
KONG, YUAN., M.S. A Distributed Public Key Caching Scheme in Large Wireless
Networks. (2010)
Directed by Jing Deng. 25 pp.

When asymmetric cryptography techniques are used in wireless networks, the public

keys of the nodes need to be widely available and signed by a Certificate Authority (CA).

However, the existence of a single CA in large wireless networks such as mobile ad hoc

networks and wireless sensor networks can lead the hotspot problem and become a security

weakness. In this work, we propose a distributed technique to cache the public keys on

regular nodes. Due to the limited memory size that each node is allowed to dedicate

for key caching, only some keys can be cached. In our proposed technique, each node

caches the public keys of a mix of local and remote nodes. The local nodes are defined as

the nodes within the same neighborhood according to the transmission range, while the

remote nodes are the ones outside the range. Access to the public keys of other nodes is

possible based on a chain of trust. Multiple copies of public keys from different chains of

trusted nodes provide fault tolerance. We explain our technique in detail and investigate

its salient features in this work. An interesting observation is the need to balance caching

public keys of local nodes and remote nodes. We studied the optimum local/remote public

key caching ratios for different networks via investigating the availability of the number

of required public key copies. These simulation results showed that by balancing the

caching public keys with the optimum ratios, the availability of the required public keys

kept increasing and finally became stable. We also did the simulation about studying the

number of hops to find the first copies of required public keys. The results showed how

local/remote ratios affected the minimum number of hops for reaching the first copies.

A DISTRIBUTED PUBLIC KEY CACHING SCHEME

IN LARGE WIRELESS NETWORKS

by
Yuan Kong

A Thesis submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in partial fulfillment

of the requirements for the Degree
Master of Science

Greensboro

2010

Approved By

Committee Chair

c© Copyright 2010 by Yuan Kong

To my parents.

ii

APPROVAL PAGE

This thesis has been approved by the following committee of the Faculty of The

Graduate School at The University of North Carolina at Greensboro.

Committee Chair

Committee Members

Date of Acceptance by Committee

Date of Final Oral Examination

iii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Jing Deng, for his great help with everything.

Jing offered a lot of instructions during the whole process of accomplishing my thesis

work. He helped me with reading the papers, running the simulations and writing the

materials. He always encourage all the members in the group to think and learn. After

each group meeting, I got new idea from he. He showed me different way to approach a

research problem and the need to be confident to achieve any goal.

Besides, I would like to thank the rest of my thesis committee: Stephen R. Tate, who

asked me good questions and offered me new ideas about extending my work, Fereidoon

(Fred) Sadri, who gave a number of useful comments to help me express myself better.

I also want to say thank you to all the group members: Yanfen Song, Xiaocheng Zou,

Alexey Bogaevski, Siddhiben Naik and Spoorthy Nimmagadda. Discussing with them

helped me learn a lot. I enjoyed being with them in the lab for every meeting and for the

daily life.

A special thanks goes to Yuesong Wang, who helped me a lot while I was preparing

for the thesis defense. During the days that I could not walk since the sprains of my foot,

he offered transportaion and made it possible for me to go to lab everyday.

I would also like to thank: Francine Blanchet-Sadri, for the two courses she tought

me and the confidence she gave me, Nancy Green, for the course Software Engeneering,

Shan Suthaharan, for the course Computer Networks, Lixin Fu, for the course Analysis

and Design of Algorithms.

Last but not the least, I thank: Donna Balser, who is the secretary in the department

of Computer Science, Richard Cheek, the system administrator in the department of

Computer Science.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES . vi

CHAPTER

.I. INTRODUCTION . 1

I.1 Security Issues in Large Wireless Networks 1
I.1.1 Large Wireless Networks . 1
I.1.2 Asymmetric Key Scheme . 2

I.2 Distributed Public Key Caching Scheme 3
I.3 Related Work . 4
I.4 Document Organization . 5

