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 Currently, U.S. state and federal mandates are attempting to lower fossil fuel 

consumption to reduce dependency on foreign oils and lower greenhouse gas emissions. 

Intercropping switchgrass (Panicum virgatum L.) in southern pine forest is a potential way to 

grow and harvest a biofuel feedstock without encumbering additional arable land. Rodents are 

important components of forest ecosystems, and intercropping switchgrass changes the 

understory vegetation composition and structure, which could influence rodent community 

structure and population demographics. To examine the sustainability of an intercropping 

management system, I examined whether intercropping switchgrass in intensively managed 

loblolly pine (Pinus taeda) plantations affected rodent community structure and population 

demographics in a large-scale, landscape experiment. Thus, I conducted seven intensive live-

trapping sessions June-August 2012 on three intensively managed pine stands (control) and three 

intensively managed pine stands intercropped with switchgrass. Peromyscus spp. and Sigmodon 

hispidus were the most common species trapped on both treatment types.  Intercropped stands 

had lower rodent community evenness (t = 2.79, df = 4, P = 0.02) and diversity (t = 2.64, df = 4, 

P = 0.03) than control stands. Sigmodon hispidus abundance was significantly higher (F1, 4 = 

16.20, P = 0.02) in intercropped stands and contributed to over 86% of dissimilarity between 

treatments while no other species were influenced. However, there was no treatment effect on 

survival and recruitment. My findings indicate that intercropping switchgrass in managed pine 

plantations may have altered rodent community diversity by altering evenness and increasing 

abundance of S. hispidus, but not other species in the rodent community. Because S. hispidus is a 

native rodent which is commonly the most abundant rodent in southeastern pine forests, a 



 
 

switchgrass intercropping system to produce biofuel feedstock might be a sustainable option for 

planting switchgrass. 
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CHAPTER I 

INTRODUCTION 

A biofuel is a type of fuel whose energy is derived from biomass (i.e. renewable 

organic material) [1,2]. Although burning biofuels releases carbon dioxide like fossil 

fuels, biofuels production uses carbon dioxide and may be a carbon sink [1,2]. United 

States federal and state mandates require lowering use of fossil fuels to reduce 

dependency on foreign oils and lower greenhouse gas emissions [3]. Abundant land is 

required to produce biofuel feedstocks at the scale necessary to meet these mandates 

[2,3]. First generation biofuels are produced from feedstocks that include row crops, such 

as corn (Zea mays) or sugarcane (Saccharum spp.), which require high energy input for 

production [2]. Second generation feedstocks (e.g., agriculture and forestry residues, 

grasses, and woody material) are potentially a more sustainable biofuel option [2].  When 

conversion of arable or undisturbed lands, alteration of biodiversity, and reduction of 

carbon sequestration through deforestation occurs, the sustainability of biofuels 

production is debatable [1,4–6].  

Intercropping of biofuel feedstock crops in managed forests is a potential way to 

reduce use of fossil fuels and produce carbon neutral, cellulosic energy sources without 

converting land from another use [7,8]. Switchgrass (Panicum virgatum) has long been 

considered a promising biofuel feedstock, because it is native to most of eastern North 

America, grows in a wide variety of ecosystems, has an extensive root system that 
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stabilizes soil, and may provide carbon storage [2,9–12]. Changing land use from row 

crops (e.g., corn) to perennial grasses (e.g., switchgrass) has been shown to provide 

habitat for native grassland bird species [1,5]. Further, switchgrass can be intercropped in 

pine plantations, which removes the “fuel versus food” debate that has hampered other 

potential feedstocks, such as corn [2,6,13].  

To evaluate ecological sustainability of intercropping switchgrass in pine 

plantations, it is important to understand how incorporating switchgrass influences 

biodiversity including rodents. Given their roles in the ecosystem and responsiveness to 

habitat alterations, rodents are often used as model organisms for evaluating impacts of 

habitat modification on biodiversity [14–16]. At the same time, rodents can increase 

habitat heterogeneity and overall biodiversity by altering plant community composition 

and structure through soil disturbance, nutrient input, and foraging [17]. Therefore, 

habitat structure can influence rodent community structure, and rodent community 

structure can influence habitat structure [14–17]. Further, by consuming both plants and 

animals and being prey for higher order consumers, rodents are a critical energy link 

between producers and higher trophic level consumers in terrestrial food webs [18,19].  

