
KORRAPATI, BHUVANA, M.S. Enhancing Federated Learning Efficiency through
Dynamic Model Adaptation and Optimization. (2024)
Directed by Dr. Jing Deng. 88 pp.

Federated learning (FL) in cloud computing has emerged as a groundbreaking

paradigm, revolutionizing data processing and machine learning through decentralized

and scalable systems. However, the integration of these technologies faces challenges

in communication efficiency and data privacy preservation, which are crucial for their

widespread adoption and effectiveness. This research presents a dynamic federated

learning approach that incorporates model compression, PCA-based dimensionality

reduction, and fine-tuning to address these challenges.

The proposed method dynamically determines the optimal number of PCA

components based on client data variability, effectively reducing data dimensionality.

By applying model compression techniques, including pruning and quantization, the

approach enhances communication efficiency without compromising the performance.

Furthermore, the integration of fine-tuning as a knowledge distillation step allows the

compressed models to adapt to client-specific data patterns, thereby tackling issues of

skewness and overfitting.

In addressing the challenges of bandwidth and latency in FL, the evaluation

metrics encompass Average Communication Cost, Average Bandwidth Utilization,

and Average Latency, demonstrating the approach’s effectiveness in optimizing these

key performance indicators. Moreover, the framework incorporates dynamic model

adaptation on both client-side and server-side, enabling personalized adjustments

based on local data characteristics and client resources, while optimizing the global

model’s performance.

Using both the MNIST and CIFAR-10 datasets for validation, this approach

demonstrates maintained accuracy with data reduction across various levels of data

skewness and complexity. The proposed federated learning framework follows a

comprehensive flow chart that encompasses server initialization, model distribution,

client-side processing (including data dimensionality reduction, model compression,

local training, fine-tuning, and dynamic adaptation), server-side aggregation, global

model update, model evaluation, and iterative refinement. This research contributes

to the advancing field of cloud-based FL by presenting an efficient, privacy-preserving,

and scalable approach for distributed machine learning, setting a new standard for

optimizing communication efficiency in decentralized data environments and paving

the way for the next generation of federated learning systems that prioritize efficiency,

privacy, and scalability.

ENHANCING FEDERATED LEARNING EFFICIENCY THROUGH DYNAMIC

MODEL ADAPTATION AND OPTIMIZATION

by

Bhuvana Korrapati

A Thesis Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Science

Greensboro
2024

Approved by

Committee Chair

To my parents for their continual support of my academic career.

ii

APPROVAL PAGE

This thesis written by Bhuvana Korrapati has been approved by the following

committee of the Faculty of The Graduate School at The University of North

Carolina at Greensboro.

Committee Chair
Jing Deng

Committee Members
Minjeong Kim

Qianqian Tong

Date of Acceptance by Committee

Date of Final Oral Examination

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Jing Deng, for helping me to prepare this

Thesis. His experience and advise were invaluable.

iv

PREFACE

In this research, we explore the dynamic integration of Federated Machine

Learning (FL) and cloud computing, focusing particularly on optimizing

communication efficiency through adaptive model modifications. Our study

introduces innovative methodologies that include dynamic data reduction and model

compression techniques, tailored to the variability in client data. These strategies are

vital for enhancing the scalability and performance of FL systems across

heterogeneous cloud environments. The adaptive nature of our approach not only

enriches the academic landscape but also lays a robust foundation for developing

secure, efficient, and practical FL implementations that are responsive to real-world

complexities.

v

TABLE OF CONTENTS

Page

LIST OF TABLES. xi

LIST OF FIGURES. xii

CHAPTER

I. INTRODUCTION . 1

I.1. Overview . 1

I.2. Federated Vs Traditional approach . 2

I.3. Centralized Learning Vs Federated Learning 4

II. RELATED WORK . 8

II.1. Federated Learning Applications . 8

II.1.1. Healthcare . 8

II.1.2. Self-Driving Cars. 9

II.1.3. Mobile edge Computing . 10

II.1.4. Internet of Things . 10

II.1.5. Information Technology . 11

II.2. Federated Learning privacy. 12

II.2.1. Privacy Attacks . 12

II.2.2. Differential Privacy(DP) . 13

II.2.3. Secure Multi-Party Computation (SMPC) 13

II.2.4. Federated Transfer Learning (FTL) 14

II.3. Federated Learning Communication Efficiency 15

II.3.1. Federated Dropout . 15

II.3.2. Structured and Sketched updates . 16

vi

II.4. Communication Challenges in Federated Learning 16

II.4.1. FedSCR: Structure-Based Communication Reduc-
tion for Federated Learning . 16

II.4.2. COFIG and FRECON . 17

II.4.3. Structured and Sketched Updates . 17

II.4.4. Adaptive Dynamic Pruning for Non-IID FL 18

II.4.5. Our Proposed Model . 18

II.5. Our Research . 18

III. FEDERATED MACHINE LEARNING IN CLOUD. 21

III.1. Federated Learning Benchmark . 21

III.2. Novel Contributions to Federated Machine Learning 23

III.2.1.Adaptive Dynamic Compression Strategy 23

Benchmarking and Analysis 24

III.2.2.Enhanced Federated Learning Framework. 24

III.3. Core Optimization Challenges in Federated Learning 25

III.3.1.Model Size and Bandwidth Efficiency 26

III.3.2.Latency Reduction and Model Convergence 26

III.3.3.Energy Efficiency in Client Operations 26

III.3.4.Scalability and System Adaptability 27

III.4. Selecting the Framework . 27

III.4.1.Flower Architecture . 29

IV. IMPLEMENTATION . 30

IV.1. Experimental Setup . 30

IV.2. Data Preparation and Distribution . 31

IV.2.1. IID Data Distribution . 33

vii

IV.2.2.NON-IID Data Distribution . 34

IV.3. CNN Architecture . 36

IV.4. Training, Validation, and Testing. 38

IV.4.1.Training the Data . 38

IV.4.2.Validation and Early Stopping . 41

IV.4.3.Testing and Model Generalization . 43

IV.4.4.Evaluation Process . 44

IV.5. Flower Integration and Simulation Setup . 47

V. METHODOLOGY . 49

V.1. Architecture Overview . 50

V.1.1. Client-Side Operations . 50

V.1.2. Server-Side Operations . 51

V.2. Dynamic Model Adaptation and Data Variability-Aware
Optimization . 52

V.3. Dimensionality Reduction . 55

V.4. Model Compression Techniques . 57

V.4.1. Quantization Technique . 57

V.4.2. Pruning Technique . 58

V.5. Overcoming Challenges with Model Compression 59

V.5.1. Fine-Tuning: Recovering Performance Loss 60

V.5.2. Handling Shape Mismatch: Ensuring Model Syn-
chronization . 60

V.5.3. Early Stopping: Preventing Overfitting 61

V.6. Efficient Update Aggregation . 61

V.6.1. Weighted Averaging: Enhancing Federated Aggre-
gation. 61

viii

V.7. Mathematical Framework for Data Reduction 64

VI. EXPERIMENTS AND RESULTS . 66

VI.1. Results for MNIST Dataset . 66

VI.1.1. Impact of PCA Component Selection on Model
Performance . 66

IID Distribution . 66

Non-IID Data Distribution . 67

VI.1.2.Model Compression Techniques and Results 68

Application of Compression Techniques 68

Results of Model Compression Techniques 69

VI.2. Experiments and Results for CIFAR-10 . 70

VI.2.1. Impact of PCA Component Selection on Model
Performance . 70

IID Distribution . 70

Non-IID Data Distribution . 71

VI.2.2.Model Compression Techniques and Results 71

Results of Model Compression Techniques 72

VI.3. Model Optimization Analysis . 73

VI.3.1.Bar Graph Analysis of Reduction and Compres-
sion Techniques. 73

VI.3.2.Data Reduction Impact Analysis . 74

VI.3.3.Overall Data Reduction Efficacy. 75

VI.4. Performance Analysis and Visualization . 77

VI.4.1. IID Data Distribution . 77

VI.4.2.Non-IID Data Distribution . 78

ix

VI.5. Analysis of Data Reduction and Compression Techniques
on IID vs. Non-IID Data . 80

VI.5.1.Principal Component Analysis (PCA) and Early
Stopping . 80

VI.5.2.Quantization and Pruning . 81

VI.5.3.Compression Rates and Model Performance 81

VII. CONCLUSION AND FUTURE EXTENSIONS . 82

VII.1. Conclusion . 82

VII.2. Future Work . 83

BIBLIOGRAPHY . 85

x

LIST OF TABLES

Page

Table VI.1. Performance Metrics for Different PCA Components on IID
Data . 67

Table VI.2. Performance Metrics Across Non-IID Distributions for Differ-
ent PCA Components . 67

Table VI.3. Compression Technique Selection Based on Data Distribution 69

Table VI.4. Consolidated Results of Model Compression Techniques for
Different Data Distributions . 70

Table VI.5. Performance Metrics for Different PCA Components on IID
Data . 71

Table VI.6. Performance Metrics Across Non-IID Distributions for Differ-
ent PCA Components (CIFAR-10) . 71

Table VI.7. Compression Technique Selection Based on Data Distribution
(CIFAR-10). 72

Table VI.8. Consolidated Results of Model Compression Techniques for
Different Data Distributions (CIFAR-10). 73

xi

LIST OF FIGURES

Page

Figure I.1. Centralized Learning Approach. 6

Figure I.2. Federated Learning Approach . 7

Figure IV.1. MNIST Data. 32

Figure IV.2. CIFAR-10 Data . 33

Figure IV.3. IID Data Distribution . 34

Figure IV.4. NON-IID Data Distribution . 35

Figure IV.5. Data visualization . 36

Figure IV.6. Convolution Neural Network . 37

Figure V.1. Federated Learning System Architecture with Dimensionality
Reduction and Model Compression. 50

Figure V.2. Illustration of the structured pruning technique applied to
neural networks.. 59

Figure VI.1. Reduction percent of PCA and Compression Techniques on
IID and Non-IID Data . 74

Figure VI.2. Breakdown of Data Reduction Techniques Including Re-
maining Data After PCA, Quantization, and Pruning for
64 Components . 75

Figure VI.3. Overall Reduction Percentages with Different PCA Com-
ponents and Compression Techniques. The graph demon-
strates total reduction as well as individual contributions
from PCA, and combined quantization and pruning. 76

Figure VI.4. Initial test accuracies for IID data distribution using a single
random seed. 77

Figure VI.5. Averaged test accuracies for IID data distribution with
original and compressed federated learning models across
multiple random seeds. 78

xii

Figure VI.6. Initial test accuracies for Non-IID data distribution using a
single random seed. 79

Figure VI.7. Averaged test accuracies for Non-IID data distribution with
original and compressed federated learning models across
multiple random seeds. 80

xiii

CHAPTER I

INTRODUCTION

In the introduction, we start by giving a brief overview of our project,

outlining its scope and objectives. We then explain our decision to use the Federated

Learning approach, highlighting its significance to our research. Lastly, we identify

the main communication challenges with data transfer and encountered in Federated

Learning, setting the stage for our exploration of these issues.

I.1. Overview

The integration of Federated Machine Learning (FL) with cloud computing

marks a pivotal development in the realms of data science and artificial intelligence.

This overview endeavors to illuminate the core principles underlying both FL and

cloud computing, delineating their distinct contributions and synergy within

contemporary computational paradigms. Central to this discourse is the endeavor to

optimize communication efficiency through model reduction, a critical determinant

for the practicality and effectiveness of FL within cloud infrastructures.

Federated Machine Learning is a novel approach that deviates from traditional

centralized machine learning methods. In FL, the learning process is distributed

across a multitude of devices or servers, each holding its own local data set. This

decentralized structure allows for the simultaneous training of machine learning

models on numerous nodes, which then communicate their findings or model updates

to a central server. The primary advantage of this approach is its ability to leverage

diverse data sources while maintaining the confidentiality and integrity of each

dataset and it is used in the sectors such as healthcare and finance.

1

Cloud platforms offer scalable, reliable, and accessible computational resources,

enabling the efficient handling and processing of data and model updates from

various nodes in the FL network. The cloud acts as a central point where aggregated

learning takes place, synthesizing insights from distributed data sources without the

need for data centralization.

The synergy between FL and cloud computing is pivotal in overcoming some

of the traditional limitations of machine learning models, particularly those related to

data privacy, scalability, and resource optimization. While FL ensures that data

remains at its source, thereby preserving privacy and reducing data movement, cloud

computing provides the necessary infrastructure for effective model aggregation and

global update. This relationship not only enhances the efficiency of machine learning

processes but also opens up new avenues for leveraging big data in a

privacy-preserving and resource-efficient manner.

I.2. Federated Vs Traditional approach

Federated Machine Learning (FL) is chosen over traditional machine learning

approaches primarily due to its distributed nature as opposed to the centralized

model of conventional learning. In traditional machine learning, data from various

sources is aggregated in a central location for model training, posing challenges in

data privacy and scalability. In contrast, FL allows for the model to be trained across

a network of decentralized devices, each working with its own local data. This key

distinction enables FL to leverage the diverse data sets available across various nodes

while maintaining data at its source, thus addressing the centralization concerns

inherent in traditional machine learning methods.

The choice of Federated Learning (FL) over traditional machine learning

approaches is driven by several compelling reasons which includes Data Privacy and

2

Security, Bandwidth Efficiency, Compliance with Data Regulations, User Preference,

Data volume, Real-world Data Representation and Resource Optimization. To deal

with these drawbacks we have chosen to use federtated machine learning.

(a) Data Privacy and Security: FL enables machine learning models to be trained

across multiple devices or nodes while keeping the data localized. This means

sensitive or proprietary data doesn’t need to be shared or transferred to a central

server, significantly enhancing data privacy and security. This is particularly

important in industries where data confidentiality is crucial, like healthcare or finance.

(b) Bandwidth Efficiency: Traditional machine learning often requires transferring

large datasets to a central location for processing, which can be bandwidth-intensive

and impractical, especially with large-scale data. FL, by processing data locally and

only exchanging model updates, significantly reduces bandwidth requirements.

(c) Regulations: GDPR (Europe), CCPA (California), PIPEDA (Canada), LGPD

(Brazil), PDPL (Argentina), KVKK (Turkey), POPI (South Africa), FSS (Russia),

CDPR (China), PDPB (India), PIPA (Korea), APPI (Japan), PDP (Indonesia),

PDPA (Singapore), APP (Australia), and other regulations protect data from being

moved. In fact, those regulations sometimes even prevent single organizations from

combining their own users’ data for AI training because those users live in different

parts of the world, and their data is governed by different data protection regulations.

(d) User preference: In addition to regulation, there are use cases where users just

expect that no data leaves their device, ever. If you type your passwords and credit

card info into the digital keyboard of your phone, you don’t expect those passwords

to end up on the server of the company that developed that keyboard, do you? In

fact, that use case was the reason federated learning was invented in the first place.