.II. PUBLIC KEY CACHING SCHEME 6

II.1 Operational Details of the Proposed Scheme 6
II.2 Cache Update . 9

.III. PERFORMANCE EVALUATION 11

III.1 Available Copies . 11
III.2 Minimum Hop . 16
III.3 Dynamic Systems . 17

.IV. CONCLUSION . 19

REFERENCES . 21

APPENDIX A. SIMULATION CODE . 23

v

LIST OF FIGURES

Page

Figure II.1 Message format of the KREQ and the KREP packets. 7

Figure III.1 Comparison of extensive search and simple search. 12

Figure III.2 Comparison of different memory size m. 13

Figure III.3 Comparison of different TTL value TTL. 14

Figure III.4 The optimum ratio γ∗ with different N 15

Figure III.5 The optimum ratio γ∗ with different N 15

Figure III.6 The minimum number of hops h to find the first public key copy. . 16

Figure III.7 Cache updates improved the availability of public key copies, K. . . 18

vi

CHAPTER I

INTRODUCTION

I.1 Security Issues in Large Wireless Networks

I.1.1 Large Wireless Networks

With the wide use of wireless devices, large wireless networks are expected to play an in-

creasingly important role to provide networked information. An Examples of large wireless

networks is wireless sensor networks (WSNs). WSNs are composed by a large number of

sensors which can communicate with each other and monitor environmental conditions

cooperatively, such as sound, light, pressure and temperature. In such networks, each

node plays the same role and supports multi-hop routing. Since large number of sensor

nodes are densely deployed in WSNs, neighbor nodes may be close to each other [2]. Thus,

multihop communication is exploited in this kind of network in order to gain less power

consumption.

Sensor nodes are usually distributed randomly in the field to form a wireless sensor

network in an ad hoc manner for fulfilling certain task [7]. It is known that the idea of

ad hoc networking has around for over 30 years [11]. In this kind of network, usually

There are no preexisting infrastructures such as specific servers, while there are possibly

some power control nodes. Since no access points or routers exist, each node in the

network participates in routing and communicates with each other directly with multi-

hop routing. One example of such application is the battlefield surveillance. After being

randomly deployed in a battlefield, the sensor nodes need to be self-organized and form an

ad hoc wireless network. Each sensor node then collects the condition information around

1

itself and sends the report observation messages to a central node via its neighbors. With

the information collected from different member nodes, the activities in the battlefield

can be deteted. This will help the control center to make appropriate and quick decision

when attack happens.

With more and more information delivered on these wireless networks, security be-

comes a critical issue. Many traditional protocols and algorithms will not work with ad

hoc networking. Security service such as authentications and key managment are essen-

tial for ensuring the normal oprations in hostile environments [7]. Authentication is the

basis of secure communication [9]. It can only been realized as verifying something which

is associated with an identity. Key management can be defined as a set of techniques

and procedures that support the establishment and maintenance of keying relationships

between authorized parties [8]. These services should adhere to the a number of security

attributes including key availability. The high-availability feature prevents degradation

of key managment services and ensure keying material is provided to nodes who expect

this material [9].

I.1.2 Asymmetric Key Scheme

The asymmetric cryptography scheme can be used to provide information security. Using

the asymmetric key scheme, each node in the network has a pair of keys: public key

and private key. The public keys should be known by all nodes in the network; the

private key should only be held by the node itself. For information confidentiality, a

node uses the public key (of a receiver) to encrypt the message. This encrypted message

can only be decrypted by the intended receiver who holds the matching private key. For

information authentication, a node uses its own private key to sign the message. In order

to authenticate the message, the receiver needs the public key of the sender.

However, the availability of these public keys can be an issue in large wireless networks.

Usually, there is a Certificate Authority (CA) that will issue certificates for every node.

Each certificate, signed by the CA, contains a public key and the identifier of a node. In

2

large wireless networks, the existence of such a CA can become a security weakness. For

example, since the CA is known to the entire network, the adversary can attack it with

all its resources. The traffic toward the CA can be mis-routed with the use of worm-hole

attacks [5] or black-hole attacks [3]. Jamming attacks can be launched by the adversary

to blackout all wireless communications in the CA’s neighborhood.

I.2 Distributed Public Key Caching Scheme

In this work, we investigate a wireless network where every node can serve as a CA,

or a Peer CA (PCA). Since the certificate from one PCA can be unreliable (imagine a

compromised node serving as a PCA), the certificates from a number of PCAs will confirm

that the public key of a certain node is valid. This is similar to threshold cryptography [17]

and distributed trust [1].

Since every node in the network serves as a PCA, how the keys are stored becomes an

essential issue. On one extreme end, we let each node only store the public key of itself.

