower than 

the mean calcium balance on the basal diet (-26 mg/day). 
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Schlutz et al. (1933) assessed the effects of different forms of 

spinach on calcium retention in 4 infants. The daily feeding of 6 g of 

dried spinach reduced calcium retention slightly; no adverse effects on 

calcium balance were observed with the daily feeding of 60 g of pureed 

or 70 g of raw spinach. 

More recently, Kelsay and Prather (1983) assessed the effect of 

dietary spinach on calcium balance in 12 men consuming each of three 

controlled diets for 4-week periods. Diet 1 was a low-fiber diet containing 

102 g of spinach fed every other day. Diet 2 was high in fiber due to 

the inclusion of fruits and vegetables and also contained spinach every 

other day. Diet 3 was similar to diet 2 except that cauliflower, which 

is low in oxalate, replaced the spinach. A significantly lower mean calcium 

balance (-73 mg/day) was observed during week 4 on the high-fiber spinach 

diet compared with the mean calcium balance (+44 mg/day) on the low-fiber 

spinach diet. Calcium balance was also negative (-11 mg/day) on the high-

fiber cauliflower diet but balance was not significantly different than those 

observed during diets 1 and 2. 

Oxalic Acid Chemistry and the Effect of Oxalic Acid on Calcium Availability 

An extensive review of the literarure regarding the nutritional impli

cations of oxalic acid (oxalate) consumption on calcium metabolism has 

been conducted by Oke (1969) and Kelsay (1985). Most of the research on 

this topic has been conducted in small animal models and in livestock, and 

relatively few in human subjects. Studies using small laboratory animals 

seem to indicate an impairment of calcium utilization with oxalate feeding 

(Oke, 1969). Studies intended to assess the effects of oxalate consumption 



9  

on calcium utilization often use a high-oxalate containing plant food, 

like spinach, as the vehicle by which oxalate is incorporated into the 

diet. Therefore, the solitary effect of oxalate, per se, on calcium utili

zation is often not directly assessed. Most plant sources of oxalate are 

also likely to contain high levels of fiber which has been demonstrated 

to interfere with the absorption of calcium (Allen, 1982). 

Oxalic acid is the simplest dicarboxylic acid (Figure la). It is a 

strong acid (pK^ = 1.46, pl<2 = 4.40) and commonly exists as a dihydrate 

(Fasset, 1973). In neutral and basic solutions oxalic acid readily ionizes 

or losses the hydrogens associated with the 2 carboxyl groups, and forms 

salts with various mono- and divalent cations. Neutral or soluble salts 

of oxalate, or those composed of monovalent cations, are readily soluble 

in water while oxalate salts composed of alkaline earth or divalent metal 

cations are less.soluble. 

The primary species of neutral or soluble oxalate in plants are 

sodium (NaHC204) and potassium salts (KHC2O4) (Figure lb): free oxalic 

acid (C2O4H2) is rarely present (Oke, 1969). Insoluble salts of oxalate 

in plants exist chiefly as the calcium salt (CaC204)t with small quantities 

existing as the magnesium salt (1^204) (Figure 1c). Calcium oxalate salts 

are insoluble in neutral or basic solutions but become increasingly soluble 

in acid. The interference with calcium absorption by oxalate has been 

attributed to the precipitation of insoluble calcium-oxalate salts in 

the relatively basic environment of the intestinal lumen (Earnest et al., 1979) 

Ionic bonding characterizes the attractive forces occurring between 

monovalent cations, like Na+ and K+, and oxalate molecules. Covalent bonds 
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characterize the attractive forces between divalent cations such as Ca^+ 

and Mg2+, and oxalate. Ionic bonds between atoms are weaker than covalent 

bonds. On this premise, compounds characterized by ionic bonding will 

more readily dissociate in aqueous solutions compared to compounds charac

terized by covalent bonds. The nature of the attractive forces between 

monovalent and divalent cations and oxalate, in oxalate salts, may account 

for the difference in solubility between Na+- and K+-oxalate salts (high 

solubility) and Ca^+- and Mg^+-oxalate salts (low solubility). It has 

been suggested that calcium ions may interact with or adhere to oxalate 

in the lumen of the. gut in a variety of different molecular configurations 

which could effect solubility and binding properties and subsequent 

calcium availability from these salts (Hodgkinson, 1979). 
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Figure 1. (a) The structure of oxalic acid with one of its carboxyl hydrogens 
dissociated from the molecule, (b) oxalate molecule in a salt form with 
monovalent cations Na+ and K+ demonstrating electrostatic or ionic bonding, 
(c) oxalate molecule as a Ca" - salt demonstrating the more stable covalent 
bonding scheme between the 2 oxygen molecules of oxalate and Ca^+. 

The results from studies in which oxalate was fed to rats suggests 

that oxalate consumption may have a negative effect on the utilization 

of calcium (Kelsay, 1985). In a study by Fincke and Sherman (1935), rats 
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were fed diets for 60 days in which the majority of calcium was supplied 

by milk or half of the milk was replaced with equal quantities of calcium 

in dried spinach. The calcium from the spinach diet was poorly utilized 

compared to that from the milk diet. A third diet in which kale replaced 

spinach resulted in calcium utilization comparable with that from milk, 

suggesting that the high oxalate content of spinach relative to kale, 

which is low in oxalate, may have been responsible for the lower avail

ability of calcium from that vegetable. 

Tidal 1 and Drake (1937) reported decreases in calcium retention in rats 

fed a basal diet with added pure oxalic acid and calcium carbonate compared 

with animals fed a basal diet with only calcium carbonate added. A decrease 

in retention was even more pronounced after dried spinach was added to the 

diet at levels supplying oxalic acid in amounts similar to those fed in 

the supplemental diet. 

Pure oxalate was fed to humans in a study by Bonner et al. (1938). 

Ten children were fed a basal diet, a basal diet plus 100 g of spinach, 

and a basal diet in which pure oxalate and calcium were fed at levels 

equivalent to those found in 100 g of spinach. These researchers observed 

no differences in calcium balance between dietary treatments. 

The actual physical and chemical interactions that occur between 

oxalate, calcium, fiber and other dietary compounds in the lumen of the 

small intestine are most likely complex and essentially undetermined. 

Given that much of the calcium in spinach is bound to oxalic acid, as a 

calcium-oxalate salt, an unanswered question is whether oxalate in this 

form can dissociate and form new salts with other dietary minerals 
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during digestion. Studies by Bonner et al. (1938) and Johnston et al. (1952) 

demonstrated that adding approximately 100 g of spinach to human diets 

prevented the absorption of an amount of calcium equal to that fed in the 

spinach which suggested that only the spinach calcium was blocked from 

absorption. 

In contrast to the above studies, researchers have found decreases 

in the availability of calcium from foods consumed in the diet other than 

the oxalate source fed. In a human study, Pingle and Ramasastri (1978) 

reported low calcium bioavailability from amaranthus, a high oxalate 

containing plant, compared to that from milk. These researchers also 

reported a decrease in the availability of milk calcium when amaranthus 

was fed with milk. In a rat study conducted by Spiers (1939), the utili

zation of calcium from milk was partially impaired when dried spinach was 

added to test diets. 

Dietary fiber is a major constituent of spinach. Several types of 

fiber have been shown to inhibit calcium absorption (Allen, 1982) which 

may partially explain the relatively low degree of calcium availability 

from some plant sources. Kelsay and Prather (1983) fed 12 adult men 2 

diets containing equal amounts of spinach and oxalate but differing in 

total fiber content. Significantly lower mean calcium balances were 

reported on the high-fiber compared to the relatively low-fiber spinach-

containing diet. These researchers suggested that the combination of 

oxalate and fiber in the gut could accentuate the sequestering of minerals 

and inhibit their absorption more effectively than would either component 

alone. Tisdall and Drake (1938) found that the addition of dried spinach, 
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rich in fiber and oxalate, reduced total body calcium in rats more than 

diets in which purified oxalic acid and calcium, but no additional fiber, 

were supplemented at levels equal to that in the dried spinach. 

The presence of significant populations of oxalate degrading bacteria 

(Oxalobacter formigenes) has been recently demonstrated in the gastro

intestinal tract of humans (Allison, Cook, Milne, Gallagher, & Clayman, 1986), 

A major factor affecting the degree to which calcium is utilized from 

vegetables possessing high levels of oxalic acid could be the concentration 

and activity of gastrointestinal oxalate degrading microbes in the alimentary 

tract of an individual. 

Studies Regarding Calcium Availability from Tofu and Other Soybean Products 

Soybeans contain relatively high concentrations of calcium compared 

to other vegetable foods but are less widely consumed in the U.S.diet 

than are spinach or dairy products. Soy products could represent a signi

ficant source of calcium for vegetarians and other individuals characterized 

by low daily intakes of dairy foods. Coagulated soy protein products, such 

as tofu, when produced using calcium-salts as precipitating agents, are 

an even richer soybean source of calcium. Whole soybeans contain large 

amounts of phytate and fiber, each of which has been demonstrated to 

interfere with calcium absorption (Allen, 1982). Tofu contains no fiber 

and therefore the calcium in tofu may be more available than calcium 

from products derived from whole soybeans. Little research has assessed 

the bioavailability of calcium from tofu. 
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The calcium bioavailability from soybeans and soy products, as well 

as from other legumes, has been assessed in a small number of studies 

conducted during the 19301s and 1940's. Pittman (1932) reported consistently 

negative calcium balances (x = -113 mg/day) for 3 female subjects fed a 

diet in which 80-85% of the total dietary calcium was provided by Navy 

beans. Calcium intake on the experimental diet averaged only 310 mg per 

day and the diets were reported to be marginal in vitamin D. In contrast, 

Adolph and Chen (1932) found the availability of calcium from soybean 

curd and from cow's milk were approximately equal. These researchers 

assessed calcium balance during two 4-day periods in 3 adult men fed diets 

in which 77% of the dietary calcium was supplied by milk or soybean curd. 

Total calcium intake was 450 mg per day on each diet. 

A more rigorous balance study conducted by Schroeder, Cahill, and 

Smith (1946) was used to compare calcium availability from evaporated 

cow's milk, soybean milk, whole cooked soybeans and calcium sulfate 

supplements. Thirteen male subjects were fed a basal diet and 3 of the 

4 test diets for 20 days. The calcium provided by each supplement accounted 

for between 60 and 80% of the total calcium intake on each diet. Mean 

total calcium intakes during the evaporated cow's milk, soybean milk, 

whole soybean and calcium sulfate periods were 638, 695,639 and 655 mg 

per day, respectively. The average percent utilization of calcium from 

whole cooked soybeans was relatively low (10.4%), while percent utilization 

from soybean milk (22.6%) compared favorably with that from evaporated 

cow's milk (29.1%) and the calcium sulfate supplement (23.7%). The less 

efficient absorption of calcium from whole soybeans relative to that from 
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soy milk was partially attributed to an inhibitory effect of fiber in 

the whole soybeans. 

Negative calcium balances were intentionally induced during the basal 

period in the same study by feeding-low calcium diets. The sudden change 

in calcium intake from the basal to the experimental dietary periods may 

have influenced calcium utilization during the succeeding experimental 

periods. One third of the subjects consumed the soy milk diet immediately 

following the calcium deficient basal period which may increased the ability 

of the gastrointestinal tract to absorb calcium from this source. The 

remaining subjects consumed the calcium sulfate supplemented diet following 

the basal period. 

Forbes, Weingarter, Parker, Bell, and Erdman (1979) found calcium from 

a variety of soybean products, such as full fat soyflour, freeze-dried soy 

beverage, and soy concentrate, to be relatively well absorbed by rats. 

The calcium from the soy based diets compared favorably with the availability 

of calcium from a casein diet supplemented with calcium carbonate. 

Phytic Acid Chemistry and the Effect of Phytic Acid on Calcium Availability 

Phytic acid (myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate)) 

(Figure 2a) is a major constituent of soybeans and soy products consti

tuting approximately 1.4% by weight (Graf & Eton, 1985). Phytic acid is 

a strong acid and forms a variety of salts with many dietary elements, 

such as sodium, potassium, zinc, copper, iron, magnesium, and calcium. 

A common salt species of phytate is sodium-phytate (Figure 2b). Calcium 

salts are poorly soluble and are readily formed under alkaline conditions 
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(Oberleas, 1973). Calcium can interact with phytate to form salts in 

several ways, including the formation of salts in combination with other 

minerals, the most notable being zinc (Figure 2c). Phytate is generally 

considered to decrease the availability of calcium in the diet of humans 

(Allen, 1982), possibly via the precipitation of calcium-phytate salts 

in the intestinal lumen. Calcium-zinc phytate complexes have been demon

strated to reach maximum precipitation levels at a pH of 6, the approximate 

pH of the human small intestine (Oberleas, 1973). No clear consensus has 

been established regarding the effect of phytate on calcium availability. 
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Figure 2. (a) Structure of phytic acid, myo-inositol 1,2,3,4,5,6-hexakis 
(dihydrogen phosphate), (b) structure of sodium-phytate salt (hexasodium 
salt), (c) Hypothetical scheme for the binding of calcium and zinc to the 
phosphate groups of phytate. 
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Morris and Ellis (1985) conducted 2 feeding studies to determine 

the effects of dietary phytic acid on calcium bioavailability. In the 

first study, 10 men were fed identical 15-day diets differentiated by 

the addition of 0.2 or 2.0 g of phytic acid. Thirty-six grams of wheat 

bran supplying 2.0 g of phytate and an identical portion of dephytenized 

wheat bran were baked into muffins for daily consumption. The high and 

low phytate diets contained 1100 and 1110 mg of calcium per day, res

pectively, and were equal in fiber content. Mean calcium balance on the 

high phytate diet (208 mg/day) did not differ significantly from that on 

the low-phytate diet (184 mg/day), suggesting that the presence of large 

quantities of dietary phytate had no effect on the utilization of calcium. 

In the second study, 12 men consumed 3 levels of phytate (0.5, 1.7 

and 2.9 g/day) as sodium phytate added to muffins. The muffins also 

contained 8.65 g of fiber as the water soluble fraction of dephytenized 

bran. All 3 diets supplied an average of 740 mg of calcium per day. Mean 

apparent calcium absorption decreased significantly with each increasing 

level of dietary phytate. Six of the 12 subjects excreted more calcium 

in the feces than was consumed when fed the highest phytate diet, while 

all subjects on the low and intermediate phytate diets had positive 

apparent calcium absorption rates. Although molar ratios of phytic acid 

to calcium on the high-phytate diets from study 1 (0.11) and 2 (0.14) 

were comparable, individuals consuming the high-phytate diet from study 

2 were more likely to exhibit negative calcium balances. The authors 

suggested that the 300 mg per day higher calcium intake during study 1 

may have promoted the more positive calcium balances observed. 
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Reinhold, Lahimgarzadeh, Nasr, and Hedayati (1973) reported decreases 

in calcium balance in 2 out of 3 adult men fed diets supplemented with 

1.85 g of phytic acid, creating a total dietary phytate intake of 2.5 g 

on the diet, compared to balances observed on a low phytic acid control 

diet. When Tanok bread, supplying approximately 3.0 g of phytate per day, 

replaced the phytate supplement of the first experimental period, all 

subjects were in markedly negative calcium balance averaging a net calcium 

loss of 200-300 mg of calcium per day. Calcium balance returned to positive 

levels during the final balance period when white bread containing no 

phytate replaced Tanok bread in the diet. 