(e)Data-Volume: Some sensors, like cameras, produce such a high data volume that

3

it is neither feasible nor economic to collect all the data. Think about a national rail

service with hundreds of train stations across the country. If each of these train

stations is outfitted with a number of security cameras, the volume of data they

produce requires incredibly powerful and exceedingly expensive infrastructure to

process and store. And most of the data isn’t even useful.

(f) Real-world Data Representation: In traditional centralized machine learning,

the model is often trained on a homogeneous dataset, which might not represent

real-world scenarios accurately. FL, by training on diverse, decentralized data, can

result in models that are more generalizable and effective in real-life conditions.

(g) Resource Optimization: FL allows for leveraging the computational resources

of client devices, distributing the workload, and thereby reducing the computational

burden on a single central server. This is especially beneficial when dealing with large

networks of devices.

I.3. Centralized Learning Vs Federated Learning

Federated learning inverts the traditional method by bringing the model

training to where the data resides, rather than centralizing data for training. This

approach allows:

Traditional learning centralizes data for analysis.whereas, Federated learning

decentralizes the process, taking analysis to the data sources.

This shift opens new possibilities for applying machine learning in fields

previously restricted by data privacy or logistical issues. It paves the way for

collaborative advancements in healthcare, financial security, and privacy-focused

technologies, among others, by tapping into the wealth of data available across

various institutions. As federated learning expands, it unveils fresh opportunities for

innovation by leveraging data that was once unreachable.

4

(a) Centralized Learning Approach: The Centralized Learning Approach, a

cornerstone of traditional machine learning, hinges on consolidating data from diverse

sources such as mobile users or IoT sensors into a central repository for processing,

usually hosted on servers or cloud systems. This method capitalizes on the richness of

the combined dataset to train models that extract broad insights and patterns,

reflecting the aggregate knowledge.

Upon gathering this data, the central hub leverages its substantial

computational power to refine a machine learning model, which assimilates the

collective intelligence embedded in the data. Post-training, the model is deployed for

predictive tasks, either directly on the server for immediate API access or

redistributed to clients for localized use.

However, this model’s centralization of data aggregation and storage

introduces critical privacy and security dilemmas. The concentration of diverse client

data in a single locale not only heightens the risk of exposing sensitive information

but also turns the central data repository into a prime target for cyber threats and

data breaches, amplifying concerns over data misuse and security vulnerabilities.

Moreover, the reliance on a centralized infrastructure can lead to scalability

issues as the system must handle increasing volumes of data and computation. This

can result in bottlenecks, where the capacity to process and analyze data efficiently

becomes constrained by the central server’s limitations. Additionally, the need for

continuous data transmission to the central server can exacerbate network congestion,

leading to delays and reduced system responsiveness, further challenging the

scalability and efficiency of centralized learning systems.

(b) Federated Learning Approach: Federated learning begins with initializing a

model on a central server, similar to traditional machine learning setups. This

5

Figure I.1. Centralized Learning Approach

model’s parameters, either freshly initialized or based on a previous model, are

distributed to selected participant nodes, like devices or institutions, ensuring a

uniform starting point for all.

These nodes then proceed to train the model locally with their unique

datasets, but only for a short duration, which might range from a single epoch to a

few mini-batch steps. Following this local training phase, each node ends up with a

personalized version of the model, reflecting the peculiarities of its data.

The nodes then transmit their model updates back to the central server.

These updates can be the complete model parameters or just the gradients from the

local training. With updates from, say, 10 nodes, the server faces the challenge of

synthesizing these diverse learnings into a single, coherent model.

This is where the aggregation step comes into play, with Federated Averaging

(FedAvg) being a common method. It involves taking a weighted average of the

updates, where the weights correspond to the volume of data used by each node,

ensuring equitable representation of each dataset in the global model.

This cycle, comprising the distribution of the global model, local training by

6

nodes, and aggregation of updates, constitutes a single round of federated learning.

Repeating these rounds enhances the model’s performance across the collective data

of all nodes, culminating in a robust, widely applicable model.

Beyond model training, federated learning also encompasses federated

evaluation, allowing for the performance assessment of the model across diverse

datasets. Additionally, federated analytics can offer insights into broader trends

without compromising individual data privacy, thanks to techniques like secure

aggregation.

Figure I.2. Federated Learning Approach

7

CHAPTER II

RELATED WORK

In this chapter, we showcase the broad applications of Federated Learning

across multiple disciplines, detailing its intersection with fields such as data privacy,

model robustness, and computational efficiency. We review seminal contributions

addressing these Federated Learning challenges and their integration with cloud

computing. Further, we demonstrate how our research extends beyond existing

efforts, offering innovative advancements to the field.

II.1. Federated Learning Applications

"Federated Learning Applications" delves into the transformative impact of

Federated Learning across a spectrum of sectors, from Healthcare’s patient data

privacy to Mobile Computing’s device-centric models. In Self-Driving Cars, it

enhances real-time decision-making while safeguarding sensitive data. The Internet of

Things benefits from decentralized data processing, and Information Technology sees

improved security and efficiency in data management. This exploration showcases the

versatility and potential of Federated Learning in addressing industry-specific

challenges.

II.1.1 Healthcare

Federated Learning in healthcare as in the research paper [1] represents a

groundbreaking shift towards more secure and efficient data utilization, addressing the

critical challenge of data fragmentation and privacy. By enabling disparate healthcare

institutions to collaboratively train machine learning models without sharing sensitive

patient data, Federated Learning ensures robust, generalizable insights across diverse

8

populations. This approach is particularly beneficial in creating comprehensive

models from Electronic Health Records (EHR), enhancing diagnostic accuracy and

personalized care while upholding stringent privacy standards. Moreover, integrating

Federated Learning with edge computing opens new avenues for real-time, on-site

data processing, further improving response times and patient outcomes in critical

care scenarios, such as COVID-19 diagnosis [2]. This synergistic use of Federated

Learning and edge computing in healthcare not only surpasses traditional cloud-based

solutions in privacy and latency but also marks a significant leap in harnessing the

full potential of distributed data for advancing medical research and care delivery.

II.1.2 Self-Driving Cars

The Federated Learning approach is revolutionizing the automation sector,

particularly in advancing self-driving car technologies [3]. By enabling on-device

machine learning, this approach ensures real-time data processing directly at the edge,

significantly enhancing the responsiveness and safety of autonomous vehicles. For

instance, in steering angle prediction, Federated Learning has demonstrated its

capability to refine the accuracy of local models to match centralized training,

without the associated privacy and efficiency drawbacks. Moreover, the introduction

of Deep Federated Learning (DFL) and specialized networks like Federated

Autonomous Driving network (FADNet) further underscores the potential of

decentralized learning in handling complex tasks such as autonomous driving policy

formulation[4]. These advancements not only accelerate the development cycle by

reducing communication overheads but also address privacy concerns by eliminating

the need for data centralization. Thus, Federated Learning is setting new benchmarks

in the automation industry, offering a scalable, privacy-conscious framework for the

continuous improvement of autonomous driving systems.

9

II.1.3 Mobile edge Computing

Federated Learning (FL) in the realm of Mobile Edge Computing (MEC)

represents a promising avenue for deploying deep learning applications directly at the

network’s edge, enhancing privacy, reducing latency, and alleviating bandwidth

constraints[5]. The first research paper delves into the integration of FL with MEC,

spotlighting the resource-intensive challenges such as computation, bandwidth, energy,

and data faced by mobile clients. It categorizes resource optimization strategies into

black-box approaches, including training adjustments and client selection, and

white-box approaches, like model compression and asynchronous updates. The paper

proposes a novel neural-structure-aware resource management technique, leveraging

module-based FL to tailor global model subnetworks to the resource capacities of

individual mobile clients, showcasing significant improvements in resource efficiency.

The research paper [6] focuses on the burgeoning field of Augmented Reality

(AR), highlighting the critical need for high data rates and low latency in AR

applications. It addresses the computational and latency challenges inherent in AR

object detection and classification by proposing a synergistic framework that

combines MEC with FL. This decentralized approach significantly reduces the need

for data transmission and processing bandwidth, while also decreasing the number of

training iterations required when compared to traditional centralized learning

methods. The framework’s effectiveness is validated using the CIFAR-10 dataset,

illustrating the potential of FL in MEC to enhance AR applications’ performance and

user experience.

II.1.4 Internet of Things

The advent of billions of IoT devices, propelled by the rapid advancements in

5G/6G technologies, heralds a new era of connectivity and data generation,

10

presenting both opportunities and challenges in data privacy and system efficiency.

The paper [7] discusses the transformative potential of Federated Learning (FL) as a

solution to the privacy and efficiency challenges posed by the traditional centralized

data processing models in IoT ecosystems. FL enables collaborative, data-driven

model training across multiple IoT devices without centralizing data, thus

significantly reducing communication and storage demands while enhancing user

privacy. However, the implementation of FL in IoT networks faces hurdles, including

seven identified critical challenges that demand innovative solutions to fully harness

FL’s potential in diverse IoT applications.

The paper [8] further explores the integration of FL within IoT, emphasizing

its role in addressing the privacy and distribution challenges inherent in IoT’s vast,

decentralized networks. By facilitating on-device machine learning and limiting data

exchange to model updates, FL offers a promising avenue for privacy-preserving,

efficient network and application management in IoT. The paper provides a

comprehensive overview of recent FL advancements tailored for IoT, including various

metrics for evaluating FL’s performance and a taxonomy for its application over IoT

networks. It also outlines several open research challenges and potential solutions,

underscoring the dynamic and evolving nature of FL in the IoT domain. Together,

these papers highlight the critical role of FL in advancing IoT technologies while

navigating the complex landscape of privacy, efficiency, and scalability challenges.

II.1.5 Information Technology

This paper [9] offers a deep dive into Federated Learning (FL) within

Information Technology, highlighting its role in developing secure, privacy-first data

solutions across industries. FL’s collaborative model allows for algorithm training

across decentralized nodes without direct data sharing, enhancing privacy and

11

security. The study covers FL’s foundational aspects, key enabling technologies, and

practical applications, aiming to arm data scientists with the insights needed for

deploying FL in privacy-sensitive environments. It also outlines the main challenges

and real-life use cases, showcasing FL’s potential to revolutionize data privacy and

security practices.

II.2. Federated Learning privacy

Federated Learning stands at the forefront of privacy-preserving machine

learning, addressing critical concerns through innovative approaches like Differential

Privacy, Secure Multi-Party Computation, and Federated Transfer Learning. While

FL inherently enhances data privacy by training models across decentralized devices

without sharing raw data, it remains susceptible to privacy attacks. DP introduces

noise to data or updates to obscure individual contributions, SMPC enables secure,

collaborative computation, and FTL facilitates knowledge transfer across domains

without direct data exchange, each adding layers of privacy protection against

potential vulnerabilities.

II.2.1 Privacy Attacks

The literature presents various instances where Federated Learning (FL) is

vulnerable to privacy breaches. For instance, the mGAN-AI framework [10] employs a

Generative Adversarial Network (GAN) to undermine client privacy by synthesizing

class representatives from local updates, revealing sensitive client data characteristics.

Similarly, Nasr et al. [11] showcased how membership inference attacks could

ascertain a data point’s participation in model training by analyzing its influence on

the model’s features, thus compromising individual data privacy. Melis et al. [12]

revealed the feasibility of property inference attacks, where attackers discern specific

attributes in training data by comparing model updates derived from datasets with

12

and without the desired attributes. Furthermore, the Deep Leakage from Gradients

attack [13] demonstrates the potential for attackers to reconstruct private training

samples and labels by iteratively adjusting dummy data to align with the actual

model updates, posing a significant threat to data confidentiality in FL environments.

II.2.2 Differential Privacy(DP)

Differential Privacy (DP) serves as a critical line of defense in safeguarding

Federated Learning (FL) systems. Geyer et al. [14] introduced a mechanism that

enhances the privacy of global model updates by altering the server’s aggregation

method. This involves clipping individual updates based on Euclidean distance to cap

the extractable information from each, followed by the addition of Gaussian noise to

the aggregate of these clipped updates, thereby diluting the gleanable insights from

the collective updates. The aggregated, noised update is then normalized by the total

number of contributors to produce the final adjusted global model update. While this

approach offers protection against inference attacks targeting global updates, it

predicates on the server’s trustworthiness due to its access to local updates. The

introduction of noise, albeit enhancing privacy, can detract from model accuracy.

However, as evidenced by McMahan et al. [15] , an increase in participant count can

mitigate this impact, making the strategy particularly viable for cross-device FL

scenarios with numerous clients. Additionally, this method allows for the application

of poisoning defense mechanisms, given the server’s visibility into client updates,

unlike some other privacy-preserving techniques.

II.2.3 Secure Multi-Party Computation (SMPC)

In the context of secure multi-party computation (SMPC) within federated

learning (FL)[16] , this document highlights the integration of simulation-based

privacy-preserving mechanisms, as discussed in the work by Kairouz et al. It delves

13

into how FL, when framed within a simulation-based approach, leverages the

principles of SMPC to safeguard the privacy and security of the computed data. By

adopting techniques inherent to SMPC, such as homomorphic encryption (HE) and

differential privacy (DP), FL is able to ensure that the m-ary functionality, which it

aims to compute, remains confidential and secure against potential adversarial

threats. This approach underscores the efficacy of simulation-based frameworks in

enhancing the privacy aspects of FL, thereby positioning simulation-based federated

learning (SFL) as a specialized subset that inherently embodies the core principles of

secure multi-party computation. This perspective not only enriches the

understanding of FL’s privacy-preserving capabilities but also reinforces its alignment

with the rigorous standards of SMPC, highlighting the synergy between FL and

SMPC in advancing secure and privacy-conscious distributed computing.

II.2.4 Federated Transfer Learning (FTL)

The research paper[17] introduces Federated Transfer Learning (FTL), a novel

approach designed to navigate the challenges of data fragmentation across different

organizations while adhering to privacy and legal constraints. FTL facilitates the

sharing of knowledge and transfer of insights across domains without compromising

user privacy, enabling the construction of robust statistical models by leveraging

labeled data from a source domain. This innovative framework integrates seamlessly

with existing models, maintaining accuracy levels comparable to traditional transfer

learning methods, and is versatile enough to be applied to a variety of secure

multi-party machine learning tasks.

The paper[18] delves into the application of federated transfer learning within

the context of smart manufacturing, aiming to address the dual challenges of data

scarcity and privacy preservation in machine learning. By proposing a federated

14

transfer learning framework for cross-domain prediction, the study showcases how

knowledge from existing applications can be shared and adapted to new

manufacturing processes and products through a central server and smart devices

network. This framework enhances model accuracy through federated learning within

groups and ensures data privacy by avoiding raw data exposure. The effectiveness of

this method is demonstrated through superior performance in learning efficiency and

accuracy on public datasets like COCO and PETS2009, compared to other leading

machine learning approaches.

II.3. Federated Learning Communication Efficiency

In the section on with reference to the different research publications on

communication efficiency involving federated learning approach, we explore innovative

strategies aimed at enhancing the efficiency of communication in federated learning

environments. This section delves into two pivotal subparts.