Habitat alterations that occur in managed forests, including both spatial (e.g., 

variation in management regimes across landscapes) and temporal (e.g., seasonal and 

successional changes), can influence wildlife community structure. Bowman et al. [20] 

determined that within stand vegetation structure explains the majority of differences in 

small mammal communities compared to landscape level variables. Variation in small 
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mammal population sizes is attributed mainly to difference in vegetation characteristics, 

but spatial variation of local processes for small mammals, such as dispersal, 

competition, and predation, can also influence community structure [20,21]. Rodent 

community structure (e.g., richness and diversity) is influenced by spatial changes in 

plant abundance and diversity through management options, such as retention of coarse 

woody debris, corridors, and streamside management zones [14,22–25].  Within forests, 

structural diversity provided by snags, downed logs and stumps (coarse woody debris), as 

well as understory and canopy development and composition, is particularly important 

for small mammals [15,24,26,27]. Different habitat elements provide options for 

thermoregulation, protection from predators, travel routes, and foraging and nesting 

habitat for various species [15,24,26,27].  

Rodent communities also respond to temporal changes in forest structure, such as 

those associated with forest succession in managed pine stands or seasonal changes in 

vegetation [28,29]. For example, the rodent community might be dominated by 

omnivores (e.g., Peromyscus leucopus) in one-year-old pine plantations that consist 

primarily of annual plants, but herbivore rodent (e.g., Sigmodon hispidus) presence might 

increase in response to perennial grass appearance by the third year post-planting [28].  

When canopy closure occurs in pine plantations in the seventh year, total rodent 

abundance decreases despite the increased occurrence of woodland species (e.g., 

Neotoma floridana) [28]. Managed forests with stands of different management regimes 

and successional stages provide habitat for various types of rodent communities.  
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Intercropping switchgrass in managed pine plantations converts a portion of the 

woody and herbaceous understory to one dominated by grass, which may alter rodent 

biodiversity [13,30]. In 2009, Marshall et al. [31] initiated a study in North Carolina to 

examine rodent community and population responses to switchgrass intercropping in a 

managed loblolly pine (Pinus taeda) plantation in the first two years after planting both 

pines and switchgrass. There was a shift in dominant species from the white-footed 

mouse (P. leucopus) to the hispid cotton rat (S. hispidus) between years 1 and 2 after 

treatment installation and when switchgrass became fully established [31]. However, in 

addition to changes associated with natural succession, there was a positive effect of 

switchgrass treatments on invasive, non-native house mouse (Mus musculus) abundance 

and a negative effect on abundance of native P. leucopus [31]. In the first year of the 

study, a significant increase in non-native house mouse (M. musculus) abundance 

coincided with the harvest of adjacent agriculture fields, suggesting these agriculture 

fields were the source for the immigration event [31]. 

Croplands support abundant populations of M. musculus due to few or no 

competitors and a large food supply, and individual mice migrate as resources change 

[32–34]. Mus musculus are omnivorous, and predate on invertebrates, seeds, and bird 

eggs, which can cause both direct and indirect changes in species distributions and 

densities [35–38]. The association of established switchgrass and M. musculus raises 

questions about the sustainability of biodiversity in a switchgrass intercropping 

management system [31]. However, the high abundance of M. musculus in switchgrass 

treatment plots from Marshall et al. [31] may be an artifact of 1) the site’s position within 
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a mixed forest/agriculture landscape where adjacent agriculture fields provided likely 

source populations of M. musculus and/or 2) the small scale of the study site, which 

allowed rodents to travel among treatment plots [18,31].  

The objective of my study was to determine whether intercropping switchgrass in 

intensively managed loblolly pine plantations affected rodent community structure and 

population demographics when investigated at a large, landscape scale. I also examined 

whether abundance of M. musculus was influenced by switchgrass when surveyed at a 

scale relevant to both wildlife and forest managers and in the absence of a potential local 

agricultural source population. I hypothesized that the changes in forest understory 

vegetation associated with intercropping switchgrass in intensively managed pine 

plantations would influence rodent population demographics and community structure. 

When switchgrass is intercropped in pine forests, the vegetation between pine rows is 

replaced with one type of plant, switchgrass, which reduces habitat complexity.  

Sigmodon hispidus is a common grass-associated species in southeastern pine forests, 

therefore, I predicted that S. hispidus population abundance would increase with the 

presence of a grass-dominated understory in the intercropped stands [39]. As I predicted 

the increased abundance of only one rodent species and no effect on other species 

present, I also predicted a decrease in evenness and diversity in switchgrass intercropped 

treatments. I also predicted that M. musculus populations would not be influenced by the 

presence of switchgrass due to a lack of an agricultural source of M. musculus, because 

my research stands were isolated within a landscape-matrix dominated by intensively 

managed pine forest. 



