
A Parallel Branch-and-Bound Method for Cluster Analysis

By: Lakshmi S. Iyer and J.E. Aronson.

Iyer, L.S. and J.E. Aronson. (1999) “A Parallel Branch-and-Bound Method for Cluster

Analysis,” Annals of Operations Research Vol. 90, 65-86.

***© Springer Verlag. Reprinted with permission. No further reproduction is authorized

without written permission from Springer Verlag. This version of the document is not the

version of record. Figures and/or pictures may be missing from this format of the

document. ***

The final publication is available at Springer via

http://dx.doi.org/10.1023/A:1018925018009

Abstract:

Cluster analysis is a generic term coined for procedures that are used objectively to group entities

based on their similarities and differences. The primary objective of these procedures is to group

n items into K mutually exclusive clusters so that items within each cluster are relatively

homogeneous in nature while the clusters themselves are distinct. In this research, we have

developed, implemented and tested an asynchronous, dynamic parallel branchand-bound

algorithm to solve the clustering problem. In the developmental environment, several processes

(tasks) work independently on various subproblems generated by the branch-and-bound

procedure. This parallel algorithm can solve very large-scale, optimal clustering problems in a

reasonable amount of wall-clock time. Linear and superlinear speedups are obtained. Thus,

solutions to real-world, complex clustering problems, which could not be solved due to the lack

of efficient parallel algorithms, can now be attempted.

Keywords: integer programming | combinatorial optimization | parallel optimization | cluster

analysis

Article:

1. Introduction

The primary aim of parallel processing is to solve very large problems in less time. One of the

major concerns of the field of combinatorial optimization is to solve real-world problems

(typically large in size) efficiently and in less time. Technological improvements have stimulated

the application and design of parallel optimization algorithms. Clustering problems are highly

combinatorial in nature. Computation times increase tremendously with slight increases in

problem size. Often heuristics are applied to solve these problems because, in attempting to find

an optimal solution, a mathematical programming model of even small problems becomes a

large NP-complete combinatorial problem.

http://libres.uncg.edu/ir/uncg/clist.aspx?id=876
http://dx.doi.org/10.1023/A:1018925018009

Here, we describe the development, implementation and computational testing of a parallel

cluster analysis algorithm1). Our primary motivation is the need for an efficient algorithm that is

fast and cost-effective to solve cluster analysis problems. In addition to this, we are interested in

developing a general parallel branch-and-bound procedure that can be applied to cluster

analyses. The use of parallel processing can not only speed up the solution process, but also

increase the problem size for which an optimum can be found in a “reasonable” time frame.

Parallel processing is an appropriate strategy for branch-and-bound algorithms as different

branches of the tree can be independently evaluated by different processors. In the field of

combinatorial optimization, parallel branch-and-bound algorithms have been found to yield

solutions faster than serial methods.

Various systems are available to facilitate the development and implementation of parallel

algorithms. The Parallel Virtual Machine (PVM) is one such system that helps link heterogenous

computers and support the communication between various processors [33,34]. In general, PVM

can start more than once process (task) on any processor and also helps communication and

synchronization among the processes.

We have developed a dynamic, asynchronous parallel branch-and-bound algorithm to solve

cluster analysis problems on a PVM platform in the Unix environment. Generating subproblems

dynamically as opposed to statically has been found to yield not only better load balancing, but

also increased processor utilization. Since some parts of the branch-and-bound tree are fathomed

sooner than others, it would be difficult to use synchronized communication among processes.

Thus, the asynchronous communication mode is more appropriate for our method, which ensures

that all processors are active most of the time. Past research also supports the use of

asynchronous communication [4,14,26]. We expect our parallel algorithm to have a significant

impact on the solvability of large-scale clustering problems. Thus, solutions to real-world,

complex clustering problems, which could not be solved due to a lack of efficient parallel

algorithms, can now be attempted.

We next present a brief description of the optimal cluster analysis problem of interest, along with

its purpose and applications. We then describe the mathematical model of the optimal cluster

analysis model and algorithm on which the solution methodology of the parallel algorithm is

based. Finally, we provide a detailed description of the parallel method itself, implementation

issues, computational results and conclusions.

