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Abstract:  
 

This paper builds on academic and industry discussions from the 2012 and 2013 pre-ICIS events: 

BI Congress III and the Special Interest Group on Decision Support Systems (SIGDSS) 

workshop, respectively. Recognizing the potential of “big data” to offer new insights for decision 

making and innovation, panelists at the two events discussed how organizations can use and 

manage big data for competitive advantage. In addition, expert panelists helped to identify 

research gaps. While emerging research in the academic community identifies some of the issues 

in acquiring, analyzing, and using big data, many of the new developments are occurring in the 

practitioner community. We bridge the gap between academic and practitioner research by 

presenting a big data analytics framework that depicts a process view of the components needed 

for big data analytics in organizations. Using practitioner interviews and literature from both 

academia and practice, we identify the current state of big data research guided by the framework 

and propose potential areas for future research to increase the relevance of academic research to 

practice. 
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1. Introduction 
 

Business intelligence (BI), decision support, and analytics are core to making business decisions 

in many organizations. Recently, traditional approaches to using organizational data have been 

questioned as companies embrace voluminous, high-velocity data in a variety of formats (i.e., 

multi-structured) that is generally framed as “big data” (Barton & Court, 2012). Increased 

competitiveness and productivity in industry has provided the groundwork for big data analytics 

and its technologies. Interest in big data research is growing exponentially as evidenced by the 

http://libres.uncg.edu/ir/clist.aspx?id=876
http://aisel.aisnet.org/cais/vol37/iss1/23/


increase in the number of papers, tracks, and mini- tracks focused on analytics and big data in 

leading IS conferences. 

 

The Association for Information Systems (AIS) Special Interest Group in Decision Support and 

Analytics (SIGDSA, formerly SIGDSS) and the Teradata University Network have organized 

pre-International Conference on Information Systems (ICIS) events since 2009 on data analytics 

(e.g., BI Congresses I, II, III (2009, 2010, 2012) and SIGDSS 2013 pre-ICIS workshops) to 

promote theoretical, design science, behavioral research and innovative applications in emerging 

areas of BI, analytics, decision support, and knowledge management. The increasing level of 

practitioner involvement and sponsorships associated with these events indicates the interest of 

the larger community in opportunities associated with big data analytics. The events addressed 

questions such as how can organizations innovate through big data and how can academic 

research further innovative thinking in this area. 

 

The plan to develop a framework focused on identifying research opportunities in big data 

stemmed from the 2012 BI Congress and 2013 pre-ICIS SIGDSA events just as academic 

research directly focused on big data was beginning to emerge in early 2012. Since 

advancements in big data were being led by practitioners, these two events aimed to foster 

“active collaboration between academia and industry to advance the teaching and use of business 

intelligence and analytics” (Wixom, et al., 2011, 2014, p. 4). The events’ themes were innovation 

through big data and decision support from BI and social media. In light of these goals, academic 

and industry experts were invited to both events to address the following topics: 

 

a) Industry views of big data: TED-like talks by industry experts on big data to expose 

academics to thought leadership from leading analytics organizations to inspire academic 

research efforts in big data 

b) Developing the next generation big data workforce 

c) Reshaping customer relationship in the context of BI and social media, and 

d) Explaining why traditional analytics is not enough to capitalize on big data opportunities. 

 

Industry experts at both events represented the following organizations: AT&T Bell Labs, 

Credito Emiliano, Deloitte, IBM, International Data Corporation (IDC), SAP, SAS, and 

Teradata. Participants at both events included IS academics and industry members. 

 

Frameworks for specific types of information systems (IS) are useful to conceptualize their 

primary components, relationships between components, and processes. For example, Sprague 

(1980) presented an early framework for a decision support system (DSS) that shows an 

underlying structure of a database, model base, and user-system interface that influenced 

research and instruction. With the DSS’s evolution into the BI field, Watson (2009) published a 

framework implementing a data warehouse and data marts as central components. As BI evolved 

to deal with big data, Eckerson (2011) presented a “new BI architecture" to describe the 

integration of platforms to handle structured data in traditional data warehouses with emerging 

data sources. While Eckerson provides a technology view of BI including big data assets, we 

extend these frameworks to emphasize the analytical processes enabled by big data, the human 

resources necessary to use it, and the governance processes necessary to manage it. 

 



Drawing on the presentations at the events detailed above, interviews with industry experts, prior 

work by Watson (2009) on the evolution of the traditional BI environment, and Eckerson’s 

(2011) technical BI architecture, we first developed an integrative big data analytics framework. 

We consulted industry experts to whet the framework’s initial developments and incorporated 

their viewpoints to arrive at the final one (see Figure 1). The proposed framework captures the 

analytical process of BI in the context of big data and helps guide our second objective (i.e., to 

create a roadmap for relevant big data research). 

 

This paper proceeds as follows: In Section 2, we discuss our study’s background. In Section 3, 

we describe the methodology we adopted for conducting the research. In Section 4, we then 

present our big data analytics framework. In Section 5, we map BI and big data research evident 

in representative academic journals, practitioner publications, and practitioner interviews to our 

framework. Based on this mapping, in Section 6, we identify potential research questions that 

can advance our understanding. Finally, in Section 7, we summarize the state-of-the-art and the 

research opportunities. We hope this paper will aid researchers in identifying and exploring 

fruitful big data research ideas and will increase the relevance of academic research to practice. 

 

2. Background 
 

Davenport and Harris (2007) described how some companies gained a sustainable competitive 

advantage through analytics. For example, Progressive Insurance predicts risk associated with 

granular cells of customer segments; Harrah’s predicts which customer’s business is waning and 

which campaigns will revive it; Marriott dynamically computes the optimal room price; Wal-

Mart and Amazon simulate supply chain flows and reduce inventory and stock-outs; UPS 

predicts which customers will defect to a competitor. During the last decade, these and many 

other companies across a spectrum of industries have systematically constructed complex models 

to make data-driven business decisions in their strategic processes to gain stronger competitive 

positions in their industries. McAfee and Brynjolfsson (2012) provide evidence that data-driven 

companies perform significantly better on both financial and operational measures. As the use of 

analytics has become more and more mainstream, the competition based on analytics has 

intensified. 

 

Big data adds new dimensions to analytics. It offers enhanced opportunities for insight but also 

requires new human and technical resources due to its unique characteristics. Although 

practitioners sometimes describe big data as data that are beyond the capabilities of the 

organization to store or analyze for accurate and timely decision making (Kulkarni, 2013), the 

term has been characterized in the literature as having one or more of four dimensions: volume, 

velocity, variety, and veracity (Laney, 2001; IBM, 2014; Goes, 2014). Volume indicates the 

huge and growing amount of data being generated, with more data often at higher granularity. 