Research by Graf and Eaton (1985) contradicts the widely held belief 

that calcium-phytate complexes are generally insoluble and poorly absorbed 

by the human intestine. The solubility of calcium-phytate complexes was 

determined using i_n vitro studies at pH levels approximating those found 

in the human small intestine. At lower calcium/phytate ratios, calcium-

phytate complexes were found to be very soluble. Solubility was lowest 

at a calcium-phytate ratio of 6:1 (Ca|+ - phytate). These researchers also 

determined the effect of phytate on the absorption of ^Ca administered by 

gastric gavage in mice. The calcium from the calcium-phytate was~absorbed 

to the same extent as unchelated calcium. These results suggested that 

phytate did not adversely affect calcium absorption. The authors added 

a note of caution concerning the extrapolation of results from iri vitro 

solubility studies, and jn vivo studies with mice fed purified controlled 

diets, to human dietary situations in which mixed diets generate a much 

more complex luminal environment. 
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Recent studies have demonstrated the presence of phytate splitting 

enzymes in the human intestine (Bitar & Reinhold, 1972). Phytase or 

phosphomonoesterase enzymes remove phosphorus from phytate molecules 

during digestion. Elevated urinary phosphorus excretion levels on a high 

phytate diet may indicate an increase in phosphorus absorption due to 

enhanced release of phosphorus from phytate. Calcium balance and phos

phorus excretion data for the 3 subjects in the study by Reinhold et al. 

(1979) suggested that the concentration and activity of these enzymes 

could vary among individuals. The subject least affected by phytate 

feeding in terms of calcium balance exhibited significantly higher 

urinary phosphorus levels during the phytate feeding period compared 

to the non-phytate control period: fecal phosphorus excretion was constant. 

Decreases in calcium balance for the other 2 subjects consuming phytate 

were accompanied by significant increases in fecal phosphorus while 

urinary phosphorus was unchanged. 

Urinary Hydroxyproline and Serum Alkaline Phosphatase 
as Indices of Bone Resorption 

Calcium balance is partially dependent upon the efficiency of calcium 

absorption and utilization from the diet. Since 99% of total body calcium 

is stored in the skeleton, calcium balance often reflects bone balance 

(Parfitt, 1983). Chronically severe negative calcium balance suggests a 

net loss and positive calcium balance a net gain in bone mineral. Other 

indirect measures of bone turnover rate are urinary hydroxyproline and 

serum alkaline phosphatase. Measurement of these indices, combined with 

calcium balance data, could provide valuable information regarding the 



20 

effects of quality and quantity of dietary calcium upon short-term bone 

turnover rates among adult women, and may lend insight into the issue 

of longterm dietary calcium intake and age related bone mineral loss. 

Urinary hydroxyproline is a widely accepted measure of bone resorption 

(Dull & Hennenman, 1963; Nordin, 1976; Prockop & Sjoerdsman, 1961). 

Hydroxyproline is a nonessential amino acid which occurs almost exclusively 

in collagen. About 40% of total body collagen is present in the skeleton 

(Smith & Nordin, 1964). Urinary hydroxyproline derived from soft tissues 

represents a relatively constant fraction of the total urinary hydroxy-

proline pool (Nordin, 1976). Therefore, on a hydroxyproline free diet, 

changes in hydroxyproline excretion will normally reflect changes in bone 

turnover. 

Urinary hydroxyproline excretion has been correlated with the rate 

of calcium resorption which accompanies certain metabolic bone disorders 

characterized by bone loss. Increased urinary hydroxyproline levels have 

been observed in association with Pagets disease, hyperparathyroidism, 

hyperthyroidism, and osteomalacia (Dull & Henneman, 1963; Nordin, 1976; 

Laitinen, Nikkila, & Kivirikko, 1966); below normal levels have been 

observed in hypothyroidism (Laitinen et al., 1966). 

The higher than normal levels of urinary hydroxyproline observed 

among osteoporotics by some researchers (Nordin, Aaron, Speed, & Crilly, 

1981; Smith & Nordin, 1964) is consistent with the supposition that 

osteoporosis results from patterns of net bone resorption and bone 

mineral loss. While dramatic bone loss characterizes a final phase in 

osteoporosis, studies have not consistently demonstrated elevated urinary 
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hydroxyproline levels in cases of post-menopausal osteoporotics relative 

to nonsymptomatic age-matched controls (Laitinen et al., 1966; Klein, 

Lafferty, Pearson, & Curtiss, 1964; Aloia, Cohn, Zanzi, Abesamis, & 

Ellis, 1978). 

Urinary hydroxyproline and hydroxyproline/creatinine ratio, an 

indice correcting for body mass, have been demonstrated to be sensitive 

indicators of short-term changes in bone turnover in reponse to calcium 

intake. Horowitz, Need, Philcox, & Nordin (1982) reported a significantly 

decreased hydroxyproline/creatinine ratio in 14 post-menopausal osteo

porotic women after only 8 days of calcium supplementation at a level 

of 1 g per day. Smith and Nordin (1964) reported significantly decreased 

mean 24-hour urinary hydroxyproline levels among 42 osteoporotic patients 

given 1100 mg of calcium, as calcium glycerophosphate, for 7 days. A 

significant positive correlation was observed between urinary hydroxy-

proline output and rate of bone resorption. 

Osteoblast and chondroblast cells in bone contain the highest con

centrations of alkaline phosphatase found in the body. Other alkaline 

phosphatase rich tissues include the liver, kidney, intestinal mucosa, 

brain and leukocytes (Chiandussi, Greene, & Sherlock, 1962). Serum levels 

of alkaline phosphatase are appreciably elevated only in association with 

diseases of the skeleton and liver (Nordin, 1976). Thus, if liver function 

is normal, changes in serum alkaline phosphatase probably reflect changes 

in bone turnover. Higher than normal serum alkaline phosphatase levels 

among individuals with degenerative bone diseases have been documented 
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(Klein et al., 1964; Nordin, 1976). Serum alkaline phosphatase has also 

been reported to be highly correlated with urinary hydroxyproline (Klein 

et al., 1964). 

The disease most frequently investigated.in relation to adequacy 

of dietary calcium is age-related osteoporosis. While many researchers 

suggest lifelong histories of inadequate calcium intake is a primary 

cause of low bone mineral mass late in life, scientific evidence is 

conflicting (Gordon & Vaughan, 1986). Bone mass and rate of mineral loss 

throughout life are influenced by other factors such as genetic predisposition, 

exercise, smoking, body size and other dietary nutrients. However, under

standing the short-term interaction between calcium intake and bone 

metabolism could elucidate the role of habitual calcium intake in age-

related osteoporosis. 
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CHAPTER III 

METHODOLOGY 

Two separate 8-week metabolic balance studies that utilized identical 

experimental designs were conducted during 1985. The first balance study, 

conducted in the Spring, was designed to compare the bioavailability of 

calcium from diets in which the majority of dietary calcium came from 

either spinach or cheese (Spinach study). The second balance study, con

ducted in the Fall, differed only in that tofu replaced spinach as the 

test food (Tofu study). 

Subjects 

Demographic characteristics for subjects in the Spinach and Tofu 

studies are presented in Table 1. Seven caucasian women, with ages ranging 

from 20-42 years, a mean age of 31 years, participated in the Spinach 

study. Mean body mass index (BMI) at baseline was 25.5 (kg/m^). A BMI 

of 27.0 corresponds to a weight level approximately 20% over ideal body 

weight based on Metropolitan Life Height and Weight tables (1983). Only 

one subject was characterized by a BMI greater than 27.0. Eleven women 

(9 caucasian, 1 Black, 1 Spanish American), with ages ranging from 20-39 

years, a mean age of 27 years, participated in the Tofu study. Mean BMI 

was 22.4; one subject was judged to be over 20% ideal body weight based 

on a BMI exceeding 27.0. A consent form (Appendix A) was signed by each 

subject before participation in each metabolic study. These studies were 

approved by the Human Research Review Committee of the University of 

North Carolina at Greensboro. 
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Table 1 
Demographic-Data for Spinach and Tofu Study Subjects at Baseline 

Study 
Variable 

Study Age (yr) Weight (kg) Height (cm) BMI (kg/m2) 

Spinach Study3 31 ± 9 62.7 ± 7.2 164 ± 6 23.5 ± 3.6 

Tofu Study'' 27 ± 6 60.2 ± 7.6 163 ± 6 22.4 ± 2.8 

an = 7 
b 

All subjects were judged to be healthy and to meet the study criteria 

based on responses to a preexperimental questionnaire (Appendix B). Subjects 

were recruited from the UNC - Greensboro campus and the local Greensboro 

area through the use of flyers and by word of mouth. Volunteers for the 

studies were screened from participation for the following reasons: users 

of oral contraceptives, users of prescription or over-the-counter drugs 

known to interfere with calcium metabolism, or having a history of men

strual irregularity, metabolic or bone disease, or gastrointestinal dis

orders. 

Each subject completed a 7 day food record before the start of each 

balance study to estimate usual dietary intake and to identify those 

subjects having excessively high or low calcium intakes. All subjects 

reported either light or moderate physical activity levels and agreed 

to maintain their prestudy levels throughout the study. Administration 

of a daily questionnaire (Appendix C) elicited a continuous record of 

daily physical activity, general health condition, degree of satisfaction 

with the study, and menstrual information. 
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Experimental Design 

The experimental design used in both the Spinach and Tofu studies 

is presented in Figure 1. The total duration of each metabolic study was 

8 weeks: Week 1 (baseline period). Weeks 2-4 (experimental feeding period I), 

Week 5 (interim period). Weeks 6-8 (experimental feeding period II). 

During the 1 week baseline and interim periods, the majority of dietary 

calcium was provided in approximately equal amounts by cheese and the 

test food (spinach or tofu), thereby allowing subjects to become habituated 

to the ingestion of the test foods and to provide subjects with common 

calcium intakes prior to the consumption of the experimental diets. 

Subjects were randomly assigned to the 2 dietary treatments at the 

start of each study and consumed both experimental diets in a crossover 

design thereby allowing each subject to act as her own control. During 

the Spinach study, 4 women consumed a spinach- and 3 a cheese-containing 

diet during the first 3-week feeding period and then switched to the 

alternate diet during the second 3-week feeding period. With respect to 

the Tofu study, 4 and 5 women were assigned to the tofu- and cheese-

containing diets, respectively, during the first feeding period. 

A nonabsorbable fecal marker, polyethylene glycol (PEG) 

([H0(-CH2~CH2-0-)nH], MW 3350, Union Carbide Corp., Danbury, CT) was 

administered in capsule form 3 times daily (1230 mg/day) with meals during 

each 3-week experimental feeding period. During the last 2 weeks of each 

3-week feeding period, all urine and feces were collected and 2 duplicate 

diet composites were made for calcium balance determinations. Given that 
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WEEK 1 WEEKS 2-4 WEEK 5 WEEKS 6-8 
I ' 1 1 

BASELINE CHEESE OR TEST DIET INTERIM TEST OR CHEESE DIET 

a a 

aSerum alkaline phosphatase determined from 2 fasting blood samples at the end 
of each test period. Urinary hydroxyproline and oxalate, and fecal oxalate 
were determined from the last 3 samples collected at the end of each test period. 

Figure 3. 



27 

daily calcium losses via skin and sweat are quite low (Gitelman & Lutwak, 

1963), calcium balance was calculated using the traditional formula for 

whole-body balance: 

Calcium Balance = Calcium Intake - (total fecal calcium + urine calcium) 

Two samples were taken by venipuncture at the end of each 3-week 

experimental period for the determination of serum alkaline phosphatase. 

Urinary hydroxyproline and oxalate, and fecal oxalate were determined 

from the last 3 samples collected for each subject at the end of each 

3-week test period. 

Apparent absorption of oxalate from the spinach diet was calculated 

using the following formula as described by Finch, Kasidas, and Rose (1981). 

24 hr urine oxalate 24 hr urine oxalate 
excretion on oxalate- - excretion on low-
rich (spinach) diet oxalate (cheese) diet 

x 100% 
oxalate load per 24 hr during consumption 

of oxalate rich (spinach) diet 

Experimental Diets 

Experimental diets were fed using 2-day rotating menus in each 

metabolic study. Composition of the experimental diets fed during each 

study were identical except for the inclusion of either spinach or cheese 

(Spinach study, Table 2), or, tofu or cheese (Tofu study. Table 3). 

Daily intake levels of spinach and cheese, and tofu and cheese, were 

designed to provide similar quantities of calcium within each study. 

Breakfast and dinner were prepared and consumed each day at the 

study center and lunch was packed for consumption outside the study center. 



Table 2 
Composition of the Spinach Study Experimental Diets 

Day 1 Day 2 
Meal Food Weight (g) Weight (g) 

Breakfast Egg 55 55 
Whole wheat toast 44 44 
Margarine 10 10 
Orange juice 168 168 

Lunch Cheese 40 40 
or 

Spinach 196 196 
Brown rice 144 — 

Egg noodles - 122 
Tuna fish - 93 
Pear 138 — 

Apple - 140 
Graham crackers 28 -

Dinner Cheese 53 53 
or 

Spinach 257 257 
Perch 120 — 

Potato - 154 
Lima beans 92 — 

Carrots — 92 
Whole wheat bread 22 — 

Whole wheat roll - 86 
Margarine 20 20 

Snack Pretzels 56 
- Cashews — 36 

Raisins - 14 
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Table 3 
Composition of the Tofu Study Experimental Diets 

Meal Food 
Day 1 

Weight (g ) 
Day 2 

Weight (g ) 

Breakfast 

Lunch 

Dinner 

Snack 

1 Egg 44 
2 slices whole wheat 

bread 63 
1 English muffin 
Orange juice 186 
Banana 
Margarine 10 

Cheese 40 
or 

Tofu 140 
2 slices rye bread 78 
2 slices whole wheat 

bread 
Fig bars 59 
Apple 

Cheese 40 
or 

Tofu 140 
Brown rice 198 
Steamed carrots 78 
Spaghetti 
Spaghetti sauce 
Green beans 
Pineapple 
French roll 
Whole wheat roll 
Margarine 

Peanuts 
Raisins 
Graham crackers 
Peanut butter 

60 
15 

40 
15 

44 

68 
186 
126 

10 

40 

140 

63 

153 

40 

140 

143 
127 
55 
107 
41 

15 

15 
20 
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Frozen whole leaf spinach, tofu (made with calcium sulfate as a precipitant), 

and cheddar cheese were purchased in bulk at the beginning of the appro

priate study. Spinach was prepared using a microwave oven for thawing 

and cooking. A standardized procedure to drain the spinach and tofu of 

excess water ensured that the water content per weighed serving remained 

constant throughout the studies. For lunch, tofu was fried using a com

mercial cooking spray and served in a sandwich. For dinner, tofu was cooked 

using a microwave oven and served either with rice or spaghetti. 