II.3.1 Federated Dropout

Federated Dropout, introduced in research [19], innovatively minimizes

server-to-client communication costs by focusing on training smaller, sub-model

segments of the overarching model. This strategy leverages compression techniques,

such as quantization, to enhance efficiency further. Initially, the server delineates a

subset of the global model, applies compression, and dispatches this condensed

version to the client. Upon receipt, the client expands this update, integrates it with

local data for training, and then recalculates its local update. This newly derived

update is then compressed by the client for transmission back to the server. Upon

collecting these compressed updates from various clients, the server decompresses

them and conducts an aggregation process to synthesize the updated global model.

This method not only conserves bandwidth but also enables scalable and efficient

15

model training across a broad network of distributed clients.

II.3.2 Structured and Sketched updates

Structured and Sketched updates, as delineated in research [20], introduce

significant optimizations to enhance the efficiency of client-to-server communications

in Federated Learning environments. The concept of Structured updates mandates

that local updates adhere to a predefined structure, such as being a low-rank or

sparse matrix, which inherently reduces the volume of parameters required for

transmission, thereby optimizing bandwidth usage. On the other hand, Sketched

updates involve the compression of local updates post-training through methods like

subsampling or quantization. This technique not only streamlines the data

transmission process but also contributes to reducing the computational load on the

network, making the overall Federated Learning process more efficient and scalable.

These optimizations collectively address critical challenges in FL, particularly in

scenarios involving constrained network resources or extensive client networks.

II.4. Communication Challenges in Federated Learning

This section overviews significant contributions to communication reduction in

federated learning, setting the stage for discussing the distinctiveness of the proposed

model based on earlier provided code details.

II.4.1 FedSCR: Structure-Based Communication Reduction for Federated Learn-

ing

FedSCR [21]employs a structure-based communication reduction algorithm

that identifies negligible updates to reduce the number of parameters transmitted,

optimizing network use without compromising accuracy. It aggregates updates over

channels and filters, which helps maintain the complete model structure without

retraining or fine-tuning. This approach is particularly beneficial in environments

16

with unbalanced data distribution.

II.4.2 COFIG and FRECON

The introduction of COFIG and FRECON targets the dual challenges of high

communication costs and client variance in federated settings [22].COFIG and

FRECON address communication overhead and client variance by reducing the

number of communication rounds required for convergence in federated learning.

These methods provide convergence proofs in nonconvex settings, showcasing

substantial efficiency improvements. They do not require communication with all

clients in each round, which enhances scalability and reduces network load.

Two-Stream Federated Learning The Two-Stream Federated Learning [?].

method incorporates a Maximum Mean Discrepancy (MMD) constraint to efficiently

handle Non-IID data distributions, reducing communication rounds by more than

20%. This approach optimizes data handling in complex data environments but

involves maintaining dual model architectures.

II.4.3 Structured and Sketched Updates

This technique explores the reduction of uplink communication costs through

structured learning updates, demonstrating significant reductions in the amount of

data transmitted [23]. FedSCR complements this by not only reducing the volume of

data sent but also ensuring that the reductions do not compromise the accuracy of

the model, thanks to its adaptive thresholding which adjusts to the model’s real-time

learning needs.

Deep Compression for OTA-FL Deep Compression techniques applied in

Over-the-Air Federated Learning (OTA-FL) dramatically decrease both

computational and communication demands by integrating pruning and

quantization-aware training [24].

17

II.4.4 Adaptive Dynamic Pruning for Non-IID FL

Adaptive Dynamic Pruning addresses the unique challenges posed by Non-IID

datasets on edge devices, enhancing inference speeds significantly [25]. FedSCR builds

on this premise by not only accelerating inference but also reducing communication

overhead through its novel aggregation and reduction algorithm, which dynamically

adapts to data variability across clients. This dual focus on speed and communication

efficiency.

II.4.5 Our Proposed Model

Our proposed model, built on insights from existing methods, introduces a

novel adaptive thresholding mechanism that dynamically optimizes communication

based on real-time data evaluations. Unlike FedSCR, which statically aggregates

parameter updates, our model dynamically adjusts to variations in data distribution,

enhancing robustness and efficiency in handling Non-IID data. It also simplifies the

deployment by avoiding the need for dual model architectures or extensive model

modifications, offering a significant improvement over Two-Stream methods and

structured update techniques. The model’s ability to maintain high accuracy while

reducing communication load positions it as a substantial advancement in federated

learning technologies.

II.5. Our Research

Building upon the foundational study in "Heterogeneous Federated Learning

using Dynamic Model Pruning and Adaptive Gradient" [26], which addresses the

challenges posed by non-IID data distributions in federated learning (FL)

environments, our research introduces advanced strategies for dynamic model

adaptation. The cited work demonstrates that dynamic model pruning and adaptive

gradient techniques can significantly mitigate the overfitting issue on non-IID data,

18

thereby enhancing model training efficiency and reducing communication costs.

Notably, their approach demonstrated a reduction in communication costs by 57%

when training models like ResNet-32 on datasets such as CIFAR-10 and also achieved

up to 50% reduction in FLOPs during inference on edge devices, maintaining high

model quality.

In the seminal study "Comparative Assessment of Federated and Centralized

Machine Learning," [27] FL is scrutinized for its ability to train models on-device

without centralizing sensitive data, thus bolstering privacy. This method disseminates

initial or partially trained models across devices for local updates, which are then

aggregated to refine a global model. This study extensively discusses how FL’s

efficiency is influenced by the quantity and distribution of data samples across

devices, underscoring the privacy and cost-efficiency merits of FL, especially with

manageable model sizes.

Inspired by these significant advancements, our project leverages real-time

assessments of data variability to dynamically adjust PCA components and model

compression parameters such as quantization and pruning. This adaptation is crucial

for managing the data variability inherent in non-IID distributions effectively,

enhancing overall model performance and efficiency as highlighted in [26].

Building on this pivotal research, our investigation introduces a dynamic

model adaptation strategy that employs real-time data variability assessments to

adjust model parameters effectively. This approach is inspired by recent

advancements in FL such as those documented in "Dynamic Model Adaptation for

Federated Learning" [28], which highlights the potential of dynamically adjusting

learning models to better suit the data characteristics of individual clients, thus

addressing some of the critical challenges in conventional FL setups.

19

Our research enhances the FedAvg algorithm with model reduction techniques

including PCA for data reduction, and sophisticated quantization and pruning, which

substantially reduce the model size needed for transmission between devices and the

server. These modifications address bandwidth constraints, energy demands, and

latency, thus significantly improving the scalability of FL by enabling its extension to

a broader network of devices without an exponential increase in resource consumption.

Furthermore, we explore the effectiveness of PCA in optimizing the

aggregation phase within FL by reducing the volume of data required for model

updates. This approach not only maintains the privacy and cost advantages but also

enhances the overall efficacy and scalability of the FL paradigm.

Our findings indicate that these combined model reduction and

communication optimization techniques effectively maintain excellent model

performance, even with minimized data transmission requirements. Moreover, our

approach significantly reduces the costs associated with deploying FL in cloud

frameworks, making it a more feasible option for a wide range of applications.

In conclusion, our study builds on the core insights of [26] by introducing

innovative strategies that address some of the principal challenges in FL. By

optimizing communication efficiency through model reduction techniques such as

PCA, quantization, and pruning, we not only adhere to FL’s privacy-preserving

principles but also substantially enhance its scalability, efficiency, and economic

viability. Our research marks a significant advancement in the application of

federated learning, opening new possibilities for its use in diverse and

resource-constrained environments.

20

CHAPTER III

FEDERATED MACHINE LEARNING IN CLOUD

Federated Machine Learning Definition: Define N data owners

{F1, . . . , FN}, all of whom wish to train a machine-learning model by consolidating

their respective data {D1, . . . , DN}. A conventional method is to put all data

together and use D = D1 ∪ . . . ∪DN to train a model MSUM. A federated learning

system is a learning process in which the data owners collaboratively train a model

MFED, in which process any data owner Fi does not expose its data Di to others. In

addition, the accuracy of MFED, denoted as VFED, should be very close to the

performance of MSUM, VSUM. Formally, let δ be a non-negative real number; if

|VFED − VSUM| < δ, (III.1)

we say that the federated learning algorithm has δ-accuracy loss.

III.1. Federated Learning Benchmark

In the realm of federated learning, particularly with MNIST data, benchmarks

can vary significantly based on the specific methodologies and configurations

employed in the research. A study detailed in Nature Communications introduced a

decentralized federated learning approach through proxy model sharing, known as

ProxyFL. This method emphasizes communication efficiency and data privacy in a

multi-institutional collaborative setting. The experiments conducted with ProxyFL

on datasets such as MNIST demonstrated its effectiveness in achieving high

performance and robust models without compromising data privacy. The study

compared ProxyFL with several baselines including FedAvg, AvgPush, and FML,

21

noting significant improvements in performance and communication efficiency. [29]

Another noteworthy contribution to the field is the FedScale benchmarking

suite, which aims to provide a more realistic and scalable framework for federated

learning research. FedScale addresses some of the limitations of existing benchmarks

by introducing realistic client statistical and system behavior datasets, thus enabling

more accurate and comprehensive performance evaluations. The suite includes diverse

datasets and scenarios to cater to various federated learning applications, with an

emphasis on creating a standardized environment for evaluating FL models and

systems at scale.[30]

These studies underscore the importance of considering realistic deployment

scenarios, client behaviors, and privacy concerns when benchmarking federated

learning systems, particularly when using widely recognized datasets like MNIST.

The benchmarks not only assess the statistical performance of the models but also

their scalability, communication efficiency, and robustness in realistic federated

learning environments. [31]

Building upon these benchmarks, our research employs advanced dynamic

adaptation techniques that not only meet but exceed the performance standards set

by existing benchmarks. By integrating adaptive model compression and PCA

component adjustments, our approach achieves remarkable efficiency gains and

enhanced model robustness across diverse and challenging data environments. This

adaptability is critical in real-world applications where data variability can greatly

impact model performance. Through rigorous testing and evaluation, our framework

has demonstrated superior capabilities in handling non-IID data distributions, setting

a new benchmark for future federated learning implementations.

22

III.2. Novel Contributions to Federated Machine Learning

This thesis introduces an innovative approach to Federated Learning (FL) by

implementing a dynamic, adaptive compression strategy based on client data

variability. This method significantly enhances communication efficiency, local

training efficiency, and overall model performance in federated environments.

III.2.1 Adaptive Dynamic Compression Strategy

The core of the innovation lies in the adaptive, dynamic determination of

Principal Component Analysis (PCA) components, quantization types, and pruning

levels tailored to the variability of data specific to each client within the federated

network. This approach is distinct from traditional FL methods, which typically

apply fixed compression and model update parameters uniformly across all clients

without regard to individual data characteristics.

Communication Efficiency By dynamically adjusting the compression

parameters (PCA components, quantization, and pruning), the model updates are

compacted more efficiently, thereby reducing the size of the data transmitted between

clients and the central server. This leads to reduced network load and enhanced

scalability, particularly beneficial in environments with constrained bandwidth.

Local Training Efficiency Tailoring the model complexity and compression

to the unique characteristics of each client’s data ensures optimal use of

computational resources. This prevents unnecessary computational overhead, making

local training processes more efficient.

Model Performance The strategy maintains a balance between model

compression for efficient transmission and sufficient model complexity to effectively

capture essential data features. This balance is crucial for improving model accuracy

and robustness across diverse client datasets.

23

Benchmarking and Analysis

To validate the effectiveness of the proposed approach, benchmarks against

standard FL methodologies were performed, where traditional methods utilize fixed

settings. The adaptive approach demonstrated significant improvements in

communication costs, training efficiency, and accuracy.

The findings suggest considerable potential for the adaptive, dynamic

compression strategy in enhancing the efficiency and efficacy of Federated Learning

systems. Future research could explore scalability with an increasing number of

clients, robustness against data outliers, and application in real-world scenarios like

healthcare and IoT.

The novel adaptive, dynamic compression strategy based on client data

variability represents a significant advancement in Federated Learning, pushing the

boundaries of what is possible in distributed machine learning environments. This

approach not only optimizes the use of network and computational resources but also

enhances the practical applicability of FL in heterogeneous network environments.

III.2.2 Enhanced Federated Learning Framework

In this research, we introduce a dynamic model adaptation technique that

significantly enhances the robustness and efficiency of federated learning systems,

particularly when dealing with non-IID data across diverse client datasets. Our

methodology dynamically adjusts model parameters such as PCA components,

quantization, and pruning based on client data variability, ensuring optimal

performance without compromising data privacy and test accuracy.

Dynamic Adaptation Methodology: Our approach starts with a

privacy-preserving mechanism where clients locally analyze their data to determine

key characteristics and compute meta-information. This meta-information, which

24

reflects the underlying data distribution without revealing individual data entries, is

then communicated to a central server. Using this aggregated information, the server

dynamically tailors the learning parameters for each client. This includes selecting

appropriate PCA components and adjusting the model compression settings based on

the variability and complexity of each client’s data. Such adaptability not only

enhances model accuracy but also improves computational efficiency by reducing

unnecessary model complexity where it is not needed.

Comparative Performance and Benchmarking: Our framework’s

performance was benchmarked against existing federated learning models to highlight

its advantages in handling heterogeneous data environments. The dynamic

adaptation capabilities of our model allowed for consistent improvements in accuracy

and efficiency, setting a new standard for federated learning applications.

Significantly, our model not only adapts to data variability but also maintains

high data efficiency, reducing overall training time and resource usage. These

improvements are crucial in real-world applications where data distributions can vary

dramatically across clients.

Note: The variability in performance improvement can depend on specific

client data characteristics and the initial setup of learning parameters. Each iteration

of our model’s deployment could potentially lead to different enhancements,

emphasizing the importance of continuous monitoring and adjustment based on

ongoing data analysis.

III.3. Core Optimization Challenges in Federated Learning

In the integration of Federated Learning (FL) with cloud environments,

several core optimization challenges arise, critically impacting the efficiency and

scalability of the system. These challenges revolve around model size, network

25

latency, energy consumption, and system scalability—each bearing significant

consequences on the overall performance of FL systems.

III.3.1 Model Size and Bandwidth Efficiency

The necessity to reduce model size in Federated Learning is paramount,

particularly in systems with extensive participant networks. Transmitting large

models across clients consumes substantial bandwidth, which is often limited in

cloud-connected networks. Techniques like quantization and pruning are vital as they

reduce the model’s size and the bandwidth needed for updates, enhancing the

system’s operational efficiency without sacrificing performance. This reduction is

crucial in maintaining system responsiveness and agility, particularly in

bandwidth-constrained environments.

III.3.2 Latency Reduction and Model Convergence

Network latency poses a significant challenge in FL, where data transmission

delays between clients and the cloud can extend the training time substantially. This

latency affects the model’s convergence speed and can impede the timeliness of model

updates, especially critical in real-time applications. Implementing efficient update

aggregation methods, such as Federated Averaging (FedAvg), reduces the volume and

frequency of data required, thus mitigating latency issues and enhancing the training

process’s speed and efficiency.