This results in a really key availability as there is only one public key for any specific node.

In any some node are compromised, there is no way for other nodes to realize the existence

of these compromises. On the other end, we let each node store the public keys of all the

other nodes. In this way, there is no need to worry about the key availability. However, it is

ineffecient to do so since we need to consider the source constraints of the nodes. Wireless

devices are usually resource-constrained, in terms of computational power, battery energy,

and on-board memory space. For example, the prototype sensors in WSNs have about

4K bytes of memory, which needs to support several important tasks: data collection and

on-board processing; system parameter storage; and key storage. Meanwhile, a public key

is usually as large as 128 bytes. The limited memory space that can be dedicated to key

storage gives rise to the following problem: how should the keys be cached and updated

in such large wireless networks?

In this work, we propose a distributed key caching scheme. In this scheme, each node

caches the public keys of some other nodes in the network. We investigate our public key

3

caching scheme through the availability of the public key copies and observe the existence

of an optimal local/remote ratio in different network scenarios. We also design a key

update strategy that will allow nodes to update their public key caches according to the

optimum local/remote ratio.

I.3 Related Work

Our work is mostly related to distributed trust establishment and security protection. In

this section, we discuss several related work in the following.

In [14] and [15], mobile certificate authorities (MOCAs) were established for hetero-

geneous mobile ad hoc networks (MANETs) where some nodes are more reliable and

resourceful than others. These MOCAs share the responsibility of collectively providing

the CA functionality for the network, using threshold cryptography [17]. In the MOCA

certification Protocol (MP), a client requiring certificate service broadcasts a Certificate

Request (CREQ) message and waits for responses from at least k out of the n MOCAs.

With such k responses, the certificate can be fully reconstructed and the certification

process succeeds.

Similarly, in [10], a fully distributed trust model for MANET was introduced based

on trust graph and threshold cryptography. In their model, users can issue public key

certificates and authentication can be performed via certificate chains. To alleviate the

adverse effect of malicious nodes in the network, threshold cryptography was used. Thus,

a user needs to acquire k partial certificates for authentication.

In [6], a decentralized key management architecture was designed for WSNs. This ar-

chitecture supports key deployment, key refreshment, and key establishment. Symmetric

cryptography was used in the keying protocols in [6].

In the fully self-organized public-key management system presented by [4], all the users

in a MANET can generate their own public/private key pairs. The users can also store,

distribute, and revoke their public keys by themselves. Each node maintains a certificate

repository using two ways: by communicating with its certificate graph neighbors; and

4

by applying a repository construction algorithm through a chain of trust [1, 12].

In [16], a composite key management scheme was designed to combine the public key

infrastructure (PKI) technique and self-organized certificate chaining technique. The PKI

usually uses threshold cryptography to adapt the ad hoc networks. The need with scheme

is the virtual certificate authority (CA), which is comprised of multiple nodes. The virtual

CA approaches require no warm-up period but impose higher maintenance overhead. The

self-organized certificate chain fits ad hoc networking but needs a warm-up period. The

work combined these two techniques by applying virtual CAs and certificate chain at the

same time.

In [13], the key management (SEKM) scheme was introduced for mobile ad hoc net-

works. The scheme uses an number of server groups while each of them creates a view of

the certificate authority (CA). The CAs provide certificate updating service for the nodes.

The server nodes form an special group for communication providing the underlying ser-

vice.

Our work differs from these related work in the sense that we focus on the use of

limited memory space to cache the public keys of different nodes. We further design a

public key search technique and a cache update algorithm to achieve optimum caching

ratio of public keys from local/remote nodes.

I.4 Document Organization

The paper is divided into five chapters followed by the references and the appendix.

• Chapter I introduces the backgroud for our distributed key caching scheme and

describes recent related works.

• Chapter II explains the public key caching scheme in detail.

• Chapter III shows the simulations results to evaluate our scheme.

• Chapter IV summarizes our work and discuss future works.

• Appendix A provides the code of the simulations.