2. Cluster analysis

Classifying objects is an inherent property of human conceptual activity. It is also a fundamental

process in any scientific inquiry. The technique of cluster analysis has been applied for these

purposes for many years. Most of the early applications were in biology, where the term

taxonomy is more commonly used. Until the widespread use of computers, the field of clustering

was more of an art than a scientific endeavor. The complexity of clustering methods is known to

increase tremendously with an increase in problem size. However, radical advances in computer

technology allow us to handle the many complex computations necessary for applying clustering

techniques. These have not only lead to increased applications, but also to advances in solution

methodologies.

Cluster analysis is a general term for describing procedures that are used to classify a set of items

(objects, entities, or elements) into a specified number of groups (clusters). Clustering techniques

have been used for various purposes, some of which are data exploration model fitting,

hypothesis testing, data reduction, prediction, and pattern recognition. Applications of cluster

analysis can be found in various disciplines, such as artificial intelligence, botany, economics,

flexible manufacturing systems, information systems design, marketing, psychology, sociology,

and zoology.

There is an abundance of applications of cluster analysis to real-world problems. Some

interesting examples include analyzing large engineering records collections [18], measuring

welfare and quality of life across countries [16], management of cutting tools in flexible

manufacturing systems [8], group cell formation in manufacturing [24], clustering as a quality

management tool [32], identifying the structure and content of human decision making [1],

mapping consumers’ cognitive structures [17], information systems design [2,20,21,23],

grouping executive information benefits [19], seating guests at a wedding [15], vehicle routing,

production scheduling and sampling [30], and income tax bracket determination [27].

In the past couple of decades, both mathematicians and statisticians have been developing formal

models to solve clustering problems. However, since cluster analysis is well established in

statistics, very few mathematical programming approaches have been applied. But, most

statistical methods only attempt to lower the sum of interactions between each observation and

its group’s mean or median. In contrast, mathematical programming techniques can also account

for total group interaction (pairwise and independent of a mean or median), group size and

“weight” limitations, and precedence relations. These factors are critical in such applications as

information systems design, vehicle routing, production scheduling and others.

Although there are several methods to solve clustering problems, there is no unique classification

of the solution methods. This is considered to be a pitfall in this field. However, due to the works

of Cormack [7], Punj and Stewart [28] and Everitt [11], clustering techniques are broadly

classified as hierarchical, optimization, density search, clumping and other techniques.

Optimization techniques allow “relocation” of items during the clustering process, improving

from an initial solution to optimality. The number of clusters must be decided a priori, although

some methods allow for changes during analysis. Differences in optimization techniques exist

due to the different methods used to obtain a starting solution and different clustering criteria

used for obtaining an optimal solution [11]. Except for optimization methods, all the other

solution methods listed above do not guarantee an optimal solution.

Mulvey and Crowder [27] use a subgradient method coupled with a simple search procedure for

solving the clustering problem. However, their method does not yield an exact optimum.

Although heuristics seem to be efficient for solving very large problems, the need to obtain

optimal solutions for problems such as designing effective information systems [21,22] make

heuristics less attractive. Klein and Aronson [21] have developed a mixed-integer programming

model to find an optimal solution for clustering problems. Their method is based on the implicit

enumeration method of Balas [2]. The next section provides the details of their mathematical

model and serial solution methodology.

3. The optimal cluster analysis model and serial algorithm

The MIP model (GROUPS) for cluster analysis describes the grouping of n items into K

mutually exclusive groups. There is an interaction cost associated with any two items belonging

to the same group. This model tries to minimize the total sum of all pairwise interaction among

the items in each group [2,21]. It also accounts for precedence relations and group size and

weight limits. Depending on the application type, a data matrix represents either a similarity or

dissimilarity (distance) measure of the items to be clustered. Since the objective of the MIP

model is a minimizing function, the data matrix consists of dissimilarity measures between pairs

of items. The following notation is used in describing the model:

dij the positive distance (or dissimilarity measure) between item i and item j,

Xik a zero–one variable representing whether item i is in group k (=1) or not (=0),

Yij a zero–one variable representing whether item i and item j are in the same group (=1) or not

(=0),

K the desired number of groups, and

n the number of items.

In this paper, the terms items, entities, or elements are used interchangeably. Also, the terms

groups or clusters are used interchangeably, unless otherwise indicated. The mathematical

formulation for the cluster analysis problems may be stated as

(GROUPS)

Minimize

subject to , for each (i, j) pair each group

The objective function (1) minimizes all pairs of distances within groups. The constraint set (2)

relates group membership to the objective function. Equation (3) represents the constraint set

which ensures the assignment of each item to one group only. As the objective function drives

the Yij to its minimum or maximum, integrality conditions in constraint set (5) are unnecessary.