6 

 

CHAPTER II 

METHODS 

Study Area and Experimental Design 

To assess the sustainability of a switchgrass intercropping management system, 

Catchlight Energy LLC established the Kemper County, MS study site (32°52’N, 

88°33’W) on land owned and maintained by Weyerhaeuser Company. Research stands 

were surrounded by a 25,000-ha landscape composed mostly (70%) of intensively 

managed pine (Pinus spp.) stands in different successional stages, mature pine-hardwood 

(17%), hardwood (10%), and non-forested areas (3%) [40]. The study area was 

intersected by unpaved access roads or fire lanes running along the forest edges, 

streamside management zones, and other set asides where appropriate (Figure 1).  

Intensively managed loblolly pine (Pinus taeda) stands planted in 2005 were used 

as control stands. For the intercropped stands, Alamo switchgrass (Panicum virgatum L.) 

was planted in 2009 with a seed drill in alleys between pine beds in existing intensively 

managed pine stands that were also planted in 2005. Standard mechanical site preparation 

by Weyerhaeuser includes V-shearing of stumps and roots and sub-soiling to establish 

pine beds.  Loblolly pine saplings were planted approximately 1.5 meters apart on raised 

beds that are spaced 6.1 meters apart, at a density of 450 trees/acre [40]. Harvest residuals 

(i.e. tops, limbs, and unmerchantable hardwoods) from the preceding clearcut harvest 

were left on site. For site preparation in intercropped stands, more extensive woody
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 debris and stump removal by additional V-blade passes were used to facilitate planting 

and germination of switchgrass. Fertilizer and herbicide were applied as needed. Pine 

trees in both intercropped and pine control stands typically are harvested at 27-35 years 

old, and switchgrass in the intercropped stands has been mowed and baled annually. Area 

of both intercropped and control stands ranged from 20.4 ha to 77.4 ha (mean = 41.0 ha, 

SE = 6.95 ha) (Figure 1). Distance between stands ranged from 1.3 km to 9.9 km (mean = 

5.2 km, SE = 0.52 km) (Figure 1).  

 Rodent Live-Trapping 

 I live-trapped rodents July-October in 2011 and June-August in 2012. The first 

year of the study was considered preliminary to assess which rodent species were present. 

I live-trapped rodents using standard capture-mark-recapture methods as follows. 

Trapping grids consisted of 49 traps arranged 20 m apart in parallel lines to form a 7 ×7 

grid.  I placed the 14,400 m
2
 (120 m × 120 m) trapping grid in an accessible location and  

> 20 m from the stand edge to avoid edge effects [41]. Each trap line contained six 

folding and/or non-folding 23-centimeter Sherman traps (H.B. Sherman Traps Inc., 167 

Tallahassee, Florida, USA) and one randomly placed non-folding 18-centimeter Sherman 

trap or Longworth trap (Rogers Manufacturing Co., Peachland, British Columbia, 

Canada). I used small Sherman traps or Longworth traps to avoid trap bias towards larger 

rodents [42]. I obtained a collection permit from Mississippi Department of Wildlife, 

Fisheries, and Parks (# 0503127). I followed the American Society of Mammalogists 

guidelines for use of wild mammals [43] and was authorized by UNCG IACUC 11-03.  
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I baited each trap with rolled oats or a higher protein mixture of rolled oats and 

sunflower seeds on nights where the minimum temperature was ≤ 40˚F. I applied 

insecticide granules of pyrethrum (Talstar PL) around traps in areas with high fire ant 

activity. Use of pyrethroid insecticides for small mammal trapping deters imported fire 

ant activity without affecting capture and recapture success at that trap site [44,45]. I 

opened traps between 1700 and 2000 and then checked the following morning between 

0500 and 1100. One period of trapping was three consecutive (when possible) nights of 

trapping. When first captured, I marked each rodent with a uniquely numbered ear-tag 

(Monel Numeric size 1005-1; National Band and Tag Co, Newport, Kentucky, USA).  I 

recorded date, trap location, tag number, species, sex, age-class, mass, and reproductive 

state for each individual captured. I grouped white-footed mice (P. leucopus) and cotton 

mice (P. gossypinus) as Peromyscus spp. due to similarities in field identification 

characteristics and hybridization among these species [46,47]. I determined age class 

using a combination of body mass, fur characteristics, and reproductive state [48]. 

Individual S. hispidus were considered adults if they weighed > 80g [49]. I released 

captured shrews without being measured or marked. 