III.3.3 Energy Efficiency in Client Operations

In Federated Learning, where client devices often include mobile and IoT

devices with limited battery life, energy efficiency becomes crucial. The process of

sending and receiving data can deplete device batteries quickly. Employing model

compression and sparse communication techniques helps minimize the energy

consumed during data transmission, thereby preserving battery life and ensuring the

26

sustainability of client participation in the federated learning process over extended

periods.

III.3.4 Scalability and System Adaptability

As the number of clients in an FL system grows, managing and processing

data from an expanding network becomes increasingly challenging. To enhance

scalability, employing sparse communication techniques allows for the transmission of

only essential model updates. This strategy, combined with effective aggregation

techniques, simplifies the communication demands and supports system expansion,

allowing for the inclusion of more clients without overwhelming the network or server

resources.

These four optimization strategies—focusing on model size, latency, energy

efficiency, and scalability—are fundamental to addressing the unique challenges

presented by Federated Learning in cloud computing frameworks. By overcoming

these hurdles, FL systems can be made more efficient, robust, and scalable, making

them suitable for a wide range of applications in diverse and resource-constrained

environments.

III.4. Selecting the Framework

For the implementation of diverse federated learning (FL) personalization

techniques, we selected the Flower framework, due to its versatility and adaptability

across multiple model types beyond just GNNs. Its ease of customization for both

client-side training routines and server-side aggregation processes, coupled with

comprehensive documentation and a variety of FL algorithm examples, made it an

ideal choice. Flower’s scalability and production-readiness also align with potential

future deployments in production settings by OUTSYSTEMS. The primary limitation

of Flower, however, is its lack of built-in security and privacy features, though it

27

supports the integration of existing security solutions.

The Flower framework stands out as an optimal choice for federated learning

projects due to its framework-agnostic nature. This critical feature ensures that

Flower can seamlessly integrate with a multitude of machine learning libraries such as

TensorFlow, PyTorch, and others, enabling developers to utilize their preferred tools

and processes. Furthermore, its design promotes scalability, a vital attribute for

managing the complexities associated with a vast network of clients. Flower’s

architecture is capable of efficiently coordinating between numerous devices, which is

essential when the training process involves a large dataset distributed across different

nodes.

Customization is another significant advantage offered by Flower. It allows for

the tailoring of federated learning strategies to suit the specific requirements of a

project. Whether adjusting the model aggregation methods or evaluation metrics,

Flower provides the flexibility needed to optimize performance. Additionally, its API

is both simple and user-friendly, reducing the barrier to entry for implementing

federated learning and mitigating the intricacies typically associated with distributed

system communications.

Moreover, Flower is adept at addressing common federated learning challenges

such as non-IID data distribution, client dropouts, and varying computational

resources. Its performance optimization capabilities ensure that these issues do not

hinder the learning process. Privacy preservation is another cornerstone of Flower’s

design philosophy. By enabling on-device model training, it ensures that sensitive

data remains with the end users, aligning with the increasing demand for

privacy-compliant solutions. Coupled with strong community and research support,

which fosters continual improvement and incorporation of the latest research findings,

28

Flower is a robust framework that supports the evolving needs of federated learning

projects. Thus, for projects that necessitate a scalable, flexible, and

privacy-preserving approach, Flower emerges as a highly compelling option.

III.4.1 Flower Architecture

The Flower framework in a federated learning context includes the following

steps:

1. The server begins by initializing the global model parameters.

2. These parameters are then sent to the client along with instructions on how

to fit the model, initiating the training process on the client’s local data.

3. After training, the client sends the updated model parameters back to the

server.

4. The server receives the updated parameters from the client and uses a

predetermined strategy to aggregate these results. This strategy effectively combines

the client’s updates to improve the global model.

5. Once the global model is updated, the server sends evaluation instructions

to the client to assess the performance of the model.

6. The client evaluates the model using a test dataset and sends the

evaluation results back to the server.

7. Finally, the server aggregates the evaluation results, updates the evaluation

metrics, and completes the current round of training and evaluation.

These steps are part of a loop that will continue for a predefined number of

rounds, with the server iteratively improving the global model by learning from the

client’s updates.

29

CHAPTER IV

IMPLEMENTATION

IV.1. Experimental Setup

To establish a robust and scalable federated learning environment for our

experiments, we leveraged the computational flexibility and collaborative features of

Google Colab alongside the scalable infrastructure of AWS Cloud. Google Colab

provided an accessible, GPU-enabled platform for rapid prototyping and interactive

development of our federated learning models using PyTorch, facilitating seamless

collaboration and version control. On the other hand, AWS Cloud’s extensive range

of services offered a scalable and reliable infrastructure to deploy and manage our

Flower federated learning framework, enabling us to simulate a more realistic

distributed learning scenario with potentially thousands of clients.

The integration of Google Colab with AWS Cloud allowed us to take

advantage of Colab’s user-friendly interface and powerful computing resources for

model development and initial testing, while AWS’s robust cloud services supported

the deployment and scaling of our federated learning system. This hybrid approach

ensured that we could efficiently handle the computational and storage demands of

our experiments, manage communication protocols securely, and implement data

privacy measures effectively across a distributed network of clients.

While specific research papers directly detailing the combined use of Google

Colab and AWS for federated learning setups might be scarce due to the rapid

evolution of technologies and platforms, the principles of leveraging cloud computing

platforms and collaborative environments for federated learning are well-established

30

in the literature. "Federated Learning: Strategies for Improving Communication

Efficiency" [20] provide foundational insights into designing scalable federated

learning systems and optimizing communication efficiency, principles we applied in

our environment setup. These resources, although not explicitly mentioning Google

Colab or AWS, offer valuable frameworks and strategies that underpin our approach

to creating a federated learning environment that is both flexible and scalable.

To facilitate the implementation of our federated learning experiments within

this hybrid Google Colab and AWS Cloud environment, we meticulously installed all

necessary libraries and frameworks essential for our research. This included the

Flower framework for federated learning, PyTorch for model development, and other

dependencies crucial for data processing and analysis. Utilizing pip and other package

managers, we ensured that our development environment was equipped with the

latest versions of these tools, enabling us to leverage their full capabilities for our

federated learning models.

IV.2. Data Preparation and Distribution

The datasets we used include MNIST for handwritten digit recognition and

CIFAR-10 for object recognition. The MNIST dataset consists of 70,000 handwritten

images (28 × 28 × 1) of the 10 digits, employed from PyTorch. The CIFAR-10

dataset comprises 60,000 color images (32 × 32 × 3) in 10 different classes such as

animals and vehicles, providing a more complex challenge compared to MNIST.

The initial steps involve applying a series of transformations to the dataset

images through the transforms.Compose function. This includes converting the

images into PyTorch tensors with transforms.ToTensor() and normalizing their

pixel values using transforms.Normalize((0.5,), (0.5,)) for MNIST and

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) for CIFAR-10.

31

Normalization adjusts the pixel intensity values to a standard scale, enhancing the

stability and efficiency of neural network training. This preprocessing is essential for

ensuring that the input data is in the correct format and range for the models to

process effectively.

For MNIST, 60,000 samples are used for training and 10,000 samples for

testing. For CIFAR-10, the dataset is similarly divided into 50,000 training images

and 10,000 testing images. Unlike traditional setups where images are often flattened,

we maintained their original structure to leverage PyTorch’s robust handling of image

data, enhancing the model’s ability to learn spatial hierarchies. Our experiments were

conducted on Google Colab, which offered the flexibility to harness GPU acceleration,

thereby significantly enhancing computational efficiency. This strategic choice allowed

us to explore the potential of federated learning more dynamically, adapting to the

computational demands of our experiments while ensuring scalability and efficiency in

our model training processes.

Figure IV.1. MNIST Data

In federated learning, especially when applied to the MNIST dataset, which

consists of handwritten digits from 0 to 9, the concept of data distribution is pivotal

32

for model training and performance.

Figure IV.2. CIFAR-10 Data

Both datasets present unique challenges and learning opportunities, making

them ideal for testing the effectiveness of federated learning algorithms across

different types of image data.

IV.2.1 IID Data Distribution

In the context of IID (Independent and Identically Distributed) data

distribution for federated learning with the MNIST dataset, the data across different

clients is distributed in a way that each client’s dataset is a representative subset of

the overall dataset. This means that each client holds a random selection of images

across all 10 digits (0 to 9), with the distribution of digits being roughly equal. The

assumption here is that the samples in each client’s dataset are drawn independently

from the same distribution, mirroring the diversity and characteristics of the entire

dataset. Such a distribution ensures that the learning process is not biased towards

any particular digit and facilitates the global model’s ability to generalize well across

33

all digits. The image below represents the distribution of the data among 10 different

clients.

Figure IV.3. IID Data Distribution

IV.2.2 NON-IID Data Distribution

In the case of Non-IID data distribution for the MNIST dataset within

federated learning, the division of data among the 10 clients is intentionally skewed to

simulate real-world data heterogeneity. Here, each client’s dataset is composed in a

60-40 ratio, where 60% of the data consists of images of a single digit, and the

remaining 40% comprises equal parts of the other nine digits. This distribution model

introduces significant variance in the data each client possesses, with some clients

having a majority of their data represent one digit and a minority representation of

the others. This scenario is emblematic of real-world situations where data sources

might have disproportionate representation of certain classes. Non-IID distributions

present considerable challenges in federated learning, necessitating sophisticated

strategies for model aggregation and training. These strategies must account for the

disparate data characteristics to ensure the federated model remains effective and

equitable in learning from each client’s unique dataset, thus maintaining robust

performance. The data is further divided into 5 other ratios to experiment with the

34

data.

Figure IV.4. NON-IID Data Distribution

It is procced to create DataLoaders for the client-specific datasets, enabling

efficient batch processing during the training phase. This is a critical step in

federated learning, where computational resources and data availability can vary

widely across clients. Finally, the snippet includes a visualization component, which

showcases a subset of the preprocessed images. This visualization not only serves as a

verification step to ensure the data has been correctly processed and distributed but

also provides intuitive insights into the nature of the data each client in the federated

learning system will be working with. This comprehensive approach to data

preparation and distribution lays a solid foundation for subsequent federated learning

tasks, ensuring that the models trained in this environment are well-adapted to

handle real-world data variations and complexities.

35

Figure IV.5. Data visualization

IV.3. CNN Architecture

For the task of digit recognition on the MNIST dataset, the choice of a

Convolutional Neural Network (CNN) is strategic and deliberate, given the nature of

the dataset and the requirements of the task. Refering to the research paper [32] we

have considered CNN that excel in processing data that has a grid-like topology, such

as images, which are essentially 2D grids of pixels. The inherent architecture of

CNNs, which comprises convolutional layers, pooling layers, and fully connected

layers, is specifically designed to exploit the spatial structure of the input data,

making them exceptionally suited for image-related tasks.

The architecture begins with two convolutional layers (conv1 and conv2),

where conv1 employs 16 filters to capture basic patterns such as edges and textures,

and conv2 utilizes 32 filters to further abstract these features into more complex

representations. This hierarchical extraction is crucial for understanding intricate

image details essential for tasks like digit recognition.

Post-convolution, we apply the ReLU (Rectified Linear Unit) activation

function to introduce non-linearity, enabling the model to learn diverse patterns. The

simplicity of ReLU, alongside its effectiveness in mitigating the vanishing gradient

36

problem, renders it an optimal choice for deep learning models.

Pooling layers (pool) succeed the ReLU activations, specifically employing

MaxPooling to reduce feature map dimensions, thus decreasing computational

complexity and model parameters. This downsampling technique retains significant

features while ensuring the model’s translational invariance, vital for recognizing

digits irrespective of their positioning.

The transition from feature extraction to classification is facilitated through

fully connected layers (fc1 and fc2), which distill high-level features into predictions

across the 10 digit classes. A dropout layer (dropout) is strategically placed to

prevent overfitting by randomly omitting a subset of features during training, thereby

enhancing the model’s generalization capabilities.

In summary, the CNN’s structured approach to processing images—starting

from the extraction of simple patterns and textures to the identification of complex

features and ultimately classification—makes it particularly adept for the MNIST

digit recognition task. This structured methodology, bolstered by strategic

non-linearity and downsampling, positions our model as highly efficient for the digit

recognition task on the MNIST dataset.

Figure IV.6. Convolution Neural Network

37

IV.4. Training, Validation, and Testing

In this implementation, a Convolutional Neural Network (CNN) is trained,

validated, and tested for the task of recognizing handwritten digits using the MNIST

dataset. The process leverages the comprehensive deep learning and tensor

computation capabilities of PyTorch, with support for GPU acceleration to enhance

computational efficiency.

The model undergoes a rigorous process involving training to learn from the

dataset, validation to adjust parameters without overfitting, and testing to evaluate

its generalization capability on new, unseen data. This comprehensive approach

ensures that the CNN not only performs well on the training data but also predicts

accurately when exposed to new inputs, a critical factor in real-world applications.

IV.4.1 Training the Data

The training routine which iteratively optimizes the network’s parameters over

a specified number of epochs. During each epoch, the network processes batches of

images and labels from the training dataset. The forward pass involves computing the

network’s predictions for the input images. The discrepancy between the network’s

predictions and the actual labels is quantified using the CrossEntropyLoss function, a

common choice for classification tasks, which combines softmax activation with a

negative log-likelihood loss.

CrossEntropyLoss: The CrossEntropyLoss function, for a classification

problem with C classes, for a single instance can be mathematically expressed as:

CrossEntropyLoss = −
C∑
c=1

yo,c log(ŷo,c)

where:

38

• yo,c is a binary indicator (0 or 1) if class label c is the correct classification for

observation o,

• ŷo,c is the predicted probability that observation o is of class c, computed using

the softmax function.

The softmax function, applied to the logits (raw predictions) z from the

network, is given by:

ŷo,c =
ezo,c∑C
j=1 e

zo,j

The softmax function ensures that the output probabilities for all classes sum

up to 1, making it suitable for multi-class classification. The negative log-likelihood

component then penalizes the deviation of the predicted probabilities from the actual

class labels, with the penalty being higher for a greater discrepancy between the

predicted and actual labels. This loss function effectively guides the network to adjust

its parameters to minimize the loss, thereby improving the accuracy of its predictions

over successive training iterations.

Following the computation of the loss, a backward pass is initiated to compute

the gradients of the loss with respect to the network parameters. The Adam

optimizer, known for its efficiency in handling sparse gradients and adaptively

adjusting learning rates, is employed to update the parameters based on the

computed gradients. This optimization step is crucial for improving the network’s

performance by minimizing the loss over successive training iterations.

Adam optimization: Adam (Adaptive Moment Estimation) is an

optimization algorithm that computes adaptive learning rates for each parameter. It

combines ideas from RMSProp and Momentum. In Adam, the parameter updates are

39

calculated as follows:

θt+1 = θt −
η√

v̂t + ϵ
m̂t

where:

• θ represents the parameters (weights and biases),

• η is the learning rate,

• m̂t and v̂t are bias-corrected estimates of the first and second moments of the

gradients, respectively,

• ϵ is a small scalar added to improve numerical stability (usually on the order of

10−8),

• t denotes the current time step.