Deionized water and herbal tea prepared with deionized water were 

permitted ad libitum. One serving of decaffeinated coffee and up to 2 

sugar-free soft drinks per day were allowed. Subjects were weighed on 

alternate days before breakfast and those exhibiting more than a 1 kg 

decrease in body weight during a 3-week experimental feeding period 

consumed 1 to 2 sucrose containing soft drinks daily as a caloric sup

plement to help maintain body weight. Daily beverage consumption was 

recorded, and samples were obtained for mineral analysis. Subjects were 

instructed to consume all foods provided and to consume no other foods 

during the course of these studies. 

Prestudy 7-day food records and experimental diets were coded and 

analyzed using the Nutritional Analysis System maintained by Louisiana 

State University (Baton Rouge, LA). This system is a computerized data 

bank of food composition information from sources including USDA 

Agricultural Handbook No.8 (1976-1980), scientific journals, and food 

manufacturers and processors. Nutrient composition of the diets fed 

during the Spinach and Tofu studies are presented in Table 4. 



31 

Table 4 
Nutrient Composition of the Experimental Diets of the Spinach and Tofu 
Studies Based on Food Composition Data 

Spinach Study Periods Tofu Study Periods 

Spinach Cheese Tofu Cheese 

Energy (kcal) 1622 1834 1723 1817 

Protein (gm) 81 84 63 61 

Protein (%) 19 18 15 14 

Carbohydrate (gm) 216 190 253 247 

Carbohydrate (%) 50 41 59 54 

Fat (gm) 56 85 51 65 

Fat (%) 31 41 27 32 

Crude Fiber (gm) 10.0 6.0 7.8 7.! 

Calcium (mg) 783 856 909 905 

Phosphorus (mg) 1224 1353 1138 1195 

Vitamin D (IU) 271 281 164 173 

Oxalate (mg)* 2555 99 - -

Phytate (mg)* — 1900 1130 

Based on laboratory analyses conducted at the University of North 
Carolina at Greensboro and the University of Wyoming. 

The spinach and cheese experimental diets fed during the Spinach 

study differed quantitatively in macronutrient composition reflecting fat 

and carbohydrate differences between 453 g of cooked spinach and 93 g of 

cheese. The cheese diet supplied more daily energy (1830 vs 1620 kcal), 

more total fat (85 vs 56 g), and less carbohydrate (190 vs 216 g) compared 

to the spinach diet. Protein levels were similar in the cheese- (84 g) 

and spinach-containing diets (81 g). The substitution of spinach for 
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cheese in the basic diets also resulted in higher crude fiber (10.0 vs 6.0 g) 

and oxalic acid levels (2555 vs 99 mg) in the spinach compared to the 

cheese diets. Daily servings of spinach and cheese provided 600 mg (77%) 

and 670 mg (78%) of the calcium, respectively, contained in the 2 experi

mental diets. Daily calcium and phosphorus intakes were slightly greater 

during consumption of cheese (856 and 1353 mg, respectively) than during 

consumption of the spinach diet (783 and 1224 mg). 

Macronutrient composition of the tofu and cheese experimental 

diets fed during the Tofu study differed primarily in energy and fat 

content reflecting differences in these components between 280 g of tofu 

and 80 g of cheese. The cheese diet supplied more energy (1817 vs 1723 kcal) 

and fat (65 vs 51 g) compared to the tofu diet. Protein (61 vs 63 g), 

carbohydrate (247 vs 253 g) and crude fiber levels (7.5 vs 7.8 g) were 

similar in the cheese and tofu diets, respectively. Phytic acid intake 

was greater during the tofu (1900 mg) compared to the cheese diet (1130 mg) 

reflecting the high concentration of phytate in tofu and the absence of 

this dietary component in cheese. Daily servings of tofu and cheese pro

vided 514 mg (56%) and 512 mg (57%) of the total dietary calcium, res

pectively. The tofu and cheese diets provided similar daily intakes of 

calcium (915 vs 905 mg, respectively) and phosphorus (1138 vs 1195 mg). 

Analytical Procedures 

During each 2 week balance period, urine was collected in acidified 

gallon plastic containers (containing 10 ml concentrated HCL). Feces were 

collected in large polyethylene bags. Twenty-four hour urine volumes 

were recorded, duplicate aliquots were taken and further acidified by 

adding 3 ml concentrated HCL/100 ml urine. Daily urine aliquots were stored 

frozen and at room temperature. Aliquots of urine in quantities proportional 
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to total daily volume were taken each day for 1 week, combined, homo

genized by shaking, and the resulting homogenate was used as a 7-day 

urine composite. Two 7-day urine composites were made corresponding 

with the 2 weeks of each metabolic balance period. Daily fecal samples 

were weighed and homogenized with deionized water in a stainless steel 

blender. Duplicate aliquots were taken for moisture and mineral deter

minations. A more detailed description of the step-by-step procedure 

used for the processing of daily fecal samples is given in Appendix D. 

Duplicate portions of daily diet composites were collected on 2 occasions 

during a metabolic balance period, homogenized, and aliquots stored 

frozen for later analyses. 

Dried fecal and diet samples were wet ashed with concentrated nitric 

and perchloric acids and diluted to appropriate volumes prior to mineral 

analysis. Fecal, urinary, and dietary calcium levels were determined by 

atomic absorption spectrophotometry (AAS) according to standard procedures 

(Willis, 1961). A Perkin-Elmer model 272 Atomic Absorption Spectropho

tometer was used for all calcium analyses. A 0.5% solution of lanthanum 

chloride was added to all samples to reduce the formation of calcium 

phosphates during AAS analysis. 

Oxalate in food and feces was extracted by incubating 0.1 g of dry 

sample in 10 ml 3% EDTA solution at 70°c for 15 minutes. An optimum 

EDTA solution concentration for the extraction of oxalate was determined 

by measuring oxalate extraction rates with a range of EDTA levels from 

a single sample. Maximum extraction of oxalate was attained with a 3% 

EDTA solution. The concentration of oxalate in each sample was determined 
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using a kit from Boehringer Mannheim (Indianapolis, IN). According to this 

method, oxalate is first decarboxlyated to form formic acid and CO2 by 

oxalate decarboxylase. The formic acid is oxidized to bicarbonate by 

nicotinamide adenine dinucleotide (NAD) in the presence of the enzyme 

formate dehydrogenase. The increase in reduced NAD (NADH) is proportional 

to the original oxalate concentration and is determined by measuring 

absorbance at 340 nm with a standard spectrophotometer. 

Oxalate excretion data were based on analyses of the last 3 samples 

collected at the end of the spinach and cheese feeding periods for each 

subject. Fecal oxalate is expressed as the concentration in dry feces 

(mg oxalate/10 g dry fecal wt) and as total fecal oxalate per day. Total 

fecal oxalate levels were standardized using PEG data to correct for 

variations in daily fecal output; daily fecal calcium levels for this ' _ 

same time period were similarly corrected for use in assessing fecal 

oxalate-calcium relationships. The urinary and fecal oxalate data were 

assumed to be representative of oxalate excretion trends over the entire 

experimental feeding periods. 

Urinary oxalate and creatinine were determined using kits purchased 

from Sigma Chemical Co. (St, Louis, MO). The urinary oxalate method is 

based on the extraction of oxalate from urine and its oxidation to hydrogen 

peroxide and CO2 by oxalate oxidase. Hydrogen peroxide reacts with 3-methyl-

2-benzothiozolinone hydrazone (MBTH) and 3-[dimethylamino] benzoic acid 

(DMBA) in the presence of peroxidase to yield an indamine dye. The con

centration of this end product was determined by assessing absorbance at 
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590 nm. Urinary creatinine was determined using a colorimetric method 

based on the development of a yellow/orange color when the metabolite 

is treated with alkaline pi crate reagent. 

Urinary hydroxyproline was measured using the method of Kivirikko, 

Laitinen and Prockop (1976). Peptide bound hydroxyproline in urine is first 

subjected to acid hydrolysis. Hydroxyproline is then oxidized with Chlora-

mine-T in the presence of alanine to produce A1-pyroline-4-hydroxy-2-car-

boxylic acid and pyrrole-2-carboxylic acid. Oxidation is halted by the 

addition of thiosulfate. Upon heating, the pyrrole is extracted into 

toluene and reacted with p-dimethylarninobenzaldehyde to form an amber color. 

The concentration of the metabolite was determined colorimetrically by 

measuring absorbance at 560 nm. Random samples were chosen and assayed 

for hydroxyproline according to the method described by Bergman and 

Loxley(1970) as a validity check. A more detailed description of the 

procedure used in this study is given in Appendix E. 

Daily fecal PEG levels were determined according to the turbimetric 

method of Malawer and Powell (1967). The method is based on the creation 

of an oil-in-water emulsion of the water soluble polyethylene glycol 

when trichloroacetic acid is added. Interfering substances are first 

precipitated by adding a Ba(0H)2 - ZnS04 ~ s°lution and removed 

by filtration. Gum arabic acts as an emulsifying agent to stabilize the 

oil-in-water emulsion. The concentration of PEG is determined spectro-

photometrically based on absorbance at 650 nm. A detailed description of the 

procedure used in the present study for the determination of PEG in feces 

is given in Appendix D. 
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Fecal polyethylene glycol levels were measured daily and the ratio of 

recovered PEG/dry fecal solids determined for each subject during the last 

2 weeks of each 3-week experimental period. At the end of a balance period, 

the daily ratio of PEG/dry fecal solids per subject was plotted and a point 

determined at which the ratio was judged to be relatively constant. At this 

point, the preexperimental diet was assumed to have been eliminated from 

the gut. Days in which the PEG/dry fecal solids ratio deviated greatly from 

equilibrium for a subject occurred primarily during the first part of 

the balance period when the preexperimental diet was being eliminated; 

these days were excluded from balance calculations. A ratio of the total 

amount of PEG consumed to the total amount recovered in the feces for days 

in which equilibrium was established was used to correct for calcium 

provided by the experimental diet remaining in the gut at the end of a 

balance period. The average number of days, in each study, in which 

individual calcium balances were calculated were 7.5 and 8.5 days, Spinach 

and Tofu studies, respectively. 

Serum alkaline phosphatase was measured using a kit purchased from 

Sigma Chemical Co. (St. Louis, MO). The method is based upon the hydro

lysis of p-nitrophenyl phosphate by alkaline phosphatase, yielding 

p-nitrophenol and inorganic phosphate. When made alkaline with sodium 

hydroxide, p-nitrophenol is converted to a yellow complex. The intensity 

of color formed is proportional to the level of phosphatase activity 

and is measured spectrophotometrically at 400-420 nm. 
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Statistical Analysis 

An analysis of variance with subjects as the blocking variable was 

employed to detect significant differences in dependent variables in 

response to consumption of the 2 (test food and cheese) experimental diets. 

The use of subjects as a blocking variable allowed for the removal of 

intersubject variation during each analysis of variance procedure. 

Treatment order was determined not to be an important source of variation. 

Pearson correlation coefficients were determined to detect associations 

between dependent variables. A Spearman rank correlation statistic for 

nonparametric data was determined to assess the degree of correlation 

between fecal oxalate, fecal calcium and calcium balance data during the 

Spinach study. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

The present studies were designed to assess the calcium availability 

from spinach and tofu compared to cheese, with cheese representing a 

standard or highly available food source of dietary calcium. The results 

of these studies suggested that the calcium availability from cheese 

was superior to that from tofu and probably spinach. A comparison of 

calcium availability from spinach and tofu is not possible because of 

the provision of different amounts of calcium by the test foods; and 

the use of different experimental diets and subject populations in 

the Spinach and Tofu studies. Thus, the discussion will focus primarily 

on the comparisons made between each of the test foods with their 

respective cheese diets. 

Prestudy Dietary Intakes 

Prestudy dietary intakes of subjects in the Spinach study are presented 

in Table 5. Spinach study participants were characterized by relatively 

high mean daily calcium (1034 mg) and phosphorus intakes (1579 mg), and 

a relatively low crude fiber intake (5.6 g). Mean vitamin D intake was 

adequate based on the RDA established for this nutrient. Other prestudy 

dietary intakes appeared to be representative of typical U.S. intake levels. 

Mean prestudy intakes of calcium (832 mg) and phosphorus (1158 mg) 

for subjects in the Tofu study exceeded the RDA for these nutrients and 

the mean vitamin D intake was adequate. Intakes of protein, fat and carbo

hydrate were within range of levels considered typical for the U.S. popu

lation. Crude fiber intake was relatively low (4.2 g)-(Table 5). 
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Table 5 
Mean (±SD) Prestudy Dietary Intakes for Spinach and Tofu Study Subjects 
Based on Dietary Recall Data 

d I 
Variable Spinach Study Tofu Study 

Energy (kcal) 2046 + 814 1561 ± 394 

Protein (g) 77 + 26 60 ± 13 

Protein (%) 15 + 4 16 ± 3 

Carbohydrate (g) 247 + 140 180 ± 65 

Carbohydrate (%) 48 + 8 45 ± 5 

Fat (g) 85 + 30 68 ± 15 

Fat (%-) 37 + 5 39 ± 5 

Crude Fiber (g) 5. 6 ± 4.1 4.2 ± 2.2 

Calcium (mg) 1034 + 394 832 ± 284 

Phosphorus (mg) 1579 

o
 
o
 

C
O

 +1 

1158 ± 315 

a "7 n = 7 
b_ _ o 

Body Weight Alterations 

Changes in mean body weight during the 3-week experimental periods 

were not significantly different between test periods in the Spinach and 

Tofu studies. In the Spinach study, weight changes for both 3-week test 

periods were typically negative and averaged -1.2 kg. In the Tofu study, 

weight changes ranged from 1.5 to -2.5 kg and overall weight changes 

averaged -0.4 kg for both test periods. 
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Fecal Weight and PEG Recovery Data 

Mean fecal wet and dry weights and moisture levels during the Spinach 

study are presented in Table 6. Mean fecal dry (p<0.01) and wet (p< 0.05) 

weights were significantly greater during the spinach compared to cheese 

feeding period. Fecal moisture did not differ significantly between the 2 

diets. Relative differences in intestinal transit time between the 2 exper

imental diets could be approximated by computing the average cumulative 

recovery of fecal PEG. Mean PEG recovery during the last 2 weeks of the 

spinach feeding period was 101% compared with 91% for the cheese feeding 

period. Although not statistically different, the higher percent recovery' 

rate of PEG during the spinach period may suggest a slightly decreased 

intestinal transit time compared with that on the cheese diet. 

