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Abstract: 
 
The basic mechanisms that drive the renewal of GH pulses in the human are not understood. 
Recent ensemble models predict that pulse regeneration requires quenching of an ongoing GH 
pulse by somatostatin outflow and evocation of a new burst by rebound GHRH release. We 
reasoned that related principles might explain why women consistently maintain higher-
amplitude GH secretory bursts than men. Accordingly, the present study tests the hypothesis that 
gender modulates the successive dynamics of GH feedback and escape in the morning fasting, 
when GH pulses are larger in women. To this end, we infused single iv pulses of recombinant 
human (rh) GH (0, 1, and 3 μg/kg) in eight young men and six women on separate randomly 
ordered mornings fasting and quantitated serial inhibition and recovery of GH secretion by 
frequent sampling, immunochemiluminometry, a deconvolution procedure, and regularity 
analysis. Statistical contrasts revealed gender-comparable peak concentrations and kinetics of 
rhGH. However, women differed from men by way of: (1) 3.5- and 4.0-fold less feedback 
suppression of GH secretory-burst mass; (2) more irregular patterns of GH release during 
negative feedback; and (3) 12-and 14-fold greater postnadir rebound-like GH secretion after 
rhGH pulses. Mechanistic analyses based on a minimal feedback construct predicted that women 
generate higher endogenous secretagogue stimulation per unit somatostatin outflow than men. 
 
In summary, negative feedback induced by near-physiological GH pulses unmasks prominent 
gender-related contrasts in hypothalamo-pituitary autoregulation in young adults. A frugal but 
sufficient explanation of the ensemble outcomes is that women sustain greater hypothalamo-
pituitary agonist input than men. 
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Article: 
 
GH is secreted (>85%) in prominent discrete bursts, which stimulate somatic growth and mediate 
certain metabolic adaptations (1–4). Laboratory investigations indicate that the generation of 
successive high-amplitude GH pulses requires rapid reversible negative feedback followed by 
rebound-like recovery of GH release (5–8). Accordingly, inactivating mutations of the GH 
receptor gene and administration of peptidyl antagonists of the human GH receptor disinhibit 
feedback and elevate pulsatile GH secretion by several-fold (3, 9). In experimental animals, 
autoinhibition proceeds via hypothalamic GH receptors, which stimulate somatostatin (SS) 
release and repress GHRH outflow to the pituitary gland (10–12). During the postinhibitory 
phase, intrahypothalamic SS withdrawal evokes a burst of GHRH release, which triggers GH 
secretion (13–17). In simplified biomathematical constructs, such cycles of autoinhibition and 
recovery are sufficient to confer self-renewable GH pulsatility (18–21). 
 
Negative feedback is more prominent in the male than female rodent (3). This basic sex contrast 
putatively contributes to the higher amplitude, lower frequency, and lesser irregularity of GH 
secretory patterns as well as sex-specific gene expression in the male animal (22–24). Sexual 
dimorphism of the human somatotropic axis differs in certain fundamental ways (25). In 
particular, women secrete 2-fold more GH per burst than men (and, thus, have double the peak 
amplitude); maintain the same mean GH pulse frequency; and generate quantitatively more 
irregular GH secretory patterns (26–33). The mechanisms that mediate such gender-defined 
regulatory features are not known. Among other considerations (25), we postulated that men and 
women sustain distinct dynamics of GH pulse renewal, as transduced by sequential autofeedback 
and recovery. In this context, the only direct gender comparison of feedback properties used a 
single pharmacological dose of recombinant human (rh) GH (10 μg/kg). This paradigm 
monitored maximal suppression but abolished the rebound recovery phase (34). In that study, 
women manifested larger spontaneous GH pulses than men but comparable absolute (maximal) 
inhibition. In mechanistic terms, the outcome would signify that inhibitory efficacy does not 
differ significantly by gender. Thus, how gender impacts physiological mechanisms that mediate 
dynamic feedback on and recovery of self-renewing GH pulses remains unknown. 
 