Velocity indicates the speed at which data are being generated from digital sources such as 

sensors and electronic communication, which offers the potential for real-time analysis and 

agility. Variety refers to the variation in types of data from internal and external sources. 

Veracity is a measure of accuracy, fidelity, or truthfulness of data to guard against the biases, 

noise, and abnormalities associated with big data. Although other Vs have been suggested, 

including value, visualization, and volatility, we address the four generally accepted 



characteristics by discussing a framework for big data analytics (McAfee & Brynjolfsson, 2012; 

Goes, 2014). 

 

Traditionally, online retailers have tracked what customers bought, what others like them also 

bought, and, based on analyzing similarities between customer purchase behaviors, offered the 

most-likely-to-be- bought products to a browsing customer. Big data presents a potentially 

transformational opportunity (Gillon, Aral, & Lin, 2014). Beyond transactional data, online 

businesses can know what customers browsed and how long they stayed, along with their exact 

click-stream and location. They can track reactions to suggestions, responses to dynamically 

generated promotions, contributions to and influences from reviews. In addition, they can access 

masses of external data from social network interactions, and blog sites where rich sentiments 

are expressed. This explosion of data and its analysis has not just changed the answers to the 

question: what will this customer buy next? It has changed the questions themselves to: what is 

the potential value of this customer? How influential is this person? How should we 

communicate with them, and which channel should we use to build a long-term relationship with 

them? How can we engage with this person through products and services that the customer 

himself has not yet thought of? 

 

Organizational interest in big data is spurred by opportunities to use these new data sources to 

make faster and better decisions through sophisticated analytics. The literature provides evidence 

of significant improvements from using big data for better customer knowledge, customized and 

personalized outreach to customers, and economic benefit (Davenport & Harris, 2007; 

Davenport, Harris, & Morison, 2010; McAfee & Brynjolfsson, 2012; Davenport, 2013; Thaler & 

Tucker, 2013; Roski, Bo-Linn, & Andrews, 2014). Estimates by the McKinsey Global Institute 

(Manikya et al., 2011) indicate that many government and industrial sectors in Europe and the 

US could benefit substantially from big data analytics: US healthcare could realize an efficiency 

and quality value of $300 billion, US retailers could increase their operating margin by up to 60 

percent, European governments could save more than €100 billion in operational efficiency, and 

the services sector using personal location data could recover $600 billion in consumer surplus 

with the use of big data analytics. 

 

In the future, it is not just the nature of questions that can be answered with big data that will 

change but also business models, the nature of expertise, the value of experience, business 

processes, and the decisions we make (Holsapple, Lee-Post, & Patkath, 2014). Thus, businesses 

find themselves in a situation where opportunity from big data exists but analytical talent and, to 

some extent, technology is lagging. What is also lagging is the business acumen to understand 

what questions can be answered and what problems can be solved by analysis of big data that 

will make business sense now and in future. A big data analytics framework can assist the 

academic community in identifying research opportunities relevant to practice. With this paper, 

we take a step in that direction. 

 

3. Methodology 

 

3.1 Practitioner Interviews 
 



The BI Congress and workshops demonstrated practitioner interest in partnering with the 

academic community around big data concepts. Beginning with sponsors of those workshops and 

later expanding to a broader community of big data practitioners from university advisory boards 

and research contacts, we conducted semi-structured interviews to arrive at a generalized big 

data framework in organizations and to identify research gaps. We continued meeting with 

practitioners throughout the research project using both structured written interviews and verbal 

semi-structured interviews. 

 

Table 1 describes the practitioners we interviewed in terms of company/industry and 

responsibility level. Organizations that provided interviews and agreed to be named are 

recognized in the acknowledgements, although some organizations requested anonymity. 

Interviewees are directly responsible for big data analytics either as implementers in their own 

organization or as consultants advising another industry. We conducted interviews in three 

rounds: (1) as we were developing and modifying the framework, we asked practitioners to 

critique it; (2) we circulated the final framework to practitioners for general consensus; and 

(3) we conducted interviews to augment practitioner literature on research gaps in big data to 

identify current thoughts in the field. We conducted these interviews to determine if emerging 

academic research is relevant and aligned with industry best practice and to locate areas in big 

data analytics that need further exploration useful to both academics and practitioners. 

 

 
 

3.2 Survey of Published Academic Literature 

 

Our study’s academic portion is based on a survey of representative published academic literature on big 

data analytics during 2011-2014 in the Senior Scholars’ basket of journals (AIS, 2011). We included two 

additional academic journals (Communications of the AIS and Decision Support Systems) because they 

publish related research. We used these journals to provide a representative sample to identify research 



gaps, not to undertake an exhaustive study of the literature. Beyond business research, we also referred to 

the large body of methodological research related to big data from computer science and engineering 

fields. To identify research papers, we used a keyword search in each journal for the terms: big data, 

social media, analytics, business intelligence, distributed computing, Hadoop, analytics discovery, and 

data scientist. Tables 2 and 3 list the journals and the papers that we reviewed, grouped by the research 

method they employed. 

 

 
 



 
 

3.3 Survey of Practitioner Literature 
 

Similar to the academic literature survey, we reviewed a representative sample of practitioner literature. 

We surveyed two sources each in the broad categories of information technology research and advisory 

firms (Gartner and TDWI), comprehensive online information technology resources (BeyeNETWORK 

and Information Management), and management consulting organizations (Booz Allen Hamilton and 

McKinsey & Company). In addition, although we recognize the valuable research contributions of many 

other companies, to maintain independence and neutrality, we avoided vendors of information technology 

products and services. Table 4 lists the sources that we reviewed along with a brief description. As we 

previously indicate, practitioner interviews expanded and informed our understanding of concepts and 

ideas that have not made their way into the published literature, particularly in regards to the big data 

framework and future research needs. 

 



 
 

 

4. Big Data Analytics Framework 
 

4.1 Frameworks in the Literature 
 

Frameworks play an important role in helping an organization effectively plan and allocate 

resources for information systems tasks (Gorry & Scott Morton, 1971). They can help an 

organization identify components and relationships between parts to understand an otherwise 

complex system (Sprague, 1980). The frameworks for management information systems (Gorry 

& Scott Morton, 1971) and for decision support systems (Sprague 1980) are early major 

frameworks that guided organizations in implementing systems to support decision making. 

They have also assisted academics in mapping research trends and identifying gaps in research. 

 

As information systems have evolved, numerous frameworks have emerged to inform practice 

and to provide research insights to academics. For instance, the Zachman framework (Zachman, 

1987; Sowa & Zachman, 1992) provides a means of understanding the integration of all 

components of a system independent of its variety, size, and complexity. In the decision support 

area, the executive information systems (EIS) development framework (Watson, Rainer, & Koh, 

1991) presents a structural perspective of EIS elements, their interaction, and the EIS 

development process. Since the seminal work of Sprague’s DSS framework (1980), the decision 

support arena has grown and matured (Hosack et al., 2012) to include platforms for executive 

information systems, group decision support systems, geographic information systems, and, 

more recently, for business intelligence and big data. 