Table 6 
Mean (±SD) Fecal Dry and Wet Weight and Moisture during Experimental 
Feeding Periods for the Spinach Study 

Test Period 

Spinach Cheese 

Wet Weight (gm/day) 

Dry Weight (gm/day) 

Moisture (%) 

192 ± 64a 

49 ± 13b 

141 ± 44 

39 ± 49 

74 ± 3 72 ± 6 

aSignificantly different between spinach and cheese dietary periods (p<0.05) 

^Significantly different between spinach and cheese dietary periods (p< 0.001) 
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Mean fecal wet and dry weights and moisture levels during the 

Tofu study did not differ significantly between the tofu and cheese con

sumption periods (Table 7). Mean cumulative recovery of fecal PEG during 

the final 2 weeks of the tofu and cheese periods was 77% and 82%, res

pectively, thus suggesting little relative difference in intestinal 

transit time between consumption of the tofu and cheese diets. 

Table 7 
Mean (±SD) Fecal Dry and Wet Weight and Moisture during Experimental 
Feeding Periods for the Tofu Study 

Test Period 

Tofu Cheese 

Wet Weight (gm/day) 143 ± 35 147 ± 39 

Dry Weight (gm/day) 39 ± 6 41 ± 10 

Moisture (%) 72 ± 5 72 ± 5 

The significantly greater mean wet and dry fecal weights during 

consumption of the spinach- compared to the cheese-containing diet 

may be attributed to the high fiber content of spinach. Fecal moisture 

content was nearly identical during consumption of the 2 test diets. 

One action of dietary fiber could be to increase stool weight by in

creasing total water content without affecting percent moisture 

(Eastwood & Robertson,1983). This could partially explain the signifi

cantly higher mean wet fecal weight for the spinach- compared to the 

cheese-containing diet. Bacterial content of stools typically accounts 
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for more than one-half of total fecal solids (Eastwood & Robertson,1980). 

Certain types of fiber have been suggested to influence stool weight 

by increasing fecal flora mass (Stephen & Cummings,1980). Thus, the 

higher mean dry fecal weight on the spinach compared to the cheese diet 

could be accounted for by a fiber-induced increase in bacterial content 

of the stools during the spinach feeding period. The lack of significant 

differences in fecal dry and wet weights between the 2 experimental 

feeding periods during the Tofu study is consistent with the fact 

that the tofu- and cheese-containing diets were almost identical in 

fiber content. 

While relatively few balance studies have employed a quantitative 

fecal marker such as PEG, its validity as a fecal marker for calcium, 

and other minerals, has been demonstrated (Allen, Raynolds, & Margen, 

1979). The use of quantitative fecal markers for metabolic balance studies 

offer several advantages over the more conventional and frequently used 

qualitative markers such as nonabsorbable dyes. One advantage is that 

the elimination of preexperimental intestinal contents from the body 

can be accurately estimated based on trends in the ratio of PEG/dry fecal 

solids. Second, dietary calcium remaining in the gut at the end of a 

balance period can be quantitatively assessed from calculations based 

on the ratio of total recovered PEG to total PEG consumed for a specific 

time period. Third, variation among individuals in day to day fecal 

output can be standardized by using PEG recovery data enabling more 

valid intersubject comparisons of fecal calcium levels. Last, relative 

differences in intestinal transit time between individuals or groups can 

be approximated by using cumulative PEG recovery data. 
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The mean cumulative recovery of PEG over the last 14 days of each 

3-week test period during the Spinach study was 95% of the dose admini

stered during that time period. Individual recoveries ranged from 59 to 

124%. Mean cumulative recovery of PEG from the Tofu study was 80% and 

individual recoveries ranged from 59 to 106% during the last 2 weeks 

of the experimental feeding periods. Differences in overall cumulative 

PEG recovery rate between the Spinach and Tofu studies was probably 

influenced by the greater laxative effect of spinach (high fiber) com

pared to tofu (low fiber). 

Individual recoveries greater than 100% can be attributed to the 

recovery of PEG administered during the first week of the 3-week experi

mental period in addition to that ingested during the subsequent 2-week 

balance period. Subjects with recovery rates approaching 95% or more 

by the end of the balance period can be considered "ideal" subjects 

for balance studies. However, balance data from subjects exhibiting 

"non-ideal" recovery rates, below approximately 90%, appear to be valid 

if PEG can be demonstrated to be fully equilibrated with intestinal 

contents (i.e., achievement of a constant ratio of PEG to dry fecal 

solids) (Allen et a!.,1979). Variation in cumulative PEG recovery rates 

among individuals primarily reflects variation in fecal flow rather 

than an inability to recover PEG from the feces or losses of PEG from 

the gut through partial absorption or intestinal degradation. 

The time required to attain a constant ratio of PEG to dry fecal 

solids varies among individuals. Of 6 subjects fed PEG in a study by 

Allen et al. (1979), one required 4-7 days before equilibrium occurred, 
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4 required between 8-10 days, and 1 required between 15-17 days. In the 

Spinach and Tofu studies, all subjects achieved PEG equilibration at 

some point with the majority requiring 7-11 days. One subject in the 

Spinach study took approximately 16 days, and 1 subject in the Tofu 

study took 19 days for PEG to become equilibrated with intestinal contents. 

Calcium Availability from Spinach 

Calcium intake, excretion and balance data during the Spinach study 

are presented in Table 8. Fecal calcium and overall calcium balance were 

not significantly different between dietary periods. Subjects varied 

appreciably in their ability to maintain calcium balance during spinach 

compared to cheese feeding periods. Three of the subjects exhibited 

similar calcium balance during ingestion of the 2 test diets whereas 

2 subjects who maintained positive calcium balances during the cheese 

period had negative calcium balances of -160 and -510 mg/day during 

spinach consumption. In only 4 of a total of 14 individual balance 

periods did subjects exhibit near zero or positive calcium balances. 

Table 8 
Mean (±SD) Calcium Intake, Excretion and Balance Data During the Experimental 
Feeding periods for the Spinach Study 

Test Period 

Spinach Cheese 

Intake (mg/day) 

Fecal (mg/day) 

Urinary (mg/day) 

Balance (mg/day) -168 ± 189 

817 ± 175 

783 ± 4 

135 ± 50 

-55 ± 147 

856 ± 3 

205 ± 75a 

706 ± 115 

aSignificantly different between spinach and cheese dietary periods (p<0.01) 
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The magnitude of the difference in mean calcium balances between the 

spinach and cheese diets suggested that the availability of calcium from 

the spinach diet was considerably lower than that from the cheese diet, 

although this was not supported statistically. Fecal excretions of calcium 

were 104% and 82% of the intake, during ingestion of the spinach and 

cheese diets, respectively, which not only suggested a greater absorption 

of calcium from cheese compared to spinach, but also a very low absolute 

absorption of calcium from spinach, per se. Estimates of true absorption 

of calcium from the test diets also suggested a lower utilization of 

calcium from the spinach- (5%) compared to the cheese-containing diet 

(28%). True absorption estimates were based on the assumption that 

endogenous fecal calcium losses averaged approximately 130 mg per day 

(Heaney & Skillman, 1964). The lack of statistical evidence for differences 

in these calcium balance and fecal calcium data could be partially 

explained by the particularly high intersubject variation for these 

variables and the relatively low subject number. 

Most of the research regarding calcium availability from spinach 

was conducted during the first half of this century. The results of these 

studies can be categorized according to the dose of spinach fed. Studies 

feeding spinach at relatively high levels (200 g or more/day) reported 

adverse effects on calcium balance (Sherman & Hawley,1922; McLaughlin,1927; 

Fincke & Garrison,1938). Studies feeding less than 200 g per day did not 

report unfavorable effects on calcium balance (Schlutz et al.,1933; 

Bonner et al.,1938; Johnston et al.,1952). Inferences regarding rela
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tionships between daily spinach dosage and calcium balance based on 

these early studies are tenuous; because of inherent limitations in the 

study designs including short balance periods, low subject numbers, low 

calcium intakes and lack of statistical analysis. 

More recently, Kelsay and Prather (1983) reported lower mean calcium 

balances in 12 adult men fed a high-fiber diet containing 102 g of 

spinach every other day (-73mg/day) compared to a similar high-fiber 

diet in which cauliflower replaced spinach (-11 mg/day). Calcium balance 

was positive and significantly higher during ingestion of a relatively 

low-fiber diet with spinach added every other day than during consumption 

of the high-fiber, spinach diet. The mean calcium balance of -168 mg/day 

observed in the present study during spinach ingestion can be explained 

by the considerably larger quantities of spinach fed (453 g) on a daily 

basis. 

A study by Fincke and Garrison (1938) utilized levels of spinach 

(490 g/day) similar to those contained in the spinach diet of the pre

sent study. The subjects, 2 adult women, exhibited a low mean, calcium 

balance of -149 mg/day. With the exception of spinach, the diets uti

lized in the study by Fincke and Garrison (1938) were relatively low 

in fiber and total calcium intake averaged only 450 mg per day. 

The higher mean calcium intake on the cheese (856 mg) compared to 

the spinach diet (783) in the present study was balanced by an equally 

greater urinary calcium level (205 vs 135 mg/day, respectively). A 

highly significant negative correlation between individual mean fecal 

calcium and mean calcium balance (r = -0.99, p< 0.001) suggests that 

fecal calcium excretion was the major factor affecting calcium balance 

in the Spinach study. 



47 

Urinary calcium was significantly greater (p<0.01) during the 

cheese (205 mg/day) as compared to the spinach feeding period (135 mg/day). 

Daily urinary calcium levels are an immediate reflection of the 

relation between the rates of glomerular filtration and tubular reab-

sorption (Lemann, Adams & Gray,1979). However, calcium in the urine 

must ultimately be derived either from absorbed dietary calcium or 

from resorbed bone calcium and is therefore a function of dietary calcium, 

absorptive capacity and bone breakdown (Nordin, 1976). Thus, given 

equivalent calcium intakes; low urinary values suggest malabsorption of 

calcium, and high values, efficient absorption or high levels of bone 

resorption. The finding of a significantly greater urinary calcium level 

during the cheese compared to the spinach feeding period could partially 

be attributed to the slightly higher calcium intake during cheese con

sumption but also suggested a more efficient absorption of calcium from 

cheese. 

Alterations in urinary calcium levels in response to apparent 

changes in calcium absorption have been reported by Walker, Walker and 

Wadvalla (1974). These researchers reported significantly higher 6-hour 

urinary calcium levels after ingestion of a test meal of milk compared 

to a test meal of swisschard, a high oxalate plant food. The test meals 

contained similar levels of calcium. 

Marshall, Cochran and Hodgkinson (1972) reported a decrease in 

urinary calcium from 193 to 125 mg/day when control subjects were switched 

from a diet containing calcium at a level of 1000 to 250 mg/day. A 

decrease in urinary calcium of 68 mg reported by Marshall et al. (1972) 
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in response to a decrease in intake of 750 mg suggests that the relatively 

small daily calcium intake differences between the spinach- and cheese-

containing diets in the present study is not the primary factor respon

sible for the significantly lower urinary calcium excretion during spinach 

consumption. Rather, differences in calcium bioavailability between the 

2 experimental diets is the more likely explanation for the 80 mg dif

ference observed in urinary calcium. 

Oxalic acid intake, excretion and apparent absorption data are 

presented in Table 9. Spinach contributed 2456 mg of the total daily 

oxalic acid intake of 2555 mg in the spinach diet while the total oxalate 

content of the cheese diet was 99 mg per day. The concentration of 

oxalate in the feces (mg/10 g dry wt) was significantly greater (p-^0.05) 

during consumption of the spinach- compared to the cheese-containing 

diet. Total fecal oxalate (mg/day) and fecal oxalate as a percent of 

intake (%) both corrected for variation in daily fecal output, were also 

higher during consumption of the spinach compared to the cheese diet. 

The concentration of oxalate in urine (mg/day) was statistically greater 

(p<0.01), and urinary oxalate as a percentage of intake lower, during 

consumption of the spinach-containing diet. 

A number of studies have demonstrated low rates of dietary oxalate 

absorption (Hodgkinson, 1977; Kelsay & Prather, 1983). Since oxalate is 

catabolized to varying extents in the gut of humans (Allison, Cook, Milne, 

Gallagher, & dayman, 1986), the degree of degradation rather than 

absorption is the more important determinant of fecal oxalate levels. A 

negative correlation between fecal and urinary oxalate levels might have 



49 

been expected based on the assumption that greater fecal losses would de

crease the amount of oxalate available for absorption and subsequent excretion 

via the urine. However, the highly positive correlation between urinary 

and fecal oxalate observed during spinach consumption suggests that urine 

and fecal oxalate are both dependent upon the degree of oxalate degradation. 

With extensive oxalate degradation, less total oxalate is available for 

absorption and fecal excretion resulting in low fecal and urinary levels. 

Conversely, diminished oxalate degradation would be associated with high 

luminal oxalate concentrations allowing for greater absolute absorption 

resulting in increased urinary levels and greater fecal losses. Increases 

in urinary oxalate associated with increased oxalate absorption have been 

previously demonstrated (Finch, Kasidas & Rose,1981). 

Table 9 
Mean (±SD) Oxalate Intake, Excretion and Apparent Absorption Data 
during Experimental Feeding Periods for the Spinach Study 

Test Period 

Spinach Cheese 

Intake (mg/day) 2555 ± 11 99 + 1 

Fecal Oxalate 

mg/10 g dry wt 322 ± 280a 13 + 9 

Corrected (mg/day) 1729 ± 1776 34 + 21 

Corrected (% of intake) 68 ± 69 35 + 21 

Urinary Oxalate 

mg/day 101 ± CA
C 

54 17 + 3 

% of intake 4 ± 2 17 + 3 

Apparent Absorption (%) 3.3 + 2.1 

Significantly different between spinach and cheese dietary periods (p<= 0.05). 

^Adjusted for variation in daily fecal output using PEG recovery data. 
£ Significantly different between spinach and cheese dietary periods (p<0.01). 
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Urinary oxalate as a percentage of intake usually decreases as intake 

increases (Kelsay & Prather, 1983). In the present study, urinary oxalate 

represented 17 and 4% of total intake during consumption of the cheese 

and spinach diets, respectively. Urinary oxalate levels on the low oxalate 

(cheese) diet were comparable with levels reported by other researchers 

(Kelsay & Prather, 1983), although levels on the spinach diet were higher 

than those reported in the literature for other high-oxalate diets. 

Kelsay and Prather (1983) reported urinary oxalate values ranging from 

30 to 67 mg/day for a relatively low fiber, spinach-containing diet 

providing approximately 480 mg of oxalate/day and from 24 to 40 mg/day 

on similar diets providing 190 mg of oxalate/day in which cauliflower 

replaced spinach. In another study (Archer, Dormer, Scowen & Watts,1957), 

urinary oxalate levels ranging from 76 to 124 mg/day were observed in 4 

healthy adults fed an average of 2250 mg of sodium oxalate/day. In the 

present study, urinary oxalate ranged from 55 to 200 mg/day during 

spinach consumption and from 13 to 21 mg/day during cheese consumption. 