The present study adopts a nonpharmacological strategy to dissect the basis of gender-specific 
control of GH-pulse regeneration in young adults. Studies were performed in the morning fasting 
to assess the hypothesis that larger GH pulses in women at the time (25) reflect gender-related 
muting of negative feedback by a GH pulse. To this end, the design comprised iv infusion of 
saline or mid- and high-physiological pulses of rhGH to impose submaximal inhibition and 
evoke rebound recovery of GH secretion; intensive blood sampling to capture both suppression 
and rebound phases of GH secretion; ultrasensitive GH immunochemiluminometry to measure 
low GH concentrations accurately; and complementary analytical tools to quantitate sequential 
repression and escape of GH secretion. We postulated that gender would specifically determine 
feedback-driven inhibition of GH secretory-burst mass, rebound GH release, and regularity of 
GH secretion patterns. The choice of these end points reflects evidence of mechanistically 
distinguishable control of each (see Discussion). 
 
Subjects and Methods 



 
Clinical protocol 
 
The same subjects participated in this and an earlier pharmacological feedback study (34). 
Volunteers provided a detailed medical history and underwent a complete physical examination, 
after giving written informed consent for the protocol as approved by the institutional review 
board. The U.S. Food and Drug Administration authorized conduct of the protocol under an 
investigator-initiated new drug file. Inclusion criteria were healthy young adults who undertook 
recreational (but not competitive) aerobic exercise three or four times per week. Eight men and 
six women participated. Characteristics were (men) age 26 ± 0.5 yr, height 181 ± 1.0 cm, and 
weight 82 ± 1.6 kg; and (women) age 22 ± 0.5 yr, height 164 ± 1.0 cm, and weight 60 ± 1.2 kg. 
Exclusion criteria included pregnancy or breast-feeding; age 30 yr or older; glucocorticoid, sex 
steroid, or other hormone use; alcohol or drug abuse; clinical depression; acute or chronic 
systemic illness; endocrinopathy; hematologic, pulmonary, or hepatorenal disease; diabetes 
mellitus; anemia (hematocrit < 38%); exposure to neuro- or psychoactive medications within 10 
biological half-lives; recent transmeridian travel (more than three time zones traversed within 1 
wk) or shift work; weight gain or loss (exceeding 2 kg in the preceding 6 wk); and failure to 
provide written, witnessed informed consent. 
 
Women were studied during the early follicular phase (d 2–8) of the menstrual cycle. Volunteers 
were admitted to the General Clinical Research Center on three separate occasions to receive 
saline and 1 or 3 μg/kg rhGH in prospectively randomized order at least 3 d apart. To obviate 
nutritional confounds, participants ingested a constant meal at 1800 h the evening before, which 
contained 500 kcal (60% carbohydrate, 20% protein, and 20% fat). Subjects then remained 
fasting overnight and until the end of sampling on the next day. Use of coffee, alcohol, and 
tobacco and vigorous exercise were disallowed during the study protocol. 
 
Negative-feedback paradigm 
 
To allow simultaneous sampling and infusion, forearm venous catheters were inserted 
contralaterally at 0600 h. Blood samples (1.5 ml) were withdrawn every 10 min for a total of 7.5 
h from 0630 to 1400 h. After a 60-min baseline, rhGH (1 or 3 μg/kg) or saline was infused iv as a 
6-min square-wave pulse (0730 h) by programmable infusion pump. Thereafter, blood was 
sampled every 2.5 min for 10 min (0730–0740 h) and every 5 min for 50 min (0740–0830 h) for 
kinetic analyses, followed by every 10 min for 5 h 30 min (0830–1400 h). 
 
Assays 
 
GH concentrations were measured in duplicate in each sample by ultrasensitive 
immunochemiluminescence assay (Nichols, San Juan Capistrano, CA) (35, 36). Sensitivity is 
0.005 μg/liter, when defined as 3 SD above the zero-dose tube. Median intra- and interassay 
coefficients of variation were 5.8 and 6.7%, respectively. GH concentration-dependent intraassay 
variance (SD2) was modeled as a power function of sample means using all replicates from each 
time series (37). Concentrations of total testosterone and estradiol were quantitated by solid-
phase RIA (Diagnostic Products Corp., Los Angeles, CA) (38). Comparisons were made on the 
mean of all four fasting 0630 h samples collected in each subject. Mean intra- and interassay 



coefficients of variation were, respectively, 6.9 and 8.3% (total testosterone) and 5.9 and 9.1% 
(estradiol) with sensitivities of 0.35 nmol/liter and 37 pmol/liter. 
 