Further, since dij is positive, the upper bound of 1 for Yij can be omitted. When all distances are

strictly positive, the optimal number of groups K* = K; however, if any distances are negative,

then we can obtain K* < K. To handle negative distances, two set of constraints are added to the

model, along with a modification to constraint set (5). A continuous variable Zij is added to the

objective function to prevent the problem from being unbounded. The two new constraints and

modified (5) are

Hence, the objective (1) is now changed to

where M is a large number. The Yij variables, which were formerly continuous, are now

restricted to be 0–1. When the MIP model is now solved, the optimal number of groups K* , 1 £

K * £ K, will automatically be chosen.

An inherent problem in using a mathematical programming approach to solve the cluster analysis

problem is its combinatorial nature. For any set of K optimal clusters, K! equivalent solutions

need to be evaluated. To facilitate the pruning of nodes in the branch-and-bound tree, implicit

constraints are added to reduce the number of nodes to be evaluated dramatically. The Level 1

implicit constraints are

These constraints replace the first K – 1 constraints in (3). Basically, item 1 is placed in group 1;

item 2 can then be placed in group 1 or 2; item 3 in group 1, 2 or 3; and so on up to item K – 1.

More restrictions are added to the model by using Level 2 implicit constraints. That is, if both

items 1 and 2 are placed in group 1, then item 3 need not be placed in group 3, item 4 in group 4,

etc., up to item K. These constraints are expressed as

These constraints are only valid for the case of no precedence or group limits. They dramatically

reduce the subproblems evaluated in the tree. In their test results, Aronson and Klein [2] indicate

that the implicit constraints reduced computation time by 80% by automatically pruning the

search tree.

The solution algorithm developed for this model by Aronson and Klein [2] utilizes multiple

branches from each node in the tree. Basically, the enumeration algorithm explores all

combinations of the binary variables to obtain an optimal solution. In combinatorial problems, it

would be computationally expensive to completely search the branch-and-bound tree. Hence, to

prune the branches of the tree which may not yield a better incumbent solution, various

fathoming strategies are used. Apart from implicit constraints, Aronson and Klein [2] compute

lower bounds (Bp) on the interactions of the remaining observations to be classified to fathom

nodes.

The serial solution algorithm uses a depth-first search strategy. In the branchand-bound tree

structure, the depth of the tree represents the observation under consideration, while the branches

represent group membership. Thus, for the clustering problem, in contrast to binary branching as

in Balas’s algorithm [3], we have multiple branching, where the maximum number of possible

branches at each node is K, the number of groups (i.e., each branch at depth p represents an

assignment to a unique group for item p). The depth of the tree is at most n, the number of items

to be clustered. A sample tree structure for grouping 3 items into 2 clusters is shown in figure 1.

Next, we present some additional notation used to describe the serial algorithm:

p : the current depth in the tree,

m : group membership indicator (from 1 to K),

Bp : bound on unassigned observations at depth p, n(m) : the number of observations in group m,

q : the number of groups with no membership,

SDIJ(p) : the objective value at node p,

Z : the objective value of the incumbent, and

Xil : the incumbent solution values of all Xik.

The serial clustering algorithm (GROUPS)

The serial algorithm stated above is a slightly modified form of the original version. In the

modified verison, we calculate the lower bound at a node only if its current objective value is

better than the global upper bound. This saved almost 20% of the solution CPU time. We use the

CPU time obtained from this improved serial solution method (GROUPS) for evaluating the

parallel algorithm.

4. The parallel branch-and-bound algorithm Branch-and-bound has been a popular solution tool

for solving NP-complete combinatorial problems [9,13,25,31] for many years. Various strategies

have been employed for tree exploration in the branch-and-bound method. Choosing a particular

strategy depends on the number of processors available, the communication parameters (shared

and distributed), the number of processes that can be run on a process, and the characteristics of

the problem [6,13].

In our method, we use a Master–Slave configuration applicable on the Parallel Virtual Machine

(PVM) in a UNIX environment. The Master process activates or spawns the Slave processes and

coordinates information interchange among the processes. Apart from maintaining the processor

busy and idle queues, the Master process also controls the job queue and decides how to

distribute the work among the Slave processes. Thus, the Master process makes the key

decisions. The Slave processes perform the actual problem solving, evaluating and fathoming the

nodes in the tree. The Slave processes keep track of the local and global incumbent solution

objective values.