Data Analyses 

I measured rodent community using individual-based rarefaction curves, Smith 

and Wilson Evenness A Index (Evar), and Simpson’s Diversity Index [50,51]. An 

individual-based rarefaction was used to compute the number of individuals for each 

sampling level to compare species richness between control and intercropped stands [52]. 

Community diversity can be split into two components: species richness (the number of 
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species captured in a grid) and species evenness [50,51]. Evar was used, because it is an 

evenness index where richness is independent of evenness [50,51]. The Simpson’s 

Diversity Index measures dominance by identifying the likelihood that two chosen 

individuals will be the same species [50].  

I examined S. hispidus population demographics by estimating population 

abundance, recruitment, and survival, because this was the only rodent species I had 

sufficient data for using Program MARK [53]. Population abundance during each 

trapping period and survival probability (deaths and emigration) of adults between 

trapping periods was estimated using Pollock’s robust design models, with Huggins 

closed capture estimator [31]. Recruitment (births and immigration) was calculated using 

a robust design Pradel survival and recruitment model, with Huggins closed captures 

estimator [31,54]. Huggins closed capture estimator is a robust estimator for small sample 

sizes [31,55]. Robust models use > 1 capture occasion between survival intervals to 

produce estimates. I chose the best fit model parameters based on AICc values [53]. 

Abundance and survival model parameters included encounter probability, initial capture 

and recapture (p and c), with time effects, group effects, time*group effects, and/or null 

effects and the probability of emigration from and staying away from the study site (γ’’ 

and γ’). Recruitment model parameters included apparent survival (f) and recruitment (Φ) 

probability with time and/or null effects, and I chose the appropriate parameters for 

encounter probabilities (p and c) based on the parameters for the best fit model in the 

adult abundance models [53].  
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 I used nonmetric multidimensional scaling (NMDS), with 50 random starts, to 

analyze similarity of rodent assemblages between treatments [56]. A scree plot was used 

to identify the appropriate number of dimensions, and final stress was used to show 

goodness-of-fit, with large values (> 0.20) indicating difficulty showing relationships 

among sites in the appropriate dimensions [56–60]. Bray-Curtis dissimilarity matrices 

were used to accommodate the large amount of zeros present in the dataset [61]. I used a 

two-way analysis of similarity (ANOSIM) to identify significant differences between 

treatments. Lastly, a similarity percentage (SIMPER) procedure identified the level each 

rodent species contributed to dissimilarity between treatments.  

I calculated dependent variables for each trapping grid (~ 14,400 m
2
) over the 

entire season or for each trapping period, depending on the analysis procedure. I 

presented all data as untransformed (mean ± 1 standard error). Because I predicted a 

direction of effects, I report one-sided P-values. I determined whether my data were 

normally distributed using Shapiro-Wilks’ test, and homogeneity of variances was 

determined using Levene’s test. Where my data violated parametric assumptions, I either 

log or rank transformed the data. Dependent variables for my community level analysis 

included Simpson’s Diversity Index and Smith and Wilson Evenness A Index. I used 

separate Two Sample t-tests, with log transformed data when necessary, to compare each 

dependant variable between intercropped and pine control stands. Dependent variables 

for my population level analysis included population abundance, recruitment, and 

survival. For population level analyses that included abundance and survival, I calculated 

one value for each trapping period, and a repeated measures analysis of variance 
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(ANOVA) with rank transformed data was used to compare abundance and survival 

estimates between intercropped and control stands [62]. The independent variable in each 

test was the treatment type, and trapping period was included as the repeated measure. 

For recruitment, one value was calculated for the season. Therefore, I used a Two Sample 

t-test to compare recruitment between control and intercropped stands.  

The repeated measure ANOVA was conducted in SAS 9.3 [63]. Two Sample t-

tests, rarefaction analyses, and NMDS analyses were conducted using R 3.0.1 for 

Windows [64]. NMDS analyses were verified using Paleontological Statistics Software 

Package for Education and Data Analysis (PAST) software [65,66]. 
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CHAPTER III 

RESULTS 

In 2011, I trapped 179 individuals (501 initial captures and recaptures) on 3 

intercropped stands from July to October across 3,087 trap nights.  Total unique 

individuals included 168 Sigmodon hispidus, 8 Peromyscus spp., 1 Neotoma floridana, 1 

Ochrotomys nuttalli and 1 Reithrodontomys humulis. Incidental captures (initial capture 

and recaptures) included 31 Cryptotis parva. Trapping results in 2011 were used as 

preliminary data to assess which rodent species were present on intercropped stands. No 

formal analyses or comparisons were made.  