Deconvolution analysis 
 
GH secretion was quantitated by deconvolution analysis, using the previously determined rapid-
phase GH half-life of 3.5 min, an analytically estimated slow-phase half-life, and a fixed 
fractional (slow/total) decay amplitude of 0.63 (39, 40). For statistical validity, the analysis was 
conditioned on pulse times estimated independently by Cluster analysis (37, 41). The combined 
approach accounts mathematically for basal (nonpulsatile) secretion, partially overlapping GH 
pulses, and decay of hormone concentrations during the observation interval. The entire 7.5-h 
GH time series was analyzed, followed by computation of the summed mass of GH secreted in 
bursts (micrograms per liter): (1) beginning 1.5 h after saline vs. rhGH injection and continuing 
for 3 h until the nadir (thus defining the interval when GH-negative feedback is evident); and (2) 
beginning at the nadir and continuing for a mean of 2 h until the end of sampling (interval when 
initial rebound/recovery emerges) (34, 42, 43). The nadir was defined as the single lowest value 
of a three-point moving average of GH concentrations (hence the mean of three consecutive 
measurements). 
 
The half-life of infused GH was evaluated by deconvolving the injected peaks. The distribution 
volume of rhGH (milliliters per kilogram) was computed as 1000-fold the quotient of 
the dose (micrograms per kilogram) and the deconvolution-calculated mass (micrograms per 
liter) of infused rhGH. 
 
Approximate entropy 
 
Approximate entropy (ApEn) analysis was applied to first-differenced (stationarized or epoch-
detrended) postinfusion GH concentration time series (44, 45). ApEn pattern length and 
threshold, as validated for data series of this size, were, respectively, m = 1 and r = 0.85 (46). 
ApEn is a model-free statistic, which quantitates feedback-sensitive subpattern regularity. ApEn 
calculations are independent of absolute concentrations or deconvolution analysis (47, 48). 
Higher ApEn values denote more irregular (less orderly) secretory patterns, as observed in GH-
secretory tumors, aging adults, puberty, and women, compared with men (26–28, 38, 45). 
Mathematical simulations and clinical experiments have demonstrated that deterioration of 
expected pattern regularity in an interlinked system denotes erosion of balanced signal 
coordination (44, 46, 48). In the GH axis, irregularity provides a measure of unopposed 
feedforward drive by GHRH or GH-releasing peptide (GHRP) (49–51) and attenuated feedback 
restraint by SS or GH/IGF-I (20, 48, 52). 
 
Statistical procedures 
 
Statistical comparisons of derived measures, GH secretory-burst mass, and ApEn were made on 
logarithmically transformed data to limit heterogeneity of variance. The model was two-way 
analysis of covariance (ANCOVA) to test the effects of gender and two doses of rhGH, 
compared with the response to saline, considered as a statistical covariate (53). This structure 
accommodates the repeated-measures design, includes expected serial correlation within a 



subject, and examines the individual effects and the interaction between genders (two factors) 
and rhGH dose (two factors). Post hoc contrasts were based on Tukey’s honestly significantly 
different criterion at an overall (experiment-wise) protected type I error rate of 0.05 (54). Data 
are presented as the mean ± SEM. 
 
Simulation of GH network 
 
To simulate inferences made in Results and Discussion, we assumed greater GHRH potency, 
GHRP/ghrelin efficacy, and GH feedback-induced SS release in women than men (at nominal 
respective female to male ratios of 1.2, 2.2, and 2.5). 
 

 
FIG. 1.  Serum GH concentrations (y-axis) sampled every 10 min for a total of 7.5 h beginning 
60 min before a 6-min iv bolus injection of saline or rhGH (time, x-axis). The experimental 
negative-feedback signal (top to bottom) was 0 (saline), 1, or 3 μg/kg rhGH administered fasting 
on separate mornings in randomly assigned order. Peak GH concentrations occurred uniformly at 
70 min. GH was measured by immunochemiluminometry (see Subjects and Methods). Data are 
the mean ± SEM (n = 8 men, n = 6 women). 
 
Results 
 
Screening concentrations of testosterone were 20 ± 1.5 and 1.6 ± 0.28 nmol/liter (P < 0.001) and 
of estradiol 92 ± 11 and 140 ± 15 pmol/liter (P > 0.10) in men and women, respectively. 
 