The apparent absorption of oxalate from the spinach diet was low (x = 3.3%), 

but was consistent with levels reported in other studies (Finch et al.,1981; 

Prenen, Boer & Dorhout Mees,1984). In spite of a low apparent absorption, 

the extremely high oxalate intake provided by the spinach diet resulted 

in very high urinary levels. 

Mean corrected fecal oxalate as a percentage of intake was 68% and 

individual values ranged from 9 to over 100% during consumption of the 

spinach diet. The 3 subjects who exhibited fecal oxalate levels over 

100% of 3-day intake levels may have been characterized by minimal 
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gastrointestinal oxalate degradation. These subjects had an average 

calcium balance of -256 mg per day during the spinach feeding period. 

A mean value of 73% for fecal oxalate as a percentage of intake has been 

previously reported for subjects ingesting a high-fiber, high-oxalate 

diet (Kelsay & Prather, 1983). 

Individual data related to oxalate excretion and apparent absorption, 

fecal calcium and calcium balance during the spinach feeding period 

are presented in Table 10. Subjects varied greatly in their excretion 

levels of oxalate during the spinach feeding period. Given identical 

intake levels of oxalate, intestinal degradation of oxalate must have 

varied widely among subjects. High correlations were observed between 

fecal oxalate (mg/10 g dry wt) and both urinary oxalate (r = 0.90,p<-0.01) 

and apparent oxalate absorption (r = 0.90, p<=0.01) during the spinach 

feeding period. Slightly lower but statistically significant correla

tions were observed when corrected fecal oxalate (mg/day) was correlated 

with urinary oxalate (r = 0.79, p<0.04), and with apparent oxalate 

absorption (r = 0.77, p<0.05). 

Fecal oxalate data during the spinach period conformed to a non-

normal distribution. Spearmans rank correlation statistic for non-para-

metric data indicated a significant correlation between corrected fecal 

oxalate per day and overall mean corrected fecal calcium per day (rs = 0.71, 

p = 0.04). To further explore relationships between fecal oxalate, 

fecal calcium and calcium balance, subjects were subdivided into high 

and low oxalate excreters. Mean fecal and urinary oxalate excretion 

levels were high for subjects 1,4,5 (619 mg/10 g dry wt and 151 mg/day) 



Table 10 
Individual Data for Oxalate Excretion and Absorption, Fecal Calcium and Calcium Balance 
during the Spinach Feeding Period 

Subject 
Number 

Fecal 
Oxalate 

Corrected 
Fecal Oxalate 
(mg/day) 

Fecal 
Calcium 
(mg/day) 

Calcium 
Balance 
(mg/day) 

Urinary 
Oxalate 
(mg/day) 

Apparent 
Oxalate Absorption 

(%) 

1 572 3544 807 -97 104 3.4 

2 135 340 593 +67 70 2.2 

4 669 2955 862 -160 200 7.2 

5 616 4247 1145 -511 150 5.0 

7 102 337 665 -18 55 1.5 

8 105 454 853 -291 69 1.9 

9 54 219 793 -169 62 1.8 

amg/10 g dry weight 
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in contrast with levels for subjects 2,7,8,9 (99 mg/10 g dry wt and 

64 mg/day). Mean corrected fecal calcium per day was calculated for the 

final 3 fecal samples of the spinach balance period to correspond with 

the samples for which fecal oxalate levels were assessed. Mean daily 

fecal calcium for this period for the high oxalate excreters (1067 mg) 

was considerably greater than that for the low oxalate excreters (794 mg). 

Overall mean calcium balance for the high oxalate excreters (-256 mg/day) 

was considerably lower than that for the oxalate excreters (-103 mg/day). 

These individual oxalate intake and excretion data suggested that 

individuals varied greatly in their ability to metabolize oxalate in 

the gut. Assuming that a significant proportion of calcium in spinach, 

or calcium present in any diet containing high levels of oxalate, is 

ingested in a form bound to oxalate, or can bind to oxalate within 

the gastrointestinal tract, then a relationship between the fecal 

excretion of oxalate and calcium would be expected. A significant rank 

correlation between total corrected fecal oxalate per day and mean fecal 

calcium per day helped to confirm this hypothesis. 

Overall data from the present study provided only moderate support 

for the contention that the degree of oxalate degradation is an important 

determinant of calcium balance in subjects ingesting spinach-containing 

diets. A moderate correlation was observed between corrected fecal oxalate/ 

day and calcium balance/day, calculated for the same 3-day period at the 

end of the spinach feeding period (r = -0.58,p =0.17). Subjects could be 

clearly subdivided into high and low oxalate excreters during spinach 

consumption. Three subjects exhibited very high fecal and urinary oxalate 
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levels while 4 subjects exhibited relatively low levels (Figure 4) .  The 

high excreters, or those presumed to be less able to degrade oxalate 

in the gut, had a lower average calcium balance (-256 mg/day) than did 

the low excreters (-103 mg/day). 

The presence of significant populations of oxalate degrading bacteria 

(Oxalobacter formigenes) has been recently demonstrated in the gastro

intestinal tract of jiumans (Allison et al.,1986). Oxalate degradation 

rates increase in the gastrointestinal contents of animals after the 

addition of oxalate to the diet (Allison & Cook,1981). Very few studies 

have investigated the relationships between overall oxalate consumption, 

oxalate degradation and oxalate degrading bacterial concentration and 

activity in humans. Adaption to high oxalate feeding has been hypothesized 

based upon evidence that some populations of the world have typical dietary 

intakes high in oxalate yet appear to exhibit no clinical signs of 

oxalate toxicity or calcium deficiency (Hodgkinson, 1977). 

Spinach has been reported to contain approximately 6.3 g of total 

fiber per 100 g (Paul & Southgate, 1978). An inhibitory effect of fiber 

upon calcium absorption is well established (Allen, 1982). Several 

mechanisms have been proposed based on the physical and chemical pro

perties of dietary fiber to explain the inhibitory effect of fiber on 

calcium availability. The ingestion of some types of fiber have been 

demonstrated to decrease intestinal transit time which could reduce 

calcium absorption by decreasing the time allowed for digestion and 

absorption. Fiber may also act as a physical barrier to calcium absorption 

by diluting intestinal contents. Some varieties of fiber can bind calcium 



55 

•>» 
O 
•o 

200 

180 

160 

140 

o> 
E 120 

Q) 
•*— 

| 100 
o 

O 
C 80 

60 

40 

20 

Relationship between urinary and fecal 
oxalate excretion during cheese (<>) 
and spinach (•) feeding periods. 

Lao 

fep o o 

100 200 300 400 500 600 700 

Fecal Oxalate (mg/lOg dry wt.) 

Figure 4. Individual values for urinary (mg/day) and fecal oxalate 
(mg/10 g dry wt) excretion during the experimental feeding periods 
for the Spinach study. Mean calcium balance was -256 and -103 mg/day 
for the high (n=3) and low (n=4) excreters of oxalate, respectively. 
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intraluminally and increase fecal excretion via an interaction between 

calcium and negatively charged side groups of fiber polymers (Allen, 1982). 

In the present study, the individual effects of fiber and oxalate with 

respect to calcium availability could not be separated since spinach 

contains large quantities of both whereas cheese does not contain either of 

these food components. Several studies have reported lower calcium balances 

or overall calcium retention when subjects were fed diets rich in both 

fiber and oxalate versus oxalate-rich diets low in fiber (Kelsay & Prather, 

1983; Tisdall & Drake, 1937). 

Kelsay and Prather (1983) reported significantly lower calcium 

balances during consumption of a high-fiber compared with a low-fiber 

spinach-containing diet. These researchers suggested that the combination 

of oxalate and fiber in the gut might accentuate the binding of minerals 

and inhibit their absorption more effectively than would either dietary 

component alone. They also reported an apparent reduction in the intesti

nal degradation of oxalate (i.e., increased fecal oxalate) during 

ingestion of the high-fiber compared to the low-fiber diet. Another study 

(Tisdall & Drake,1937) reported decreased total body calcium in rats fed 

dried spinach, containing fiber and oxalate, compared to rats fed low-

fiber diets supplemented with oxalic acid and calcium at levels equal to 

those in the spinach serving. 

An effect of fiber in oxalate-containing diets could be to reduce 

the release of calcium from oxalate-calcium complexes by decreasing or 

interfering with the activity of oxalate-degrading bacteria. The presence 

of fiber in the gut could lower the degree of contact between bacteria 

and oxalate since high fiber intakes have been associated with a dilution 

of intestinal contents and decreases in intestinal transit time. 
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Calcium Availability from Tofu 

Calcium balance was markedly negative during both the tofu and cheese 

consumption periods, and was significantly lower (p<0.05) during the 

tofu compared to the cheese period (Table 11). A significantly greater 

level of calcium was excreted via the feces during the tofu compared 

to the cheese feeding period (p<0.05). The majority of subjects main

tained a more positive calcium balance while consuming the cheese relative 

to the tofu diet. One of the 9 subjects exhibited a more positive calcium 

balance on the tofu diet; 2 subjects exhibited similar calcium balances 

on the 2 diets. Overall, in only & of a total of 18 individual balance 

periods did subjects exhibit either near zero or positive calcium balance. 

Table 11 
Mean (±SD) Calcium Intake, Excretion and Balance Data During the Experimental 
Feeding periods for the Tofu Study 

Test Period 

Tofu Cheese 

Intake (mg/day) 909 ± 17 905 ± 21 

Fecal (mg/day) 824 ± 122a 767 ± 98 

Urinary (mg/day) 219 ± 98 211 ±98 

Balance (mg/day) -135 ± 139a -73 ± 145 

aSignificantly different between tofu and cheese dietary periods (p< 0.05) 

* 
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Results from the Tofu study suggested that calcium from tofu was not 

as available (i.e., absorbed to a lesser extent) as the calcium from 

cheese. This conclusion is based on the finding of a significantly lower 

mean calcium balance and higher fecal calcium during the tofu compared 

to the cheese feeding period. In contrast to results from the Spinach 

study, urinary calcium levels were similar between ingestion of the tofu 

and cheese diets despite a significantly higher mean calcium balance, 

or greater apparent absorption of calcium, during the cheese compared 

to tofu feeding period. The actual magnitude of difference in mean calcium 

balance between the test diets in the Tofu study (62 mg) was roughly 

one-half that observed between the test diets in the Spinach study 

(113 mg). The difference in apparent calcium absorption between the tofu 

and cheese diets, although consistent among subjects, may not have been 

of sufficient magnitude to elicit changes in urinary calcium output. 

Other studies have demonstrated reductions in urinary calcium during 

consumption of high-phytate diets. Morris and Ellis (1985) reported a 

slight but nonsignificant decrease in mean urinary calcium from 185 to 

162 mg per day when subjects were switched from a diet containing 0.2 g 

of phytate to a diet containing 2.0 g phytate. Reinhold et al. (1973) 

observed significantly decreased urinary calcium levels in 3 subjects 

after switching from a low-phytate control diet to a diet in which 

1.85 g of phytate was added. McCance and Widdowson (1942) also reported 

reductions in urinary calcium when large amounts of phytate were added 

to the diet so as to increase the dietary phytate/calcium molar ratio 

above 0.3. 
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Very few studies have evaluated the overall calcium bioavailability 

from tofu. Adolph and Chen (1932) found that availability of calcium 

from soybean curd (tofu) closely approximated that from milk with respect 

to effect on overall calcium balance. However, calcium balance was 

determined in only 3 subjects for 7 days per experimental diet. Another 

study (Schroeder et al.,1946) demonstrated similar calcium availability 

from soybean milk and evaporated cow's milk, while the absorption of 

calcium from whole cooked soybeans was relatively low. The authors 

attributed the lower availability of calcium from whole soybeans to their 

high fiber content. 

An inhibitory effect of dietary phytate upon zinc absorption has 

been well documented (Oberleas & Harland, 1981), however, the effect 

of phytate on the absorption of calcium is less well defined. Total 

phytate intakes provided by the tofu- and cheese-containing diets were 

approximately 1900 and 1130 mg per day, respectively, as the daily serving 

of tofu contained about 770 mg of phytate. A portion of the additional 

770 mg of phytate provided in the tofu diet may have complexed with 

calcium in the gut. Thus, the formation of calcium-phytate salts during 

tofu ingestion may have been partially responsible for the observed 

differences in fecal calcium and calcium balance between experimental 

diets. 

The ability of phytic acid to form insoluble salts with some of the 

mineral elements is the most likely mechanism by which phytate could 

interfere with calcium absorption. Recent research by Graf and Eaton (1985) 

demonstrated that this assumption may not be entirely valid. Using in vitro 
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studies, calcium-phytate salts of very high calcium/phytate ratios were 

found to be poorly soluble in solution whereas salts characterized by 

low calcium/phytate ratios were very soluble. 

Several studies which involved feeding phytate at levels approximating 

those used in the present study have reported adverse effects on calcium 

metabolism. Morris, Ellis, Hill, Steele and Cottrell (1985) reported 

mean calcium balances of -23, -34 and -82 mg/day for 12 adult men 

consuming diets containing 0.5, 1.7 and 2.9 g/day of phytate, respectively. 

Consumption of the highest phytate diet increased the number of individuals 

in negative calcium balance compared to the number of negative calcium 

balances observed on the other diets. In an earlier study, diets 

containing 3.0 g of phytate from Tanok bread, when fed to 3 male adults, 

resulted in markedly negative calcium balances. When white bread, con

taining no phytate replaced Tanok in the diet, calcium balances 

became positive (Reinhold et al.,1973). In this same study, the ingestion 

of 1.85 g of pure phytic acid in leavened flat white bread, resulting 

in a total dietary phytate content of 2.5 g, decreased calcium balances 

in 2 out of 3 subjects compared to balances on a low-phytate control 

diet. 

In contrast, one study (Morris & Ell is,1985) demonstrated no 

differences in calcium balance resulting from the ingestion of diets 

containing 36 g of wheat bran, supplying 2.0 g of phytate, and low-

phytate diets containing equivalent amounts of dephytinized wheat bran. 

High calcium intakes (1100 mg/day) on the high-phytate diet may have 

partially masked the potentially adverse effect of phytate on calcjtim 

absorption. 
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The majority of subjects in the present study appeared to absorb 

calcium from the cheese diet to a greater extent than that from the 

tofu diet. However, 2 subjects maintained similar calcium balances on 

the test diets and one subject exhibited a higher mean calcium balance 

on the tofu compared to the cheese diet. Differences in the utilization 

of dietary phosphorus among subjects could help to explain the variability 

in the calcium utilization from the tofu-containing diets. 

