A Parallel Branch-and-Bound Method for Cluster Analysis

By: Lakshmi S. Iyer and J.E. Aronson.

lyer, L.S. and J.E. Aronson. (1999) “A Parallel Branch-and-Bound Method for Cluster
Analysis,” Annals of Operations Research Vol. 90, 65-86.

***© Springer Verlag. Reprinted with permission. No further reproduction is authorized
without written permission from Springer Verlag. This version of the document is not the
version of record. Figures and/or pictures may be missing from this format of the
document. ***

The final publication is available at Springer via
http://dx.doi.org/10.1023/A:1018925018009

Abstract:

Cluster analysis is a generic term coined for procedures that are used objectively to group entities
based on their similarities and differences. The primary objective of these procedures is to group
n items into K mutually exclusive clusters so that items within each cluster are relatively
homogeneous in nature while the clusters themselves are distinct. In this research, we have
developed, implemented and tested an asynchronous, dynamic parallel branchand-bound
algorithm to solve the clustering problem. In the developmental environment, several processes
(tasks) work independently on various subproblems generated by the branch-and-bound
procedure. This parallel algorithm can solve very large-scale, optimal clustering problems in a
reasonable amount of wall-clock time. Linear and superlinear speedups are obtained. Thus,
solutions to real-world, complex clustering problems, which could not be solved due to the lack
of efficient parallel algorithms, can now be attempted.

Keywords: integer programming | combinatorial optimization | parallel optimization | cluster
analysis

Article:
1. Introduction

The primary aim of parallel processing is to solve very large problems in less time. One of the
major concerns of the field of combinatorial optimization is to solve real-world problems
(typically large in size) efficiently and in less time. Technological improvements have stimulated
the application and design of parallel optimization algorithms. Clustering problems are highly
combinatorial in nature. Computation times increase tremendously with slight increases in
problem size. Often heuristics are applied to solve these problems because, in attempting to find
an optimal solution, a mathematical programming model of even small problems becomes a
large NP-complete combinatorial problem.

http://libres.uncg.edu/ir/uncg/clist.aspx?id=876
http://dx.doi.org/10.1023/A:1018925018009

Here, we describe the development, implementation and computational testing of a parallel
cluster analysis algorithm?). Our primary motivation is the need for an efficient algorithm that is
fast and cost-effective to solve cluster analysis problems. In addition to this, we are interested in
developing a general parallel branch-and-bound procedure that can be applied to cluster
analyses. The use of parallel processing can not only speed up the solution process, but also
increase the problem size for which an optimum can be found in a “reasonable” time frame.
Parallel processing is an appropriate strategy for branch-and-bound algorithms as different
branches of the tree can be independently evaluated by different processors. In the field of
combinatorial optimization, parallel branch-and-bound algorithms have been found to yield
solutions faster than serial methods.

Various systems are available to facilitate the development and implementation of parallel
algorithms. The Parallel Virtual Machine (PVM) is one such system that helps link heterogenous
computers and support the communication between various processors [33,34]. In general, PVM
can start more than once process (task) on any processor and also helps communication and
synchronization among the processes.

We have developed a dynamic, asynchronous parallel branch-and-bound algorithm to solve
cluster analysis problems on a PVM platform in the Unix environment. Generating subproblems
dynamically as opposed to statically has been found to yield not only better load balancing, but
also increased processor utilization. Since some parts of the branch-and-bound tree are fathomed
sooner than others, it would be difficult to use synchronized communication among processes.
Thus, the asynchronous communication mode is more appropriate for our method, which ensures
that all processors are active most of the time. Past research also supports the use of
asynchronous communication [4,14,26]. We expect our parallel algorithm to have a significant
impact on the solvability of large-scale clustering problems. Thus, solutions to real-world,
complex clustering problems, which could not be solved due to a lack of efficient parallel
algorithms, can now be attempted.

We next present a brief description of the optimal cluster analysis problem of interest, along with
its purpose and applications. We then describe the mathematical model of the optimal cluster
analysis model and algorithm on which the solution methodology of the parallel algorithm is
based. Finally, we provide a detailed description of the parallel method itself, implementation
issues, computational results and conclusions.

2. Cluster analysis

Classifying objects is an inherent property of human conceptual activity. It is also a fundamental
process in any scientific inquiry. The technique of cluster analysis has been applied for these
purposes for many years. Most of the early applications were in biology, where the term
taxonomy is more commonly used. Until the widespread use of computers, the field of clustering
was more of an art than a scientific endeavor. The complexity of clustering methods is known to
increase tremendously with an increase in problem size. However, radical advances in computer
technology allow us to handle the many complex computations necessary for applying clustering
techniques. These have not only lead to increased applications, but also to advances in solution
methodologies.

Cluster analysis is a general term for describing procedures that are used to classify a set of items
(objects, entities, or elements) into a specified number of groups (clusters). Clustering techniques
have been used for various purposes, some of which are data exploration model fitting,
hypothesis testing, data reduction, prediction, and pattern recognition. Applications of cluster
analysis can be found in various disciplines, such as artificial intelligence, botany, economics,
flexible manufacturing systems, information systems design, marketing, psychology, sociology,
and zoology.

There is an abundance of applications of cluster analysis to real-world problems. Some
interesting examples include analyzing large engineering records collections [18], measuring
welfare and quality of life across countries [16], management of cutting tools in flexible
manufacturing systems [8], group cell formation in manufacturing [24], clustering as a quality
management tool [32], identifying the structure and content of human decision making [1],
mapping consumers’ cognitive structures [17], information systems design [2,20,21,23],
grouping executive information benefits [19], seating guests at a wedding [15], vehicle routing,
production scheduling and sampling [30], and income tax bracket determination [27].

In the past couple of decades, both mathematicians and statisticians have been developing formal
models to solve clustering problems. However, since cluster analysis is well established in
statistics, very few mathematical programming approaches have been applied. But, most
statistical methods only attempt to lower the sum of interactions between each observation and
its group’s mean or median. In contrast, mathematical programming techniques can also account
for total group interaction (pairwise and independent of a mean or median), group size and
“weight” limitations, and precedence relations. These factors are critical in such applications as
information systems design, vehicle routing, production scheduling and others.