5

CHAPTER II

PUBLIC KEY CACHING SCHEME

We first introduce our notations and variables

• PUi: public key of node i;

• PRi: private key of node i;

• {pt}PRi
: message pt signed by PRi;

• cm: crypted message;

• Ci: set of nodes whose public keys are cached in node i;

• Ni: set of physical neighbors of node i;

• R: list of nodes that involve in the sequence of KREQ message transmission;

• m: total number of public keys that each node caches;

• ǫ: extensive (ǫ = 1) or simple (ǫ = 0) search;

• γ: ratio of the numbers of keys for local/remote nodes cached by one node;

• TTL: the maximum number of hops a KREQ message may travel.

II.1 Operational Details of the Proposed Scheme

Assume that every node carries the public keys of some other nodes. Such information

can be obtained through pre-deployment key caching or through cache update, which will

be discussed later.

6

Source (S) Destination (Q) TTL

Source (S) Destination (Q)

KREQ Message Format

KREP Message Format

{PUQ}PRi

List of Routers (R)

List of Routers (R)

Figure II.1: Message format of the KREQ and the KREP packets.

We first define two control messages that will be sent between nodes for public keys.

These messages are called Key REQuest (KREQ) message and Key REPly (KREP) mes-

sage. The KREQ message will be transmitted from the node requesting the public key of

another node. The format of KREQ message is shown in Fig. II.1. In this figure, Source

and Destination represent the node requesting the public key and the node’s identifier

whose public key is being requested; the list of routers (R) represents the nodes who have

been passing along the request.

The format of KREP message is similar (see Fig. II.1). The KREP message contains

the public key of the destination and this key is signed by the current router’s private key.

We explain the operational details of the KREQ and the KREP messages with an

example. Suppose node S needs to obtain node Q’s public key. It sends a KREQ =

{S, Q, TTL,R = Φ} to itself. Every node receiving a KREQ message should check

whether it has cached Q’s public key. If it does, it will sign the public key of Q with

its own private key, store the result onto a KREP message, and return to the previous

sender. Otherwise, it will attach its own ID to the list of routers, R, and forwards it to

each of the neighbors whose public keys are cached on its memory. The processing of

KREP message is simple: a node receiving a KREP message should first authenticate the

message, using the public key of the last sender. Then Q’s public key will be signed by

this node’s private key and sent to the previous node according to R.

There is a parameter ǫ, which controls whether a node caching Q’s public key should

7

still forward the KREQ message. When ǫ = 1, our scheme operates with extensive search.

All nodes will forward the KREQ message. When ǫ = 0, our scheme operates with simple

search: only those nodes without Q’s public key in their cache will forward the KREQ

message.

The details of the above operations are presented in Algorithm 1. Nodes receiving

KREP messages should proceed according to Algorithm 2.

Algorithm 1 Algorithm to Process KREQ Message

1: Node i receives a KREQ message={S, Q, TTL,R}
2: d← last node ID in R
3: R ← {R; i}
4: if Q ∈ Ci then

5: Prepare KREP message as {S, Q, {PUQ}PRi
,R}

6: Node i sends KREP to node d
7: if ǫ = 0 then

8: exit
9: end if

10: end if

11: TTL← TTL− 1
12: if TTL > 0 then

13: Prepare KREQ message as {S, Q, TTL,R}
14: for each j ∈ Ci ∩ Ni do

15: Node i sends KREQ message to node j
16: end for

17: end if

Algorithm 2 Algorithm to Process KREP Message

1: Node i receives a KREP message={S, Q, cm,R}
2: if i ≡ S then

3: d← first node ID in R
4: Node i computes PUQ = {cm}PUd

, where d ∈ Ci
5: else

6: s← next node ID in R after i
7: d← previous node ID in R ahead of i
8: m← {cm}PUs

9: Prepare KREP message as {S, Q, {m}PRi
,R}

10: Node i sends KREP message to node d
11: end if

8

II.2 Cache Update

Each node can update its cache when it receives or overhears a public key for another

node through secured exchanges (such as the KREP message). We categorize the public

keys that are cached on each node into two groups: local and remote, which represent

the public keys of the local nodes that are direct neighbors of the node itself and remote

nodes, respectively.