 



Along with the evolution of DSS, new frameworks to understand the various categorizations of 

decision support have emerged. The business intelligence framework presented by Watson 

(2009) describes the components and relationships that may assist in a traditional business 

intelligence implementation with a data warehouse and one or more data marts at the center of its 

decision support architecture. However, the changing landscape of BI has brought about the need 

for alternate platforms for dealing with big data and integrating certain processes that are missing 

in the traditional BI context. Eckerson (2011) presents a “new BI architecture” describing the 

various platforms that might be integrated and used to handle traditional structured data sources 

and a wide variety of new data sources that include big data. Our framework extends these 

frameworks to emphasize the analytical processes enabled by big data. 

 

4.2 Big Data Analytics Framework 
 

Figure 1 shows our proposed framework for big data analytics. A process view is shown across 

the top of the diagram, initiated with data sources and proceeding through data preparation, data 

storage, analysis, and data access and usage. The left hand side shows possible types of data 

sources. The center section proposes a unified data exchange (UDE) with the components for big 

data analytics. UDE spans multiple processes including data preparation, storage, and analysis, 

which tend to overlap in the big data environment. This is distinct from traditional BI, which 

focused on bringing data from all sources into an integrated or enterprise data warehouse (EDW) 

and then making it available for analysis. Big data environment requires specialized technical 

platforms and software integrated into a comprehensive process to support complex BI needs. 

We note that several organizations and consulting firms are experimenting with alternative 

concepts such as the UDE, which we discuss in Section 5. 

 

The right hand side of the framework shows the user groups with a range of skills needed to 

analyze and use big data. At the bottom of the diagram are big data management and governance 

processes. We use the framework to organize the remainder of this paper and address each 

component. 

 

Figure 1 shows our proposed framework for big data analytics. A process view is shown across 

the top of the diagram, initiated with data sources and proceeding through data preparation, data 

storage, analysis, and data access and usage. The left hand side shows possible types of data 

sources. The center section proposes a unified data exchange (UDE) with the components for big 

data analytics. UDE spans multiple processes including data preparation, storage, and analysis, 

which tend to overlap in the big data environment. This is distinct from traditional BI, which 

focused on bringing data from all sources into an integrated or enterprise data warehouse (EDW) 

and then making it available for analysis. Big data environment requires specialized technical 

platforms and software integrated into a comprehensive process to support complex BI needs. 

We note that several organizations and consulting firms are experimenting with alternative 

concepts such as the UDE, which we discuss in Section 5. 

 

The right hand side of the framework shows the user groups with a range of skills needed to 

analyze and use big data. At the bottom of the diagram are big data management and governance 

processes. We use the framework to organize the remainder of this paper and address each 

component. 



4.3 Data Sources 
 

Big data are characterized by variety in types of data that can be processed for analysis. “Data 

sources” in Figure 1 indicate the types of data available to organizations 

 

 
 

Structured data still represent the majority of data used for analytics according to surveys 

(Russom, 2011). Structured data reside in spreadsheets, tables, and relational databases 

corresponding to a data model that addresses the properties and relationships between them. 

They have known data lengths, types, and restrictions. They can be easily captured, organized, 

and queried due to the known structure. Figure 1 shows structured data coming from sources 

such as internal systems producing reports, operational systems capturing transaction data, and 

automated systems capturing machine data such as customer activity logs. 

 

Increasingly, semi-structured data are used for analytics (Russom, 2011). These data lack a strict 

and rigid structure but have identifiable features. For example, photos and images can be tagged 

with time, date, creator, and keywords to assist users to find and organize them; emails have 

fixed tags such as sender, date, time, and recipient attached to the contents; and webpages have 

identifiable elements that allow companies to exchange information with their business partners. 

Industry standards such as Extensible Markup Language (XML) enable computing devices to 

identify these data by defining a set of rules for processing. 

 

Unstructured data, primarily in the form of human language text, are growing in importance for 

analytics (Russom, 2011). These data are ill-defined and include images, video, audio, emails, 

presentations, wikis, blogs, webpages, and text documents. Tools such as text mining or text 

analytics are maturing and enabling people to analyze unstructured data. For example, hospitals 



can search physician instructions, patients’ charts, and prescription information to identify 

potential adverse drug interactions. These data are primarily from external sources such as social 

media, the Web, and sensors. 

 

4.4 Data Preparation 

 

Data preparation includes extracting, transforming, and loading (ETL) data and data cleansing. 

ETL processes involve expert judgment and are essential as foundations for analysis. Once data 

are identified as pertinent, a data warehouse team extracts data from primary sources and 

transforms them to support the decision objective (Watson & Wixom, 2007). For example, a 

customer-centric decision may require consolidating records from different sources, such as an 

operational transaction processing system and social media customer complaints, and linking 

them through a customer identifier such as a zip code. Source systems can be incomplete, 

inaccurate, and difficult to access, so data are cleansed to ensure data integrity. Data may need to 

be transformed to be useful in analysis such as creating new fields to describe customer value. 

Data may be loaded into a traditional data warehouse or in Hadoop clusters. Loading can occur 

in a variety of methods with a data warehouse either sequentially or in parallel by tasks such as 

overwriting existing data, updating data hourly or weekly. 

 

4.5 Data Storage 

 

Traditionally, data are loaded “into a data store that is subject-oriented (modeled after business 

concepts), integrated (standardized), time-variant (permits new versions), and nonvolatile 

(unmodified and retained)” (Watson & Wixom, 2007). Thus, loading requires an established data 

dictionary and a data warehouse that serves as the storage location for verified data that the 

organization will use for analysis. Data related to specific uses or business departments might be 

consolidated into a data mart for ease of access or to restrict access. However, moving and 

processing extremely large amounts of data as a single dataset with a single server is not feasible 

with current technology. Thus, storing and analyzing big data requires processing to be split 

across networked computers that can communicate and coordinate their actions. Hadoop is an 

open-source framework that permits distributed processing of data across small to large clusters 

of computers using local computation and storage. Hadoop is not an ETL tool; it supports ETL 

processes running in parallel with, and complementary to, the data warehouse (Awadallah & 

Graham, 2011). Results from Hadoop cluster may be passed to the data warehouse or analyzed 

directly. 