The first and second moment estimates are computed as follows:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

with mt and vt being updated at each step based on the gradients:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

40

where:

• gt is the gradient at time step t,

• β1 and β2 are exponential decay rates for the moment estimates, typically set to

around 0.9 and 0.999, respectively.

The Adam optimizer thus adapts the learning rate for each parameter based

on the historical gradients, leading to more efficient optimization.

Throughout the training, the function tracks the number of correctly classified

images and the total number of images processed to calculate the accuracy of the

model for each epoch. This metric, along with the average loss per epoch, provides

insight into the learning progress of the network.

IV.4.2 Validation and Early Stopping

Validation plays a pivotal role in the training process of deep learning models,

serving as a checkpoint to assess the model’s generalization capabilities to unseen data.

It involves periodically evaluating the model on a separate dataset, not used during

training, to prevent overfitting. Overfitting occurs when a model learns patterns

specific to the training data, to the extent that it performs poorly on new data.

Early Stopping is a widely adopted regularization technique to halt the

training process once the model’s performance ceases to improve on the validation set.

The underlying principle is to monitor the validation loss across epochs and stop

training when the loss begins to increase, indicative of overfitting. This technique not

only prevents the model from learning spurious patterns but also saves computational

resources by reducing unnecessary training iterations.

The process can be formalized as follows:

1. Divide the dataset into three subsets: training, validation, and testing.

41

2. During each epoch, after training on the training set, evaluate the model on the

validation set.

3. Track the validation loss and compare it with the best loss observed in previous

epochs.

4. If the validation loss improves (decreases), update the best observed loss and

potentially save the model’s state.

5. If the validation loss does not improve for a specified number of consecutive

epochs, termed as the patience parameter, terminate the training process.

Mathematically, the early stopping criterion can be represented as:

if (min Validation Losst > min Validation Losst−1,t−2,...,t−patience) then stop training

Where t is the current epoch and patience is the number of epochs to wait

before stopping after the minimum validation loss has been observed.

In the context of our CNN model trained for digit recognition, implementing

early stopping ensures that the model achieves an optimal balance between learning

from the training data and generalizing to new data. This approach is particularly

beneficial in scenarios with limited annotated data or when aiming to optimize the

training time and computational resources.

The inclusion of a validation phase and early stopping in the training and

evaluation pipeline significantly enhances the robustness and reliability of the model,

ensuring it delivers high performance not only on the training and validation datasets

but also on unseen test data, thereby exemplifying best practices in model

development and evaluation in deep learning.

42

IV.4.3 Testing and Model Generalization

The final phase of our model’s evaluation process is testing, which assesses the

generalization capability of the neural network to new, unseen data. This phase is

critical as it provides an objective measure of the model’s performance in real-world

scenarios, beyond the controlled environments of training and validation.

Testing Procedure: During the testing phase, the model is set to evaluation

mode, ensuring that operations like dropout and batch normalization are consistent

across different inputs, thereby providing stable output predictions. The test dataset,

which is distinct from the training and validation datasets, is used to evaluate the

model’s effectiveness.

• The network processes each image and label from the test dataset without any

gradient updates, ensuring that the evaluation reflects the model’s learned

capabilities without further modifications.

• A loss is computed for each prediction using the CrossEntropyLoss function,

similar to the training phase. This loss provides a quantitative measure of the

network’s prediction accuracy.

• The accuracy of the model is calculated based on the proportion of correctly

predicted labels to the total number of labels in the test dataset. This metric is

crucial for assessing the practical utility of the model in real-world applications.

Test Loss =
1

N

N∑
i=1

CrossEntropyLoss(ŷi, yi)

Accuracy =
Number of Correct Predictions
Total Number of Predictions

Where:

43

• N is the number of samples in the test dataset,

• ŷi is the predicted output,

• yi is the actual label,

• CrossEntropyLoss is the function used to calculate the prediction error.

Significance of Testing: By rigorously evaluating the model on the test

dataset, we can ensure that our model not only performs well during training and

validation but also exhibits strong generalization capabilities. This testing process

helps to verify that our model adaptations—dynamic PCA component selection,

quantization, and pruning—effectively contribute to a robust federated learning

model that performs reliably in diverse and real-world environments.

Through this comprehensive testing, our approach has demonstrated superior

performance, outperforming traditional federated learning models in terms of

accuracy and efficiency. This is particularly evident in our system’s ability to handle

non-IID data distributions effectively, which is a common challenge in federated

learning scenarios.

In summary, the testing phase is integral to validating the effectiveness of our

federated learning model, ensuring that it is not only theoretically sound but also

practically viable for deployment in real-world applications.

IV.4.4 Evaluation Process

The evaluation of the network’s performance is conducted through the test

function, which assesses the model’s ability to generalize to unseen data using the test

dataset. In this phase, the network is set to evaluation mode, which disables dropout

and batch normalization layers to ensure consistency in predictions. The function

44

iterates over the test dataset in a similar manner to the training process but without

performing any parameter updates.

The loss and accuracy are computed in the same way as in the training phase,

providing a measure of the network’s performance on the test dataset. These metrics

offer a quantitative evaluation of the model’s effectiveness in digit recognition tasks

on the MNIST dataset.

Loss Computation: The loss for each prediction can still be represented

using the CrossEntropyLoss formula:

Loss = −
C∑
c=1

yo,c log(ŷo,c)

Here, yo,c is the true label in one-hot encoded form, and ŷo,c is the predicted

probability for class c for the observation o.

Accuracy Calculation: The accuracy of the model over the test dataset can

be quantified as the ratio of correctly predicted observations to the total number of

observations:

Accuracy =
1

N

N∑
i=1

1(ŷi = yi)

Where N is the total number of observations in the test set, ŷi is the predicted label,

yi is the actual label, and 1 is the indicator function that equals 1 when ŷi = yi and 0

otherwise.

In FL systems, bandwidth utilization and latency are key performance

indicators, especially when the model’s parameters are transmitted over the network.

Given a network bandwidth of 1000 units, the efficiency of transmitting model

updates can significantly impact the overall system performance. The reduction in

model size through techniques like quantization, pruning, and PCA directly correlates

45

to decreased bandwidth usage and lower latency during communication between the

clients and the server.

Latency, the delay incurred during data transmission, is influenced by both the

size of the transmitted data and the network’s bandwidth. It can be approximated as:

Latency =
Size of Data
Bandwidth

Communication Cost: The communication cost, an aggregate measure of

the resources consumed to transmit model updates across the network, can be

quantified by considering both the size of the model updates and the number of

communication rounds. With model reduction techniques, the size of each update is

minimized, thereby reducing the cost per round. The total communication cost over

all rounds of training can be expressed as:

Communication Cost = Number of Rounds× Cost per Round

where the Cost per Round is inversely proportional to the efficiency of model

compression and data reduction techniques employed.

Together, the training and evaluation routines provide a comprehensive

framework for developing, tuning, and assessing CNN models for image classification

tasks, showcasing the practical application of key deep learning concepts and

methodologies.

The comprehensive evaluation of our CNN model extends beyond conventional

metrics like accuracy and loss, to include critical factors such as bandwidth, latency,

and communication cost, which are paramount in the context of Federated Learning

(FL) and cloud computing environments.

46

IV.5. Flower Integration and Simulation Setup

In the federated learning setup facilitated by the Flower framework, a novel

approach to machine learning is employed, emphasizing privacy and collaborative

intelligence. Unlike traditional centralized training methods, federated learning allows

for a decentralized model where multiple clients, such as mobile devices or

organizations, contribute to the learning process without sharing their raw data. This

methodology is particularly advantageous in scenarios where data privacy is

paramount, or where the data itself is too large or sensitive to be centrally stored.

The core principle of federated learning involves clients independently training

a shared model on their local data. This process ensures that the sensitive data

remains on the client’s device, with only the model’s learned parameters (weights and

biases) being sent to a central server. These parameters encapsulate the knowledge

gained from the data without exposing the data itself. Upon receiving parameters

from various clients, the central server aggregates these contributions to form a global

model. This aggregation typically involves averaging the parameters, although more

sophisticated methods can be applied depending on the specific requirements of the

task and the characteristics of the data.

Once the aggregation is complete, the updated global model is sent back to

the clients, marking the start of a new training round. This cyclical process allows

the global model to iteratively improve, benefiting from the diverse data and

experiences of all participating clients. This collaborative approach not only enhances

the model’s generalizability and robustness but also mitigates the risks associated

with centralized data storage, such as data breaches or misuse.

The Flower framework provides an efficient and flexible platform for

implementing federated learning systems. It abstracts away the complexities of

47

network communication, synchronization, and data privacy, allowing developers and

researchers to concentrate on optimizing model architectures and training procedures.

Flower’s design is adaptable to various scales, from small-scale experiments with a

handful of clients to large-scale deployments involving thousands of devices. This

scalability is crucial for federated learning applications, which can vary significantly

in size and complexity depending on the use case, from enhancing privacy in personal

device applications to enabling collaborative research across different institutions

without sharing sensitive data.

The theoretical foundations and practical applications of federated learning

with frameworks like Flower, numerous research papers provide extensive insights.

Key topics include privacy-preserving techniques, efficient communication strategies,

and the impact of non-IID (independently and identically distributed) data across

clients. Papers such as "Communication-Efficient Learning of Deep Networks from

Decentralized Data" [33] is a seminal work that delve into these challenges and

solutions in federated learning systems. These resources can provide a deeper

understanding of the principles and methodologies underlying the implementation

In conclusion, federated learning with Flower represents a significant shift in

machine learning paradigms, offering a path towards more private, secure, and

collaborative AI development. By leveraging the collective intelligence of distributed

clients while ensuring data privacy, federated learning paves the way for a new era of

machine learning applications that are both powerful and respectful of user privacy.

This approach aligns with the growing global emphasis on data protection and

privacy, making it a compelling choice for future AI systems.

48

CHAPTER V

METHODOLOGY

This section of our documentation delineates the sophisticated methodologies

employed within our Federated Learning (FL) framework, tailored to effectively

manage and optimize data variability and system adaptability in distributed

computing environments. It covers dynamic model adaptation techniques, including

the dynamic determination and application of PCA components, adaptive model

training parameters, and real-time compression adjustments. Additionally, the section

explores our strategic use of model compression methods, such as quantization and

pruning, and discusses advanced aggregation techniques that ensure efficient update

integration across diverse data distributions. Each component is designed to enhance

the performance, scalability, and privacy of our FL systems, addressing the intrinsic

challenges posed by decentralized data and the computational demands of modern

cloud computing frameworks.

In furtherance of these objectives, our methodology incorporates robust

anomaly detection mechanisms to preemptively identify and mitigate outliers in data

before they impact the model training process. This includes the utilization of

advanced statistical methods and machine learning algorithms that are capable of

operating efficiently under the constraints of limited bandwidth and privacy

requirements inherent in FL scenarios. The integration of these approaches not only

fortifies the reliability of our system against data corruption and potential security

threats but also improves the overall data quality, which is crucial for achieving high

accuracy and trustworthiness in model predictions. This proactive approach to

49

maintaining data integrity and system security underscores our commitment to

delivering a resilient and effective FL solution.

V.1. Architecture Overview

The architecture diagram illustrates the complex structure of a federated

learning system designed to optimize machine learning models by employing both

dimensionality reduction and model compression techniques. The system consists of

multiple clients (Client 1, Client 2, ..., Client N) and a central server that coordinates

the model training and aggregation process.

- -

PCA

Pruning

Quantization

Fed AVG

Client 1 Client 2 Client N

Dimensionality
 Reduction

Model
Compression

Global Model

Server

Updated
 Model

Aggregated AVG

Early
Stopping
Epoch

Figure V.1. Federated Learning System Architecture with Dimensionality Reduction

and Model Compression

V.1.1 Client-Side Operations

Each client in the federated network performs the following operations:

50

• PCA (Principal Component Analysis): This step reduces the

dimensionality of the data, preserving only the most significant features

necessary for model training.

• Pruning: To reduce the complexity of the local models, clients prune less

significant parameters, which helps in reducing the model size and the

computational overhead.

• Quantization: After pruning, the model parameters are quantized to lower

precision formats, which further compresses the model by reducing the number

of bits required to represent each parameter.

• Local Training: Clients train their models locally using the Fed AVG

(Federated Averaging) algorithm, which involves updating the local model based

on local data.

V.1.2 Server-Side Operations

The server facilitates the following key processes:

• Aggregated AVG: After receiving the updated models from all participating

clients, the server aggregates these models using an averaging mechanism to

update the global model.

• Global Model Distribution: The updated global model is then distributed

back to the clients for further training rounds.

• Early Stopping Epoch: The server monitors the performance and

convergence of the global model and can initiate an early stopping protocol to

halt training once satisfactory accuracy is achieved.

51

This architecture efficiently handles data variability and network challenges,

ensuring that the model remains accurate and robust across diverse client data

distributions.

V.2. Dynamic Model Adaptation and Data Variability-Aware Optimization

This section details the practical application of dynamic model adaptation and

data variability-aware optimization strategies within our Federated Learning (FL)

framework. These strategies are pivotal in ensuring that the system can effectively

adapt to a diverse range of client data distributions, particularly when dealing with

non-IID data.

Our Federated Learning system is designed to dynamically adapt its

computational behavior to efficiently handle varying data environments across

distributed clients. This capability is essential for maintaining robustness and

accuracy in real-world scenarios where data characteristics can significantly differ

from one client to another.

Dynamic PCA Component Determination: This component of the

system deals with the dynamic determination of PCA components, which are crucial

for effectively reducing the dimensionality of the data while capturing the most

significant features necessary for the learning process.

Determination of PCA Components: To adapt to the diverse data

characteristics found in a federated environment, our system employs a dynamic

method to determine the optimal number of PCA components. This method assesses

the overall variability in the data collected across different clients and selects a

number of components that maximize data variance capture without introducing

noise.

52

def determine_pca_components(data, variability_threshold):

pca = PCA(n_components=’mle’)

pca.fit(data)

return pca

Local Application of PCA: Post determination, each client applies PCA

locally. This localized approach ensures that data dimensionality reduction is

consistent across the network yet flexible enough to adapt to local data characteristics,

which is key for maintaining the effectiveness of the model across diverse datasets.

def apply_pca_locally(data, pca):

transformed_data = pca.transform(data)

return transformed_data

Adaptive Model Training Parameters: Model training parameters such as

pruning levels and quantization settings are dynamically adjusted based on real-time

data and model performance metrics. This adaptability is vital for optimizing model

complexity and computational efficiency in response to evolving data environments.

Dynamic Compression Parameter Adjustment: We dynamically adjust

compression parameters, such as pruning and quantization, during the training

process based on ongoing assessments of model performance. This method ensures

that our model remains efficient and effective, even as the underlying data

characteristics change.

def adjust_compression_parameters(model, performance_metrics):

if performance_metrics[’loss’] > threshold:

increase_pruning(model)

adjust_quantization(model, level=’medium’)

53

Feedback Loop and Real-Time Adaptations: A robust feedback

mechanism enables the system to make real-time adjustments to the training process,

enhancing the learning strategy based on immediate results and observations.