We assume that each node will be preloaded with the public keys of m randomly

chosen nodes in the network. Therefore, the ratio of local/remote public keys may not be

the specified value γ. As more and more KREQ/KREP exchanges take place, nodes can

perform a cache update procedure as follows:

If the current local/remote public key ratio in cache is lower than γ and the public key

of a local node is received, the public key will be used to replace one of the remote public

keys. Similarly, if the current local/remote public key ratio in cache is higher than γ and

the public key of a remote node is received, the public key will be used to replace one of

the local public keys.1 Different methods can be used to choose the key to be replaced,

such as last-in-first-out, first-in-first-out, and most rarely used. In this work, we choose a

random selection method among the keys in the same category.

Algorithm 3 Algorithm to Update Cache

1: Node i receives/overhears the public key of node j, PUj

2: if j ∈/ Ci then

3: γcur ← |Ci ∪ Ni|/m
4: if γcur < γ and j ∈ Ni then

5: Update cache by replacing a randomly selected key that belongs to remote
nodes with PUj

6: end if

7: if γcur > γ and j ∈/ Ni then

8: Update cache by replacing a randomly selected key that belongs to local nodes
with PUj

9: end if

10: end if

1Care needs to be taken to avoid an oscillation effect, in which the key cache is frequently updated
with the local/remote ratio fluctuating slightly above and below γ. We leave this to our future work.

9

This cache update algorithm is described in detail in Algorithm 3. We will investigate

the effect of such cache updates in Chapter IV.

10

CHAPTER III

PERFORMANCE EVALUATION

Our simulations were performed in Matlab. We believe that the use of other simulators,

such as ns2 or OPNET, are unnecessary because we are focusing on high-level public key

caching and cache update process in our evaluation. Unless specified otherwise, these

are the simulation setups: N = 200 nodes are randomly distributed in a network of size

1000 meters by 1000 meters. The radio transmission range is assumed to be 150 meters.

Initially each node carries the public keys of a random set (size m) of the nodes in the

network. Then we randomly select some source/destination pairs throughout the network.

In each of the source/destination pairs, the source needs to request for the public key of

the destination.

In our performance evaluation, we first focused on finding the number of public key

copies (K) for the destination node that are available for the source within a limited

number of hops. Another performance metric of our investigation was the optimum

local/remote key ratio, γ∗. We also studied the minimum number of hops (h) of reaching

the first public key copy for the destination node.

III.1 Available Copies

We investigate the availability of the public keys in this section. In this study, we assume

that every node has a γ mix of local/remote nodes’ public keys. Therefore, we focus on

the stable states of the node caches and we assume that key caches have been assigned

according to the local/remote ratio, γ. We run simulation for investigating the num-

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

Local/remote key caching ratio, γ

N
um

be
r

of
 p

ub
lic

 k
ey

 c
op

ie
s

fo
un

d,
 K

TTL=2, ε=1
TTL=3, ε=1
TTL=2, ε=0
TTL=3, ε=0

Figure III.1: Comparison of extensive search and simple search when TTL = 2 and
TTL = 3 (m = 40).

ber of available required key copies with different parameter setting combinations. The

parameters we use are m, TTL and ǫ.

In Fig. III.1, we compare the public key availability of extensive search (ǫ = 1) and

simple search (ǫ = 0) with different TTL values. Naturally, the extensive search returned

a larger K because the KREQ message in extensive search can reach more nodes than

the simple search. The results in Fig. III.1 confirmed such an expectation. Furthermore,

as TTL increases, the value of K increases because the source nodes query larger regions.

Another interesting observation from Fig. III.1 is the convex shape of the curves: as γ

increases from 0 to 1, K increases with γ at the beginning and eventually decreases as γ

increases closer to 1. This can be explained as follows: when γ is close to 0, each node uses

its memory to cache mostly the public keys of remote nodes. The secure connectivity in

the source node’s neighborhood is limited (thus leading to small K), but increasing with

γ. On the other hand, when γ is closer to 1, each node uses its memory to cache mostly

the public keys of local nodes. The secure connectivity in the source node’s neighborhood

is good but these nodes are unlikely to have cached the public key of the destination node.

Therefore, lowering γ in this region should increase K. Overall, there is an optimum value

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Local/remote key caching ratio, γ

N
um

be
r

of
 p

ub
lic

 k
ey

 c
op

ie
s

fo
un

d,
 K

m=20
m=30
m=40
m=50

Figure III.2: Comparison of different memory size m (TTL = 2, ǫ = 1).

for γ, which will be investigated in Fig. III.4.