 

4.6 Analysis 
 

Analysis spans a wide range of activities that may occur at various stages in managing and using 

data (Kulkarni, 2013). Querying data is often the first step in an analysis process and is a 

predefined and often routine call to data storage for a particular piece of information; by contrast, 

ad hoc querying is unplanned and used as the need arises for data. Descriptive analytics is a class 

of tools and statistics to describe the data in summary form. For example, analysts may report on 

the number of occurrences of different metrics such as number of clicks or number of people in 

certain age groups, or they may use summary statistics such as means and standard deviations to 

characterize data. Descriptive analytics may use exploratory methods to attempt to understand 



data; for example, clustering can identify affinity groups. Exploratory analytics is often helpful 

in identifying a potential data item of interest for future study or guiding the selection of 

variables to include in an analysis. Predictive analytics refers to a group of methods that use 

historical data to predict or forecast the future for a specific target variable. Some of the better-

known predictive methods are regression and neural networks. Prescriptive analytics is an 

emerging field that has received more attention with the advent of big data since more future 

states and a wider variety of data types can be examined than in the past. This analysis attempts 

to examine various courses of actions in order to find the optimal one by anticipating the result 

of various decision options (Watson, 2014). 

 

Many of these processes have been standard in data analysis for a long time. What is different in 

the case of big data is the larger amount and variety of data under consideration and, possibly, 

the real-time nature of data acquisition and analysis. For example, Hadoop can be used to 

process and even store raw data from supplier websites, detect patterns indicative of fraud, and 

develop a predictive model in a flexible and interactive manner. The predictive model could be 

developed on Hadoop and then copied in the data warehouse to find sales activity with the 

identified pattern. A fraudulent supplier would then be further investigated and possibly 

discontinued (Awadallah & Graham, 2011). As another example,  graphic images of items for 

sale could be analyzed to identify tags that a consumer is most likely to use to search for an item. 

The results might result in improved labels to increase sales. 

 

The “analytics sandbox” shown in Figure 1 is a scalable, developmental platform for data 

scientists to explore data, combine data from internal and external sources, develop advanced 

analytics models. and suggest alternatives without modifying an organization’s current data state. 

The sandbox can be a standalone platform placed in the Hadoop cluster or be a logical partition 

in the enterprise data warehouse (Kobielus, 2012). For example, eBay provides virtual sandboxes 

inside the enterprise data warehouse to allow employees to explore or manipulate data or to even 

combine new data sets to encourage experimentation in a managed environment (Laskowski, 

2012). 

 

Conventional architectures use a save-and-process paradigm in which data are first saved to a 

device and then queried (Buytendijk, 2014). Complex event processing (shown in Figure 1) is a 

proactive process-first monitoring of real-time events based on data such as operational systems 

to enable organizations to make decisions and respond quickly to events as they occur such as 

potential threats or opportunities (Chandy & Schulte, 2009; Buytendijk, 2014). The software 

gathers information from selected data sources, identifies patterns, and notifies other systems or 

people. Events cannot always be predicted. In complex event processing, the event acts as a 

trigger, and organizations that respond to events are referred to as event-driven (Luckham, 2002). 

For example, a regional sales manager who is notified that a particular item such as a medication 

is suddenly in high demand could possibly adjust inventory to respond in a timely way. Complex 

event processing enables accurate and actionable information for appropriate response. 

 

The combination of real-time event processing, data warehousing, data marts, Hadoop clusters, 

and sandbox provide a data analysis and storage infrastructure that supports a stable environment 

while enabling innovation and real-time response. 

 



4.7 Data Access and Usage 
 

In the final stage of the big data process, users and analysts use data by querying, accessing 

reports, and performing analytics. The Eckerson (2011) framework categorizes users into two 

groups: casual users and power users. Casual users—executives, managers, front-line workers—

are users who use the basic capabilities of the system. The system’s reporting functionality may 

be used as and when needed, or analytical processing may be integrated into the workflow of 

these users. For example, a call center operator, while talking to a customer, may have a display 

of the customer’s value, preferences, and potential offers for cross-selling. Power users—

business analysts, analytical modelers and data scientists—exploit the full capabilities of the BI 

systems available to them. They have good knowledge of the system’s features, capabilities, and 

limitations and a deep understanding of business processes and the data that sit behind those 

processes. 

 

Our framework identifies three types of users: business users, business analysts, and data 

scientists. Business users have basic skills and domain-based needs. They comprise the casual 

users in Eckerson’s (2011) framework, but they also include external users such as customers 

and suppliers who may connect via applications that depend on analytical processing. For 

example, an airline customer building and pricing a multi-city itinerary may be using a 

sophisticated scheduling application with a dynamic pricing engine without being aware of the 

complex processing involved. Business analysts are users who have more analytical skills than 

business users: they can analyze data, understand how data is organized, retrieve data via ad hoc 

queries, produce specialized reports, build what-if scenarios, and interactively perform deeper 

analysis to support their decision-making. 

 

While these two roles roughly correspond to the two types of users in Eckerson’s (2011) 

framework, our framework identifies data scientists as different, more advanced, data users. A 

data scientist has a strong background in mathematics, statistics, and/or computer science, an 

equally strong business acumen, and an ability to communicate with both business and IT leaders 

in a way that can influence how an organization approaches its business challenges with the help 

of data. A data scientist can develop descriptive and predictive models (perhaps using the 

discovery platform; e.g., Sandbox), evaluate models, and deploy and test them through 

controlled experiments. In the context of big data, data scientists may advise organizations in 

interpreting rich data, managing large amounts of data, integrating data from multiple sources, 

and creating visualizations to aid in understanding data. They may also participate in 

communicating the insights/findings not only to the specialists and scientists on their team but 

also to business leaders, and, if required, to a non-expert audience. 

 

4.8 Big Data and Management 

 

Data management and governance are integral to any business and especially to BI (Watson, 

2009). Due to the increase in complexity of issues related to big data, organizations face new 

ethical, legal, and regulatory challenges with big data management and governance (Ballard et 

al., 2014). They have to balance their data governance process to manage top-down and bottom-

up needs (Eckerson 2011). The big data management and governance component identified in 

our framework suggests a comprehensive data management approach that address issues at the 



strategic, tactical, and operational levels. At a strategic level, a successful data governance 

process should span the entire spectrum from obtaining data to its consumption and ensure that 

big data efforts undertaken align with business strategy. Decisions include deciding what internal 

and external data sources to use, selecting and deploying appropriate big data technologies for 

storing data and for unified data exchange, and investing in training programs to have the 

appropriate skill sets to make informed, timely decisions. In the context of big data, 

organizations store more data than what their immediate needs might be, which can expose them 

to more privacy and security risks. Appropriate governance mechanisms that ensure regulatory 

and legal compliance is crucial. 

 

In contrast to traditional BI where most business units and users are provided with appropriate 

reports/data for decision making, in the context of big data, many organizations now allow their 

business units to find ways to use and analyze data to better serve their needs. Thus, it is not 

uncommon to see big data projects stem from various business units. Hence, managing big data 

projects is critical. At a tactical level, good governance process should include ways to prioritize 

big data projects, set metrics to assess projects and their usefulness, and deploy knowledge 

management processes so that there is effective sharing of resources in the organization as it 

relates to big data efforts. 