Figure 1 depicts cohort mean (± SEM) GH concentration profiles in the eight men and six 
women sampled every 10 min for 1.0 h before and 6.5 h after iv injection of a 6-min pulse of 
saline or rhGH. The data illustrate higher mean GH concentrations in women (3.2 ± 0.61 
μg/liter) than men (1.3 ± 0.25 μg/liter) after saline infusion (P < 0.05). Visual inspection revealed 
dose-varying and gender-comparable peak concentrations and kinetics of infused GH; relative 
failure of the 1 μg/kg dose of rhGH to suppress ongoing GH release in women; and accentuated 
initial rebound recovery of GH release after the 3 μg/kg rhGH dose in women, compared with 
men (see below). 
 
Table 1 summarizes peak concentrations, half-lives, and distribution volumes of rhGH in men 
and women at the two doses of rhGH studied. No kinetic measures differed by gender. Peak-
infused GH concentrations were mid- and high physiological; viz. (pooled median) values were 
20 and 46 μg/liter after injection of 1 and 3 μg/kg, respectively. These data verify that gender-
related autofeedback differences (see below) are not attributable to sex-specific GH kinetics. 
 
TABLE 1. Estimated kinetics of rhGH in men and women 

Kinetic parameter  
Dose of Rh GH infused  
1 μg/kg  3 μg/kg  

Half life (min)        
    Men  13.6 ± 0.8  14.5 ± 1.2  
    Women  12.4 ± 1.2  14.6 ± 2.9  
Distribution volume (ml/kg)        
    Men  38 ± 5.6  41 ± 3.7  
    Women  34 ± 2.5  43 ± 5.4  
Peak GH (μg/liter)        
    Men  23 ± 3.2  51 ± 7.6  
    Women  22 ± 1.4  47 ± 6.8  
Gender and dose did not affect any values shown. n = 8 men; n = 6 women. 
 
Absolute nadir (mean lowest three consecutive) GH concentrations induced by each pulse of 
saline or rhGH were used as a model-free estimate of negative feedback (Fig. 2). Nadir GH 
concentrations were higher in women than men after infusion of saline and each dose of rhGH (P 
= 0.014). Nadir values decreased significantly only in response to the higher feedback signal in 
women (3 μg/kg rhGH, P < 0.025). Time latencies to reach nadir GH concentrations after the 
injected GH peak at 70 min were influenced by gender and feedback dose, viz. in men and 
women, nadir values occurred, respectively, 274 ± 23 and 307 ± 19 min (P < 0.01) (1 μg/kg) and 
319 ± 13 and 318 ± 12 min (3 μg/kg) after the peak GH concentration. 
 
Figure 3 depicts the dose dependency of rhGH-induced inhibition of summed GH secretory-burst 
mass determined during the 3-h interval beginning 1.5 h after saline/rhGH injection in men and 
women. A 1.5-h delay was chosen because stimulation of GH secretion by a maximally effective 
dose of GHRH and a high dose of GHRP-2 is blocked within 2 h after injection of rhGH 
(42, 43, 55). ANCOVA predicted P < 0.001 for the dose effect of rhGH dose, P < 0.001 for the 
gender effect, and P = 0.0031 for the dose × gender interaction. In men, administration of rhGH 
suppressed GH secretory-burst mass progressively across the dose range 0, 1, and 3 μg/kg (Fig. 
3). On the other hand, in women, the low dose of 1 μg/kg was not inhibitory (P = NS vs. saline 
injection). Post hoc gender comparisons by Tukey’s honestly significantly different test revealed 



3.5- and 4-fold higher noninhibitable pulsatile GH secretion (micrograms per liter per 3 h) after 
the 1 and 3 μg/kg doses of rhGH in women than men (both P < 0.005). 
 

 
FIG. 2. Nadir GH concentrations induced by iv injection of saline vs. 1 or 3 μg/kg rhGH in 
young men and women. Data are the mean ± SEM (n = 8 men, n = 6 women). Means with 
different (unshared) alphabetic superscripts differ significantly by the post hoc Tukey test. 
ANCOVA was used to estimate the overall P value indicated for the gender-by-intervention 
interaction (see Subjects and Methods). 
 

 
FIG. 3. Dose-dependent inhibition of the amount (mass) of GH secreted in bursts in healthy 
young adults. Observations reflect the 3-h time interval beginning 1.5 h after iv injection of a 
pulse of saline vs. the indicated dose of rhGH. Data are presented as described in the legend 
of Fig. 2. The overall P value reflects the effect of rhGH dose. 
 