In 2012, I trapped 374 unique individuals (902 initial captures and recaptures) on 

8 stands (n = 4 intercropped and n = 4 control) from June to August across 8,232 trap 

nights. Total unique individuals included 331 Sigmodon hispidus, 32 Peromyscus spp., 7 

Oryzomys palustris, 3 Reithrodontomys humulis, and 1 Microtus pinetorum. Incidental 

captures (initial capture and recaptures) included 197 Cryptotis parva, 1 Sylvilagus 

floridanus, and 1 Tamias striatus. One control stand received different site preparation 

and one intercropped stand suffered intense raccoon disturbance and, therefore, these two 

stands were removed from all analyses. Excluding these two stands resulted in 333 

unique individuals (836 initial captures and recaptures) on 6 stands (n = 3 intercropped 

and n = 3 control) trapped across 6,174 trap nights. Total unique individuals on control 

stands included 73 Sigmodon hispidus, 21 Peromyscus spp., 3 Oryzomys palustris, and 2 
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Reithrodontomys humulis. Total unique individuals on intercropped stands included 227 

Sigmodon hispidus, 4 Peromyscus spp., and 3 Oryzomys palustris. Sigmodon hispidus 

made up 90% of all captured individuals while Peromyscus spp. made up 7.5% of all 

captured individuals. Capture numbers of O. palustris, Peromyscus spp., and R. humulis 

were too low to be analyzed using Program MARK.  

For community metrics, Simpson’s Diversity Index (W = 0.89, P = 0.32) was 

normally distributed whereas Smith and Wilson Evenness A Index was not normally 

distributed (W = 0.67, P = 0.003). Equal variances between groups were found for Smith 

and Wilson Evenness A Index (t = 1.16, P = 0.34) and Simpson’s Diversity Index (t = 

1.12, P = 0.35). Therefore, Smith and Wilson Evenness A Index was log-transformed 

giving it a normal distribution (W = 0.94, P = 0.64) with equal variance (t = 0.39, P = 

0.57). Parametric tests were used for both community metric comparisons. Smith and 

Wilson Evenness A Index (t = 2.79, df = 4, P = 0.02) and Simpson’s Diversity Index (t = 

2.64, df = 4, P = 0.03) were significantly lower in intercropped stands (Table 1). 

Rarefaction indicated lower species richness in intercropped stands (Figure 2). Using 

rarefaction curves, mean species richness between treatments was comparable at 103 

sampled individuals with 4 species on control stands and 2.73 species on intercropped 

stands (Figure 2). Both intercropped and control rarefaction curves appeared to have 

leveled off during sampling (Figure 2).  

 For analyzing rodent assemblage similarity between treatments, a two-

dimensional solution for the NMDS was determined to be appropriate based on the scree 
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plot and a minimum stress of 0.025. The NMDS plot showed possible clustering of the 3 

control stands on one axis and the 3 intercropped stands on the second axis (Figure 3). 

Analysis of similarity (ANOSIM) showed no difference between treatments (R = 0.81, P 

= 0.10). Overall dissimilarity (0 = same and 100 = maximum distance observed) between 

control and intercropped stands was 53.74 with S. hispidus contributing to over 86% of 

dissimilarity (Table 2). 

Sigmodon hispidus was the only species with enough captures to calculate 

abundance, survival, and recruitment estimates in Program MARK. Based on AICc 

values from Program MARK, {No Emigration M(t)} contained the best fit model 

parameters for estimating S. hispidus abundance and survival. For {No Emigration M(t)}, 

no movement of individuals was occurring between ‘observable’ and ‘unobservable’ 

states and initial capture and recapture probabilities changed with time (Table 3). For 

estimating S. hispidus recruitment, {p(t), ph(.), f(.)} contained the best fit model 

parameters where initial capture and recapture probabilities for both stand types changed 

with time and apparent survival and recruitment did not change over time (Table 4).  

Sigmodon hispidus abundance (W = 0.90, P = 0.002) and survival (W = 0.54, P < 

0.0001) were not normally distributed whereas recruitment (W = 0.87, P = 0.24) showed 

a normal distribution. Equal variance between groups was found for S. hispidus survival 

(t = 1.88, P = 0.18) and recruitment (t = 0.03, P = 0.87) whereas S. hispidus abundance (t 

= 5.86, P = 0.02) showed unequal variances. Therefore, abundance and survival were 

rank-transformed for all population metrics comparisons. Population abundance of S. 
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hispidus was influenced by treatment (F1, 4 = 16.20, P = 0.02), period (F6, 24 = 15.53, P < 

0.0001), and the treatment x period interaction (F6, 24 = 5.59, P = 0.001) (Figure 4). 