First, the Master process spawns all Slave processes so as to initialize all processes at the same

time, to exploit the advantages of parallelism to the fullest. The Master process assigns the busy

Slaves to the busy process queue, while the idle ones are assigned to an idle process queue.

Subproblems that are waiting to be assigned to idle Slaves are put in a job wait queue. Initially,

the Master process assigns item 1 to group 1 and then introduces a dichotomy in the tree. That is,

item 2 can now be placed in group 1 or 2, thus generating two subproblems which are assigned

to two idle Slave processes, if available; otherwise, they are placed in a job wait queue.

Each of these Slave processes works independently on its part of the subproblem. A Slave

process may send part of its tree to the Master process whose responsibility is to assign jobs to

idle processes. The generation of subproblems by a Slave process is done dynamically. Once it

reaches a specified depth (NDEPTH), it spins off the right branches to the Master process for

assignment to other idle Slave processes, while continuing to work on the left branch much like

the serial algorithm does. Subproblems are always generated from the top of the tree to ensure

that all Slaves have enough work as they proceed deeper in the tree. Whenever a Slave process

finds a new incumbent, it not only updates its local incumbent, but also broadcasts the objective

value to all other Slave processes. Each Slave checks for a global upper bound (GUBND) once

every NCHECK nodes are evaluated. The value of NCHECK is increased as we proceed deeper

in the tree. If a Slave process has finished evaluating its subproblem, it broadcasts an idle

message to the Master process that it needs another job.

The Master process then assigns a job from the job wait queue. However, if the job wait queue is

empty, it assigns the Slave process to the process idle queue for later use. The parallel branch-

and-bound methodology terminates if all the Slave processes are idle.

Therefore, there is communication not only between the Master and Slave processes, but also

among the Slave processes. The Master process receives the following three types of messages

from a Slave process:

(1) a new subproblem message (message type = Job),

(2) an idle message, if the Slave is done working on a subproblem (message type = Idle), and

(3) a DEAD message along with its solution to ensure that all Slaves are done and dead before

the Master terminates (message type = Dead).

Similarly, a Slave process can receive the following types of messages either from the Master

process or another Slave process:

(1) a new subproblem to be assigned to the Slave process from the Master process (message type

= New Job),

(2) an initial upper bound (GUBND) from the Master process (message type = GUBND),

(3) a new global upper bound (GUBND) from another Slave process during the optimization

procedure (message type = New GUB), and

(4) a KILL message, from Master Process when all Slaves are done (message type = KILL).

A depth-and-breadth-first combined strategy is used to explore the branch-andbound tree. As

mentioned earlier, a Slave process always explores the left branch of the subproblem (depth-first

approach). The right branch (or branches) are assigned to idle Slave Processes from the idle

process queue (breadth-first approach) until a certain depth (BDEPTH) is reached to ensure that

all Slave processes get enough work to do. After this depth is reached, the Slave process works

like a serial algorithm using the depth-first approach to avoid communication overload. Thus,

subproblems are explored both depth-wise and breadth-wise.

To formally present the parallel branch-and-bound algorithm for the clustering problem

(PGROUPS), we divide the algorithm into two parts: the Master algorithm and the Slave

algorithm. The communication between the two processes is handled by PVM. Only one copy of

the Master process is active at a given time, while several copies of Slave processes may be

running simultaneously. Some additional notation used in the description of the Master algorithm

follows:

busyp : number of busy Slave processes,

Idlep : number of idle Slave processes,

nproc : number of Slaves the Slave processes spawned,

wait_q : job wait queue,

Nodes : total number of nodes solved by each Slave process.

The Slave and Master algorithms are intertwined via the communication system. Not only can a

Slave send messages to and receive messages from the Master process, it can also send messages

to other Slave processes. We next present some notation used in the description of the Slave

algorithm:

checkdep : Depth at which to stop backtracking.

Depth : Depth at which the subproblem starts.

nextbdep : Next depth at which the Slave process needs to spin off subproblems.

NODES : Total number of nodes evaluated by the Slave process.

NITR : An iteration counter that keeps track of the number of times the search process reached

NDEPTH.