Fig. III.2 shows the simulation results with different m when TTL = 2 and ǫ = 1. As

we can see from the figure, K increases with m. This can be explained by the increased

number of public keys cached on each node, increasing the chance of finding the public

key of the destination. An interesting observation is the K values at γ = 0 and γ = 1 for

different memory sizes. They remain approximately the same for different m. The reason

is that, when every node is caching only the public keys of local (remote) nodes only, the

availability of the key largely depends on whether the destination node is a local node.

As we can see in Fig. III.2, here are also maximum pionts for each curve, which means

that the corresponding optimum ratios ensure the highest key availability. It can be

noticed that the the optimum ratios are abviously different. The larger m is, the smaller

the optimum ratio is. The memory size m is an important factor that will decide what

the optimum ratio is for a network. We will explain this when investigating the optimum

values of γ in Fig. III.4.

Fig. III.3 presents the simulation results for TTL from 0 to 3. Similar to Fig. III.1,

K increases with TTL. The results for TTL = 0 were presented for comparison purposes

only; the source node should at least send the KREQ message to its 1-hop neighborhood.

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Local/remote key caching ratio, γ

N
um

be
r

of
 p

ub
lic

 k
ey

 c
op

ie
s

fo
un

d,
 K

TTL=0
TTL=1
TTL=2
TTL=3

Figure III.3: Comparison of different TTL value TTL (m = 40, ǫ = 1).

When TTL = 0, it means that the source node will only search the required public key

in its own memory. There is only one chance for the source node to obtain the key. Thus

the local/remote caching ratio will not affect K much if TTL = 0.

As we have seen in the above figures, there are always maximum points on the curves.

This means that the local/remote ratio should be optimized to maximize the availability

of the public keys for the destination node. Such an optimum ratio, γ∗, is investigated in

Fig. III.4.

In Fig. III.4, we present the optimum ratios when we set different numbers for N . For

each N , the optimum ratio becomes smaller as the memory size m increases. With the help

from this figure, the optimum local/remote caching ratio can be set for a specific network.

For example, for a network with N = 200 and m = 50, the optimum local/remote caching

ratio γ∗ should be set to 0.27. Similarly, the optimum ratios are presented in Fig. III.4.

Also can be observed in Fig. III.4 and Fig. III.5, the value of γ∗ decreases almost

linearly with the increase of m. We conjecture that mγ∗ should be a constant for a

network of N nodes. For instance, when N = 200, mγ∗ is about 12-13. The product

of mγ∗ for a network of N = 400 is 20-22. These numbers are certainly related to the

density of the network, i.e., network region size and wireless transmission range. We leave

14

20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Key caching memory, m

O
pt

im
um

 r
at

io
, γ

*

N=200
N=300
N=400

Figure III.4: The optimum ratio γ∗ with different N (TTL = 2, ǫ = 1).

20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Key caching memory, m

O
pt

im
um

 r
at

io
, γ

*

N=200
N=300
N=400

Figure III.5: The optimum ratio γ∗ with different N (TTL = 3, ǫ = 1).

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Local/remote key caching ratio, γ

M
in

im
um

 h
op

s
fr

om
 th

e
so

ur
ce

 to
 th

e
fir

st
 a

va
ila

bl
e

co
py

, h

m=20
m=30
m=40
m=50

Figure III.6: The minimum number of hops h to find the first public key copy with
different memory size m (TTL = 2, ǫ = 1).

further investigation as our future work.

III.2 Minimum Hop

From the above simulation results, we know that the local/remote key cahing ratio γ

affect the key availability within a certain number of hops. Moreover, an optimum ratio

exists for a specific network setting. Will γ work for resulting in different number of hops

to find the first copy of required public key? In this section, the minimum number of

hops for finding the first key copy is investigated. In this simulation, we also focus on the

stable states of the node caches, assuming that key caches have been assigned according

to the local/remote ratio, γ.

Fig. III.6 shows the how minimum number of hops changes with the increasing of the

key caching ratio γ. We can see that the average minimum hop count values shown in

different curves are around 1. This is a good news since it means that the first copy can

always be found within 1 hop, which is close to the source. There is no nice curve to show

that some optimum ratio can minimize the hop count. This is because all values in the

results are so close to each other that no big different can be shown.