Figure 4 summarizes gender differences in the delayed recovery (initial rebound) of GH 
release, viz. during the mean 2-h (± 0.23 h) time window beginning at the absolute nadir. 
ANCOVA disclosed 12- and 14-fold greater summed GH secretory-burst mass normalized per 2 
h during initial postnadir recovery in women than men after infusion of 1 and 3 μg/kg rhGH, 
respectively (P < 0.001). 



 

 
FIG. 4. Recovery of GH secretory-burst mass over a mean 2-h time interval after the nadir GH 
concentration induced by bolus iv infusion of saline vs. the indicated doses of rhGH in young 
men and women. Data are presented as noted in the legend of Fig. 3. 
 

 
FIG. 5. Feedback imposed by a midphysiological pulse of rhGH enhances the regularity 
(orderliness) of GH release to a lesser degree in women than men (top panel). Initial rebound-
like recovery of GH release also is less regular in women than men (bottom panel). Higher 
values of ApEn (regularity statistic) denote decreased pattern reproducibility (greater relative 
randomness) due to greater feedforward and/or less feedback within an interlinked 
system, e.g. greater GHRH and/or less SS release. See legend of Fig. 3 for format of data 
presentation. 



 
FIG. 6. Output of a simplified three-peptide model linking GHRH feedforward and GH feedback 
via SS to pulsatile GH secretion via objective mathematical connections. Each curve is a 
computer-driven plot of SS or GH release and injected GH pulses over time. The model 
parameters (see Subjects and Methods) reflect the present clinical inference that women maintain 
greater GHRH feedforward potency, maximal GH-induced SS outflow, and GHRP/ghrelin 
efficacy than men. The three paired panels (top to bottom) depict predicted responses to infusion 
of saline vs. 1 and 3 μg/kg rhGH in men (left) and women (right). The separate curves in each 
panel represent injected (solid line) and secreted (broken line) GH and SS (dotted line) outflow. 
GH pulses (saline) in the absence of exogenous feedback occur at the same frequency but attain a 
higher mean amplitude in women than men. The delayed emergence of GH peaks about 5 h after 
each rhGH bolus reflects feedback-induced rebound-like secretion of GHRH and thereby GH as 
shown in Fig. 1. 



 
ApEn was used as a validated scale-independent measure of feedback-signal strength during the 
3-h interval beginning 1.5 h after the iv pulse of saline or rhGH and continuing until the nadir 
(see above) (44, 48). As shown in Figure 5 (top), the overall feedback effect to enhance GH 
regularity was significant (P < 0.001). After infusion of saline and the lower dose of rh GH, 
women maintained significantly higher ApEn values, signifying less feedback defined by more 
irregular (disorderly) patterns of GH release (P < 0.01). Infusion of 3 μg/kg rh GH enforced 
equivalent orderliness, consistent with gender-comparable feedback efficacy (maximal 
inhibition). 
 
The orderliness of GH secretion during the initial rebound phase was assessed by applying ApEn 
to the 2-h GH time series after the nadir (Figure 5, bottom). Initial rebound recovery of GH 
release after the lower dose of GH yielded more orderly patterns (lower ApEn) than after saline 
in both men and women, indicating persistence of SS release (P < 0.001). Women manifested 
significantly more irregular GH release (higher ApEn values) than men during the initial 
recovery phase of GH secretion after injection of saline and both doses of rhGH (P < 0.001). 
 
Figure 6 presents model-based predictions that greater endogenous GHRH drive in women 
could: (1) potentiate initial rebound GH secretion after the low dose of rhGH (as observed); (2) 
prevent nadir suppression by the low dose of rhGH by opposing the effect of low SS outflow; 
and (3) overcome low GH-induced SSergic inhibition of GH secretory-burst mass. 
 
Discussion 
 
The present study reveals that gender determines both the inhibition and initial recovery phase of 
GH autofeedback. In particular, absolute nadir GH concentrations after a pulse of rhGH are 
higher, whereas the extent of suppression of GH secretory-burst mass and the induced regularity 
of GH release are less in young women than men. Moreover, initial rebound-like recovery of GH 
secretion after autoinhibition is markedly greater in women. Assuming that GHRH and SS act 
antagonistically, these data indicate that a physiological GH feedback signal evokes greater 
rebound-like release (agonist input) and/or stimulates less SS outflow (antagonistic input) in 
women than men. Detecting this gender distinction required the use of near-physiological rather 
than pharmacological feedback by exogenous GH. 
 