 

Another major change in the big data context is the management efforts at the operational level. 

Latency (i.e., speed to access data) is critical. Since data being used by organizations is both 

internal and external, decisions need to be made at the operational level on how to handle data 

from disparate sources (e.g., about how to structure unstructured data, how to ensure data quality 

(i.e., master data management), what in-memory databases to use for storage, and what no-SQL 

approaches will be used to access data). 

 

5. Academic Research and Practitioner Perspectives 
 

We use the process view of our framework to structure the review starting with data sources and 

ending with big data management and governance. In each category, we highlight contributions 

from both academic research and practitioner literature and interviews. The research findings and 

other observations presented in these works led us to identify opportunities for future 

investigations. 

 

5.1 Data Sources 

 

5.1.1 Academic Research 
 

The term big data is often used to refer to unstructured data, particularly from social media 

sources such as Facebook, Twitter, and blogs (Androile, 2012). The literature that we reviewed 

reveals research aimed at interpreting the meaning of human written language (Kane et al., 2014) 

and assessing the relevance of textual language to a particular problem or situation (Chau & Xu, 

2012; Oh et al., 2013) along with the reliability of that information as a precursor to trusting it 

(Gefen, Benbasat, & Pavlou, 2008). Kane et al. (2014) identify key differences between offline 

social networks and online social media networks. Oh et al. (2013) use rumor theory to examine 

the reliability of community intelligence obtained from the online community of amateur 



reporting during crisis. They found that source ambiguity is the most important rumor-causing 

factor, which suggests that meta-data associated with source data provides additional information 

that should be considered when judging information quality or veracity. 

 

5.1.2 Practitioner Perspectives 

 

The practitioner literature shows an evolution in the concepts of structured/unstructured data 

with new open standards. The World Wide Web Consortium (2014) describes a Web of data 

referred to as the semantic Web that provides a common framework to allow data to be shared 

and reused across applications, enterprises, and communities. “Vocabularies” are used to define 

concepts and relationships to enable data integration and organize knowledge; they are the basic 

building blocks for inference techniques. According to some practitioners, these evolving 

standards may affect the manner in which data sources are used in the big data implementation 

process and challenge our ideas of data blending. Some practitioners argue that there is no such 

thing as unstructured data since all data has some structure; the structure is simply more flexible 

than that demanded by a relational database (Porter, 2014). 

 

Another way to approach data sources is to classify them as one of three corporate data types: 

structured corporate data, unstructured repetitive corporate data, and unstructured non-repetitive 

corporate data (Inmon, 2014a). Structured corporate data can be stored in a traditional database. 

An example of unstructured repetitive corporate data is records of telephone calls; the repetitive 

nature of the data provides heuristics for obtaining value from the data. The last category of 

unstructured non-repetitive corporate data (e.g., corporate contracts, warranty claims, email 

contents, healthcare data) is the most challenging since the content and structure of each item 

could be different. As such, an organization needs different approaches to obtain value from data 

depending on the data types themselves (Inmon, 2014a, 2014b, 2014c). 

 

Practitioner interviews and literature revealed an increasing interest in the “Internet of things” 

and the associated brontobytes (1000 yottabytes or 10^27 bytes) of data (Zaslavsky, 2014; 

Grover & John, 2015). For example, the Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) in Australia is developing technology to increase crop yield by 

performing sensor-based monitoring of plants, soil, and environmental conditions at high 

resolution (Zaslavsky, 2014). Real-time, online analysis of sensor data permits one to 

interactively assess crop performance and crop selection based on expected conditions, 

irrigation, and fertilizer. Embedded sensors allow one to precisely measure the use of physical 

objects such as drilling equipment, which creates opportunities for alternative pricing strategies 

and new business models (Grover and John, 2015). 

 

5.2 Data Preparation and Storage 

 

5.2.1 Academic Research 

 

The literature on data preparation and storage mainly includes research commentaries that help 

identify future trends and research questions (e.g., Gillon et al., 2014; Andriole, 2012). Andriole 

(2012) surveyed practice on future trends, and Gillon et al. (2014) provides a panel report on 

analytics that describes the need for change in the existing data preparation and storage 



architecture in organizations. The vast digital trail triggered by the Internet and accelerated by 

the growth in social media has led to a big data explosion, which has created a need to change 

traditional data structures. The demand for real-time processing of a variety of data types and 

from diverse sources can provide organizations with immediate insights on customer behavior 

and business transactions and create both incremental and radical change to typical decision 

support frameworks (Gillon et al., 2014). 

 

However, the combination of technologies required to collect and combine the variety of 

structured and unstructured data to gain insights is still not established. Many major 

organizations are currently experimenting with a variety of storage technologies available to 

enable big data analysis such as in- memory and in-database processing solutions, streaming 

engines, Hadoop clusters, and traditional data warehousing frameworks (Watson 2014). Gillon et 

al. (2014) describe the current growth in technologies that support big data as the “wild west of 

technologies” with no proven set of tools to handle data storage and processing needs for big 

data. As a result, many research questions in this space focus on the evolution of traditional data 

architectures and on identifying the right mix of platforms that would meet the analytics needs of 

the organization in an efficient and cost-effective manner (Andriole 2012; Watson 2014). 

 

The sampling of research literature provides further evidence that data preparation and storage to 

accommodate big data is still being developed. Empirical research focusing on the multi-

platform framework required for big data storage is still in its infancy. As a result, much of the 

academic research still focuses on traditional structured data architectures or different data 

preparation and storage platforms in isolation. For instance, van Valkenhoef et al. (2013) have 

looked at creating standardized data models and data standards for new data sources such as 

clinical trial data. However, as the research commentaries suggest, innovation and evolution are 

expected in data storage with the dawn of the era of big data (Watson, 2014). For instance, 

advances in data storage techniques and analytics has also created the need for automation of 

decision support processes that historically relied on human intuition (Gillon et al., 2014). Future 

research in this area will address methods of combining structured and unstructured data and the 

right combination of storage options to optimize analytics. 

 

5.2.2 Practitioner Perspectives 
 

The practitioner literature indicates a shift in the mindset that data storage should also make 

accommodations for a discovery platform in addition to storing data. One approach for data 

warehousing to deal with exponential increases in data is to move from extract-transform-load 

(ETL) to a new design of extract-load-transform (ELT) (Subramanian, 2013). In ELT, raw data 

is loaded directly to the target and transformed there to reduce the time between data extraction 

and availability to users. Thus, the need for discovery at the cost of data quality attributes (such 

as standardization) has become a theme in big data research. In the context of big data, 

practitioners suggest flexible data storage such as “data lakes” or “data clouds” that are easily 

expandable and can accommodate a variety of data formats (Roski et al., 2014). Data lakes store 

near-exact or even exact copies of the source format in order to present an unrefined view of the 

data independent of any of the compromises made in storing data in traditional architectures such 

as a data warehouse (Schlegel, 2014). Data lakes also enable flexible analytics schemas that can 



be developed "on the fly" to answer a particular question without affecting the raw data (Herman 

et al., 2013). 