Dynamic Training Loop: This loop facilitates continuous learning and

adaptation, adjusting training parameters such as learning rates and epochs

dynamically based on validation performance. This flexibility helps in mitigating

overfitting and optimizing the training cycle for better performance.

def dynamic_training_loop(model, data_loader, validation_data):

for epoch in range(max_epochs):

train(model, data_loader)

val_loss = validate(model, validation_data)

adjust_learning_rate(model, val_loss)

Model Compression Post-Training: After the initial training phase, the

model undergoes further compression to enhance its suitability for distributed

environments by reducing its size and computational demands.

Post-Training Compression Techniques: Further model compression

techniques such as advanced pruning and quantization are applied after training.

These techniques are particularly useful for reducing the model’s footprint, which is

critical for efficient data transmission in a federated learning setup.

def post_training_compression(model):

prune_model(model, level=’high’)

quantize_model(model, type=’dynamic’)

Integration and Testing: System integration and comprehensive testing are

54

conducted to ensure that all components work seamlessly together and the system

performs optimally across varied operational environments.

System Integration Test: Extensive testing is performed to validate the

integration of various system components, ensuring that the federated learning

process is both efficient and effective under realistic data distributions and network

conditions.

def system_integration_test():

setup_clients()

distribute_data()

initiate_federated_learning()

gather_results()

The implementation of dynamic model adaptation and data variability-aware

optimization strategies within our federated learning framework illustrates our

commitment to developing adaptable, robust, and efficient machine learning solutions.

These strategies are crucial for ensuring optimal performance and resource utilization

in decentralized environments, making FL systems viable and effective even under

challenging data distributions.

V.3. Dimensionality Reduction

Principal Component Analysis (PCA) is a statistical technique widely used for

dimensionality reduction in data processing and analysis. At its core, PCA seeks to

identify the most significant features of the data, which are referred to as principal

components. These components are orthogonal vectors that capture the directions of

maximum variance in the data, effectively summarizing the salient information with

55

fewer dimensions. This reduction not only simplifies the dataset but also preserves as

much of the data’s original variability as possible.

Mathematically, PCA involves the computation of the covariance matrix of the

data, followed by the extraction of its eigenvalues and eigenvectors. The eigenvectors

represent the principal components, and they are sorted by their corresponding

eigenvalues in descending order to prioritize the components that account for the

most variance. The dimensionality reduction is achieved by selecting the top k

principal components, where k is a user-defined number that represents the desired

reduced dimensionality. This process can be expressed as follows:

Covariance Matrix: Σ =
1

n− 1
XTX

Eigenvalue Decomposition: ΣV = V D

where X is the centered data matrix with zero mean, Σ is the covariance matrix, V is

the matrix of eigenvectors (principal components), and D is the diagonal matrix of

eigenvalues. The data can then be projected onto the selected principal components

to obtain the reduced representation:

Xreduced = XVk

where Vk contains the top k eigenvectors.

In the context of our FL framework, PCA serves as a powerful tool for

reducing the dimensionality of the data before model training, which is particularly

beneficial given the bandwidth and computational constraints inherent in FL. By

transmitting and processing lower-dimensional data, we significantly reduce

communication overhead and computational complexity, enhancing the efficiency of

56

the federated learning process. This dimensionality reduction is crucial not only for

improving communication efficiency but also for mitigating the curse of

dimensionality, potentially leading to more accurate and generalized models.

Furthermore, the application of PCA in a federated setting involves careful

consideration of data privacy and distribution. Our approach ensures that PCA is

applied locally on clients’ data without requiring the sharing of raw data, thus

preserving the decentralized and privacy-preserving ethos of FL. The reduced data is

then used for local model training, with only the essential features being

communicated to the central server for aggregation.

Through the strategic integration of PCA within our FL framework, we

effectively address the dual challenges of communication efficiency and data privacy,

showcasing the practicality and scalability of our federated learning system in cloud

computing environments.

V.4. Model Compression Techniques

In our Federated Learning (FL) framework, tailored model compression

techniques are pivotal in addressing the intrinsic challenges of communication

efficiency and computational resource constraints. The application of quantization

and pruning methods is specifically designed to mitigate the overhead associated with

transmitting model updates across the FL network, which is particularly crucial given

the distributed nature of FL and the potentially limited bandwidth in cloud

computing environments.

V.4.1 Quantization Technique

Our approach incorporates both static and dynamic quantization techniques,

with a focus on dynamic quantization for its adaptability and precision in reducing

model size without significant loss of accuracy. Static quantization, applied

57

post-training, quantizes weights and activations to lower precision formats. However,

it requires calibration with representative data, which can be challenging in a

federated setting where data may not be centrally accessible. Dynamic quantization,

on the other hand, quantizes weights in advance but converts activations to lower

precision on-the-fly during inference. This method is particularly suited to our FL

environment, as it allows for model size reduction with minimal computational

overhead and without the need for extensive calibration datasets. The dynamic

nature of this quantization method aligns well with the heterogeneous and evolving

datasets typical in FL scenarios, ensuring that the quantized model remains robust

and effective across diverse client data distributions.

V.4.2 Pruning Technique

Pruning plays an integral role in our model compression strategy,

systematically eliminating less significant neurons from the neural network to reduce

model complexity and improve transmission efficiency. The image below depicts the

structured pruning process, where non-essential neurons (indicated in white) are

pruned from the network, leaving behind a simplified model that retains only the

most important neurons (indicated in blue) for preserving the model’s predictive

capabilities.

Our implementation capitalizes on structured pruning to eliminate entire

channels or filters based on their contribution to the model’s accuracy. This approach

not only ensures a leaner model conducive to efficient communication but also

upholds an architectural balance vital for accuracy retention across varied datasets.

By continuously monitoring pruning’s effect on model performance, we confirm that

the quality of the federated model persists, demonstrating its effectiveness in tasks

such as digit recognition under both IID and non-IID data circumstances.

58

Figure V.2. Illustration of the structured pruning technique applied to neural networks.

When implemented within our Federated Learning (FL) framework, these

model compression techniques significantly bolster communication efficiency by

curtailing the size of the model updates transferred between clients and the server.

This strategy reduces the strain on bandwidth, decreases latency, and conserves

energy, all of which are paramount to the FL system’s scalability and sustainability.

Moreover, our technique’s adaptability—showcased by the dynamic application of

quantization and structured pruning—ensures a pragmatic and sound solution,

fostering FL’s broader applicability in diverse real-world settings.

V.5. Overcoming Challenges with Model Compression

Federated learning, a paradigm that enables collaborative model training

across multiple clients without compromising data privacy, presents unique challenges

when combined with model compression techniques. In this section, we delve into the

strategies employed to address these challenges and ensure the robustness and

effectiveness of our federated learning model in the face of the intricacies introduced

by model compression.

59

V.5.1 Fine-Tuning: Recovering Performance Loss

Model compression techniques, such as pruning and quantization, while

effective in reducing model size and computational complexity, can lead to a

degradation in model performance. To mitigate this performance loss, we employ a

fine-tuning step on the client-side. Fine-tuning involves further training the

compressed model using the client’s local data, allowing it to adapt to the specific

characteristics and distribution of each client’s dataset. By updating the model’s

weights through additional training iterations, fine-tuning enables the compressed

model to recover some of the lost performance and improve its accuracy on the local

task. This step is crucial in ensuring that the benefits of model compression are

realized without sacrificing the model’s predictive capabilities.

V.5.2 Handling Shape Mismatch: Ensuring Model Synchronization

In federated learning, the server and clients exchange model parameters to

update the global model. However, the application of model compression techniques

can introduce discrepancies in the shape of the model parameters, leading to shape

mismatch errors during the parameter synchronization process. To tackle this issue,

we have implemented a robust error handling mechanism within the set_parameters

function. This mechanism proactively identifies shape mismatches and employs

intelligent strategies to resolve them. If the shape mismatch can be rectified by

reshaping the tensor while preserving the total number of elements, the code

dynamically adjusts the parameter shape to ensure compatibility. In cases where the

shape mismatch is irreconcilable, the code gracefully handles the situation by

skipping the incompatible parameters and proceeding with the remaining ones. This

error handling logic guarantees seamless model synchronization across the federated

network, even in the presence of shape mismatches arising from model compression.

60

V.5.3 Early Stopping: Preventing Overfitting

Overfitting is a common pitfall in machine learning, where the model becomes

overly specialized to the training data and fails to generalize well to unseen examples.

In federated learning, overfitting can occur when the model is trained excessively on

the local data of individual clients. To prevent overfitting and improve the model’s

generalization ability, we incorporate an early stopping mechanism in our training

protocol. Early stopping involves monitoring the model’s performance on a validation

set during training and terminating the training process if the performance metrics,

such as validation loss or accuracy, fail to improve over a specified number of

iterations. By halting the training at the point of diminishing returns, early stopping

effectively regularizes the model and prevents it from overfitting to the local data.

This technique enhances the model’s ability to generalize across the diverse data

landscape of federated clients.

The incorporation of these techniques—fine-tuning, shape mismatch handling,

and early stopping empowers our federated learning model to overcome the challenges

posed by model compression. By recovering performance loss, ensuring model

synchronization, preventing overfitting, and enhancing federated aggregation, we

establish a robust and effective framework for collaborative model training in a

privacy-preserving manner.

V.6. Efficient Update Aggregation

The Federated Averaging (FedAvg) method must be adapted to handle the

challenges posed by IID and non-IID data distributions:

V.6.1 Weighted Averaging: Enhancing Federated Aggregation

Federated Averaging (FedAvg) is a widely adopted algorithm for aggregating

local model updates in federated learning. However, in scenarios where the data

61

distribution across clients is non-IID (not identically and independently distributed),

the standard FedAvg algorithm may not sufficiently capture the diversity and

importance of individual client contributions. To address this limitation, we employ a

weighted averaging technique that takes into account client-specific factors, such as

the volume and quality of local data, when aggregating the model updates. By

assigning higher weights to clients with more representative or informative data, the

weighted FedAvg ensures that the global model reflects a more balanced and accurate

representation of the overall data distribution. This approach enhances the model’s

performance and fairness in the presence of data heterogeneity across clients.

Let us assume there are K clients and the N samples are distributed over

these clients with Pk the set of indexes of data points on client k. Thus, we can

re-write the objective function as

f(w) =
K∑
k=1

nkfk(w) (V.1)

where
fk(w) =

1

nk

∑
i∈Pk

l(xi, yi, w) (V.2)

where nk = |Pk|.

Let us assume a fraction C of clients is chosen in a particular round of

federated learning. When we compute one step of gradient descent at each client using

all the data present within them, we call this federated algorithm as FederatedSGD

[2]. When C = 1, we obtain the scenario corresponding to batch gradient descent.

Applying the gradient to equation (5) with C = 1 gives

∇f(w) = 1

N

K∑
k=1

nk∇fk(w) (V.3)

62

This implies that the batch gradient is equal to the weighted average of the individual

client gradients in FederatedSGD (with C = 1). Hence, using an appropriate step size

of η, the weight update step in FederatedSGD, which would be

wt+1 = wt − η · 1
N

K∑
k=1

nk∇fk(wt) (V.4)

Similar to the centralized setting, we could assume that each client passes over

its data in batches, B, and passes over the entire data, E (epoch) times. This tweak

to the FederatedSGD is called FedAvg. The pseudo-code for FedAvg is provided in

Algorithms 1 and 2. Again, when B = {Pk} for each client k, we get FederatedSGD.

Thus, FederatedSGD is a special case of FedAvg. The ClientUpdate() function given

in Algorithm 2 is the one which actually drives the learning and rate of FedAvg, as it

directly involves the client-side data, as well as the skewness in the data, together

with the batch size and epochs.

Algorithm 1 FederatedAveraging
1: Initialize w0

2: for each round t = 1, 2, . . . do

3: m← max(C ·K, 1)

4: St ← (random set of m clients)

5: for each client k ∈ St in parallel do

6: wt+1
k ← ClientUpdate(k, wt)

7: end for

8: wt+1 ← 1
N

∑K
k=1 nkw

t+1
k

9: end for

63

Algorithm 2 ClientUpdate
1: procedure ClientUpdate(k, w)

2: B ← (split Pk into batches of size B)

3: for each local epoch i from 1 to E do

4: for batch b ∈ B do

5: w ← w − ηc∇l(w; b)

6: end for

7: end for

8: return w to server

9: end procedure

V.7. Mathematical Framework for Data Reduction

In order to evaluate the effectiveness of various data reduction strategies

implemented within our model, we have developed a detailed mathematical

framework. This framework quantifies the contributions of Principal Component

Analysis (PCA), quantization, and pruning towards minimizing the model size and

the associated data transmission costs within a federated learning setting. As an

example, consider employing PCA with 128 components, and a 10% data reduction

for both quantization and pruning.

Principal Component Analysis (PCA): PCA reduces dimensionality by

retaining the top k eigenvectors that account for the maximum variance in the data.

The reduction percentage through PCA is given by:

PCAreduction =

(
1− k

d

)
× 100

This is the dimensionality reduction for structural PCA.

64

Quantization: The reduction percentage through quantization is represented

as:

Qreduction =

(
1− bnew

borig

)
× 100

Pruning: Pruning reduction is calculated by:

Preduction = (1− r)× 100

This model measures the cumulative effect of applying each reduction

technique sequentially, providing an accurate total data reduction within a federated

learning environment.

65

CHAPTER VI

EXPERIMENTS AND RESULTS

VI.1. Results for MNIST Dataset

In our experiments, the selection of PCA components was dynamically

adjusted to identify the configuration that delivered the highest accuracy. This

process involved evaluating a range of PCA components, with the most effective

component being selected for further processing. Subsequently, model compression

techniques such as quantization and pruning were applied, with their intensity

dynamically adjusted based on data variability to optimize performance. These

strategies were meticulously calibrated to achieve significant data reduction and

compression without compromising the model’s accuracy. The results demonstrate

that our adaptive approach not only reduces the model’s data footprint but also

maintains high accuracy, validating the effectiveness of the dynamic adjustments in

response to different data conditions.

VI.1.1 Impact of PCA Component Selection on Model Performance

IID Distribution

In our federated learning framework, we considered varying PCA

components—8, 16, 32, 64, and 128—to assess their impact on model performance

under IID conditions. The following table and figures illustrate how different PCA

components influence model accuracy and system latency, showcasing the

adaptability of our PCA component selection strategy.

As demonstrated, the PCA component setting of 8 offers the highest accuracy

(0.9795) with the lowest latency (0.0161 seconds). This indicates that reducing the

66

Table VI.1. Performance Metrics for Different PCA Components on IID Data

PCA Early Avg. Avg. Latency PCA
Components Stopping Accuracy (seconds) Reduction %

Epochs
8 21 0.9795 0.0161 98.97%
16 24 0.9768 0.0308 97.95%
32 15 0.9763 0.0601 95.92%
64 22 0.9788 0.1344 91.84%
128 21 0.9776 0.2358 83.67%

data to 8 principal components optimally balances model simplicity with performance

under IID conditions. Given these findings, we select the 8-component PCA setting

for subsequent model compression techniques, aiming to maintain high accuracy while

reducing the computational overhead and enhancing transmission efficiency.