Population abundance of S. hispidus increased through the season. Finally, I did not 

detect an influence of treatment (t = -0.07, df = 4, P = 0.53) on S. hispidus population 

recruitment or an influence of treatment (F1,4 = 0.41, P = 0.56), period (F5,20 = 0.90, P = 

0.50), or treatment x period interaction (F5,20 = 0.56, P = 0.73) on survival (Table 5).
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CHAPTER IV 

DISCUSSION 

This study adds to the small body of literature on the impacts of intercropping 

switchgrass in managed pine forests on rodent populations and communities [31]. My 

findings indicate that intercropping switchgrass in managed pine plantations may have 

altered rodent community diversity and evenness by increasing abundance of S. hispidus 

but not other species. Marshall et al. [31] reported a positive association of invasive M. 

musculus with the presence of switchgrass. To the contrary, I did not capture M. 

musculus despite > 6,000 trap nights in an interior pine matrix. In another forest system, 

Robinson [67] compared small mammal community responses between row crop (i.e. 

soybeans, Glycine max) and an agroforest systems (i.e. cottonwood, Populus deltoids, 

and switchgrass) and found the agroforest systems maintained more complex vegetation 

structure through the year, which in turn supported a more abundant and diverse small 

mammal community. Although my study compared intensively managed forests with 

intercropped treatments, I also found that rodent community diversity changed with a 

switchgrass intercropping system. I found a decrease in rodent community diversity that 

was attributed to the decrease in evenness caused by increased S. hispidus abundance.  

My results supported my hypothesis that intercropping switchgrass in intensively 

managed pine plantations would influence rodent population demographics and 

community structure because of changes to forest understory vegetation [31,67]. Many 
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studies have demonstrated that rodent communities respond to changes in forest structure 

from different forest management regimes [14,22,23,31,67–70]. For example, in pine 

plantations 1-5 years post-establishment, total rodent abundance, excluding Peromyscus 

spp., responded to the changes in vegetation caused by the different intensities of site 

preparation [68]. Low-intensity site establishment practices (mechanical- or chemical-

only site preparation) contained denser vegetation than the high establishment intensity 

(mechanical and chemical site preparation with broadcast herbaceous control) and had 

greater abundances of N. floridana, R. fulvescens, and S. hispidus [68].  

My results suggest that the higher S. hispidus abundance in intercropped stands 

contributed to the majority of dissimilarity between treatments causing rodent community 

evenness to decrease in intercropped stands, which decreased community diversity. 

Intercropping switchgrass in managed pine forest changes the dominant understory 

structure from woody/herbaceous vegetation to grass vegetation [30], thus promoting the 

presence of S. hispidus, an herbivore that prefers grass [26]. Similarly, S. hispidus was 

the most abundant species in intercropped treatments by two years after switchgrass 

establishment in North Carolina  [31]. The difference in S. hispidus abundance and 

community structure between control and intercropped treatments suggests that the 

rodent community responded to the alterations to the understory vegetation and that 

intercropped stands provide resources that are capable of maintaining herbivore (e.g., S. 

hispidus) populations with higher abundances.  
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Although S. hispidus population abundance was significantly higher in 

intercropped stands than control stands, S. hispidus was still the dominant rodent species 

in both intercropped and control stands. Even though Peromyscus spp. was found in low 

numbers, it was the second most common rodent captured in both stand types. I could not 

distinguish P. leucopus and P. gossypinus during my study, but both species are 

omnivorous and considered microhabitat generalists [24,26,46,47,71,72]. Sigmodon 

hispidus is often a dominant rodent species in young to intermediate age pine plantations 

in southeastern United States [28,73]. In 2- to 4-year-old Georgia pine plantations, S. 

hispidus was the dominant rodent, while P. leucopus was the second most common 

species found [28]. Hanberry et al. [68] investigated pine plantation establishment 

treatments in Mississippi ranging from low to high intensity during years 1-5 post-

establishment and reported that Peromyscus spp. and S. hispidus were the most dominant 

rodent species across treatments and years. Even though rodent community diversity in 

my study decreased in intercropped stands, S. hispidus and Peromyscus spp. still 

accounted for 90% and 7.5% of captures in both stand types.   

My rodent community results suggest that by planting and maintaining a dense, 

grass-dominated understory in intercropped stands, the period of early succession may be 

extended so that early successional rodent species continue to be major components of 

the community [26,28]. After a mature pine stand is harvested, herbaceous vegetation 

will colonize the newly disturbed site [14]. Increases in soft mast and insects from growth 

of early successional vegetation following clearcuts result in a higher abundance of 

rodents [70]. As the loblolly pine canopy closes around year 6, dense thickets of woody 
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vegetation, such as blackberry (Rubus spp.), develop around the rows of pine [73]. 