 

Data architectures in most organizations today rely on hybrid architectures involving a myriad of 

database and file management systems, and data is stored and managed in a variety of locations: 

in memory, on disk, or in the cloud. Research is needed on data-intensive distributed systems 

such as Hadoop that separate how data is stored from the way it is processed. The integration of 

Hadoop capabilities with existing enterprise architectures is key to enterprise adoption (Potter, 

2014). Practitioners also find that most data warehouses have reached maximum storage capacity 

and will need expensive upgrades to accommodate big data (Swoyer, 2010). In addition, the 

underlying data warehousing platform is not scalable enough to support new sources of data 

(internal or external) and maintain adequate query performance. Thus, many companies are 

implementing new, specialized analytical platforms designed to accelerate query performance 

when running complex functions against large volumes of data (Swoyer, 2010). 

 

Companies are realizing that, with the growth of big data, there is a need to have a data storage 

metric such as dollar-per-TB (Swoyer, 2013). Currently, more and more organizations are 

considering analytics technologies that actually work best off of raw source data as opposed to 

squeaky-clean data loaded into the warehouse. It may be cost effective to store raw data in a 

Hadoop distributed file system (HDSF) and move analytical computing closer to the data (Evans, 

2013). It is considered a favorable choice in terms of matching a workload to a platform best 

suited to it (Swoyer, 2013). 

 

5.3 Analysis 

 

5.3.1 Academic Research 

 

Current research on methods to analyze big data are focused in four areas: extending intelligent 

methods developed to analyze large datasets, developing methods to analyze unstructured data, 

investigating methods that combine structured and unstructured data to improve model 

prediction, and visualizing data and analyses to aid interpretation. Much of the analytical 

methods research is found in the computer science and engineering literatures rather than the IS 

literature. We briefly describe data analysis research and refer the reader to alternate references 

for details. 

 

Intelligent methods have been developed and expanded over the past few years with an emphasis 

on big data. For example, the IEEE (2014) conferences and workshops on big data provide a 

forum for computer science and engineering researchers to focus on analyses of these data. In 

general, these approaches use mathematics and artificial intelligence to develop predictive 

models. Methods include descriptive analytics, such as clustering or network analysis, and 

predictive analytics, such as regression, logistic regression, decision trees, and neural networks. 

 

Methods to analyze unstructured data, particularly in the form of textual data, have been 

investigated and expanded in response to the availability of electronic text communication 

(Parameswaran & Whinston, 2007). Evangelopoulos, Zhang, and Prybutok (2012) discuss latent 

semantic analysis (LSA) to describe the semantic content in textual data as a set of vectors. The 



meaning of a passage of text is related to patterns of presence or absence of words. Applications 

include analyzing customer feedback, interpreting social media, and managing knowledge 

repositories. Research is needed in intelligent selection of parameters for analysis, interpretation 

of unstructured data from various sources, combination of multiple approaches to analysis, and 

the finding of new application areas (Evangelopoulos et al., 2012). 

 

Zheng et al. (2012) illustrate how to investigate methods that combine structured and 

unstructured data to improve model prediction. They describe methods to derive competitive 

intelligence in BI systems, such as customer visits and purchasing behavior in e-commerce 

without the need for individual transaction history. They use a constrained optimization model to 

infer key competitive measures (i.e., penetration, market share, share of wallet) using less 

granular and aggregate data than has been used in past studies, and they combine data about 

online retailers with transactional data from syndicated data providers. 

 

The significant growth in use of social media data has spurred research in analytic methods that 

can help firms monitor public sentiment of their brand and products (da Silva et al. 2014). This 

research can also aid consumers search for appropriate products based on sentiment analysis 

(Lau et al., 2014). 

 

Lycett (2013) points out that data visualization is maturing to present complex data quickly and 

clearly in ways that are informative while also being pleasing to the viewer. Tufte (1997) 

investigates the presentation of information and “visual explanations” or “visual displays of 

data” to aid interpretation. He demonstrates that context and interpretation of the visual display 

by a decision maker need to be considered in creating a visualization. Although Tufte’s (1997) 

body of research is applicable to all types of data, large and small, representing big data requires 

more-sophisticated approaches than that found in traditional spreadsheets. 

 

5.3.2 Practitioner Perspectives 

 

The practitioner literature points out that gaining value from big data requires a new way of 

thinking about and analyzing data (Herman & Delurey, 2013; Hey, 2010; Grover & John, 2015). 

With the concept of a data lake containing all of an organization’s data regardless of type (see 

section on data storage), we need new methods of connecting data sources. 

Extract/transform/load processes are tied to structured databases and data warehouses, while 

relationships are derived at the time of analysis in a data lake. Metadata tags provide descriptions 

of data elements and become connectors between data so that an analyst can retrieve any relevant 

data, regardless of data type, to answer a particular question. 

 

We need new techniques to develop these flexible schemas “on the fly” to answer a particular 

question without affecting the raw data (Herman et al., 2013). For example, real-time processing 

permits one to identify opportunities or threats so that they can be acted on more quickly, which 

would make complex event processing (shown in Figure 1) more effective (Schlegel, 2014). 

Ultimately, we need to understand the true relationship between the measures of highest interest 

and related events. Such relationships, or “analytical pathways”, are key to understanding cause-

and-effect as part of analytics (O'Rourke, 2013). 

 



Although techniques for analyzing structured data are well developed, robust approaches are 

needed for other big data assets such as images, video, human language, sound, and even three-

dimensional objects (Schlegel, 2014). Interpreting these data types is often context dependent 

(Feigenbaum, 2014), so analytical strategies are needed that are inspired by the way the human 

brain processes information, draws conclusions, and makes decisions (i.e., cognitive analytics) 

(Chandrasekaran, 2014). Even if data are interpreted, fusing data on a massive scale by 

incorporating various data types is a persistent problem (Herman et al., 2013). For example, 

“social analytics” (i.e., social filtering, social network analysis, social channel analysis, 

sentiment analysis, social media analytics) needs to be combined with other types of data that 

describe human behaviors (Buytendijk, 2014). 

 

Big data analytics require new ways to facilitate the discovery of hidden patterns in large, 

complex datasets without traditional model building or algorithmic development (Schlegel, 

2014). Sometimes referred to as “smart pattern discovery”, data visualization enables users less 

skilled than data scientists to interact with and explore data (Schlegel, 2014). We need 

techniques that increase accessibility of data analytics to a larger number of users. New 

dashboard designs are being developed with new requirements such as interactivity and data 

flexibility (Porter, 2014). We are moving toward data discovery and visual analytics with an 

emphasis on storyboarding, scenarios, and use-cases that enable business hypothesis testing and 

insight generation (Mohanty, 2014). 