Although there are several methods to solve clustering problems, there is no unique classification
of the solution methods. This is considered to be a pitfall in this field. However, due to the works
of Cormack [7], Punj and Stewart [28] and Everitt [11], clustering techniques are broadly
classified as hierarchical, optimization, density search, clumping and other techniques.
Optimization techniques allow “relocation” of items during the clustering process, improving
from an initial solution to optimality. The number of clusters must be decided a priori, although
some methods allow for changes during analysis. Differences in optimization techniques exist
due to the different methods used to obtain a starting solution and different clustering criteria
used for obtaining an optimal solution [11]. Except for optimization methods, all the other
solution methods listed above do not guarantee an optimal solution.

Mulvey and Crowder [27] use a subgradient method coupled with a simple search procedure for
solving the clustering problem. However, their method does not yield an exact optimum.
Although heuristics seem to be efficient for solving very large problems, the need to obtain
optimal solutions for problems such as designing effective information systems [21,22] make
heuristics less attractive. Klein and Aronson [21] have developed a mixed-integer programming
model to find an optimal solution for clustering problems. Their method is based on the implicit
enumeration method of Balas [2]. The next section provides the details of their mathematical
model and serial solution methodology.

3. The optimal cluster analysis model and serial algorithm

The MIP model (GROUPS) for cluster analysis describes the grouping of n items into K
mutually exclusive groups. There is an interaction cost associated with any two items belonging
to the same group. This model tries to minimize the total sum of all pairwise interaction among
the items in each group [2,21]. It also accounts for precedence relations and group size and
weight limits. Depending on the application type, a data matrix represents either a similarity or
dissimilarity (distance) measure of the items to be clustered. Since the objective of the MIP
model is a minimizing function, the data matrix consists of dissimilarity measures between pairs
of items. The following notation is used in describing the model:

dij the positive distance (or dissimilarity measure) between item i and item j,

Xik a zero—one variable representing whether item i is in group k (=1) or not (=0),

Yij a zero—one variable representing whether item i and item j are in the same group (=1) or not
(=0),

K the desired number of groups, and

n the number of items.

In this paper, the terms items, entities, or elements are used interchangeably. Also, the terms
groups or clusters are used interchangeably, unless otherwise indicated. The mathematical
formulation for the cluster analysis problems may be stated as

(GROUPS)

-1 "

Z Z dy¥y

Minimize =1 i=i+l

subject to % =X+ X =1 for each (i, j) pair € each group

e, for=1,....n=1,j=i+l,....mk=1..K, (2)
K
Z Xp=1 foreachitemi=1n i(3)
k=1
Xy=0,1, fori=1...mk=1..K, i4)
Y =20, fori=L...,n=1,7=i+1,... .1 (5)

The objective function (1) minimizes all pairs of distances within groups. The constraint set (2)
relates group membership to the objective function. Equation (3) represents the constraint set
which ensures the assignment of each item to one group only. As the objective function drives
the Yij to its minimum or maximum, integrality conditions in constraint set (5) are unnecessary.
Further, since dij is positive, the upper bound of 1 for Yij can be omitted. When all distances are
strictly positive, the optimal number of groups K* = K; however, if any distances are negative,
then we can obtain K* < K. To handle negative distances, two set of constraints are added to the

model, along with a modification to constraint set (5). A continuous variable Zij is added to the
objective function to prevent the problem from being unbounded. The two new constraints and
modified (5) are

Zyiz (X + X;)/2, for each (i, j) pair € each group,

e, for=1._n=-1j=i+1.., mk=1....K, (6)
Wy < Zy, fori=1....n=-1,7=i+1l.....n, (7
Fy =0,1, fori=1..n=1,j+i+1....n (8)

Hence, the objective (1) is now changed to

=1 n
Minimize » 9. (dy¥; + MZ;), (9)

i=l j=i+l

where M is a large number. The Yij variables, which were formerly continuous, are now
restricted to be 0-1. When the MIP model is now solved, the optimal number of groups K* , 1 £
K * £ K, will automatically be chosen.

An inherent problem in using a mathematical programming approach to solve the cluster analysis
problem is its combinatorial nature. For any set of K optimal clusters, K! equivalent solutions
need to be evaluated. To facilitate the pruning of nodes in the branch-and-bound tree, implicit
constraints are added to reduce the number of nodes to be evaluated dramatically. The Level 1
implicit constraints are

i
> Xy=1, fori=1..K-1. (10)
k=1

These constraints replace the first K — 1 constraints in (3). Basically, item 1 is placed in group 1;
item 2 can then be placed in group 1 or 2; item 3 in group 1, 2 or 3; and so on up to item K — 1.

More restrictions are added to the model by using Level 2 implicit constraints. That is, if both
items 1 and 2 are placed in group 1, then item 3 need not be placed in group 3, item 4 in group 4,
etc., up to item K. These constraints are expressed as

Xy + X+ X2, fori=1,.. K (1)

These constraints are only valid for the case of no precedence or group limits. They dramatically
reduce the subproblems evaluated in the tree. In their test results, Aronson and Klein [2] indicate
that the implicit constraints reduced computation time by 80% by automatically pruning the
search tree.

The solution algorithm developed for this model by Aronson and Klein [2] utilizes multiple
branches from each node in the tree. Basically, the enumeration algorithm explores all

combinations of the binary variables to obtain an optimal solution. In combinatorial problems, it
would be computationally expensive to completely search the branch-and-bound tree. Hence, to
prune the branches of the tree which may not yield a better incumbent solution, various
fathoming strategies are used. Apart from implicit constraints, Aronson and Klein [2] compute
lower bounds (Bp) on the interactions of the remaining observations to be classified to fathom
nodes.

The serial solution algorithm uses a depth-first search strategy. In the branchand-bound tree
structure, the depth of the tree represents the observation under consideration, while the branches
represent group membership. Thus, for the clustering problem, in contrast to binary branching as
in Balas’s algorithm [3], we have multiple branching, where the maximum number of possible
branches at each node is K, the number of groups (i.e., each branch at depth p represents an
assignment to a unique group for item p). The depth of the tree is at most n, the number of items
to be clustered. A sample tree structure for grouping 3 items into 2 clusters is shown in figure 1.