Canopy closure results in reductions of understory and rodent abundance [70,74]. 

Increasing grass vegetation through intercropping may benefit herbivorous rodents (e.g., 

S. hispidus) that use early successional vegetation for cover, nesting, and food resources 

[14].  

In addition to S. hispidus population abundance being higher in switchgrass 

intercropped stands, I also observed an increase in S. hispidus abundance through 

trapping periods and as switchgrass grew. Other rodent species had low abundances that 

possibly prevented detection of temporal changes in populations. Switchgrass is a warm-

season perennial that is harvested annually, in the fall or winter after senescence, as a 

biofuel feedstock at the Kemper County study site. Therefore, it is only available to 

wildlife during a portion of the year [13]. The number of small mammal captures 

decreases after mowing occurs, but pine tree beds in intercropped stands could provide 

refugia to rodents after switchgrass harvesting [75,76].  Sigmodon hispidus abundance is 

known to fluctuate during the year due to seasonal weather conditions and resource 

availability [29]. Winter conditions will cause S. hispidus abundance to be lower the 

following spring, but abundance will increase into the fall as weather conditions improve 

and habitat vegetation changes [29].  

All rodent species captured during my study were known to be at the Kemper 

County study site from a previous study [16], but few Neotoma floridana, Ochrotomys 

nuttalli, Oryzomys palustris, Reithrodontomys humulis, and Microtus pinetorum 
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individuals were captured due to their known preference for different habitat types than I 

studied  [16,26,68,71,77–81]. Neotoma floridana prefers older forested habitat with 

relatively open understory and closed overstory canopy [81]. Ochrotomys nuttalli are 

similar in body size and share similar food resources and nest site preferences with 

Peromyscus spp., but difference in 3-dimensional habitat use (i.e. vertical vegetation use 

by O. nuttalli) provides enough niche segregation to coexist [26,78,79]. Oryzomys 

palustris are wetland rodent species that sometimes use upland habitats depending on 

population demography, environmental conditions and prey availability [80]. 

Reithrodontomys humulis are found on southeastern pine plantations in very early 

successional stages, so it was unlikely that they would be present on 6-7 year-old pine 

stands [16,26,68,71]. Microtus pinetorum is a habitat generalist found mostly in mid- to 

late-successional forests, and low number of captures is likely due to its semi-fossorial 

nature [71]. It is possible M. pinetorum was present in higher numbers on the study 

stands, but my trapping method may not have been optimal for catching voles [77].  

My results suggest that M. musculus is not associated with switchgrass when 

agricultural crop resources to sustain the population are not adjacent to the switchgrass 

treatments [31–34]. Mus musculus was not captured on any of my study stands but are 

known to be present in the area based on trapping efforts during previous years and even 

during 2012 on other forest stands [16]. Mus musculus is an invasive, non-native rodent 

that is known to have high abundances when an abundant resource, such as an agriculture 

crop, is available [31–34]. In the absence of an abundant food resource, such as in forest 

habitats, M. musculus maintain lower population abundances [16,28,33]. Therefore, my 
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results suggest that intercropping switchgrass in pine plantations does not promote the 

presence of M. musculus.  

The results of my study demonstrate the importance of investigating wildlife 

populations and communities, namely rodents, at a landscape scale. Marshall et al. [31] 

investigated the effects of a switchgrass intercropping system at a small-scale study site 

adjacent to agriculture land, which influenced the rodent community by providing a 

source population of M. musculus. Results from Marshall et al. [31] suggested that 

intercropping switchgrass in pine plantations promotes the presence M. musculus, which 

raises questions about the sustainability of a switchgrass intercropping system [31]. 

However, my results show that when a switchgrass intercropping system is investigated 

following establishment and at a landscape scale where the treatment stands are isolated 

in a forest matrix, switchgrass does not promote the presence of M. musculus. Different 

landscape variables (e.g., agriculture) can influence the types of rodent communities 

present found in an area [21,82].   

Management Implication and Future Direction 

My results suggest that a switchgrass intercropping management system increases 

the biomass of a native rodent, S. hispidus, which is commonly the most abundant rodent 

in southeastern pine forests. The rest of the rodent community appears to be unaffected. 

Other demographics (i.e. survival and recruitment) did not differ between control and 

intercropped stands. Therefore, my results support the idea that a switchgrass 
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intercropping system to produce biofuel feedstock might be a sustainable option for 

planting switchgrass. 