Maxdep : Depth at which the Slave process stops spinning off new subproblems.

5. Implementation parameters for the parallel algorithm

We implemented the parallel branch-and-bound algorithm on the IBM PowerParallel System

(SP-2) at University Computing & Network Services at the University of Georgia using the xlf

(f77) FORTRAN compiler under the AIX Version 3.2 (Unix) operating system. Our

programming environment is the Parallel Virtual Machine (PVM). PVM function calls not only

allow the creation or termination of Slave processes, but also aid in the communication among

processes. Some of the parameters that are critical for a proper implementation of the parallel

algorithm are: communication, distribution of work and synchronicity.

5.1. Communication

In our branch-and-bound algorithm, the Slave processes and Master process must communicate

to share data. To reduce the communication complexity, the Slave processes perform the

fathoming operations (actual problem solving), while the Master process performs bookkeeping

operations, i.e., maintains the job wait queue and process idle or busy queues. In asynchronous

communication, when a Slave process finds a new incumbent solution, it transmits the objective

value to all other active Slave processes without waiting for the other Slave processes to finish

their work. When each active Slave process receives the new incumbent objective value, it

updates its global upper bound, which enhances the pruning operation. This not only maintains

the efficiency of the solution procedure, but also minimizes both communication complexity and

contention. The incumbent solution is not communicated to any process, since it is not needed in

the actual problem solving. Also, the Master process does not need to receive the new global

incumbent objective values. These further reduce communication contention.

5.2. Distribution of work Unsolved problems are kept in a job wait queue until they are allocated

to idle Slave processes. There are various strategies for treating a work pool (a location where

generated subproblems are stored). One of the methods is to use a single central pool that is

managed by the Master process [5,13]. An alternate approach is the use of multiple pools, where

there are several memory locations where processes can find and store their units of work

[10,13].

We use the single central pool strategy as it is relatively easy to keep track of active subproblems

that are waiting to be assigned to a Slave process. The Master process maintains this central pool,

to which it adds the new subproblems generated by a Slave process. When a Slave process

becomes idle, the Master process assigns a subproblem to it. If there are no subproblems in the

central pool, the Slave process is added to the process idle queue.

5.3. Synchronicity

A synchronous algorithm divides work into phases such that within each phase, processes

perform their jobs independently, while communication occurs only between phases. Our

method is asynchronous in nature to avoid the inherent idle time caused by synchronous

methods. Prior research indicates that the nondeterministic nature of asynchronous algorithms

yield better results as compared to synchronous algorithms [14,29].

6. Implementation issues

The University of Georgia’s IBM SP-2 is a dedicated machine with eight processors (nodes) of

which only four are available. In our parallel algorithm, the Slave processes do most of the work.

Preliminary test results indicated that the Master process is active for only about 0.1% of the

time. PVM facilitates running a Master process and one Slave process on a single node of the

IBM SP-2 when the ip mode (Internet Protocol (IP)) is used for communication. Alternatively,

the user mode (which has a low-latency protocol) allows for only one process per node. The

bandwidth (speed) is the same (40 MB s) as in user mode, but the startup time for each

communication (latency) is higher than that of the user mode. Although communication latency

is slightly higher in the case of the ip mode, we gain a usable processor by activating the Master

process and a Slave process on the same processor. Hence, we adopted the ip mode (high

latency) for all our tests.

To make the solution time comparisons more meaningful, both GROUPS and PGROUPS were

implemented on the IBM SP-2. For GROUPS, only one processor is used, while in PGROUPS,

the number of processors is always equal to the number of Slave processes. In PGROUPS, the

Master process and the first Slave process are activated on the same physical processor, while all

other Slave processes are activated on unique physical processors. Because of the way the

operating system time shares the work in a processor, we found it necessary to put the Master

process to sleep for one second (see step 4 of the Master algorithm). This keeps the Slave process

that shares the processor with the Master process running and the load balancing even.

The CPU time to find and verify optimality is measured for both GROUPS as well as for

PGROUPS. The CPU time is congruous to wall-clock time on the IBM SP- 2, since it is a

dedicated computing environment. In addition to CPU time, we also tally the total number of

branch-and-bound nodes evaluated by each Slave process during the optimization process. We

use this to test load balancing in the parallel tests. Since our algorithm differs only in the

optimization part, we do not measure the CPU time needed to read the problem data. In

PGROUPS, all processes read the problem data at the same time during initialization.