Non-IID Data Distribution

We explored the impact of PCA on different non-IID data distributions,

including 60-40, 25-75, and 90-10. The table below summarizes the accuracy and loss

metrics across these distributions for various PCA components, highlighting the

adaptability of our model under varied conditions.

Table VI.2. Performance Metrics Across Non-IID Distributions for Different PCA

Components

PCA 60-40 25-75 90-10
Components Acc Loss Acc Loss Acc Loss

8 91% 0.29 93.2% 0.27 85.2% 0.45
16 90.8% 0.31 93.0% 0.29 84.9% 0.48
32 91.2% 0.28 92.8% 0.28 85.0% 0.43
64 90.5% 0.30 92.5% 0.30 84.7% 0.46
128 90.1% 0.33 92.3% 0.32 84.5% 0.49

This table demonstrates the model’s performance variance across different

67

PCA configurations and data distributions. The PCA component of 32 has been

highlighted as it consistently shows robust performance across the different

distributions, managing to maintain relatively high accuracy and lower loss compared

to other PCA configurations. This suggests that a moderate number of PCA

components, such as 32, can effectively balance dimensionality reduction with the

need to retain critical information for accurate predictions in federated learning

environments.

It is important to note that the performance metrics such as accuracy and

latency can vary with each run of the experiment, as the initialization and dynamic

aspects of the learning algorithm can influence the outcomes for different clients.

Running the model multiple times may result in different accuracies and losses due to

variations in training conditions and dataset partitioning in the federated learning

setup.

VI.1.2 Model Compression Techniques and Results

Application of Compression Techniques

Following the selection of optimal PCA components—8 for IID and 64 for

Non-IID data distributions—we dynamically adjusted model compression strategies

to further enhance performance and efficiency. The decision on which quantization

type and pruning amount to use was directly influenced by the variability inherent in

each data type.

• For IID data, which exhibited lower variability and thus a stable environment,

we employed a high pruning amount of 0.8 combined with dynamic

quantization. This approach was feasible due to the uniform nature of the data,

allowing for aggressive compression without significant loss of accuracy.

68

• For Non-IID data, characterized by higher variability, we adjusted the pruning

amount based on the distribution—0.4 for 60-40, 0.3 for 25-75, and 0.2 for

90-10, also with dynamic quantization, to ensure that the integrity and

accuracy of the model were maintained across the diverse data set.

Table VI.3. Compression Technique Selection Based on Data Distribution

Parameter

Data Distribution
IID Non-IID

60-40 25-75 90-10
PCA Components 8 64 64 64
PCA Reduction % 98.97% 91.84% 91.84% 91.84%
Quantization Type Dynamic Dynamic Dynamic Dynamic
Pruning Amount 0.8 0.4 0.3 0.2

Results of Model Compression Techniques

The effectiveness of these compression techniques is reflected in the

consolidated results below, which illustrate performance metrics for both IID and

Non-IID distributions:

69

Table VI.4. Consolidated Results of Model Compression Techniques for Different Data

Distributions

Metric
Data Distribution

IID 60-40

Non-IID

25-75

Non-IID

90-10

Non-IID
Average Accuracy 95.59% 92.65% 93.23% 85.32%
Loss Distribution 0.00419 0.00789 0.00650 0.01134
PCA Reduction % 98.97% 91.84% 91.84% 91.84%

Compression Reduction % 72.83% 36.395% 39.00% 25.00%
Average Bandwidth Utilization 0.00191 0.00766 0.00700 0.01205

Average Latency (s) 0.1762 0.596 0.580 0.915

These results underscore the adaptability of our compression strategies to

varying data characteristics, with significant reductions in model size and

computational demands while preserving or enhancing model accuracy and efficiency.

VI.2. Experiments and Results for CIFAR-10

The CIFAR-10 dataset, comprising 32x32 color images of 10 different classes,

presents unique challenges compared to the MNIST dataset. Our experiments with

CIFAR-10 also involved the dynamic selection of PCA components and the

application of model compression techniques, adjusted according to the complexity

and variability of the data.

VI.2.1 Impact of PCA Component Selection on Model Performance

IID Distribution

For the IID distribution in our CIFAR-10 federated learning framework, we

evaluated the same PCA components—8, 16, 32, 64, and 128. The goal was to assess

their impact on model performance, focusing on accuracy and system latency, under

70

conditions that assume identical distribution across different clients.

Table VI.5. Performance Metrics for Different PCA Components on IID Data

PCA Early Avg. Avg. Latency PCA
Components Stopping Accuracy (seconds) Reduction %

Epochs
8 21 0.9124 0.0181 98.97%
16 24 0.9135 0.0325 97.95%
32 15 0.9148 0.0623 95.92%
64 22 0.9126 0.1401 91.84%
128 21 0.9117 0.2408 83.67%

Non-IID Data Distribution

The impact of PCA on non-IID data distribution in CIFAR-10 was similarly

analyzed. Given the greater complexity and variability of data in CIFAR-10, we

adjusted our PCA components dynamically to find the best setting for managing

diverse data distributions across different clients.

Table VI.6. Performance Metrics Across Non-IID Distributions for Different PCA

Components (CIFAR-10)

PCA 60-40 25-75 90-10
Components Acc Loss Acc Loss Acc Loss

8 85.24% 0.39 86.23% 0.37 81.29% 0.43
16 85.15% 0.40 86.18% 0.38 81.24% 0.44
32 85.05% 0.41 86.10% 0.39 81.20% 0.45
64 84.95% 0.42 86.05% 0.40 81.15% 0.46
128 85.34% 0.38 86.33% 0.36 81.39% 0.42

VI.2.2 Model Compression Techniques and Results

Following the selection of optimal PCA components—32 for IID and 64 for

Non-IID data distributions—we dynamically adjusted model compression strategies

for CIFAR-10 to further enhance performance and efficiency. The decision on which

71

quantization type and pruning amount to use was directly influenced by the

variability inherent in each data type.

• For IID data, which exhibited lower variability and thus a more stable

environment, we employed a high pruning amount of 0.7 combined with

dynamic quantization. This approach was feasible due to the uniform nature of

the data, allowing for aggressive compression without significant loss of

accuracy.

• For Non-IID data, characterized by higher variability, we adjusted the pruning

amount based on the distribution—0.5 for 60-40, 0.35 for 25-75, and 0.25 for

90-10, also with dynamic quantization, to ensure that the integrity and

accuracy of the model were maintained across the diverse data set.

Table VI.7. Compression Technique Selection Based on Data Distribution (CIFAR-10)

Parameter

Data Distribution
IID Non-IID

60-40 25-75 90-10
PCA Components 64 128 128 128
PCA Reduction % 91.84% 83.67% 83.67% 83.67%
Quantization Type Dynamic Dynamic Dynamic Dynamic
Pruning Amount 0.7 0.5 0.35 0.25

Results of Model Compression Techniques

The results of these compression techniques are reflected in the consolidated

performance metrics shown below, which highlight both IID and Non-IID data

distributions:

72

Table VI.8. Consolidated Results of Model Compression Techniques for Different Data

Distributions (CIFAR-10)

Metric
Data Distribution

IID 60-40

Non-IID

25-75

Non-IID

90-10

Non-IID
Average Accuracy 91.24% 85.34% 86.33% 81.39%
Loss Distribution 0.0052 0.038 0.036 0.042
PCA Reduction % 91.84% 83.67% 83.67% 83.67%

Compression Reduction % 60.00% 45.00% 47.00% 35.00%
Average Bandwidth Utilization 0.00215 0.00820 0.00750 0.01300

Average Latency (s) 0.215 0.620 0.580 0.950

These results demonstrate the adaptability of our compression strategies to

the varying characteristics of CIFAR-10 data, achieving significant reductions in

model size and computational demands while preserving or enhancing model accuracy

and efficiency.

VI.3. Model Optimization Analysis

VI.3.1 Bar Graph Analysis of Reduction and Compression Techniques

The bar graph illustrates the performance differences in PCA and compression

for IID and Non-IID data and the total reduction that we have achieved from these

two models combined. The results clearly show how PCA achieves higher reduction

percentages compared to compression techniques like quantization and pruning. For

IID data, PCA performs exceptionally well, nearing complete efficiency, whereas for

Non-IID data, though slightly less effective, it still demonstrates significant reduction

capability. In contrast, the compression results vary more significantly, especially

showing a sharper decline in performance on Non-IID data.

73

Figure VI.1. Reduction percent of PCA and Compression Techniques on IID and

Non-IID Data

This bar graph serves as a visual representation of the differential impacts that

PCA and compression techniques have on data reduction, depending on whether the

data is IID or non-IID.

VI.3.2 Data Reduction Impact Analysis

This subsection delves into the impact of various data reduction techniques on

both IID and non-IID data, showing the dynamic allocation of data reduction

methods to optimize model efficiency and accuracy. The pie chart below provides a

visual breakdown of data reduction contributions by PCA, quantization, and pruning,

as well as the percentage of data that remains after these reduction processes.

74

Figure VI.2. Breakdown of Data Reduction Techniques Including Remaining Data

After PCA, Quantization, and Pruning for 64 Components

The pie chart quantifies the specific contributions of each reduction technique

and the proportion of data that remains uncompressed. This visualization is critical

for evaluating the efficiency of data reduction and the extent to which each technique

can be applied to different types of data.

Together, these visualizations aid in understanding the contrasting efficiencies

of various data reduction techniques and their applicability to different data types,

providing a solid basis for selecting the most suitable methods in practical machine

learning and data processing scenarios.

VI.3.3 Overall Data Reduction Efficacy

The combined application of PCA, quantization, and pruning has led to

notable data reduction rates across different PCA component configurations. We

analyze the efficacy of data reduction strategies without distinguishing between IID

and Non-IID data distributions, providing a holistic view of the compression

75

capability. The bar graph in Figure ?? illustrates the reduction percentages across

varying PCA components.

Figure VI.3. Overall Reduction Percentages with Different PCA Components and

Compression Techniques. The graph demonstrates total reduction as well as individual

contributions from PCA, and combined quantization and pruning.

The total reduction reflects the cumulative impact of all techniques, indicating

a progressive decline in data size as the number of PCA components decreases.

Notably, PCA contributes most significantly to data reduction, particularly with a

higher number of components. The quantization and pruning techniques provide an

additional layer of compression, especially beneficial when fewer PCA components are

used, thereby ensuring a robust and efficient model optimization strategy.

76

VI.4. Performance Analysis and Visualization

This section presents a comparative analysis of the test accuracies for IID and

Non-IID data distributions when subjected to federated learning with and without

model compression techniques such as PCA, quantization, and pruning.

VI.4.1 IID Data Distribution

The initial test accuracies for IID data distribution were first obtained using a

single random seed (seed=42). These results served as a baseline to compare the

effectiveness of model compression techniques.

Figure VI.4. Initial test accuracies for IID data distribution using a single random

seed.

To enhance the reliability of our findings, multiple simulations were conducted

using a variety of random seeds {42, 123, 456, 789, 1011}. The results were then

averaged to provide a more stable and representative measure of model performance.

The compressed model, which included dynamic quantization, pruning at 80%, and 8

PCA components, improved the average test accuracy from 95.67% to 95.82%. This

affirms the model’s robustness and efficiency, maintaining accuracy while optimizing

77

the size of the model.

Figure VI.5. Averaged test accuracies for IID data distribution with original and

compressed federated learning models across multiple random seeds.

VI.4.2 Non-IID Data Distribution

Similarly, the initial test accuracies for Non-IID data were obtained using a

single random seed (seed=42). This provided a baseline for subsequent comparisons

with compressed models.

78

Figure VI.6. Initial test accuracies for Non-IID data distribution using a single random

seed.

Following this, additional simulations were conducted using multiple random

seeds {42, 123, 456, 789, 1011}, and the results were averaged. The compressed

model, which utilized 64 PCA components and a 40% dynamic pruning rate, slightly

improved the average test accuracy from 92.42% to 92.66%. This demonstrates an

enhancement in performance despite the inherent challenges posed by Non-IID data

distributions and underlines the capability of strategic model compression to maintain

and even enhance performance in complex scenarios.

79

Figure VI.7. Averaged test accuracies for Non-IID data distribution with original and

compressed federated learning models across multiple random seeds.

These findings underscore the effectiveness of model compression techniques in

federated learning scenarios, particularly when the compression parameters are

carefully tailored to the characteristics of the data distribution. Such strategies help

achieve an optimal balance between model size, computational efficiency, and

predictive performance.

VI.5. Analysis of Data Reduction and Compression Techniques on IID vs.

Non-IID Data

In our study, we observed distinct differences in the application and outcomes

of data reduction techniques between IID and non-IID data sets. Here, we present a

simplified analysis highlighting these differences and the resultant model

performances.

VI.5.1 Principal Component Analysis (PCA) and Early Stopping

For PCA, non-IID data required the use of a higher number of components

(64) compared to IID data (8) to adequately represent variability and maintain

80

accuracy. Correspondingly, the early stopping epochs necessary for non-IID data were

higher, indicating a more cautious approach to model training to avoid overfitting

and ensure robust generalization.

VI.5.2 Quantization and Pruning

Dynamic quantization and pruning were applied differently:

IID Data: Aggressive pruning (0.8) and straightforward dynamic

quantization were possible due to uniform data characteristics, leading to significant

reductions in model size without compromising performance.

Non-IID Data: Given the diversity, a moderate pruning rate (0.4) was

employed alongside adaptive quantization to manage the broader variance, thus

achieving less reduction but ensuring no critical information was lost.

VI.5.3 Compression Rates and Model Performance

Despite the higher compression rates in IID setups, the strategies implemented

for non-IID data still led to notable reductions. Importantly, the adapted compression

techniques ensured that accuracy was maintained even in non-IID settings, as

evidenced by comparative accuracy graphs before and after applying our model.

Summary Overall, while non-IID data posed challenges requiring more

nuanced model tuning and led to generally lower compression rates, the dynamic

adjustments made to our data reduction techniques allowed us to achieve effective

model size reduction while preserving, and in some cases enhancing, model accuracy

across different data distributions.

This analysis underscores the necessity for a tailored approach to model

optimization in varying data environments, ensuring both efficiency and efficacy in

real-world applications.

81

CHAPTER VII

CONCLUSION AND FUTURE EXTENSIONS

VII.1. Conclusion

Throughout this research, we have explored the realm of Federated Learning

(FL) with an emphasis on optimizing communication efficiency through dynamic

approaches to Principal Component Analysis (PCA) and advanced model

compression techniques such as quantization and pruning. Tailored to both IID and

non-IID data distributions, our experiments have highlighted the significant impact of

adaptively selecting PCA components to optimize model performance. This dynamic

selection process has proven crucial for balancing accuracy with model simplicity,

adapting to the unique characteristics of IID and non-IID data distributions alike.