Figure 1. Tree structure for grouping 3 items into 2 groups. In each node are the
node number, 1ts depth in the tree (= item number), and the group membership
assignment. Small nodes are implicitly enumerated (i.e., automatically fathomed).

Next, we present some additional notation used to describe the serial algorithm:

p : the current depth in the tree,

m : group membership indicator (from 1 to K),

Bp : bound on unassigned observations at depth p, n(m) : the number of observations in group m,
g : the number of groups with no membership,

SDI1J(p) : the objective value at node p,

Z : the objective value of the incumbent, and

Xii : the incumbent solution values of all Xik.

The serial clustering algorithm (GROUPS)

The serial clustering algorithm (GROUPS)

Step 0. Initialization. p=0. n(m)=0for m=1,.. K g=K, Z== X,; =10 for all
i, k. Y;=0forall i j. index =TRUE.

Step 1. While (index)

{ /* Increment search depth, 1.e., branch left */.

Setp=p+ 1l m=1nim=n(my+ 1. lfnim=1setg=g- 1. Xm: 1.
Y= land ¥, =1 for all j where X, =1.

/* Reasonability test, 1.e., check if the number of items left to be assigned 1s
less than number of groups with no membership. */

While (n—p = g)

VIF 2= SDIJ p) /* Modification of oniginal serial method. Check objec-
tive value before bound calculation */
{calculate B, IF Z> SDIJ(p)+ B,
iV IF p=r EXIT LOOP
set Xy =X, forall i, k; and set Z=S5DLJ p)}

;

While (m = K or nim) =1 and n(m+ 1) =0)

{ /* Fathom: depth retraction. */
Ao =0. Yy =0and ¥, =0 for all j where X, = 1. n(m)=nim)— 1.
p=p-1

IF (n(m)=0)setg=g+ 1. m=jwhere X, = 1.
IF p =0, set index = FALSE. EXIT LOOP /* optimal solution found */

/* Fathom: branch right on group. */

set X, =0. ¥, =0and ¥, =0 for all j, where X;,, = 1. n{m) = n(m) - 1.
m=m+ 1 n(m)=n(m)+ 1 Ifn(m)=1,setg=qg—1. SetX,,=1.¥,=1
and ¥, = 1 for all j where X}, =1}

End of the serial algorithm

The serial algorithm stated above is a slightly modified form of the original version. In the
modified verison, we calculate the lower bound at a node only if its current objective value is
better than the global upper bound. This saved almost 20% of the solution CPU time. We use the
CPU time obtained from this improved serial solution method (GROUPS) for evaluating the
parallel algorithm.

4. The parallel branch-and-bound algorithm Branch-and-bound has been a popular solution tool
for solving NP-complete combinatorial problems [9,13,25,31] for many years. Various strategies
have been employed for tree exploration in the branch-and-bound method. Choosing a particular
strategy depends on the number of processors available, the communication parameters (shared
and distributed), the number of processes that can be run on a process, and the characteristics of
the problem [6,13].

In our method, we use a Master—Slave configuration applicable on the Parallel Virtual Machine
(PVM) in a UNIX environment. The Master process activates or spawns the Slave processes and
coordinates information interchange among the processes. Apart from maintaining the processor
busy and idle queues, the Master process also controls the job queue and decides how to
distribute the work among the Slave processes. Thus, the Master process makes the key
decisions. The Slave processes perform the actual problem solving, evaluating and fathoming the
nodes in the tree. The Slave processes keep track of the local and global incumbent solution
objective values.

First, the Master process spawns all Slave processes so as to initialize all processes at the same
time, to exploit the advantages of parallelism to the fullest. The Master process assigns the busy
Slaves to the busy process queue, while the idle ones are assigned to an idle process queue.
Subproblems that are waiting to be assigned to idle Slaves are put in a job wait queue. Initially,
the Master process assigns item 1 to group 1 and then introduces a dichotomy in the tree. That is,
item 2 can now be placed in group 1 or 2, thus generating two subproblems which are assigned
to two idle Slave processes, if available; otherwise, they are placed in a job wait queue.

Each of these Slave processes works independently on its part of the subproblem. A Slave
process may send part of its tree to the Master process whose responsibility is to assign jobs to
idle processes. The generation of subproblems by a Slave process is done dynamically. Once it
reaches a specified depth (NDEPTH), it spins off the right branches to the Master process for
assignment to other idle Slave processes, while continuing to work on the left branch much like
the serial algorithm does. Subproblems are always generated from the top of the tree to ensure
that all Slaves have enough work as they proceed deeper in the tree. Whenever a Slave process
finds a new incumbent, it not only updates its local incumbent, but also broadcasts the objective
value to all other Slave processes. Each Slave checks for a global upper bound (GUBND) once
every NCHECK nodes are evaluated. The value of NCHECK is increased as we proceed deeper
in the tree. If a Slave process has finished evaluating its subproblem, it broadcasts an idle
message to the Master process that it needs another job.

The Master process then assigns a job from the job wait queue. However, if the job wait queue is
empty, it assigns the Slave process to the process idle queue for later use. The parallel branch-
and-bound methodology terminates if all the Slave processes are idle.

Therefore, there is communication not only between the Master and Slave processes, but also
among the Slave processes. The Master process receives the following three types of messages
from a Slave process:

(1) a new subproblem message (message type = Job),

(2) an idle message, if the Slave is done working on a subproblem (message type = Idle), and
(3) a DEAD message along with its solution to ensure that all Slaves are done and dead before
the Master terminates (message type = Dead).

Similarly, a Slave process can receive the following types of messages either from the Master
process or another Slave process:

(1) a new subproblem to be assigned to the Slave process from the Master process (message type
= New Job),

(2) an initial upper bound (GUBND) from the Master process (message type = GUBND),

(3) a new global upper bound (GUBND) from another Slave process during the optimization
procedure (message type = New GUB), and

(4) a KILL message, from Master Process when all Slaves are done (message type = KILL).