Phosphorus intakes were similar during the cheese (1195 mg) and 

tofu feeding periods (1138 mg). A significant proportion of the phosphorus 

in the tofu-containing diet (47%) was present in phytate. Additional 

phosphorus intake due to the consumption of soft drinks during the 

experimental feeding periods was consistent in the tofu and cheese test 

periods based on soft drink consumption data from daily questionnaires. 

Eight out of the 9 subjects exhibited higher mean urinary phos

phorus levels during the cheese- compared to the tofu-feeding period. 

As a group, mean urinary phosphorus was significantly higher (p<0.05) 

on the cheese (620 mg/day) compared to the tofu (515 mg/day) diet. 

There was appreciable intersubject variability in the absorption 

and urinary excretion of phosphorus during consumption of the tofu diet. 

Individual data for urinary phosphorus, calcium balance and fecal calcium 

during the tofu period are presented in Table 12. The 3 subjects (6,9,10) 

who maintained either similar calcium balances between experimental 

diets or a more positive balance on the tofu diet exhibited a mean 

urinary phosphorus level of 628 mg per day compared with 458 mg per day 

for subjects (1,2,3,5,7,8) who maintained appreciably lower calcium 



Table 12 
Individual Data for Urinary Phosphorus during the Cheese and Tofu Experimental Periods, 
and Calcium Balance and Fecal Calcium during the Tofu Period 

Urinary Phosphorus (mg/day) Net. Change in Calcium'3 Mean Fecal Calcium 
ject _ . , T r r, . . ,, T r a Balance From Cheese during Tofu 

Cheese Period Tofu Period Cheese - Tofu to Tofu Period (mg) Reriod (mg/day) 

1 586 530 56 -162 822 

2 720 385 335 -43 851 

3 626 595 31 -118 978 

5 556 421 135 -153 942 

6 624 581 43 -28 706 

8 462 379 83 -86 708 

9 760 759 1 48 655 

10 784 544 240 -15 977 

11 465 439 26 -56 778 

aUrinary phosphorus during cheese period minus urinary phosphorus during tofu period. 

^Mean calcium balance during cheese period minus calcium balance during tofu period. 
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balances on the tofu compared to the cheese diet. Subject 9, who maintained 

a more positive balance on the tofu diet, exhibited the highest urinary 

phosphorus level (759 mg/day) observed among subjects during tofu in

gestion. While the remainder of the subjects exhibited lower urinary 

phosphorus levels during the tofu compared to the cheese dietary periods, 

thereby suggesting a lower phosphorus absorption from the tofu-containing 

diet, subject #9 had almost identical urinary phosphorus levels during 

ingestion of the cheese (760 mg/day) and tofu diets (759 mg/day). These 

data suggest that subject #9 may have been able to effectively degrade 

phytate in the gut and thus utilize both the calcium and phosphorus 

present in calcium-phytate salts. 

The presence of phytate splitting enzymes (phytases) in the human 

intestine has been demonstrated (Bitar & Reinhold, 1972). The concentra

tion and activity of these enzymes could be a primary factor influencing 

calcium availability from tofu and other soy products which are high in 

phytate. Significant rates of phytate degradation would release phytate 

phosphorus, and perhaps phytate associated calcium, rendering these 

minerals available for absorption. Therefore, higher urinary levels of 

phosphorus might be expected among individuals who exhibit efficient 

gastrointestinal phytate degradation. Reinhold et al. (1973) reported 

that 2 out of 3 subjects exhibited lower calcium balances on a high— 

phytate compared to a low-phytate diet. The subject apparently unaffected 

by phytate feeding in terms of calcium balance also exhibited significantly 

increased urinary phosphorus when switching from the low- to high-phytate 

diet in contrast to unaltered urinary phosphorus levels in the other 

2 subjects. 
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Based on prestudy dietary records, subjects in the Spinach and Tofu 

studies probably had typical diets much lower in phytate and oxalate 

than the levels fed in the present studies, while dairy foods appeared 

to be consumed on a daily basis. Although subjects consumed the dietary 

treatments for 3-week periods, this duration may not have been sufficient 

to ensure adaption to the high levels of phytate and oxalate consumed, 

whereas the respective cheese diets required, no unusual adaptions. 

Relatively long periods of time may be required to develop an intestinal 

condition conducive to the metabolism of large loads of phytate or oxalate. 

In a study by Reinhold, Faraji, Abadi, and Ismail-Beigi (1981), no 

evidence of adaption was observed in 2 men after 3 months of consuming 

diets high in phytate from unleavened bread. 

One factor to be considered when comparing calcium availability 

from test foods with that of dairy foods is the effect of the disaccharide 

lactose. Lactose, found in large quantities in milk and milk products, 

has been reported to improve calcium absorption in diets of animals and 

humans (Allen, 1982). The lactose present in the cheese servings used 

in the Tofu and Spinach studies may have enhanced calcium absorption 

from the cheese diets, thereby contributing to the observed differences 

in calcium balance and fecal calcium levels. Over a 3 week period, vitamin 

D intake from the experimental diets could represent another factor 

affecting calcium absorption. However, in both the Spinach and Tofu 

studies, daily vitamin D levels in the test diets were similar and thus 

should not have been a factor contributing to differences in calcium 

absorption from the test diets. 
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Urinary Hydroxyproline and Serum Alkaline Phosphatase Data 

Mean urinary hydroxyproline and serum alkaline phosphatase data 

obtained during the Spinach study are presented in Table 13. All 7 subjects 

excreted more hydroxyproline in the urine (mg/day) during ingestion of 

the spinach compared to the cheese diet. As a group, mean 24-hour urinary 

hydroxyprol ine excretion (p<0.01) and the hydroxyprol ine/creatinine 

ratio (p<0.05) were significantly higher during the spinach feeding 

period compared with the cheese feeding period. Mean serum alkaline 

phosphatase did not differ significantly between diets. 

Table 13 
Mean (±SD) Urinary Hydroxyproline, Hydroxyproline/Creatinine Ratio 
and Serum Alkaline Phosphatase Levels during the Experimental Feeding 
Periods of the Spinach Study 

Variable Spinach Period Cheese Period 

Hydroxyproline (mg/day) 15.8 ± 4.9® 13.4 ± 3.8 

Hydroxyproli ne/creati ni ne 
ratio 0.017 ± 0.003k 0.013 ± 0.004 

Serum alkaline phosphatase 
(U/L)c 26.6 ± 5.3 26.4 ± 4.9 

Significant difference between spinach and cheese dietary periods (p<0.01) 

^Significant difference between spinach and cheese dietary periods (p<0.05) 

U/L = International Units 

In spite of a statistically significant difference in calcium 

balance between test diets during the Tofu study, neither 24-hour urinary 

hydroxyproline, hydroxyproline creatinine ratio or serum alkaline phos

phatase levels were significantly different between the tofu and cheese 

feeding periods. Mean levels for these parameters during the experimental 

feeding periods of the Tofu study are presented in Table 14. 
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Table 14 
Mean (±SD) Urinary Hydroxyproline, Hydroxyproline/Creatinine Ratio 
and Serum Alkaline Phosphatase Levels during the Experimental Feedinq 
Periods of the Tofu Study 

Variable Tofu Period Cheese Period 

Hydroxyproline (mg/day) 10.4 ± 2.9 10.2 ± 4.1 

Hydroxyproli ne/creati ni ne 
ratio 0.010 ± 0.002 0.010 ± 0.003 

Serum alkaline phosphatase 
(U/L)a 26.2 ± 5.1 26.3 ± 5.4 

aU/L = International Units 

Urinary hydroxyproline is a widely accepted measure of bone 

resorption in humans (Nordin, 1976). Endogenous hydroxyproline is formed 

from the amino acid proline only after incorporation into polypeptide 

molecules or proteins. Hydroxyproline is present almost exclusively 

in collagen (Dull & Henneman,1963), and approximately 40% of the total 

body collagen is present in skeletal tissue (Smith & Nordin,1964). 

Since the input into the urinary hydroxyproline pool from soft tissues 

is relatively constant during consumption of a diet free of hydroxy-

proline, variation in urinary excretion will normally reflect variation 

in bone resorption (Nordin,1976). The low hydroxyproline content of 

the test diets used in both studies should have had little effect on 

urinary hydroxyproline levels. The potentially confounding effect of 

dietary hydroxyproline on 24-hour urine levels was further removed 

by the crossover component of the study design which enabled subjects 

to consume both dietary treatments in random order. Therefore, the 



significant alterations in urinary hydroxyproline observed in the 

Spinach study probably reflected differences in bone resorption 

attributed to the high levels of spinach consumption. 

Calcium influx from the gastrointestinal tract is an essential 

element in the maintenance of bone and plasma calcium concentrations. 

Low input of calcium from the gut, resulting from either low dietary 

intake or low absorption, could precipitate an increase in bone resorp

tion in order to maintain plasma calcium levels, via increased para

thyroid hormone levels in the blood (Heaney, Gallagher, Johnston, Neer, 

Parfitt, Chir & Whedon,1982). In the Spinach study of the present 

investigation, significantly higher mean urinary hydroxyproline levels, 

suggesting increased bone resorption, corresponded with greater negative 

mean calcium balances among subjects during consumption of the spinach 

compared to the cheese diet. 

Changes in urinary hydroxyproline in response to changes in 

calcium intake and absorption have been previously reported. Horowitz 

et al. (1982) reported a significant decrease in mean hydroxyproline/ 

creatinine ratio (.022 vs .017) in 14 postmenopausal women after only 

8 days of calcium supplementation at a level of 1 g/day. A change in 

hydroxyproline ratio of similar magnitude (.017 vs .013) was observed 

in the present study between values obtained during the ingestion of 

the spinach and cheese diets. Smith and Nordin (1964) reported sig

nificantly decreased mean 24-hour urinary hydroxyproline levels among 

42 osteoporotic patients given 1100 mg of supplemental calcium, as 

calcium glycerophosphate, for 7 days. Urinary hydroxyproline output 
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was correlated with calcium balance in this population. In contrast, 

Aloia, Cohn, Zanzi, Abesamis and Ellis (1978) reported no significant 

alterations in urinary hydroxyproline excretion among 32 postmenopausal 

osteoporotic patients given 1030 mg of supplemental calcium for periods 

varying from several weeks to several months. 

The majority of studies attempting to relate hydroxyproline 

metabolism, bone resorption and calcium intake have been conducted in 

postmenopausal women. The mean age of subjects in the Spinach study 

(31 yr) was considerably lower than the typical ages of postmenopausal 

women. Generally, bone density continues to increase until approximately 

the third decade of life (Heaney et al.,1982). Thus, compared to post

menopausal women, subjects in the Spinach study may have been charac

terized by a more active state of bone turnover and therefore may 

have been more sensitive to alterations in dietary calcium with regard 

to hydroxyproline metabolism. The supposition that younger individuals 

have more active bone turnover is supported by data which suggest 

decreasing urinary hydroxyproline levels with age (Laitinen, Nikkila, 

& Kivirikko,1966; Aloia et al.,1978). 

Essentially identical mean urinary hydroxyproline levels were 

observed for the tofu and cheese dietary periods during the Tofu 

study, despite significant differences in apparent calcium absorption 

and calcium balance. This outcome could be attributed to 2 factors. 

First, as stated earlier, the actual magnitude of difference in mean 

calcium balance between test diets was much smaller than that observed 

between the spinach and cheese diets of the Spinach study. If calcium 
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balance is an approximation of bone balance (Parfitt* 1983) 

then the relatively small difference in balance figures between diets 

in the Tofu study may have reflected only a slight difference in bone 

balance and therefore bone resorption. Secondly, the possibility that 

individuals characterized by more rapid bone turnover rates were over-

represented in the Spinach study or underrepresented in the Tofu study 

cannot be discounted in light of the small sample sizes and nonrandom 

selection of subjects. 

Serum alkaline phosphatase levels were not affected by experimental 

treatments within either the Spinach or Tofu study and similar levels 

were observed in the 2 studies. Alkaline phosphatase has been demon

strated to be a valid marker of bone turnover among patients diagnosed 

with bone disorders characterized by severe bone matrix or bone mineral 

degeneration (Klein et al.,1964; Nordin,1976). This indice has also 

been found to be correlated with changes in urinary hydroxyproline 

(Klein et al.,1964). Since alkaline phosphatase is also present in 

several other tissues of the body in large concentrations (Klein et al., 

1964),marked changes in bone turnover rates, as in cases of metabolic 

bone diseases, may be necessary to elicit significant changes in serum 

alkaline phosphatase concentration. 

Several studies have reported no differences in serum alkaline 

phosphatase levels between individuals with osteoporotic-related 

bone loss and normal controls. Nilas, Christiansen and R0dbro (1984) 

demonstrated no differences in serum alkaline phosphatase in 103 post-
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menopausal women stratified into groups based on rate of bone loss. 

Bone loss was determined using photon absorptiometry over a 2-year 

period. In another study (Klein et al.,1964), no differences were 

found in mean serum alkaline phosphatase levels between 3 normal 

(x age = 62 yr) and 5 osteoporotic (x age = 64 yr) individuals. 
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CHAPTER V 

SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR 
FUTURE RESEARCH 

Summary and Conclusions 

Calcium balance data from the present study suggested that the 

calcium availability from cheese was superior to that from both spinach 

and tofu. Although the difference in mean calcium balance between the 

spinach (-168 mg/day) and cheese (-55 mg/day) dietary periods was not 

statistically significant, subjects consuming the spinach diet had an 

average net calcium loss from the body of 113 mg per day more than that 

during the cheese diet. Urinary calcium excretion was significantly 

higher during ingestion of the cheese- compared to the spinach-containing 

diet, further supporting the possibility of increased intestinal calcium 

absorption from cheese. The adverse effect of spinach ingestion upon 

calcium balance observed in the present study is consistent with findings 

from other studies in which over 200 g of spinach was fed daily. Other 

studies have suggested that spinach consumed in more typical quantities 

(i.e., less than approximately 200 g/day, less than 7 days/week) has 

little effect on overall calcium balance. However, there is still the 

possibility that the calcium furnished by smaller doses of spinach is 

poorly absorbed. 

The relatively poor availability of calcium from spinach can most ' 

likely be attributed to the high levels of both oxalate and fiber pre

sent in spinach. The high oxalate content of the spinach diet (2555 mg/day) 

relative to the cheese diet (99 mg/day) resulted in significantly greater 
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mean fecal oxalate (322 vs 13 mg/10 g dry wt) and urinary oxalate levels 

(101 vs 17 mg/day) during the spinach compared to the cheese consumption 

periods. 

Ingestion of the spinach-containing diet resulted in a large 

intersubject variation in fecal and urinary oxalate levels reflecting 

varying degrees of intestinal oxalate degradation. Corrected fecal 

oxalate per day was significantly correlated (rs = 0.71,p< 0.05, 

Spearman rank correlation statistic) with mean fecal calcium per day 

for subjects during the spinach dietary period. Subjects could be 

categorized into high and low relative excreters of oxalate during 

spinach consumption. Subjects exhibiting high excretion levels of 

oxalate (n=3) had a much lower mean calcium balance (-256 mg/day) 

compared with subjects (n=4) characterized by relatively low oxalate 

excretion levels (-103 mg/day). These data suggested that during 

high oxalate feeding, fecal calcium and calcium balance could be 

related to rates of oxalate degradation in the gut. 