 

Technologies to deliver these capabilities are constantly evolving. In-memory analytics, in which 

all data to be analyzed are loaded into memory and analyzed there, is many times faster than 

traditional disk-read systems (vom Brocke et al., 2014). This technology is becoming 

mainstream, driven by declining memory prices coupled with the widespread adoption of 64-bit 

computing (Buytendijk, 2014). Cloud-based analysis of big data is being accomplished with 

technologies that permit large-scale batch processing across hundreds or thousands of computers, 

each with several processers to permit parallel processing (e.g., Hadoop) (Buytendijk, 2014). 

Hadoop is a core component of big data analytics, but we need a more effective toolkit to reduce 

the complexity of the MapReduce syntax and help developers generate and execute Hadoop jobs 

and abstracts (Narayanan, 2013). 

 

5.4 Data Access and Usage 

 

5.4.1 Academic Research 
 

The literature on data access and usage focuses on users and their roles and how they interact 

with data, including big data. Andriole (2012), while discussing technology trends, predicts that 

users will be segmented into a myriad of roles with a need for different devices (e.g., tablets, 

smartphones, hybrids, laptops, desktops, and heavy devices), technology platforms, and access 

mechanisms to fit their roles. 

 

Demirkan and Delen (2013) suggest an architecture for delivering data, information, and 

analytics as a cloud-based service, which is possibly a necessity in the context of big data. Their 

conceptual framework proposes tailoring these services to the types of users and their specific 

decision and analytical needs, such as ad hoc querying, reporting, OLAP, dashboards, intra- and 



inter-net searching for content, data and information mashups, optimization, data mining, text 

mining, simulation, and automated decision systems. 

 

Research on data access and usage focuses on post-adoptive behavior of users in actually using 

the data and information, especially when using BI systems is voluntary. For example, Deng and 

Chi (2012) examine the problems and causes that deter the use of implemented BI systems by 

both regular and power users. Li et al. (2013) use motivation theory to predict the impact of rich 

intrinsic motivation on routine and innovative use of BI systems. Other researchers have 

prescribed how data modeling and analysis can be integrated into the decision making process 

with examples of specific applications. For example, van Valkenhoef et al. (2013) suggest a data 

model, a decision support system, and an analysis technique for conducting clinical trials. 

Brydon and Gemino (2008) show how data mining can be integrated into the decision making 

process of selecting which video games to develop based on prior blockbuster performance data. 

 

5.4.2 Practitioner Perspectives 
 

The practitioner literature reiterates the evolving roles of the users of BI systems with the data 

scientist emerging as distinct from business analyst and statistician (Laney & Kart, 2012; 

Davenport & Patil, 2012). The implications of this evolution are many: training and educating 

data scientists, creating new organizational structures, and transforming business processes for a 

data science teams (Herman et al., 2013). The literature also points out that big data and related 

technologies are new to BI and data warehouse professionals. Experience with early adopters has 

shown that learning (e.g., Hadoop and related technologies such as Hive, HBase, MapReduce, 

Java programming, etc.) takes significant time and training (Russom, 2014). 

 

Ten years ago, a dashboard visually depicted a tabular report. Today, dashboards have evolved to 

provide visual analysis, data discovery, and self-service BI. In the context of big data, business 

users will be more and more empowered to explore data without necessarily knowing what they 

are looking for. 

 

Furthermore, mobility, data freshness, and collaboration have become commonplace in 

dashboard requirements (Porter, 2014). 

 

The practitioner literature also emphasizes the need to provide data access via mobile devices to 

users who may not be traditional analysts. At the same time, users need to be trained to use the 

data effectively (Powell, 2013). Moreover, making the right data available for access by any 

device at any time is a challenge. Sophisticated data visualization tools are especially required 

for interpreting big data (Herman et al., 2013). The literature points out the need to investigate 

the role of human behavior in big data access and usage. There are many factors to investigate: 

from understanding the big data vision and motivations to developing trust and managing 

conflict that may arise from lack of such understanding (TWDI, 2013). 

 

As we mention earlier, our concept of a unified data exchange represents integration of multiple 

processes. With big data analytics, the lines between data preparation, storage, and analysis are 

becoming blurred. For example, some type of data may not go through the traditional ETL 

process and may reside directly in Hadoop clusters where transformation and analyses may take 



place simultaneously on the fly. Complex event processing may take place with real-time data 

freshly extracted and analyzed along with business rules or profiles stored in the traditional data 

warehouse. A data scientist may use the models and analytics tools available in the sandbox to 

“play” with the streaming in-memory data along with the data sets in the warehouse. These 

examples show that the analytics processes in the UDE, preparation, storage, and analysis are not 

necessarily sequential, especially in the case of big data analytics. Thus, UDE represents a 

conceptual integration of otherwise distinct processes. Note that several organizations and 

consulting firms are experimenting with alternative representations of this concept and these 

representations are evolving as our understanding of the components and their capabilities 

evolves. 

 

The practitioner literature points to new business models that may result from “hyperscale” 

businesses (i.e., big data businesses that exploit immense digital data stores) (Chui & Manyika, 

2015). For example, companies that sell physical assets could use machine-to-machine data to 

evolve into service businesses based on usage charges. Rapid growth is possible since the 

networks can be easily expanded and the marginal cost of adding additional devices or users is 

small. Hyperscale businesses can disrupt traditional business models by automating process 

improvements and quickly experimenting with customer preferences on a large scale. Companies 

with access to large amounts of data may be able to compete at hyperscale in some segments of 

their business (Chiu & Manyika, 2015). 

 

5.5 Big Data Management and Governance 

 

5.5.1 Academic Research 

 

Academic research on big data management and governance is at a very early stage and has 

primarily focused on its importance. In a recent panel report, Gillon et al. (2014) stress that 

organizations need to rethink the governance and management of big data because there are 

significant changes in internal environment. Many organizations are still in the process of 

building the needed skills and technical capabilities to tackle big data. Based on panel 

discussions, they present a 4D framework for analytics: decisions rights (who will own decision 

rights and how to centralize/decentralize the rights), department role and configuration 

(determining role of IT in analytics and how it interfaces with other units), dollars (making 

monetary decisions on projects), and delivery (securing and training staff). 

 

In his tutorial on big data analytics, Watson (2014, p. 1264) states that some organizations are 

creating “analytics centers of excellence” for providing strategic direction for big data analytics, 

building appropriate capabilities for use of analytics, establishing guidelines and standards, and 

prioritizing projects. In identifying seven technology trends for 2015, Andriole (2012) recognizes 

that organizations will see a dramatic shift in governance due to the change in velocity of 

business. As technologies for enabling data analytics are radically changing and evolving 

combined with dynamic data needs of business units, appropriate mechanisms to manage and 

govern the change is important. Recent research also confirms the increasing need for 

governance and compliance as the analytics landscape is changing (Chae, 2014; Demirkan & 

Delen, 2013). The importance of governance and management, and the lack of detailed research 

in the area, provides opportunities for academic research that are identified in a later section. 