A depth-and-breadth-first combined strategy is used to explore the branch-andbound tree. As
mentioned earlier, a Slave process always explores the left branch of the subproblem (depth-first
approach). The right branch (or branches) are assigned to idle Slave Processes from the idle
process queue (breadth-first approach) until a certain depth (BDEPTH) is reached to ensure that
all Slave processes get enough work to do. After this depth is reached, the Slave process works
like a serial algorithm using the depth-first approach to avoid communication overload. Thus,
subproblems are explored both depth-wise and breadth-wise.

To formally present the parallel branch-and-bound algorithm for the clustering problem
(PGROUPS), we divide the algorithm into two parts: the Master algorithm and the Slave
algorithm. The communication between the two processes is handled by PVM. Only one copy of
the Master process is active at a given time, while several copies of Slave processes may be
running simultaneously. Some additional notation used in the description of the Master algorithm
follows:

busyp : number of busy Slave processes,

Idlep : number of idle Slave processes,

nproc : number of Slaves the Slave processes spawned,
wait_q : job wait queue,

Nodes : total number of nodes solved by each Slave process.

The Master algorithm

Step 1. Initialization. Read problem. Set wait_q to zero. Spawn nproc Slaves. Set
ldlep = nproc and busyp = 0. Depth =10,

Step 2. Find a heuristic solution. GUBND = the objective value of the heuristic solu-
tion. Broadcast GUBND to all Slaves.

Step 3. Assign, item | to group | and introduce a dichotomy in the tree. Ifnproc = 2,
one Slave gets the left branch while another gets the right branch; otherwise
Increment wait_q by one and add the right branch to wait_q. Update Idlep
and busyp.

Step 4. While (busyp = 0 or Idlep < nproc)

{Check for message type.
IF there 1s a message
{ IF new subproblem(s) from Slave: {add subproblem(s) to wait_gq}
ELSE /* it 1s a done message (1dle) from a Slave */
IF a Slave has not exceeded the time limit (LIM_TIME) then
update Idleg and busyp ELSE update only busyp but not Idleg.
ELSE {put the Master to sleep for a second
IF (busyp < nproc) | pick a subproblem randomly from the wait_gq and
send it to the 1dle Slave. Update wait_q}

]
]

Step 5. Send the KILL message to all Slaves.

Step 6. Receive a DEAD message from all Slaves. /* The DEAD message also in-
cludes solutions, nodes solved, and CPU and ELAPSED times */

End of the Master alzorithm

The Slave and Master algorithms are intertwined via the communication system. Not only can a
Slave send messages to and receive messages from the Master process, it can also send messages
to other Slave processes. We next present some notation used in the description of the Slave
algorithm:

checkdep : Depth at which to stop backtracking.

Depth : Depth at which the subproblem starts.

nextbdep : Next depth at which the Slave process needs to spin off subproblems.

NODES : Total number of nodes evaluated by the Slave process.

NITR : An iteration counter that keeps track of the number of times the search process reached
NDEPTH.

Maxdep : Depth at which the Slave process stops spinning off new subproblems.

The Slave algorithm

Step 1.

Step 2.

Step 3.
Step 4.

Initialization. Read problem. Set NODES, checkdep, nextbdep, NITR = 0.
Set parameters Maxdep and Bdepth. NDEPTH = INT(n/2) + 1.

Receive GUBND from the Master.
Call CPU and ELAPSED timers.

Check for message from the Master. While (message = KILL)
{Obtain tree info, Depth, and obj_val(Depth — 1), checkdep = Depth,
nextbdep = checkdep + 1. index = TRUE.
While (index)
{ IF (assignment 1s feasible)
{Calculate the objective value at the current depth.
IF (NCHECK nodes have been evaluated)
{check for a message from another Slave regarding the new GUBND.
IF one 1s found, then update GUBND}
IF ({objective value at the current depth + lower bound) = GUBND)
{1F (Depth = n) THEN
{1IF (Depth = NDEPTH) {NITR = NITR + |
IF ({{Depth = Bdepth) or {Depth = NDEPTH and NITR < 1)) and
(nextbdep = Maxdep)) THEN
{increment checkdep and nextbdep.
Send right branches to the Master and continue to work on the left-
most branch}
ELSE {Do not send subproblems. Branch left)}

'
i

Mew incumbent found. IF (incumbent objective value < Global_UBRB})

i store the solution, update Global_UB and broadcast i1t to all Slaves.
IF not the right most branch, THEN branch right

ELSE
IF limit time not exceeded execute the fathom routine to back the
last item out of stack

IF time limit exceeded

{index = FALSE, send process_id, Idle message, LIM_TIME message
to the Master}
h
ELSE Fathom node!
ELSE Fathom node!
IF (Depth (checkdep)
{IF (time limit exceeded)
{index = false}
Send process_id, Idle message, LIM_TIME message to the Master)
ELSE
i execute the fathom routine to back the last item out of stack|

)

[l
¥

Step 5. /* KILL message from the Master */ Collect CPU and ELAPSED times. Send
DEAD message, Slave solution, NODES, and ELAPSED time to the Master.

End of the Slave algorithm
5. Implementation parameters for the parallel algorithm

We implemented the parallel branch-and-bound algorithm on the IBM PowerParallel System
(SP-2) at University Computing & Network Services at the University of Georgia using the xIf
(f77) FORTRAN compiler under the AIX Version 3.2 (Unix) operating system. Our
programming environment is the Parallel Virtual Machine (PVM). PVVM function calls not only
allow the creation or termination of Slave processes, but also aid in the communication among
processes. Some of the parameters that are critical for a proper implementation of the parallel
algorithm are: communication, distribution of work and synchronicity.