We used real-world problem data as well as randomly generated clustering problems to test our

algorithm. We used uniform distributions (with a random number seed, LSEED) for the

randomly generated problems. Since the time limit on the IBM SP-2 is 6 CPU hours (21,600

CPU seconds), we considered problems that required 6 CPU hours or less in serial for our

evaluation. We included code to detect the condition for a graceful exit rather than a system

imposed termination. Also, we did not consider problems where GROUPS required less than 150

CPU seconds to obtain an optimum, since its parallel counterpart involves some communication

and the overall time would be too small to show the effectiveness of PGROUPS. Our real-world

problem data was from an industry survey of grouping the benefits of executive information

systems [19]. Table 1 shows the specifications of the problem sets (both randomly generated and

real-world problem data) used to evaluate PGROUPS. The problem_id for randomly generated

data sets begin with the letter R, the first number indicates the number of items and the second

number indicates the number of groups (i.e., R-22-5 indicates it is a randomly generated problem

set for which 22 items are grouped into 5 clusters). Likewise, in the problem_id for real-world

problem sets, the text indicates the base problem, while the two numbers indicate the number of

items and the groups respectively (i.e., EIS-23-5 indicates it is the data associated with grouping

23 EIS benefits into 5 clusters).

Within the Master Process, we use another random number seed, NSEED, to set the random

number generator used to select a subproblem to be assigned to an idle Slave process from the

central pool of jobs. Prior research [14] and preliminary test results indicate that randomizing the

subproblems increases the likelihood of obtaining an optimal solution early as compared to using

the last-in-first-out (LIFO) or first-in-first-out (FIFO) strategy.

The initial setup of GROUPS and PGROUPS are similar. That is, after the input data are read, an

initial feasible heuristic solution based on an improvement heuristic algorithm [2] is found. For

problems with no side constraints, the following heuristic was developed to obtain a good initial

incumbent:

In most cases, this heuristic improved the initial solution objective value by at least 20%. The

global upper bound is assigned the objective value of this heuristic solution. This improvement

combined with the modification in GROUPS decreased the overall solution CPU time by 40%.

Once an optimum is found and verified, the procedure terminates. As mentioned earlier, since

the two methods vary only in the optimization procedure, the solution time is determined from

the start of the optimization step until all necessary nodes have been explored and an optimum is

found and verified. Thus, the solution time of PGROUPS is the time from the beginning of the

optimization process until all Slave processes have gone idle after having explored all necessary

nodes and confirmed its optimality. In both GROUPS and PGROUPS, the procedure terminates

with a warning message when the maximum time of 6 CPU hours (21,600 seconds) is exceeded,

or if it encounters an execution error.

7. Computational results

Due to the dedicated nature of the IBM SP-2, there was no significant difference in the CPU

times obtained for GROUPS, when the test problems were repeated. Hence, we only report the

CPU times obtained from one run for each test problem. As for PGROUPS, there were slight

differences because of the randomness in subproblem selection. In table 2 we present the CPU

times obtained using GROUPS, and PGROUPS on one, two, three and four processors (P1, P2,

P3, P4) for all ten problems. Table 3 provides a summary of the total nodes evaluated by

GROUPS and PGROUPS for one, two, three and four processors (P1, P2, P3, P4). For P2, P3

and P4, we also present the total nodes evaluated by each of the Slave processes.

The efficacy of the parallel algorithm is measured using the following metrics: speedup and load

balancing (i.e., the proportion of work done by each Slave process is the same). We determine

both absolute and relative speedup of the parallel algorithm. Absolute speedups for P1, P2, P3

and P4 are calculated by dividing the serial solution time by the parallel solution time; relative

speedups for P2, P3 and P4 are determined by dividing the P1 solution CPU time by the solution

CPU times for P2, P3 and P4, respectively. For half the test problems, PGROUPS with only one

Slave process (P1) was faster than GROUPS. The mean of all 10 runs indicates a 2.8%

improvement. On the one hand, one could argue that P1 is the best serial algorithm since it runs

one processor. On the other hand, two processes are required. Rather than belabor the point, we

report both the absolute and relative speedups in this paper.

In determining the absolute speedup, we use the CPU time for the sequential algorithm. We also

present the relative speedup to evaluate the performance of PGROUPS with respect to P1. Table

4 summarizes the absolute speedups for PGROUPS, while table 5 provides the relative speedups

for PGROUPS.