Two gradations of GH autofeedback were compared with endogenous GH pulses in men and 
women. To this end, the low dose of rhGH (1 μg/kg) approximated a nocturnal GH pulse (peak 
concentration 20 μg/liter), whereas the higher dose (3 μg/kg) mimicked a high-physiological GH 
peak (maximum 46 μg/liter) (27, 28, 45, 56, 57). The resultant responses establish the dose 
dependence of GH feedback on nadir GH concentrations, GH secretory-burst mass, regularity of 
GH release, and initial GH recovery in both genders. To our knowledge, these are the first dose-
response comparisons of feedback in men and women. Statistical comparisons disclosed that sex 
differences operate prominently in the physiological GH feedback range. Therefore, the present 
paradigm supports the relevance of endogenous GH pulses in enforcing interburst nadirs and 
generating rebound-like secretory bursts. 
 



Available studies indicate that iv infusions of GH do not significantly elevate IGF-I 
concentrations within the brief interval studied here (5, 6). Thus, the main feedback signal tested 
is the rapid increase in blood GH concentrations. In experimental animals, a pulse of GH 
stimulates hypothalamic SS secretion in vitro and in vivo within 45 min (58). More sustained 
increases in GH and IGF-I concentrations induce periventricular SS and repress arcuate-nucleus 
GHRH gene expression (24, 59, 60). Assuming an acute role of SS release in GH autofeedback 
(61–64), the responses to midphysiological rhGH pulses permit indirect inferences about 
hypothalamic SS outflow, as assisted by an objective three-peptide model of GHRH-SS-GH 
interactions (20, 21, 65). The hypothesis was that sex differences observed could be accounted 
for by reported effects of estradiol to: (1) attenuate the inhibitory potency of available SS (52); 
(2) augment post-SS rebound-like release of hypothalamic GHRH and thereby pituitary GH 
(10, 14–16, 64, 66, 67); (3) amplify the potency of individual GHRH pulses (68); and (4) 
potentiate stimulation by GHRP (69). Objective modeling verified that these ensemble 
observations are sufficient to predict the accompanying gender differences of higher interpulse 
(nadir) GH concentrations, less negative feedback by a submaximal but not maximal GH pulse, 
and greater initial rebound-like recovery of GH release in young women than men (18–21). 
 
Passive immunoneutralization of GHRH inhibits rebound-like GH release after SS withdrawal in 
the rat (14, 16, 17). In addition, bolus octreotide administration initially suppresses and then 
stimulates GHRH secretion into hypothalamo-pituitary portal-venous blood in the sheep (15). 
Assuming that an analogous mechanism operates in the human, then heightened initial rebound-
like GH secretion in women would predict accentuated GHRH stimulation. This inference agrees 
with the capabilities of estradiol to augment rebound-like GH release after iv infusion of SS (66) 
and double the potency of GHRH pulses (68). Accordingly, we hypothesize that both the release 
and action of GHRH are greater in young women than men. 
 
ApEn, a regularity statistic, is a scale- and model-free measure of relative feedback/feedforward 
strength in interlinked mathematical and biological systems (22, 26, 44–46, 48, 70). Thus, 
infusion of somatostatin vs. GHRH enhances vs. degrades the regularity of GH patterns by 
imposing feedback vs. feedforward, respectively (20, 21, 48, 49, 52, 71). ApEn analyses 
disclosed that GH-induced feedback increases pattern regularity in both women and men, 
consistent with SS release and GHRH withdrawal. During the initial rebound phase, GH release 
remains more irregular in women than men, which would denote higher GHRH (and possibly 
ghrelin) drive than SS inhibition. This gender difference is consistent with greater hypothalamic 
GHRH drive and/or less SS outflow during initial rebound in women than men. The rise in ApEn 
between the low and higher dose of GH in women also forecasts greater GHRH outflow in 
women. The more than 12-fold greater mass of GH secreted during initial rebound in women 
than men further points to heightened secretagogue action for the given degree of SSergic 
restraint. 
 
In conclusion, gender is a prominent determinant of GH autofeedback in healthy young adults. 
The present mechanistic analyses suggest that women maintain greater feedforward by GHRH 
for any given degree of SS inhibition than men, thus accounting for higher amplitude GH pulses. 
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