5.1. Communication

In our branch-and-bound algorithm, the Slave processes and Master process must communicate
to share data. To reduce the communication complexity, the Slave processes perform the
fathoming operations (actual problem solving), while the Master process performs bookkeeping
operations, i.e., maintains the job wait queue and process idle or busy queues. In asynchronous
communication, when a Slave process finds a new incumbent solution, it transmits the objective
value to all other active Slave processes without waiting for the other Slave processes to finish
their work. When each active Slave process receives the new incumbent objective value, it
updates its global upper bound, which enhances the pruning operation. This not only maintains
the efficiency of the solution procedure, but also minimizes both communication complexity and
contention. The incumbent solution is not communicated to any process, since it is not needed in
the actual problem solving. Also, the Master process does not need to receive the new global
incumbent objective values. These further reduce communication contention.

5.2. Distribution of work Unsolved problems are kept in a job wait queue until they are allocated
to idle Slave processes. There are various strategies for treating a work pool (a location where
generated subproblems are stored). One of the methods is to use a single central pool that is
managed by the Master process [5,13]. An alternate approach is the use of multiple pools, where

there are several memory locations where processes can find and store their units of work
[10,13].

We use the single central pool strategy as it is relatively easy to keep track of active subproblems
that are waiting to be assigned to a Slave process. The Master process maintains this central pool,
to which it adds the new subproblems generated by a Slave process. When a Slave process
becomes idle, the Master process assigns a subproblem to it. If there are no subproblems in the
central pool, the Slave process is added to the process idle queue.

5.3. Synchronicity

A synchronous algorithm divides work into phases such that within each phase, processes
perform their jobs independently, while communication occurs only between phases. Our
method is asynchronous in nature to avoid the inherent idle time caused by synchronous
methods. Prior research indicates that the nondeterministic nature of asynchronous algorithms
yield better results as compared to synchronous algorithms [14,29].

6. Implementation issues

The University of Georgia’s IBM SP-2 is a dedicated machine with eight processors (nodes) of
which only four are available. In our parallel algorithm, the Slave processes do most of the work.
Preliminary test results indicated that the Master process is active for only about 0.1% of the
time. PVM facilitates running a Master process and one Slave process on a single node of the
IBM SP-2 when the ip mode (Internet Protocol (IP)) is used for communication. Alternatively,
the user mode (which has a low-latency protocol) allows for only one process per node. The
bandwidth (speed) is the same (40 MB s) as in user mode, but the startup time for each
communication (latency) is higher than that of the user mode. Although communication latency
is slightly higher in the case of the ip mode, we gain a usable processor by activating the Master
process and a Slave process on the same processor. Hence, we adopted the ip mode (high
latency) for all our tests.

To make the solution time comparisons more meaningful, both GROUPS and PGROUPS were
implemented on the IBM SP-2. For GROUPS, only one processor is used, while in PGROUPS,
the number of processors is always equal to the number of Slave processes. In PGROUPS, the
Master process and the first Slave process are activated on the same physical processor, while all
other Slave processes are activated on unique physical processors. Because of the way the
operating system time shares the work in a processor, we found it necessary to put the Master
process to sleep for one second (see step 4 of the Master algorithm). This keeps the Slave process
that shares the processor with the Master process running and the load balancing even.

The CPU time to find and verify optimality is measured for both GROUPS as well as for
PGROUPS. The CPU time is congruous to wall-clock time on the IBM SP- 2, since it is a
dedicated computing environment. In addition to CPU time, we also tally the total number of
branch-and-bound nodes evaluated by each Slave process during the optimization process. We
use this to test load balancing in the parallel tests. Since our algorithm differs only in the

optimization part, we do not measure the CPU time needed to read the problem data. In
PGROUPS, all processes read the problem data at the same time during initialization.

We used real-world problem data as well as randomly generated clustering problems to test our
algorithm. We used uniform distributions (with a random number seed, LSEED) for the
randomly generated problems. Since the time limit on the IBM SP-2 is 6 CPU hours (21,600
CPU seconds), we considered problems that required 6 CPU hours or less in serial for our
evaluation. We included code to detect the condition for a graceful exit rather than a system
imposed termination. Also, we did not consider problems where GROUPS required less than 150
CPU seconds to obtain an optimum, since its parallel counterpart involves some communication
and the overall time would be too small to show the effectiveness of PGROUPS. Our real-world
problem data was from an industry survey of grouping the benefits of executive information
systems [19]. Table 1 shows the specifications of the problem sets (both randomly generated and
real-world problem data) used to evaluate PGROUPS. The problem_id for randomly generated
data sets begin with the letter R, the first number indicates the number of items and the second
number indicates the number of groups (i.e., R-22-5 indicates it is a randomly generated problem
set for which 22 items are grouped into 5 clusters). Likewise, in the problem_id for real-world
problem sets, the text indicates the base problem, while the two numbers indicate the number of
items and the groups respectively (i.e., EIS-23-5 indicates it is the data associated with grouping
23 EIS benefits into 5 clusters).

Within the Master Process, we use another random number seed, NSEED, to set the random
number generator used to select a subproblem to be assigned to an idle Slave process from the
central pool of jobs. Prior research [14] and preliminary test results indicate that randomizing the
subproblems increases the likelihood of obtaining an optimal solution early as compared to using
the last-in-first-out (LIFO) or first-in-first-out (FIFO) strategy.

Table 1

Specifications of problem sets used for evaluating PGROUPS.,

Problem_id ltems GROUPS LSEED Cost range
R-22-3 22 3 196719 1-100
R-23-3A 23 3 196719 1-100
R-12-6 22 <] 3faenT 1-100
R-13-6 23 <] 3faenT 1-100
R-23-3B 23 3 2719 1-100
R-25-3 25 3 196719 1-100
El5-23-4 23 4

El5-23-53 23 3

El5-23-6 23 5]

El5-23-7 23 7

The initial setup of GROUPS and PGROUPS are similar. That is, after the input data are read, an
initial feasible heuristic solution based on an improvement heuristic algorithm [2] is found. For
problems with no side constraints, the following heuristic was developed to obtain a good initial
incumbent:

Improved heuristic

Step 1. Inmitialization. Set L, = n/ K, the group limit for k= 1,..., K groups. If the ratio
n/K is not an integer then increment L, by 1, starting with group 1 until
YLi=nSetk=1,¢=1

Step 2. While (£ £ K)
| While (group & 1s NOT full and more items are available)
{Place item ¢ into group k
Select item ¢’ as the closest one to item ¢
Sete=c¢"}
k=k+1
set ¢ = lst available item)

In most cases, this heuristic improved the initial solution objective value by at least 20%. The
global upper bound is assigned the objective value of this heuristic solution. This improvement
combined with the modification in GROUPS decreased the overall solution CPU time by 40%.
Once an optimum is found and verified, the procedure terminates. As mentioned earlier, since
the two methods vary only in the optimization procedure, the solution time is determined from
the start of the optimization step until all necessary nodes have been explored and an optimum is
found and verified. Thus, the solution time of PGROUPS is the time from the beginning of the
optimization process until all Slave processes have gone idle after having explored all necessary
nodes and confirmed its optimality. In both GROUPS and PGROUPS, the procedure terminates
with a warning message when the maximum time of 6 CPU hours (21,600 seconds) is exceeded,
or if it encounters an execution error.