16

III.3 Dynamic Systems

The previous observations tell us that there is an optimum ratio for ensuring the highest

key availability. How can we apply this optimum ratio to a simple network with corre-

sponding setting so that the key availability can be improved? In the further observation,

we run the simulation as the algorithm in section II.2.

In this section, we investigate the changes of K as a randomly loaded network of

nodes dynamically updating their key caches. According to the simulation result shown

in Fig. III.4, we chose γ∗ = 0.27 for a network with N = 200, m = 50, TTL = 2, and

ǫ = 1.

From the curves in Fig. III.7, we can see a clear upward trend of K as time goes on

with more and more KREQ/KREP being exchanged. The cache updates improved the

availability of required public key copies. After a certain number of cache updates, the

value of K stabilizes. The TTL value had a huge effect on the rate of increase for K. As

shown in Fig. III.7, a larger TTL allows K to reach stable (highest) value faster. This is

because, with larger TTL, more nodes have the chance to update their public key caches

in each KREQ/KREP message exchange. Thus, the local/remote caching ratios of the

nodes in the network approached the designed optimum ratio, γ∗, much faster.

17

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

2

4

6

8

10

12

Time

N
um

be
r

of
 p

ub
lic

 k
ey

 c
op

ie
s

fo
un

d,
 K

TTL=1
TTL=2
TTL=3

Figure III.7: Cache updates improved the availability of public key copies, K, (N = 200,
m = 50, ǫ = 1).

18

CHAPTER IV

CONCLUSION

Asymmetric cryptography requires the knowledge of the public key from the other party.

These public keys are usually certified by a CA in many network systems. In large wireless

networks, such CAs may not exist. In this work, we have proposed to use the nodes to

serve as the peer CAs. A node requesting the public key of another node may obtain

multiple copies from chain of trust. In order to achieve this goal, we have designed a

scheme to allow nodes using their limited memory space to cache some of the public keys

that they have securely obtained. We have also designed a public key search technique

through secure multi-hop paths.

In the investigation of our scheme, we have observed that there exists an optimum

caching ratio for the public keys of local nodes and remote nodes. On the one hand,

if a node uses all its memory to cache the public keys of local nodes, the hop count

of finding enough copies of the public key for a remote node is significantly large. On

the other hand, if a node uses all its memory to cache the public keys of remote nodes,

a key request may have to travel multiple hops before finding a public key copy. An

optimum ratio of the public keys of local nodes and remote nodes should balance these

two requirements, allowing the key request to find enough copies within a reasonably

small hop count.

In our future work, we will implement our designed schemes under more realistic

network environments. In our work, the nodes are evenly distributed in the network.

However, a real network has more complicated topologies with the node joining and

19

leaving. For example, within a non-uniform network, there are usually several clusters

with diffrent dense of the nodes. In this kind of network, it is uncertain that whether we

can find a optimum local/remote key caching ratio for each node. Diffrent local/remote

caching ratios may be assigned to the nodes in different clusters. Also, we will compare

its computation and security performance with other state-of-the-art techniques. With

the existence of malicious nodes in the network, public key copies may not agree with

each other. Trust levels can be maintained and used to select among these copies.

20

REFERENCES

[1] A. Abdul-Rahman and S. Hailes. A distributed trust model. In Proc. of the 1997
Workshop on New Security Paradigms. ACM, 1997.

[2] L. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: A survey. Computer Networks, 38:393–422, March 2002.

[3] M. Al-Shurman, S. Yoo, and S. Park. Black hole attack in mobile ad hoc networks.
In ACM-SE 42: Proceedings of the 42nd annual Southeast regional conference, pages
96–97, New York, NY, USA, 2004. ACM.

[4] S. Capkun, L. Buttyan, and J. Hubaux. Self-organized public-key management for
mobile ad hoc networks. IEEE Transactions on Mobile Computing, 2:52–64, 2002.

[5] Y. Hu, A. Perrig, and D. B. Johnson. Wormhole attacks in wireless networks. IEEE
Journal on Selected Areas in Communications, 24:370–380, 2006.

[6] Y. W. Law, R. Corin, S. Etalle, R. Etalle, and P. H. Hartel. A formally verified
decentralized key management architecture for wireless sensor networks. In Per-
sonal Wireless Communications (PWC 2003), Sep 2003. Lecture Notes of Computer
Science, pages 27–39. Springer-Verlag, 2003.