The experimental design of the present study did not allow a 

differentiation between the individual effects of fiber and oxalate 

of spinach upon calcium absorption. However, given the demonstrated 

inhibitory effect of fiber on calcium absorption and the dramatic 

contrast in fiber content between the spinach and cheese servings, 

it appears likely that fiber played a significant role in decreasing 

the availability of calcium from the spinach diet. 
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Mean calcium balance and fecal calcium during ingestion of the 

tofu diet (-135 & 824 mg/day) were significantly different from levels 

observed on the cheese diet (-73 & 767 mg/day), suggesting that the 

calcium availability from cheese was superior to that from isocalcic 

quantities of tofu. In addition to fiber, which is absent from tofu, 

the primary dietary factor with the potential for inhibiting calcium 

absorption from soy products is phytate. Phytate intake during ingestion 

of the tofu diet was higher than that provided by the cheese diet 

(1900 vs 1130 mg/day) which may have contributed to the lower calcium 

balances observed during consumption of the tofu compared to the 

cheese diet. 

Three subjects did equally well or better in terms of calcium 

balance on the tofu compared to the cheese diet. Mean urinary phosphorus 

for this group was higher (628 mg/day) than the level for the remaining 

subjects (458 mg/day), who apparently utilized the calcium from tofu 

to a lesser extent. Higher urinary phosphorus levels may reflect a 

greater catabolism of phytate in the gut, such that phosphorus and 

calcium associated with phytate may eventually be released and become 

available for absorption. A greater absorption of phosphorus from 

the cheese- compared to the tofu-containing diet was suggested 

by a significantly higher mean urinary phosphorus level during 

the cheese- (620 mg/day) compared to the tofu-feeding period (515 mg/day). 

Twenty-four hour urinary hydroxyproline and hydroxyproline/ 

creatinine ratio, indirect measures of bone resorption, increased 
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significantly in conjunction with consumption of the experimental spinach 

diet relative to levels observed during consumption of the cheese diet. 

These data suggested that an increase in bone resorption may have occurred 

in response to the feeding of large amounts of spinach and are consistent 

with the contention that spinach derived oxalate and/or fiber can decrease 

overall calcium availability. No significant differences in 24-hour 

urinary hydroxyproline or hydroxyproline/creatinine ratio were observed 

between ingestion of the tofu and cheese diets of the Tofu study. Serum 

alkaline phosphatase did not differ significantly between test diets in 

either the Spinach or Tofu study. 

Suggestions for Future Research 

The recent discovery of oxalate degrading bacteria (Oxalobacter 

formigenes)in the gastrointestinal tract of humans has presented researchers 

with a known mode by which humans can degrade dietary oxalate and possibly 

utilize calcium from oxalate-rich plant foods. Subjects in the present 

study clearly differed in oxalate degrading capacity during consumption 

of the spinach diet which suggested differences in the concentration and 

activity of oxalate degrading bacteria in the gut. The activity of these 

bacteria may be a primary factor determining the ability of an individual 

to utilize calcium, and perhaps other minerals, from oxalate-mineral 

salts present in plant foods. Changes in oxalate degrading bacterial 

growth and activity in humans in response to high-oxalate feeding needs 

to be studied by quantifying oxalate degrading bacteria. There is also a 

need for research assessing the possibility of long term adaption to 
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high-oxalate feeding. Likewise, little research has been conducted 

regarding the effects of dietary factors that may influence luminal 

conditions which may affect Oxalobacter formigenes growth and activity 

such as other dietary minerals besides calcium, fiber (quantity and type), 

antibiotics (which destroy intestinal bacteria), and foods that may have 

an effect on luminal pH. 

Additional research is needed regarding calcium availability from 

soybean products. Products like tofu and soymilk contain no fiber and 

therefore would be expected to provide a more available source of calcium 

than whole soybeans which contain fiber. Enzymes capable of catabolizing 

phytate have been demonstrated in the gut of humans, yet minerals 

bound in phytate complexes appear to be poorly available. Dietary as 

well as nondietary factors affecting phytate degrading enzyme activity 

and the capacity for long term adaption to high phytate feeding in 

human populations need to be further explored. 

The enigmatic relationship between calcium intake, calcium balance 

and bone mineral content requires additional clarification. Data suggest 

that calcium intake after menopause may have less of an effect on bone 

density and rates of bone mineral loss than was originally suspected. 

Some researchers have suggested that calcium nutrition before menopause, 

during the bone forming decades, may be more predictive of risk of bone 

mineral depletion in old age. The recent recommendation by health 

professionals to increase calcium intake from the current RDA of 800 mg 

to 1000, or even 1200 mg per day for some individuals, is consistent .. 
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with data from the present studies. Only 5 out of 16 women maintained 

either positive or near zero mean calcium balances during the 2 cheese 

dietary periods of the Spinach and Tofu studies, even though calcium 

intakes were above 800 mg per day and came primarily from cheese which 

is considered a highly available calcium source. 

Lastly, relationships between adequacy of dietary calcium, calcium 

availability and calcium metabolism are intimately related to important 

endocrine systems in the body. It is assumed that the effect of dietary 

calcium intake on bone resorption is mediated through changes in blood 

parathyroid hormone and calcitonin levels. Research assessing the 

effect of dietary calcium, as well as other dietary components, meal 

composition, and meal and snacking patterns on daily or even hourly 

fluctuations in plasma PTH concentration would be extremely useful. 
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APPENDIX A 

CONSENT FORM 



Consent for Participation in 
Study of Calcium Bioavailability 

Department of Food, Nutrition, and Food Service Management 
School of Home Economics 

University of North Carolina at Greensboro 

I have received an explanation of the nutrition study to be conducted at 
the University of North Carolina-Greensboro entitled "A Comparative Study 
of Calcium Bioavailability from Cheese, Spinach, and Soybean Curd (Tofu) 
as Assessed by Calcium Balance in Adult Women." The project will be directed 
by Or. Michael Liebman, faculty member in the Department of Food, Nutrition, 
and Food Service Management. Other investigators include William Landis, 
Carolyn Dunn, and Linda Meredith. 

The primary study objectives arei (1) to determine the relative bioavail
ability of calcium provided by tofu and by spinach in comparison to calcium 
provided by cheese and (2) to determine whether adult women can maintain 
calcium balance on semi-vegetarian diets containing approximately 800 mg 
of calcium, -the majority of which is provided by cheese, tofu, or spinach. 
Secondary objectives include determinations of whether plasma lipid alter
ations occur in response to feeding high levels of 6pinach or high levels 
of tofu and a relative assessment of zinc and iron bioavailability from 
semi-vegetarian diets. 

As a participant in this metabolic feeding study, I understand that I will 
consume a rigidly controlled diet for a period of 9 weeks and will not be 
allowed to consume any foods or beverages other than those dictated by the 
study design. Although the diets which will be fed are concentrated in 
nutrient dense foods, I am aware that there exists the possibility that 
dietary intakes may not meet the Recommended Dietary Allowances for all 
nutrients. With the exception of an iron supplement given during the cheese 
consumption period, no dietary supplements will be administered. I also 
understand that I will collect all urine and fecal samples during weeks 
3-4 and 7-9 of the 9-week studyinonabsorbable fecal markers will be admin
istered ««• certain d*ft to mark the beginning and end of the fecal 
collection periods. In addition, I am aware that I will be asked to donate 
14-ml blood samples after an overnight fast on 6 occasions for the analy
sis of specific biochemical indices. 1 am also aware that I will be given 
the opportunity to participate in two iron tolerance tests (to assess 
iron availability from spinach) which will involve two additional blood 
donations per test. 

The potential risks associated with participation in this study include 
fainting, bruising or infection from the blood drawing and some degree of 
psychological stress which could result from the required adherance to 
the study design (i.e., strictly controlled feeding and periodic collection 
of urine and fecal samples). There is also a very slight risk that the use 
of fecal markers could cause a certain degree of gastrointestinal distress 
in some individuals. I realize that all possible precautions will be taken 
to minimize these risks (e.g., use of only highly trained personnel and 
established protocols for the blood drawing), and that I can voluntarily 
withdraw from the study at any time of my choosing without incurring pre
judice from the investigators. 

The benefits I may gain from the study include the evaluation of numerous 
nutrition status parameters. This project will increase nutritionist's 
knowledge oft (1) the relative bioavailability of calcium provided by tofu 
and by spinach in comparison to calcium provided by cheese, and (2) the 
plasma lipid alterations which occur in response to feeding high levels of 
spinach or high levels of tofu. 
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I understand that all information will be considered private, will be 
treated confidentially, and that my identity will not be revealed. Or. 
Liebman or one of the other members of the research staff will be available 
to answer questions that 1 may have regarding the study. They may be 
reached at the UNC-G Nutrition Department on weekdays at 379-5313. All 
of my immediate questions have been answered. 

Understanding the above, I agree to participate. 

Date Signature, subject Signature, witness 

Social security number 
(subject) 



APPENDIX B 

PREEXPERIMENTAL QUESTIONNAIRE 



Pre Experimental Questionnaire 

NAME: AGE PHONE BIRTH DATE 

ADDRESS, OCCUPATION 

MEDICAL HISTORY 
1.Do you have any of the following disorders? 

Diabetes yes no 
CHO yes no 
Hypertension yes no 
Hyper11p1demia yes no 
Metabolic Disorders yes no 
Gastrointestinal Disorders yes no 
Renal Disease yes no 
OTHER (please specify) 

2.Are your bowel habits nomal?(1.e., frequent constipation or diarrhea) Explain: 

3.Are you on any Medications? 

4.Do you take any vitamin, Mineral, or protein supplements? 
BRAND AMOUNT TAKEN FREQUENCY 

5.Do you consume alcohol? never beers/week wine/week liquor/week 

6.Do you saoke tobacco? no yes packs/week 

7.Do you sanke marijuana? no 1 or more times/week 1-3 tlmes/nonth "1 time/month 

8. How often do you get your period? every days 

9.0o you ever skip periods on a regular basis? yes no explain: 

10.Usual # of flow days 

11.Are your periods usually heavy Moderate or light? 

12.What 1s the usual course of your periods? painless cramps varles(explain) 

13.Number of past pregnancies Dates of past pregnancies to . to 
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Pre Experimental Questionnaire (cont.) 

14.Are you a former oral contraceptive user? no yes 

From to , to 

15.Check the corresponding column indicating the frequency with which you participate 

1n any of the following (if never leave blank). 
4-7 days/wk 1-3 days/wk occasionally 

Running miles/week 

Swimming miles/week 

Biking _____ miles/week 

Aerobic Dance 

Weight Training 

Team Sports _____ 

Racket Sports 

Other(speclfy) 

16.Do you have any strong food dislikes? 

17. Is there any family history of osteoporosis or frequent bone fractures? 

18. What time would be most convenient for you to have breakfast? 

dinner? 
• 

19. Estimate your consumption of the following foods: 
Col. II 

Soft Cheese oz/wk 
Hard Cheese oz/wk 
Cottage Cheese cups/wk 
Yogurt cups/wk 
Milk cups/wk 
Ice Cream cups/wk 
Eggs /wk 
Tofu oz/wk 
Spinach cups/wk 
Other Green Leafy Veg. cups/wk 
(I.e., collards, mustard greens, etc.) 

* If food Isn't consumed on a weekly basis use col'II to 
estimate monthly consumption 



APPENDIX C. 

DAILY QUESTIONNAIRE 



NAME 

SUBJECT ID# 

DATE 

DAILY QUESTIONNAIRE 

How many hours of sleep did you get yesterday? 

How did you feel physically yesterday? 

much better than usual 
better than usual 
as usual 
poor 
very poor 

If poor or very poor, please explains 

Did you engage in any planned physical activity yesterday 
(e.g. running, Bwinuaing, etc.)? If yes»describe activity, 
duration* and intensity. 

Was your day more active than usual as usual less 
active than usual? 

Were yesterday's meals satisfying to you? 

Did you experience any nausea or gastrointestinal problems? 

Are your urine and fecal staples from yesterday complete? ~ 

Approximate yesterday's consumption of the followingi 

NUMBER OF CUPS AMOUNT AND KIND 07 SWEETRER* 
Coffee _______________ __________________________ 

Tea ___________ • 

Herbal Tea ______________ . 

Soft Drinks • . 

Are you becoming discouraged with the study or are there any 
problems? If yes, please indicate h°w we can correct this 

• problem. *•«» 

Additional Commentsi (menstrual function and medications) 



APPENDIX D 

FECAL PROCESSING AND PEG DETERMINATION 
PROCEDURE 
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I. Processing of Fecal Sample 

1. Cut seams of polyethylene sample bag using scissors and empty contents 
into pre-weighed stainless steel blender. Weigh (minus blender wt.) and record. 

2. Add to blender 2 to 4 times the fecal sample's weight in distilled water. 
Calculate beforehand the approximate weight of blender, feces and water 
together. With the Dlender and feces on a balance, add water to determined 
mark, transfer to blender base, homogenize, and add additional water to 
slurry if necessary. Slurry should be completely homogenized and assume a 
milkshake-like consistency. Record final slurry weight (minus blender weight). 

3. Pour homogenized sample into 2 "etched" 150 ml beakers: 
A. Record beaker weight empty. 
B. "zero" beaker weight on balance 
C. Pour slurry into beakers - Wet sample weight should fall in the range of 

4.50-6.00 g. This will vary according to the consistency of the slurry 
(ie, thick slurry-low sample weight, thin,watery slurry-higher sample wt). 
This will result in a dried slurry sample in the range of .35 - .60 g, 
suitable for direct ashing and dilution for AAS. 

4. Place samples in oven at 60° - 70° C for 2 days (this was usually sufficient 
for complete drying). Pour approx. 50 ml of slurry into container for 
frozen storage. 

II. Obtaining Sample Aliquots for PEG Determination 

1. Into a "zeroed" unmarked 150 ml beaker pour 3.0 g of slurry ( try to 
obtain aliqout within 2.95 - 3.05 g) and record in PEG ChartfDilution weight) 
Using a 10 ml capacity auto-pipette, add exactly 6 ml of distilled water 
to sample, and swirl beaker till completely incorporated and homogenized. 
This step creates a 2:1 dilution (3X), water to slurry. At this point the 
original slurry is considered "the fecal sample", and therefore, this 
step is the first dilution of the fecal sample. A 3:1 dilution (adding 9 ml 
water) may sometimes be necessary if the original slurry is unsually thick. 
In this situation, record under Dilution weight 3:1 or 4X by the subject as 
a reminder for calculation purposes. 