7. Computational results

Due to the dedicated nature of the IBM SP-2, there was no significant difference in the CPU
times obtained for GROUPS, when the test problems were repeated. Hence, we only report the
CPU times obtained from one run for each test problem. As for PGROUPS, there were slight
differences because of the randomness in subproblem selection. In table 2 we present the CPU
times obtained using GROUPS, and PGROUPS on one, two, three and four processors (P1, P2,
P3, P4) for all ten problems. Table 3 provides a summary of the total nodes evaluated by
GROUPS and PGROUPS for one, two, three and four processors (P1, P2, P3, P4). For P2, P3
and P4, we also present the total nodes evaluated by each of the Slave processes.

Table 2

Solution CPLU times {in seconds) using GROUPS (senal imple-
mentation on a single processor) and PGROUPS using one, two,
three, and four processors (P1, P2, P3_and P4) on an IBM SP-2.

Problem_id GROUPS Solution CPU time
Solution

CPU time Pl Pz F3 P4
R-22-3 4356 372 159 112 &7
R-13-3A 1074 1073 586 370 259
R-22-6 1497 1317 T03 451 381
R-23-6 3T 2ERG 1887 46 EOB
R-13-5B 2384 2677 1201 £27 371
R-23-3 tdd] TI83 a4 2397 1483
El5-23-4 i 360 180 121 93
El5-23-3 2105 21269 1124 759 583
El5-23-6 T926 B482 41949 2501 2150
El5-23-7 11699 12387 GOEE 4064 3010

The efficacy of the parallel algorithm is measured using the following metrics: speedup and load
balancing (i.e., the proportion of work done by each Slave process is the same). We determine
both absolute and relative speedup of the parallel algorithm. Absolute speedups for P1, P2, P3
and P4 are calculated by dividing the serial solution time by the parallel solution time; relative
speedups for P2, P3 and P4 are determined by dividing the P1 solution CPU time by the solution
CPU times for P2, P3 and P4, respectively. For half the test problems, PGROUPS with only one
Slave process (P1) was faster than GROUPS. The mean of all 10 runs indicates a 2.8%
improvement. On the one hand, one could argue that P1 is the best serial algorithm since it runs
one processor. On the other hand, two processes are required. Rather than belabor the point, we
report both the absolute and relative speedups in this paper.

Table 3

Number of branch-and-bound tree nodes evaluated using GROUPS (serial implementation on a
single processor) and PGROUPS using one, two, three, and four processors (P1, P2, P3, and P4).

Pml:rl:m_Ld GROUPS Fl P2
Slave 1
Slave 1 Slave 2 Total
R-22-3 49037754 1547364 15117621 15T6M64 3 FO8ET264
R-23-3A PO485266 91625417 0408992 49624287 100033279
R-22-f 124932382 146243100 T34T0T362 1026609 154497371
R-23-6 285847135 292558866 192278051 187750042 FRO02B093
R-23-5B 235617845 246322129 109561824 113705466 223267200
R-25-5 S27010231 553097312 2EITHITTG 2R117T181 SH491H060
El%-23-4 22436148 22436008 11246218 1135049408 22606216
El%-23-5 208KE52347 208852267 103042467 107178837 210221304
EI%-23-6 Qh6142668 GG 142607 474617206 494728126 GhHU345332
El%-23-7 1646138739 1659969380 10547920 $40234278 1651182198
PI'nH:m_Ld GROLUPS Pl B3
Slave 1
Slave 1 Slave 2 Slave 3 Total
R-22-3 45037754 3547368 10653376 10778688 10415015 J184 707900
R-23-5A Qo4 85266 Q1625417 J1806843 31413733 32035203 5255479
R-22-f 124932342 146243100 49626117 48513823 493173813 147513753
R-23-f 245847155 202554806 Q3186347 GUTs0644 05795154 2HKET32345
R-23-5B 235617845 246322129 73319241 TI901487 TT660E44 22EER15T2
R-25-3 327010231 553097312 175916473 181402331 19224568 49564674
El%-23-4 22436148 22436098 T485652 7573392 TaR6209 22743293
El%-23-3 208852347 208832287 6ETI2T758 TI044486 T1747799 211505043
El%-23-6 66142668 Qh6142607 32702727 323815776 121656914 Q72490060
EI%-23-7 1646158750 1659095380 5244665920 61108027 AR5120608 1651095564
PrnH:m_Ld GROLPS Pl P4
Slave 1
Slave 1 Slave 2 Slave 3 Slave 4 Total
R-22-5 49037734 1547368 B015171 2724760 TRIS2R4 THYT460 32252684
R-23-5A Qo4 85260 Q1625417 21385522 22813513 22724856 21640662 HRS5H45533
R-22-f 124932342 146243100 41842951 38053141 37423018 37423018 155539041
R-23-f 245847155 2025584866 H04TE219 4036889 THEIATIE H41 14491 327166339
R-23-38B 235617845 246322129 49484846 30935102 34544226 33TR0482 208724656
R-25-3 327010231 353097312 110358157 116623044 110647746 11763739%4 455268341
El%-23-4 22436148 22436098 1538901 S6TI607 GO34506 SH30362 22001466
El%-23-5 20852347 2BHS228T 33162079 52045473 54092710 53506735 212806997
EI%-23-6 66142668 Gh6142607 Z2R116130 2509805309 242603630 245049630 BT 5664650
EI%-23-7 1646158759 16599609380 406609613 J0TIH30956 430274031 402090310 165626659190

Table 4

Summary of absolute speedups (GROUPS /PGROUPS).