 

5.5.2 Practitioner Perspectives  

 

It was evident from the practitioner literature and interviews that governance and management of 

big data need new paradigms (O’Neil, 2012). With increased use of internal and external data in 

decision making, organizations face increased risks. Data inaccuracies can lead to poor decision 

making. As organizations make extensive use of social media data to make important decisions, 

veracity of data is one of their biggest concerns. Appropriate policies and strategies for data 

management, big data  project management, the securing of data both in house and in cloud, 

compliance and control to meet regulatory requirements, and training of employees to ensure 

effective use of data all fall under the purview of overall data management and governance. 

Mergers and acquisitions can pose more challenges with integrating data architectures if 

organizations do not have well-defined management mechanisms (Powell, 2013). 

 

Another way to manage big data is using data lake (Schlegel, 2014; Violino, 2014). As Schlegel 

(2014) notes: 

 

By its definition, a data lake accepts any data, without oversight or governance. 

Without descriptive metadata, and a mechanism to maintain it, the data lake risks 

turning into a data swamp. Moreover, every subsequent use of data means 

analysts start from scratch, like a form of data amnesia. 

 

A data lake also adds more security and access control challenges as the technologies handling 

data lakes are still in their early forms. This lack of maturity reinforces the need for good data 

management and governance mechanisms. 

 

If organizations use cloud service providers, then they need to ensure those providers have up-to-

date security and policies to share data and collaborate across organizations. Practitioners also 

stress the importance of addressing organizational culture in the context of big data as attitudes 

on ethics, privacy, and security can vary significantly across organizations. For example, in the 

healthcare sector, the policy implications of using big data are that many current practices and 

policies related to data use, access, sharing, privacy, and stewardship need to be revised to ensure 

protection of patients’ confidentiality (Roski et al., 2014). Big data research continues to identify 

cybersecurity threats. Gartner reports that 25 percent of companies will have adopted big data 

analytics for at least one security and fraud detection use case (Rivera, 2014). Identification prior 

to attack will continue to evolve as a potential research area. While there are practitioner blogs, 

interviews, and white papers on the topic, systematic research is needed to understand 

appropriate privacy and security policies for different industry sectors. 

 

However, the biggest challenge for businesses is to develop a simple big data plan “for how data, 

analytics, frontline tools, and people come together to create business value” (Biesdorf, Court, & 

Willmott, 2013). The plan should provide a common language for executives, managers, and 

data scientists to assess opportunities for business value and identify priorities. A successful plan 

will focus on three elements: assembling and integrating data with associated governance, 

developing advanced analytic models, and creating intuitive tools that integrate data insights into 

business decisions. Big data planning differs from traditional business intelligence plans in 



integrating data across company divisions and requiring investment in new data architectures and 

analytics. It is “at least as much a management challenge as a technical one” (Biesdorf et al., 

2013), and we need new organizational skills and thought processes for effective 

implementation. A 50-50 ratio of data and modeling to training is suggested for planning 

purposes for big data. 

 

6. Research Directions Based on Big Data Analytics Framework 
 

We identified potential research questions in the field of big data using representative literature 

and practitioner interviews as we discuss above. We list the research opportunities in each 

component of the big data framework in Table 5. Because these opportunities are also evident 

from the practitioner literature, we trust that further academic research in these areas will help 

increase the relevance of academic research to practice. While we do not claim that the list 

provided is exhaustive, we hope it will aid researchers in investigating relevant topics for 

research. 

 



 
 



 
 

7. Summary 
 

 

We propose an updated framework for the BI environment in the context of big data. Academic 

and practitioner panels and discussions from the 2012 and 2013 pre-ICIS analytics events and 

previously published frameworks (Watson, 2009; Eckerson, 2011) provided the initial ideas for 

building the framework. We had leaders in the practitioner community whet the initial ideas. The 

resulting big data analytics framework depicts a process view of the various components that 

form the analytics process including sourcing, preparation, storage, analysis, access, and usage. 

In addition, the framework represents three types of users: business users, business analysts, and 

data scientists. It also captures organizational issues in big data management and governance at 

the strategic, tactical, and operational levels. 

 

We reviewed a significant sample of top academic and practitioner literature in the context of the 

components of the framework. This structured review of current literature helped us identify the 

gaps in research and also propose new avenues for research. We find that the challenges 

presented by the nature of big data offer unique opportunities for research in each component of 

our big data analytics framework. 



 

Questions regarding sourcing of big data revolve around what data sources are strategically 

important and identifying such sources because the overabundance of data will make it necessary 

to tune in on those data that are most beneficial. Eventually, standards and metrics will need to 

be developed to measure progress in this direction. 

 

Preparing big data for storage and organization is a major challenge. Research questions include 

topics such as preparing data versus keeping it in raw form, ensuring quality and preparation of 

real-time streams, and building technology platforms needed to prepare data on the fly. The 

diversity with which big data will be used (including its unspecified use) necessitates delaying its 

preparation into a rigid structure, so that flexibility is maintained as long as possible. 

 

Big data storage is one of the most technologically advanced research areas in practice with 

architectures such as Hadoop clusters becoming commonplace. Because of the different ways in 

which big data can be potentially used, questions still persist around how to strike the right 

balance between in-memory, in- database, traditional data warehouses, and on-demand data 

storage in the cloud. Perhaps the solutions will be in replicating big data in multiple formats. 

 

The analysis area poses perhaps the most interesting unanswered questions because intelligent 

methods to assist big data analytics on a massive scale are yet to be developed. Semantic 

merging of different types of big data streams is an untapped area both technically and for 

decision support. Moreover, analyzing complex data objects such as images, video, sound, and 

three-dimensional models is still in its infancy. 

 

On the usage side of the spectrum, behavioral research questions abound. The understanding of 

what problem can be solved by big data and the expertise needed to solve them is still evolving. 

Hence, questions focusing on the composition of data science teams, user engagement in 

building big data capabilities, and integration of big data analytics in user workflow will need to 

be answered. Moreover, BI as a service will become even more relevant in the context of big 

data as expert groups specialize in, for example, different types of service (storage/ processing/ 

analytics), types of industry, or problem type. 

 

Finally, managing and governing big data is replete with challenging research questions. 

Although these questions are similar to the ones we face in the case of traditional BI, some are 

unique to big data, such as strategies and policies needed to identify, hire, train, and retain a big 

data workforce; managing security and privacy of sensitive big data; and determining parameters 

for storage and disposal of big data. 
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