[7] D. Liu and P. Ning. Security for Wireless Sensor Networks. Advance in Information
Security. Springer, 2007.

[8] A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of applied cryptography.
CRC Press, 1996.

[9] J. Van Der Merwe, D. Dawoud, and S. McDonald. A survey on peer-to-peer key
management for mobile ad hoc networks. ACM Comput. Surv., 39(1):1, 2007.

[10] M. Omar, Y. Challal, and A. Bouabdallah. Reliable and fully distributed trust model
for mobile ad hoc networks. Computers and Security, 28, May/June 2009.

[11] Y. Pan and Y. Xiao, editors. Ad Hoc and Sensor Networks, volume 2 of Wireless
Networks and Mobile Computing. Nova Science Publishers, 2006.

[12] W. Stallings. The PGP web of trust. Byte, 2:161–162, February 1995.

[13] B. Wu, J. Wu, and E. B. Fern. Secure and efficient key management in mobile ad hoc
networks. In Proc. of 19th IEEE International Parallel and Distributed Processing
Symposium. IEEE Computer Society, 2005.

[14] S. Yi and R. Kravets. Key management for heterogeneous ad hoc wireless networks.
In 10th IEEE International Conference on Network Protocols(ICNP’02), 2002.

[15] S. Yi and R. Kravets. Moca : Mobile certificate authority for wireless ad hoc networks.
In 2nd Annual PKI Research Workshop Program (PKI 03), 2003.

21

[16] S. Yi and R. Kravets. Composite key management for ad hoc networks. In Proc. of the
1st Annual International Conference on Mobile and Ubiquitous Systems: Networking
and Services (MobiQuitous 2004), pages 52–61, 2004.

[17] L. Zhou and Z. J. Haas. Securing ad hoc networks. IEEE Network Magazine, 13(6),
November/December 1999.

22

APPENDIX A

SIMULATION CODE

A.1 Simulation Setup

A.1.1 Network

forwarding = 1;

TTL = 2; % set the value of TTL

N = 200; % number of nodes

R = 150; % tansmition range

X = 1000 ∗ rand(1, N); % randomly distribute the 200 nodes

Y = 1000 ∗ rand(1, N);

%−−−−−−−− the neighbor matrix −−−−−−−−−

NB = zeros(N);

fori = 1 : N

forj = 1 : N

NB(i, j) = ((X(j)−X(i))2 + (Y (j)− Y (i))2) <= R2;

end

NB(i, i) = 0;

end

23

A.1.2 Key Distribution

key = zeros(N, m);

fori = 1 : N

nc = find(NB(i, :) == 1); % find the neighbors for node i

dc = find(NB(i, :) == 0); % find the distant nodes for node i

if(length(nc) <= m1) % assign the neighbor keys

key(i, 1 : length(nc)) = nc;

else

index nc = randperm(length(nc));

nc ind = index nc(1 : m1);

key(i, 1 : m1) = nc(nc ind);

end

if(length(dc) <= m2) % assign the distant keys

key(i, m1 + 1 : m) = dc;

else

index dc = randperm(length(dc));

dc ind = index dc(1 : m2);

key(i, m1 + 1 : m) = dc(dc ind);

end

end

%–convert the key matrix to a N*N matrix

N key = zeros(N);

fori1 = 1 : N

nz key = nonzeros(key(i1, :));

N key(i1, nz key) = 1;

end

%−− Calculate the trust connection matrix NB.N key

24

TC = zeros(N);

TC = NB.∗N key;

A.2 Available Copies

fori4 = 0 : TTL

next n = [];

hits sub = 0;

forcur n = cur nodes

% does cur n carry public key of dn?

if N key (cur n, dn) == 1

hits sub = hits sub + 1;

end

% if forwarding or cur n doesn’t carry the public key % of dn

if((N key (cur n, dn) == 0) |(forwarding))

cur nbs = find(TC(cur n, :). ∗ (visited == 0));

next n = [next n, cur nbs];

end

end %for cur n = cur nodes

hits(i4 + 1) = hits(i4 + 1) + hits sub;

cur nodes = unique(next n);

visited(cur nodes) = 1; % mark the nodes in R

end %for i4

25