Problem_id GROUPS Pl P2 P3 P4

R-22-5 1 1226 2868 4071 3241
R-23-5A 1 1.001] 1.833 2903 4,147
R-22-6 1 1,137 2132 3319 3.929
R-23-6 1 1307 2001 39592 4673
R-23-5B 1 0891 1.985 2883 4175
R-25-5 1 0884 1734 2687 4343
El5-23-4 1 1031 2061 3066 3989
El5-23-5 1 0928 1873 2773 3611
El5-23-6 1 0934 1888 2732 3619
E15-23-7 1 0944 1522 28TY 3BE7
Mean 1 1.028 2030 3131 4162
Standard deviation 0.0 0,147 0316 03508 0497
Maximum 1 1307 2868 4071 3241
Minimum 1 0384 1.734 2687 3.6l

In determining the absolute speedup, we use the CPU time for the sequential algorithm. We also
present the relative speedup to evaluate the performance of PGROUPS with respect to P1. Table
4 summarizes the absolute speedups for PGROUPS, while table 5 provides the relative speedups
for PGROUPS.

To determine if equal work load is obtained by the Slave processes for P2, P3 and P4, we divide
the number of nodes evaluated by each of the Slave processes by the total number of nodes
evaluated by PGROUPS in each case. Table 6 provides a summary of load balancing for
PGROUPS. On average, each Slave process has performed an (approximately) equal share of the
optimization work.

8. Summary and conclusions

We have developed, implemented and tested a dynamic, asynchronous parallel algorithm
(PGROUPS) to execute a branch-and-bound methodology to solve cluster analysis problems on a
PVM platform. The cluster analysis problem defines the grouping of n items into K groups,
where items in each group are highly homogenous in nature while the clusters themselves are
distinct. Clustering problems are highly combinatorial in nature and, hence, optimization
methods take a long time to obtain an optimum for even medium-sized problems.

Table 5

Summary of relative speedups (P1,/PGROUPS).

Problem _id Pl P2 P3 P4
R-22-5 2340 3321 4276
R-23-5A 1.831 2900 4143
R-22-6 1876 2920 3457
R-23-6 1.531 3054 3575
R-23-5B 2229 3237 4688

1
1
1
1
1
R-23-3 1 1.961 3038 4911
1
1
1
1
1

ElS-23-4 2.000 2.975 3871
EIS-23-5 2.019 2989 3892
EIS-23-6 2.020 2.924 1873
EIS-23-7 2.035 3048 4115
Mean 1,984 3041 4080
Standard deviation 0.0 0219 0.13% (1456
Maximum 1 2,340 3.321 44911
Minimum 1 1.531 2,900 3457

Our solution methodology is based on the serial branch-and-bound method (GROUPS)
developed by Aronson and Klein [2]. However, before developing the parallel method, we
improved their serial method in two ways. First, we modified the heuristic to get a better initial
solution for pure clustering problems (i.e., with no side constraints). Secondly, we improved the
bound fathoms by not calculating the lower bounds unless the objective value at the current node
was better than the global upper bound. These improvements improved the solution CPU time of
the serial GROUPS by almost 40%.

PGROUPS was implemented on the IBM Scalably PowerParallel System (SP-2), a distributed
memory multiprocessor, using the Internet protocol communication switch (high latency).
PGROUPS was evaluated on a set of ten problems (both randomly generated and real-world
problem data) using up to four processors. For half of the test problems, we obtained superlinear
speedups. On average, we obtain superlinear speedups (both absolute and relative) for
PGROUPS. In addition, PGROUPS also achieves even load balancing among the Slave
processes (for P1, P2, P3 and P4), thus fully realizing the advantages of parallelism.

Restriction of the SP-2 configuration to run only one process per node, using the low latency
communication switch, was one of the limitations in testing PGROUPS. This increased the
communication penalty slightly, but we gained the full use of a processor from the high latency
switch. Another limitation is the 6 hour time limit for using the IBM SP-2 which curtailed our
ability to solve larger problems using GROUPS. Thus, our sample is somewhat limited.

Table &

Summary of load balancing (proportion of nodes evaluated by each Slave process/total nodes
evaluated by PGROUPS) for P2, P3, and P4,

Problem_id P2 P3 P4

Slave 1 Slave 2 Slave 1 Slave 2 Slave 3 Slave 1 Slave 2 Slave 3 Slave 4

R-22-5 0489 0511 0335 0338 0327 0257 0250 0247 0247
R-23-5A 0304 0496 0334 0330 0336 (241 0258 0257 0244
R-22-6 0476 0524 0336 0329 0335 0271 0246 0242 0242
R-23-6 0306 0494 0323 0345 0332 0246 0257 0240 0257
R-23-5B 0491 0509 0320 0340 0339 0237 0244 0261 0258
R-25-5 0302 0498 0320 0330 0350 0242 0256 0243 0258
EIS-23-4 0497 0.503 0.32% 0333 0338 0234 0248 0264 0255
El5-23-5 0490 0510 0325 0336 0339 0,250 0245 0234 0251
El5-23-6 0490 0510 0336 0333 0331 0234 0266 0249 0251
El5-23-7 0491 0509 0318 0340 0342 0245 0246 0265 0243
Mean 0494 0.506 0328 0336 0337 0246 0252 0252 0251
Std. deviation 0.009 0.009 0007 0005 0006 001l 0007 0009 0006
Maximum 0306 0524 0336 0346 0350 0271 0266 0265 0258
Minimum 0476 0494 0318 0329 0327 (234 0244 0240 0242

Our test results indicate that PGROUPS has the potential to solve large, complex cluster analysis
problems efficiently. We were limited in our testing to at most four processors and we recognize
that to generalize our results further testing on a largescale, multiple instruction, multiple data
computer, such as an IBM SP-2 with 512 processors, is warranted.