2. Label 2 Erlenmeyer flasks (50 ml) A & B,. or 1 & 2, along with subject number. 
3. Pour 1.0 g (.96 - 1.05 g) of slurry from step 1 into zeroed Erlenmeyers 

and cap.Record exact sample weight in PEG chart (Test weight). 
4. Dispose of remaining sample and clean containers and equipment after each 

subject and use distilled water for final rinse. 

III. PEG Standard Solutions and Reagents 

1. Make 2% w/v (2 g/100 ml) PEG solution using distilled water and store at 4°C 
in dark. Shake vigorously before each use. Stock solution is good for 2 
months (duration of balance study). 

2. Standards: 0.125 ml + 4.875 ml H2O = 0.5 mg/ml PEG 
0.250 ml + 4.750 ml H2o = 1.0 mg/ml PEG 
0.375 ml + 4.625 ml H20 = 1.5 mg/ml PEG 
0.500 ml + 4.500 ml H20 = 2.0 mg/ml PEG 

20 mg/ml 0.750 ml + 4.250 ml H20 = 3.0 mg/ml PEG 
Stock Solution 1.000 ml + 4.000 ml H20 = 4.0 mg/ml PEG 

2.000 ml + 3.000 ml H20 = 8.0 mg/ml PEG 
3.000 ml + 2.000 ml H20 = 12.0 mg/ml PEG 
3.500 ml + 1.500 ml H2O = 14.0 mg/ml PEG 
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3. Reagents: 

A. ZnS04'7H20 5% w/v 8.92 g/100 ml H2O (make large quantities) 

B. Ba(OH)2 0.3 N 25.70 g/ 1 L 

C. BaCl2*2H20 10% w/v 30.30 g/ 250 ml 

D. Gum Arabic 12.0 mg/1 L 

E. Trichloroacetic Acid 30% w/v 

IV.PEG Analysis: 

1. To 1.0 ml H20 (blank), 1.0 ml Standards amd 1.0 ml fecal homogenate in 
50 ml Erlenmeyer flasks add: 

10 ml H20 
1.0 ml of 10% BaClo anhydrous Mix by swirling after each addition 
2.0 ml of 0.3 N Ba(0H)2 

2. Add 2.0 ml of 5% ZnS04*7H20 

Cap flasks and shake vigorously. Let stand for 10 minutes. 
While waiting, label and set up test tubes, funnels and filter paper. 

3. Filter contents through single thickness Whatman no. 42 filter paper. 

Filtrate should be clear but can be discolored. 

4. Transfer 1.0 ml aliquots of filtrate to 16 x 150 mm test tubes. 

5. Add 3.0 ml of Gum Arabic solution and mix by inversion. 

6. Add 4.0 ml of 30% TCA solution and mix by inversion 8 to 10 times. 

Differences in cloudiness among standards should be detectable 
after 10 - 15 minutes. Blank should display no emulsion or cloud
iness properties. 

7. After 60 minutes, read absorbance against blank at 650 nm. 

The emulsion was stable for at least 90 minutes. Record Absorbance 
in PEG Chart. Construct PEG standard curve - the line is generally 
curved between PEG concentrations 0.0 and 1.5, tending to 
straighten thereafter. Record PEG concentration of sample in PEG 
Chart. 

V. Total PEG Determination 

1. Determine exact dilution factor used for sample by dividing 9 by 
Dilution weight (eg, 9/2.99 = 3.01). Multiply PEG concentration ([ ]) 
off the standard curve by this factor. If the dilution was 3:1, divide 
Dilution weight into 12 (eg, 12/2.99 = 4.013). This corrects for the 
inaccuracies occurring during the weighing of test samples. 

2. Determine Corrected Total weight for each sample by dividing (slurry) 
Total weight by Test weight (eg, 166/1.03 = 161.2 g). 

3. For the final quantity of PEG per fecal sample, multiply Corrected 
Total weight by Undiluted [ ] . Average to the nearest gram. 



APPENDIX E 

URINARY HYDROXYPROLINE PROCEDURE 
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HXDROXYPROLINE METHOD 

Pipet the following into screw-top tubes with 15- ml nark: 
1 ml water (blank) OR 
1 ml working standard (standard) OR 
1 ml urine (samples) 

. Add 1 ml HCL (concentrated) to each tube. 
Loosely screw caps on tubes. Pressure cook for 3-4 hrs at 10-15 

lb pressure. 

1. Add 1 ml 12N KOH to each tube. 
2. Dilute with water to the 15 ml mark. 
3. Mix. Centrifuge. (May want to transfer to wider-topped test 

tubes before centrifuging in order to facilitate next step). 
4. Pipet 3 ml aliquot from each tube into Erlenmeyer flasks (in 
duplicate). 

5. Add 1 ml water to each flask to bring volume up to 4 ml. 
6. Add 1 drop phenolphthalein solution and adjust to a pale pink 

color with .05N KOH or .05N HCL. (May want to have other dilutions 
available). 

7. Saturate the solution with approximately 3 g KC1. 
8. Pipet 0.5 ml alanine reagent and 1.0 ml potassium borate buffer 

into all tubes. Mix well and allow to stand at room temperature 
20-30 minutes with occasional mixing. 

9. Add 1.0 ml 0.2M chloramine-T solution and mix immediately. Let 
stand for 25 minutes with occasional mixing. 

10. Add 30 ml 3.6M sodium thiosulfate. Mix and add 5.0 ml toluene. 
Cap tightly. 

11. Place on mechanical shaker and shake for 5 minutes. 
12. Aspirate toluene layer and discard. Replace lids. 
13. Place in boiling water bath for 30 minutes. 
14. Cool flasks in ice water bath (or with running tap water). Add 

5.0 ml toluene. Recap and shake for 5 minutes. Pour samples from 
flasks into large test tubes. 

15. Pipet exactly 2.5 ml sample from each large test tube into 
spec tubes. 
16. Add 1.0 ml Ehrlich's reagent while mixing rapidly. (Do not 
transfer any of the aqueous layer as it will cause color to fade. 

17. Let stand for 30 minutes. Read absorbance against toluene blank 
560 nm in a spectrophotometer. 
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RAW DATA 
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Descriptive Data for Spinach Study Subjects at Baseline 

Treatment 
Subject Age(yr) Weight(kg) Height(cm) BMI(kg/m2)a Order 

1 41 75.7 158.7 30.0 Cheese-Spinach 

2 42 60.2 167.6 21.4 Cheese-Spinach 

4 20 65.2 160.0 25.5 Cheese-Spinach 

5 21 64.2 160.0 25.1 Cheese-Spinach 

7 36 56.4 172.7 18.9 Spinach-Cheese 

8 31 53.6 157.0 21.7 Spinach-Cheese 

9 24 63.6 170.2 22.0 Spinach-Cheese 

aBMI = Body Mass Index 

Descriptive Data for Tofu Study Subjects at Baseline 

Subject Age(yr) Weight(kg) Height(cm) BMI(kg/m^)a 
Treatment 
Order 

1 31 72.3 24.7 Cheese-Tofu 

2 28 72.3 27.2 Cheese-Tofu 

3 24 61.6 21.1 Cheese-Tofu 

5 20 60.5 22.2 Cheese-Tofu 

6 20 54.8 20.6 Tofu-Cheese 

8 21 51.9 19.5 Tofu-Cheese 

9 31 52.5 20.7 Cheese-Tofu 

10 26 57.9 19.8 Tofu-Cheese 

11 39 58.7 25.7 Tofu-Cheese 

aBMI = Body Mass Index 
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Individual Fecal Dry and Wet Weights, Moisture Content and Defecation 
Frequency Data for Subjects in the Tofu Study 

Subject 
Number 

Treatment 
Group® 

No of Days 
with Sample" 

Wet Weight 
(g/day) 

Dry Weight 
(g/day) 

Moisture 
(%) 

1 C 14 116.3 29.9 74.9 

2 C 6 173.5 52.2 69.9 

3 C 14 74.4 25.1 65.8 

5 C 13 171.4 45.3 72.9 

6 C 12 107.6 37.1 64.8 

8 C 12 161.1 40.0 74.3 

9 C 8 192.4 56.5 70.1 

10 C 13 152.8 44.7 70.9 

11 C 14 174.0 34.7 80.4 

1 T 12 161.6 37.9 76.1 

2 T 7 119.7 41.1 65.0 

3 T 12 90.2 29.1 67.0 

5 T 11 176.4 49.2 71.5 

6 T 10 102.9 32.7 67.7 

8 T 12 194.7 44.3 76.9 

9 T 13 152.4 41.2 72.1 

10 T 13 128.2 36.5 71.5 

11 T 13 163.2 35.1 78.1 

aC = Cheese Dietary Treatment; T = Tofu Dietary Treatment 

^Values represent the number of days during each 14-day balance period 
in which fecal samples were collected 
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Individual Fecal Dry and Wet Weights, Moisture Content and Defecation 
Frequency Data for Subjects in the Spinach Study 

Subject Treatment No of Days Wet Weight Dry Weight Moisture 
Number Group3 with Sample*3 (g/day) (g/day) (%) 

1 C 9 62.9 165.8 62.1 

2 C 12 33.2 104.1 68.1 

4 C 10 36.1 140.2 74.3 

5 C 13 32.4 163.1 80.1 

7 C 12 30.7 111.5 72.5 

8 C 7 49.5 214.7 76.9 

9 C 11 25.7 87.0 70.5 

1 S 11 69.2 314.3 78.0 

2 S 12 44.3 140.3 68.4 

4 S 11 51.4 186.2 72.3 

5 S 14 43.3 178.5 75.7 

7 S 11 41.5 163.9 74.7 

8 S 9 61.0 234.8 74.0 

9 S 14 31.1 126.3 75.4 

aC = Cheese Dietary Treatment; S = Spinach Dietary Treatment 

^Values represent the number of days during each 14-day balance period that 
fecal samples were collected 
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Individual Urinary HydroxyprolTne, Creatinine and Serum Alkaline 
Phosphatase Data during the Cheese (C) and Spinach (S) Test Periods 
for the Spinach Study 

Subject 
Number 

Treatment 
Group 

Urinary 
Hydroxyproline 
(mg/day)a 

Urinary 
Creatinine 
(mg/day)a 

Serum Alkaline 
Phosphatase 
(U/L)b 

1 C 8.6 825 28.9 

2 C 11.0 1018 22.9 

4 C 12.5 1150 26.1 

5 C 18.2 1117 24.9 

7 C 10.2 1520 22.2 

8 C 15.4 1061 23.6 

9 C 18.1 1037 36.4 

1 S 10.1 665 31.1 

2 S 12.8 998 23.2 

4 S 13.3 722 29.6 

5 S 20.7 1060 30.0 

7 S 13.2 932 19.8 

8 S 16.8 1050 20.6 

9 S 23.7 1245 32.2 

aMean of the last 3 days of each test period 

U/L = International Units 
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Individual Urinary Hydroxyproline, Creatinine amd Serum Alkaline 
Phosphatase Data during the Cheese (C) and Tofu (T) Test Periods 
for the Tofu Study 

Subject 
Number 

Treatment 
Group 

Urinary 
Hydroxyproline 
(mg/day)a 

Urinary 
Creatinine 
(mg/day)a 

Serum Alkaline 
Phosphatase 
(U/L)b 

1 C 6.9 947 27.1 
2 C 11.1 1234 30.1 

3 C 19.3 1187 31.2 

5 C 8.0 899 22.7 

6 C 12.1 979 25.8 

8 C 8.2 815 19.8 

9 C 9.7 1168 18.4 

10 C 11.3 1323 35.1 

11 C 5.5 745 26.1 

1 T 7.7 1135 29.7 

2 T 6.6 703 29.2 

3 T 15.2 1102 33.2 

5 T 10.2 1350 28.6 

6 T 13.6 994 20.2 

8 T 10.2 989 19.6 

9 T 12.6 1130 19.7 

10 T 10.6 1229 29.8 

11 T 7.3 793 25.3 

aMean of the last 3 samples collected at the end of each test period. 

^U/L = International Units 



Individual Total Calcium Intake, Excretion and Balance Data during the Cheese (C) and Spinach (S) 
Test Periods for the Spinach Study 

Subject 
Number 

Treatment 
Group 

Balance 
Duration9 
(days) 

Fecal 
Calcium 
(mg) 

Corrected 
Fecal Calcium 

(mg) 

Urinary 
Calcium 
(mg) 

Dietary 
Calcium 
(mg) 

Calcium Balance(mg) 

Overall Daily 

1 C 5 5035 3701 748 4280 -169 -34 

2 C 9 7853 6597 1662 7704 -555 -62 

4 C 5 4768 2928 670 4280 682 136 

5 C 6 4236 3063 1344 5136 729 121 

7 C 7 6692 5855 1396 5992 -1259 -180 

8 C 7 8326 5295 2525 5992 -1828 -261 

9 C 11 9897 8571 2006 9416 -1161 -106 

1 S 10 10705 8072 726 7830 -968 -97 

2 S 5 5136 2963 615 3915 337 67 

4 S 4 4060 3447 324 3132 -639 -160 

5 S 14 12759 16025 2086 10962 -7149 -511 

7 S 5 4686 3327 680 3915 -92 -18 

8 S 4 4467 3413 884 3132 -1165 -291 

9 S 13 10610 10313 2068 10179 -2209 -169 

3 
Number of days in which calcium balance was based 



Individual Total Calcium Intake, Excretion and Balance Data during the Cheese (C) and Tofu (T) 
Test Periods for the Tofu Study 

Subject 
Number 

Treatment 
Group 

Balance 
Duration3 
(Days) 

Fecal 
Calcium 
(mg) 

Corrected 
Fecal Calcium 

(mg) 

Uri nary 
Calcium 
(mg) 

Dietary 
Calcium 
(mg) 

Calcium Balance(mg) 

Overall Daily 

1 C 7 4272 4956 1372 6409 81 12 

2 C 6 7861 4874 702 5576 -20 -3 

3 C 10 8363 8973 1701 8910 -1764 -176 

5 C 6 4406 4582 1368 5208 -742 -124 

6 C 10 8103 6644 2860 8838 -666 -67 

8 C 10 8773 6492 1164 9100 1444 144 

9 C 2 2605 1485 802 1806 -481 -240 

10 C 5 3993 4672 1405 4665 -1412 -282 

11 C 10 7737 7273 1078 9168 817 82 

1 T 12 8435 9869 2880 10944 -1805 -150 

2 T 7 7176 5956 753 6384 -325 -46 

3 T 11 8895 10763 2347 9878 -3232 -294 

5 T a 5843 7537 1719 7040 -2216 -277 

6 T 10 7596 7064 2598 9274 -388 -39 

8 T 6 5517 4248 863 5460 349 58 

9 T 10 5420 6558 4280 8915 -1923 -192 

10 T 12 11166 11724 3032 11196 -3560 -297 

11 T 11 8564 8564 1215 10065 286 26 

aNumber of days in which calcium balance was based 