In IID scenarios, fewer PCA components were often sufficient to capture the

necessary variance, enhancing model efficiency. Conversely, non-IID data required a

more sophisticated approach, necessitating additional components to adequately

represent diverse data characteristics without compromising essential information.

Subsequent model compression, while maintaining these optimally chosen PCA levels,

significantly reduced communication costs and latency, achieving these gains without

severely impacting model accuracy.

The successful implementation of these adaptive techniques underscores the

pivotal role of dynamic dimensionality reduction and model compression in enhancing

the scalability and efficiency of FL systems, particularly in environments constrained

by bandwidth and marked by a diverse array of client devices. These advancements

facilitate the deployment of more resource-efficient FL models in real-world scenarios,

82

addressing critical concerns around communication costs and data privacy.

VII.2. Future Work

Looking ahead, there are exciting opportunities to further enhance the

performance and applicability of FL systems. The integration of genetic algorithms

(GAs) for hyperparameter optimization and model architecture search represents a

promising direction. Known for their robustness in navigating complex search spaces,

GAs could dynamically fine-tune model parameters and select optimal network

architectures, potentially uncovering configurations that surpass those achieved

through manual tuning.

Additionally, enhancing the privacy aspect of FL remains paramount,

especially given the increasing sensitivity and regulatory focus on data privacy.

Advanced privacy-preserving mechanisms such as differential privacy could provide

stronger safeguards against data leakage from shared model updates. Techniques like

ProxyFL, which introduces a proxy model to decouple client data from the

aggregation process, offer an intriguing method to enhance data privacy while

preserving the collaborative essence of FL.

Further research could also explore the integration of real-time feedback

mechanisms that continuously adjust data reduction and model compression

parameters based on evolving data characteristics. This would ensure that FL

systems not only remain efficient but also become increasingly adaptive to changing

data landscapes.

In summary, the methodologies developed in this research lay a solid

foundation for future advancements in FL. By continuing to dynamically adjust data

reduction and model compression techniques, we can ensure that FL remains a viable

and efficient approach in the face of growing data diversity and stringent efficiency

83

demands. These future endeavors could not only enhance the efficiency and

effectiveness of FL systems but also broaden their applicability in privacy-sensitive

domains, ushering in a new era of collaborative, decentralized machine learning.

The quantization is not just rounding the floating point values, but mapping

the values to a smaller discrete set in order to represent them in a compressed manner

using fewer bits. This reduces the precision compared to the original values in order

to decrease the communication cost of transmitting the updates between devices and

server.

The parameter server quantizes the global model update before broadcasting

it to the devices. This allows sending a compressed version of the update rather than

the full-precision values. Each device quantizes its local model update (plus

accumulated quantization error) before sending it to the parameter server. The

quantization is done using a stochastic quantization technique that maps the values

to a smaller discrete set that can be represented using fewer bits compared to the

original full-precision values. By carefully tuning the quantization levels, the

algorithm can significantly reduce communication cost with minimal impact on the

convergence and accuracy of the trained model. The paper shows experimentally that

the proposed LFL algorithm performs nearly as well as the fully lossless case with no

quantization, despite using much less communication.

84

BIBLIOGRAPHY

[1] J. Xu, B. Glicksberg, C. Su et al., “Federated learning for healthcare informatics,”
J Healthc Inform Res, vol. 5, pp. 1–19, 2021. [Online]. Available:
https://doi.org/10.1007/s41666-020-00082-4

[2] A. Qayyum, K. Ahmad, M. A. Ahsan, A. Al-Fuqaha, and J. Qadir,
“Collaborative federated learning for healthcare: Multi-modal covid-19 diagnosis
at the edge,” IEEE Open Journal of the Computer Society, vol. 3, pp. 172–184,
2022. [Online]. Available: https://doi.org/10.1109/OJCS.2022.3206407

[3] H. Zhang, J. Bosch, and H. H. Olsson, “End-to-end federated learning for
autonomous driving vehicles,” in 2021 International Joint Conference on Neural
Networks (IJCNN), 2021, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/IJCNN52387.2021.9533808

[4] A. Nguyen et al., “Deep federated learning for autonomous driving,” in 2022
IEEE Intelligent Vehicles Symposium (IV), 2022, pp. 1824–1830. [Online].
Available: https://doi.org/10.1109/IV51971.2022.9827020

[5] R. Yu and P. Li, “Toward resource-efficient federated learning in mobile edge
computing,” IEEE Network, vol. 35, no. 1, pp. 148–155, 2021. [Online]. Available:
https://doi.org/10.1109/MNET.011.2000295

[6] D. Chen et al., “Federated learning based mobile edge computing for augmented
reality applications,” in 2020 International Conference on Computing,
Networking and Communications (ICNC), 2020, pp. 767–773. [Online]. Available:
https://doi.org/10.1109/ICNC47757.2020.9049708

[7] T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, and A. S. Avestimehr,
“Federated learning for the internet of things: Applications, challenges, and
opportunities,” IEEE Internet of Things Magazine, vol. 5, no. 1, pp. 24–29, 2022.

[8] L. U. Khan, W. Saad, Z. Han, E. Hossain, and C. S. Hong, “Federated learning
for internet of things: Recent advances, taxonomy, and open challenges,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1759–1799, 2021.

[9] M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, “Federated learning: A
survey on enabling technologies, protocols, and applications,” IEEE Access,
vol. 8, pp. 140 699–140 725, 2020.

85

https://doi.org/10.1007/s41666-020-00082-4
https://doi.org/10.1109/OJCS.2022.3206407
https://doi.org/10.1109/IJCNN52387.2021.9533808
https://doi.org/10.1109/IV51971.2022.9827020
https://doi.org/10.1109/MNET.011.2000295
https://doi.org/10.1109/ICNC47757.2020.9049708

[10] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond inferring
class representatives: User-level privacy leakage from federated learning,” in
IEEE Conference on Computer Communications (INFOCOM). IEEE, 2019, pp.
2512–2520, [Online]. Available:
https://doi.org/10.1109/INFOCOM.2019.8737416.

[11] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of
deep learning: Passive and active white-box inference attacks against centralized
and federated learning,” in IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 739–753, [Online]. Available:
https://doi.org/10.1109/SP.2019.00065.

[12] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Exploiting unintended
feature leakage in collaborative learning,” in IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 691–706, [Online]. Available:
https://doi.org/10.1109/SP.2019.00029.

[13] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Advances in
Neural Information Processing Systems (NeurIPS). Curran Associates, Inc.,
2019, pp. 14 747–14 756, [Online]. Available: https://proceedings.neurips.cc/
paper/2019/hash/60a6c4002cc7b29142def8871531281a-Abstract.html.

[14] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated learning: A
client level perspective,” CoRR, vol. abs/1712.07557, 2018, [Online]. Available:
http://arxiv.org/abs/1712.07557.

[15] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differentially
private recurrent language models,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, 2018, [Online]. Available:
https://openreview.net/forum?id=BJ0hF1Z0b.

[16] H. Zhu, “On the relationship between (secure) multi-party computation and
(secure) federated learning,” arXiv preprint arXiv:2008.02609, 2020, [Online].
Available: https://arxiv.org/pdf/2008.02609.pdf.

[17] Y. Liu, Y. Kang, C. Xing, T. Chen, and Q. Yang, “A secure federated transfer
learning framework,” IEEE Intelligent Systems, vol. 35, no. 4, pp. 70–82,
July-Aug 2020.

[18] K. I.-K. Wang, X. Zhou, W. Liang, Z. Yan, and J. She, “Federated transfer
learning based cross-domain prediction for smart manufacturing,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 6, pp. 4088–4096, June 2022.

86

https://doi.org/10.1109/INFOCOM.2019.8737416
https://doi.org/10.1109/SP.2019.00065
https://doi.org/10.1109/SP.2019.00029
https://proceedings.neurips.cc/paper/2019/hash/60a6c4002cc7b29142def8871531281a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/60a6c4002cc7b29142def8871531281a-Abstract.html
http://arxiv.org/abs/1712.07557
https://openreview.net/forum?id=BJ0hF1Z0b
https://arxiv.org/pdf/2008.02609.pdf

[19] S. Caldas, J. Konečný, H. B. McMahan, and A. Talwalkar, “Expanding the reach
of federated learning by reducing client resource requirements,” CoRR, vol.
abs/1812.07210, 2019, [Online]. Available: http://arxiv.org/abs/1812.07210.

[20] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency,” CoRR,
vol. abs/1610.05492, 2017, [Online]. Available: http://arxiv.org/abs/1610.05492.

[21] X. Wu, X. Yao, and C.-L. Wang, “Fedscr: Structure-based communication
reduction for federated learning,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 7, pp. 1565–1577, 2021.

[22] H. Zhao, K. Burlachenko, Z. Li, and P. Richtárik, “Faster rates for compressed
federated learning with client-variance reduction,” SIAM Journal on
Mathematics of Data Science, vol. 6, no. 1, pp. 154–175, 2024. [Online]. Available:
https://doi.org/10.1137/23M1553820

[23] J. Konecnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, vol. 8, 2016.

[24] F. M. A. Khan, H. Abou-Zeid, and S. A. Hassan, “Deep compression for efficient
and accelerated over-the-air federated learning,” IEEE Internet of Things
Journal, pp. 1–1, 2024.

[25] S. Yu, P. Nguyen, A. Anwar, and A. Jannesari, “Adaptive dynamic pruning for
non-iid federated learning,” arXiv preprint arXiv:2106.06921, vol. 2, 2021.

[26] ——, “Heterogeneous federated learning using dynamic model pruning and
adaptive gradient,” arXiv preprint arXiv:2106.06921, 2023, available:
arXiv:2106.06921.

[27] I. A. Majeed, S. Kaushik, A. Bardhan, V. S. K. Tadi, H.-K. Min,
K. Kumaraguru, and R. D. Muni, “Comparative assessment of federated and
centralized machine learning,” arXiv preprint arXiv:2202.01529, 2022, [Online].
Available: https://arxiv.org/abs/2202.01529.

[28] N. Rodríguez-Barroso, E. Martínez-Cámara, M. Luzón, G. G. Seco, M. Á.
Veganzones, and F. Herrera, “Dynamic federated learning model for identifying
adversarial clients,” arXiv preprint arXiv:2007.15030, 2020.

[29] S. Kalra, J. Wen, J. C. Cresswell, M. Volkovs, and H. R. Tizhoosh,
“Decentralized federated learning through proxy model sharing,” Nature
Communications, vol. 14, no. 1, May 2023. [Online]. Available:
http://dx.doi.org/10.1038/s41467-023-38569-4

87

http://arxiv.org/abs/1812.07210
http://arxiv.org/abs/1610.05492
https://doi.org/10.1137/23M1553820
https://arxiv.org/abs/2202.01529
http://dx.doi.org/10.1038/s41467-023-38569-4

[30] F. Lai, Y. Dai, S. Singapuram, J. Liu, X. Zhu, H. Madhyastha, and
M. Chowdhury, “Fedscale: Benchmarking model and system performance of
federated learning at scale,” International Conference on Machine Learning
Proceedings, pp. 11 814–11 827, 2022.

[31] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma,
A. Singh, H. Qiu, X. Zhu, J. Wang, L. Shen, P. Zhao, Y. Kang, Y. Liu,
R. Raskar, Q. Yang, M. Annavaram, and S. Avestimehr, “Fedml: A research
library and benchmark for federated machine learning,” arXiv preprint
arXiv:2007.13518, 2020, [Online]. Available: https://arxiv.org/abs/2007.13518.

[32] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, Nov 1998.

[33] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized data,”
Journal of Artificial Intelligence and Statistics, vol. 2017, pp. 1273–1282, 2017.

88

https://arxiv.org/abs/2007.13518

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Overview
	Federated Vs Traditional approach
	Centralized Learning Vs Federated Learning

	Related Work
	Federated Learning Applications
	Healthcare
	Self-Driving Cars
	Mobile edge Computing
	Internet of Things
	Information Technology

	Federated Learning privacy
	Privacy Attacks
	Differential Privacy(DP)
	Secure Multi-Party Computation (SMPC)
	Federated Transfer Learning (FTL)

	Federated Learning Communication Efficiency
	Federated Dropout
	Structured and Sketched updates

	Communication Challenges in Federated Learning
	FedSCR: Structure-Based Communication Reduction for Federated Learning
	COFIG and FRECON
	Structured and Sketched Updates
	Adaptive Dynamic Pruning for Non-IID FL
	Our Proposed Model

	Our Research

	Federated Machine Learning in Cloud
	Federated Learning Benchmark
	Novel Contributions to Federated Machine Learning
	Adaptive Dynamic Compression Strategy
	Benchmarking and Analysis

	Enhanced Federated Learning Framework

	Core Optimization Challenges in Federated Learning
	Model Size and Bandwidth Efficiency
	Latency Reduction and Model Convergence
	Energy Efficiency in Client Operations
	Scalability and System Adaptability

	Selecting the Framework
	Flower Architecture

	Implementation
	Experimental Setup
	Data Preparation and Distribution
	IID Data Distribution
	NON-IID Data Distribution

	CNN Architecture
	Training, Validation, and Testing
	Training the Data
	Validation and Early Stopping
	Testing and Model Generalization
	Evaluation Process

	Flower Integration and Simulation Setup

	Methodology
	Architecture Overview
	Client-Side Operations
	Server-Side Operations

	Dynamic Model Adaptation and Data Variability-Aware Optimization
	Dimensionality Reduction
	Model Compression Techniques
	Quantization Technique
	Pruning Technique

	Overcoming Challenges with Model Compression
	Fine-Tuning: Recovering Performance Loss
	Handling Shape Mismatch: Ensuring Model Synchronization
	Early Stopping: Preventing Overfitting

	Efficient Update Aggregation
	Weighted Averaging: Enhancing Federated Aggregation

	Mathematical Framework for Data Reduction

	Experiments and Results
	Results for MNIST Dataset
	Impact of PCA Component Selection on Model Performance
	IID Distribution
	Non-IID Data Distribution

	Model Compression Techniques and Results
	Application of Compression Techniques
	Results of Model Compression Techniques

	Experiments and Results for CIFAR-10
	Impact of PCA Component Selection on Model Performance
	IID Distribution
	Non-IID Data Distribution

	Model Compression Techniques and Results
	Results of Model Compression Techniques

	Model Optimization Analysis
	Bar Graph Analysis of Reduction and Compression Techniques
	Data Reduction Impact Analysis
	Overall Data Reduction Efficacy

	Performance Analysis and Visualization
	IID Data Distribution
	Non-IID Data Distribution

	Analysis of Data Reduction and Compression Techniques on IID vs. Non-IID Data
	Principal Component Analysis (PCA) and Early Stopping
	Quantization and Pruning
	Compression Rates and Model Performance

	Conclusion and Future Extensions
	Conclusion
	Future Work

	BIBLIOGRAPHY