Acknowledgement
Jay E. Aronson was partially supported by a Fellowship from The Terry and Selig Foundations.
References

[1] S.T. Allison, A.M.R. Jordan and C.E. Yeatts, A cluster-analytic approach toward identifying
the structure and content of human decision making, Human Relations 45(1992)49-73.

[2] J.E. Aronson and G. Klein, A clustering algorithm for computer-assisted process
organization, Decision Sciences 20(1989)730-745.

[3] E. Balas, An additive algorithm for solving linear programs with zero—one variables,
Operations Research 13(1965)517-546.

[4] D.P. Bertsekas and DA. Castafion, Parallel asynchronous Hungarian methods for the
assignment problem, ORSA Journal on Computing 5(1993)261-274.

[5] A. de Bruin, A.H.G. Rinnooy Kan and H.W.J.M. Trienekens, A simulation tool for the
performance evaluation of parallel branch-and-bound algorithms, Mathematical Programming
42(1988)245- 271.

[6] J. Clausen and J.L. Tréff, Implementation of parallel branch-and-bound algorithms:
Experiences with graph partitioning problems, Annals of Operations Research 33(1991)331-349.

[7] R.M. Cormack, A review of classification, Journal of the Royal Statistical Society, Series A
134 (1971)321-367.

[8] R.B.R. DeSouza and R. Bell, A tool cluster based strategy for the management of cutting
tools in flexible manufacturing systems, Journal of Operations Management 10(1991)73-91.

[9] S. Dowaji and C. Roucairol, Load balancing strategy and priority of tasks in distributed
environments, Rapport de Recherche (Research Report) RR-94 32, Laboratoire PRiSM,
Université de Versailles, Saint-Quentin-en-Yvelines, Versailles, France, October, 1994.

[10] J. Eckstein, How much communication does parallel branch and bound need?, in:
Proceedings of the Parallel Optimization Colloguium POC-96, Université de Versailles,
Versailles, France, March, 1996, pp. 59-68.

[11] B. Everitt, Cluster Analysis, 2nd ed., Halsted Press, Division of Wiley, New York, NY,
1980.

[12] A. Ferrenberg, University Computing & Network Services, The University of Georgia,
Athens, GA, private communication, April, 1996. [13] B. Gendron and T.G. Crainic, Parallel
branch-and-bound algorithms: Survey and synthesis, Operations Research 42(1994)1042-1066.

[14] B. Gupta, A parallel multiperiod assignment algorithm, Doctoral Dissertation, Terry College
of Business Administration, University of Georgia, Athens, GA, 1995.

[15] K.M. Hilmer and J.E. Aronson, A visual front end to a cluster analysis algorithm, Technical
Report, The University of Georgia, Athens, GA, 1993.

[16] J.G. Hirschberg, E. Maasoumi and D.J. Slottje, Cluster analysis for measuring welfare and
quality of life across countries, Journal of Econometrics 50(1991)131-150.

[17] G.P. Hodgkinson, J. Padmore and A.E. Tomes, Mapping consumers’ cognitive structures: A
comparison of similarity trees with multidimensional scaling and cluster analysis, European
Journal of Marketing 25(7)(1991)41-60.

[18] A.S. Homayoun, The use of cluster analysis in analyzing large engineering records
collection, Records Management Quarterly (October 1984)22-25.

[19] S.L. lyer and J.E. Aronson, Grouping EIS benefits: An optimal clustering approach,
Proceedings of the Americas Conference on Information Systems, Pittsburgh, PA, August, 1995.

[20] J. Karimi, An automated software design methodology using CAPO, Journal of
Management Information Systems 3(3)(1986)71-100.

[21] G. Klein and J.E. Aronson, Optimal clustering: A model and method, Naval Research
Logistics 38(1991)447-461.

[22] G. Klein, P.O. Beck and B.R. Konsynski, Computer aided process structuring via mixed
integer programming, Decision Sciences 19(1988)750-761. [

23] G. Klein, D.B. Tesch, J.E. Aronson and P.O. Beck, A computer-aided process structuring
methodology, Working Paper, Louisiana Tech University, Ruston, LA, 1995.

[24] S. Kulkarni, D.F. Rogers, and J.E. Aronson, An optimal clustering model for cellular
manufacturing, Conference Presentation, INFORMS, Washington, DC, May, 1996.

[25] E.L. Lawler and D.E. Wood, Branch-and-bound algorithms: A survey, Operations Research
14(1966) 699-719. [26] J. Mohan, Experience with two parallel programs solving the travelling
salesman problem, in: Proceedings of the 1983 International Conference on Parallel Processing,
1983, pp. 191-193.

[27] J. Mulvey and H. Crowder, Cluster analysis: An application of Lagrangian relaxation,
Management Science 25(1979)329-340. [

28] G. Punj and D.W. Stewart, Cluster analysis in marketing research: Review and suggestions
for application, Journal of Marketing Research 20(1983)134-148.

[29] M.J. Quinn, Analysis and implementation of branch-and-bound algorithms on a hypercube
multicomputer, IEEE Transacitons on Computers 39(1990)384-387.

[30] H. Romesburg, Cluster Analysis for Researchers, Lifetime Learning Publications. Belmont,
CA, 1984,

[31] C. Roucairol, Parallel processing for difficult combinatorial optimization problems,
European Journal of Operations Research 92(1996)573-590.

[32] A.W. Spisak, Cluster analysis as a quality management tool, Quality Progress
25(12)(1992)33-38.

[33] V.S. Sunderam, PVM: A framework for parallel distributed computing, Concurrency,
Practice and Experience 2(4)(1990)315-339.

[34] V.S. Sunderam, and G.A. Geist, The PVM system: Supercomputer-level concurrent
computation on a network of IBM RISC System 6000 POWERstations, Reprinted from
Scientific Excellence In Supercomputing: The 1990 IBM Contest Prize Papers, vol. 2, eds. K.
Billingsley, H. Brown and E. Derohanes, The Baldwin Press, The University of Georgia, Athens,
GA, 1992, pp. 779-804.