To determine if equal work load is obtained by the Slave processes for P2, P3 and P4, we divide

the number of nodes evaluated by each of the Slave processes by the total number of nodes

evaluated by PGROUPS in each case. Table 6 provides a summary of load balancing for

PGROUPS. On average, each Slave process has performed an (approximately) equal share of the

optimization work.

8. Summary and conclusions

We have developed, implemented and tested a dynamic, asynchronous parallel algorithm

(PGROUPS) to execute a branch-and-bound methodology to solve cluster analysis problems on a

PVM platform. The cluster analysis problem defines the grouping of n items into K groups,

where items in each group are highly homogenous in nature while the clusters themselves are

distinct. Clustering problems are highly combinatorial in nature and, hence, optimization

methods take a long time to obtain an optimum for even medium-sized problems.

Our solution methodology is based on the serial branch-and-bound method (GROUPS)

developed by Aronson and Klein [2]. However, before developing the parallel method, we

improved their serial method in two ways. First, we modified the heuristic to get a better initial

solution for pure clustering problems (i.e., with no side constraints). Secondly, we improved the

bound fathoms by not calculating the lower bounds unless the objective value at the current node

was better than the global upper bound. These improvements improved the solution CPU time of

the serial GROUPS by almost 40%.

PGROUPS was implemented on the IBM Scalably PowerParallel System (SP-2), a distributed

memory multiprocessor, using the Internet protocol communication switch (high latency).

PGROUPS was evaluated on a set of ten problems (both randomly generated and real-world

problem data) using up to four processors. For half of the test problems, we obtained superlinear

speedups. On average, we obtain superlinear speedups (both absolute and relative) for

PGROUPS. In addition, PGROUPS also achieves even load balancing among the Slave

processes (for P1, P2, P3 and P4), thus fully realizing the advantages of parallelism.

Restriction of the SP-2 configuration to run only one process per node, using the low latency

communication switch, was one of the limitations in testing PGROUPS. This increased the

communication penalty slightly, but we gained the full use of a processor from the high latency

switch. Another limitation is the 6 hour time limit for using the IBM SP-2 which curtailed our

ability to solve larger problems using GROUPS. Thus, our sample is somewhat limited.

Our test results indicate that PGROUPS has the potential to solve large, complex cluster analysis

problems efficiently. We were limited in our testing to at most four processors and we recognize

that to generalize our results further testing on a largescale, multiple instruction, multiple data

computer, such as an IBM SP-2 with 512 processors, is warranted.

Acknowledgement

Jay E. Aronson was partially supported by a Fellowship from The Terry and Selig Foundations.

References

[1] S.T. Allison, A.M.R. Jordan and C.E. Yeatts, A cluster-analytic approach toward identifying

the structure and content of human decision making, Human Relations 45(1992)49–73.

[2] J.E. Aronson and G. Klein, A clustering algorithm for computer-assisted process

organization, Decision Sciences 20(1989)730–745.

[3] E. Balas, An additive algorithm for solving linear programs with zero–one variables,

Operations Research 13(1965)517–546.

[4] D.P. Bertsekas and DA. Castañon, Parallel asynchronous Hungarian methods for the

assignment problem, ORSA Journal on Computing 5(1993)261–274.

[5] A. de Bruin, A.H.G. Rinnooy Kan and H.W.J.M. Trienekens, A simulation tool for the

performance evaluation of parallel branch-and-bound algorithms, Mathematical Programming

42(1988)245– 271.

[6] J. Clausen and J.L. Träff, Implementation of parallel branch-and-bound algorithms:

Experiences with graph partitioning problems, Annals of Operations Research 33(1991)331–349.

[7] R.M. Cormack, A review of classification, Journal of the Royal Statistical Society, Series A

134 (1971)321–367.

[8] R.B.R. DeSouza and R. Bell, A tool cluster based strategy for the management of cutting

tools in flexible manufacturing systems, Journal of Operations Management 10(1991)73–91.

[9] S. Dowaji and C. Roucairol, Load balancing strategy and priority of tasks in distributed

environments, Rapport de Recherche (Research Report) RR-94 32, Laboratoire PRiSM,

Université de Versailles, Saint-Quentin-en-Yvelines, Versailles, France, October, 1994.

[10] J. Eckstein, How much communication does parallel branch and bound need?, in:

Proceedings of the Parallel Optimization Colloquium POC-96, Université de Versailles,

Versailles, France, March, 1996, pp. 59–68.

[11] B. Everitt, Cluster Analysis, 2nd ed., Halsted Press, Division of Wiley, New York, NY,

1980.

[12] A. Ferrenberg, University Computing & Network Services, The University of Georgia,

Athens, GA, private communication, April, 1996. [13] B. Gendron and T.G. Crainic, Parallel

branch-and-bound algorithms: Survey and synthesis, Operations Research 42(1994)1042–1066.

[14] B. Gupta, A parallel multiperiod assignment algorithm, Doctoral Dissertation, Terry College

of Business Administration, University of Georgia, Athens, GA, 1995.

[15] K.M. Hilmer and J.E. Aronson, A visual front end to a cluster analysis algorithm, Technical

Report, The University of Georgia, Athens, GA, 1993.

[16] J.G. Hirschberg, E. Maasoumi and D.J. Slottje, Cluster analysis for measuring welfare and

quality of life across countries, Journal of Econometrics 50(1991)131–150.

[17] G.P. Hodgkinson, J. Padmore and A.E. Tomes, Mapping consumers’ cognitive structures: A

comparison of similarity trees with multidimensional scaling and cluster analysis, European

Journal of Marketing 25(7)(1991)41–60.

[18] A.S. Homayoun, The use of cluster analysis in analyzing large engineering records

collection, Records Management Quarterly (October 1984)22–25.

[19] S.L. Iyer and J.E. Aronson, Grouping EIS benefits: An optimal clustering approach,

Proceedings of the Americas Conference on Information Systems, Pittsburgh, PA, August, 1995.

[20] J. Karimi, An automated software design methodology using CAPO, Journal of

Management Information Systems 3(3)(1986)71–100.

[21] G. Klein and J.E. Aronson, Optimal clustering: A model and method, Naval Research

Logistics 38(1991)447–461.

[22] G. Klein, P.O. Beck and B.R. Konsynski, Computer aided process structuring via mixed

integer programming, Decision Sciences 19(1988)750–761. [

23] G. Klein, D.B. Tesch, J.E. Aronson and P.O. Beck, A computer-aided process structuring

methodology, Working Paper, Louisiana Tech University, Ruston, LA, 1995.

[24] S. Kulkarni, D.F. Rogers, and J.E. Aronson, An optimal clustering model for cellular

manufacturing, Conference Presentation, INFORMS, Washington, DC, May, 1996.

[25] E.L. Lawler and D.E. Wood, Branch-and-bound algorithms: A survey, Operations Research

14(1966) 699–719. [26] J. Mohan, Experience with two parallel programs solving the travelling

salesman problem, in: Proceedings of the 1983 International Conference on Parallel Processing,

1983, pp. 191–193.

[27] J. Mulvey and H. Crowder, Cluster analysis: An application of Lagrangian relaxation,

Management Science 25(1979)329–340. [

28] G. Punj and D.W. Stewart, Cluster analysis in marketing research: Review and suggestions

for application, Journal of Marketing Research 20(1983)134–148.

[29] M.J. Quinn, Analysis and implementation of branch-and-bound algorithms on a hypercube

multicomputer, IEEE Transacitons on Computers 39(1990)384–387.

[30] H. Romesburg, Cluster Analysis for Researchers, Lifetime Learning Publications. Belmont,

CA, 1984.

[31] C. Roucairol, Parallel processing for difficult combinatorial optimization problems,

European Journal of Operations Research 92(1996)573–590.

[32] A.W. Spisak, Cluster analysis as a quality management tool, Quality Progress

25(12)(1992)33–38.

[33] V.S. Sunderam, PVM: A framework for parallel distributed computing, Concurrency,

Practice and Experience 2(4)(1990)315–339.

[34] V.S. Sunderam, and G.A. Geist, The PVM system: Supercomputer-level concurrent

computation on a network of IBM RISC System 6000 POWERstations, Reprinted from

Scientific Excellence In Supercomputing: The 1990 IBM Contest Prize Papers, vol. 2, eds. K.

Billingsley, H. Brown and E. Derohanes, The Baldwin Press, The University of Georgia, Athens,

GA, 1992, pp. 779–804.