My study contributes to a growing body of research demonstrating the 

sustainability of an intercropping system through investigating impacts on biodiversity 

and productivity. In a two-year study, Homyack et al. [83] showed that intercropping 

switchgrass in pine plantations does not affect herptefauna abundance and diversity. At 

the same site, Briones et al. [84] showed that P. leucopus maintained its trophic position 

in both switchgrass intercropping systems and pine stands, indicating that food web 

interactions and ecosystem services linked to P. leucopus are not affected by switchgrass 

intercropping. Iglay et al. [85] showed that switchgrass intercropped in pine stands ≥ 5 

years old initially promotes a more diverse herbaceous plant community. Loman et al. 

[40] found that site preparation for intercropped and traditional pine plantations produced 

similar dispersal and volume of coarse woody debris (CWD), which provides important 

habitat for many mammals and herptefauna. In a study designed to examine productivity, 

Albaugh et al. [86] found that intercropping pine and switchgrass does not affect leaf-

level gas exchange (i.e. photosynthesis or stomatal conductance) or water potential for 

neither pine nor switchgrass. At this time, intercropping switchgrass in pine plantations 

can be considered sustainable, because no negative impacts on ecosystem biodiversity 

and functioning have been observed [40,83–86].  

My conclusion is based on observations made in 2012 by surveying pine stands 

planted in 2005 and switchgrass intercropped in 2009. Effects of switchgrass 
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intercropping at early stages of establishment on rodent communities cannot be 

determined without further investigation. Measuring microhabitat changes associated 

with intercropping switchgrass and examining individual rodent responses to these 

changes could be used to determine ecological mechanisms influencing rodent 

communities, which is important for determining long-term management implications.
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APPENDIX A 

TABLES 

Table 1. Untransformed mean (± 1SE) values for Smith and Wilson Evenness A Index 

and Simpson’s Diversity Index from live-trapping pine control stands (n = 3) and 

intercropped stands (n = 3) in Kemper County, Mississippi. We examined treatment 

differences of evenness and diversity with a Two Sample t-test. P-values are reported as 

one-sided.  

  
Smith and Wilson Evenness A Simpson's Diversity 

Control 0.41 ± 0.24 0.40 ± 0.12 

Intercropped 0.05 ± 0.02 0.05 ± 0.05 

  
t = 2.79, df = 4, P = 0.02 t = 2.64, df = 4, P = 0.03 
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Table 2. SIMPER results from nonmetric multidimensional scaling of pine control stands 

(n = 3) versus intercropped stands (n = 3). Contribution is based on the overall 

dissimilarity of 53.74, cumulative percent is the percentage each species contributed to 

the overall dissimilarity, and the mean abundances of each species per specified treatment 

are provided for comparison.  

 

 
Contribution 

% 

Cumulative   

% 

Mean 

abundance in 

Control 

Mean 

abundance in 

Intercropped 

Sigmodon hispidus  86.13  86.13  24.3  75.7 

Peromyscus spp.   10.44  96.57   7   1.33 

Oryzomys palustris   2.286  98.86   1   1 

Reithrodontomys 

humulis   1.142  100   0.667   0 
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Table 3. Program MARK output for Pollock’s robust design models with Huggins closed 

capture estimator used to select the best fit model parameters for estimating Sigmodon 

hispidus abundance and survival. Model parameters included encounter probability (M), 

initial capture and recapture, with time effects (t), group effects (b), time*group effects 

(tb), and/or null effects (.) and the probability of emigration from and staying away from 

the study site (No emigration, Random, or Markovian).  Raw data was obtained from 

live-trapping pine control stands (n = 3) and intercropped stands (n = 3) in Kemper 

County, Mississippi. 

Model AICc 
Delta 

AICc 

AICc 

Weight 

Model 

Likelihood 
No. Par. 

{No Emigration M(t)} 2340.89 0 0.94591 1 40 

{No Emigration M(.)} 2348.387 7.497 0.02228 0.0236 34 

{No Emigration M(tb)} 2348.574 7.6839 0.02029 0.0215 46 

{No Emigration M(b)} 2349.707 8.8167 0.01152 0.0122 35 

{Random M(t)} 2374.927 34.0369 0 0 67 

{Random M(b)} 2377.456 36.5656 0 0 62 

{Random M(.)} 2378.057 37.1664 0 0 61 

{Markovian M(b)} 2395.735 54.8443 0 0 75 

{Markovian M(t)} 2395.984 55.0941 0 0 80 

{Markovian M(.)} 2397.329 56.4388 0 0 74 

{Markovian M(tb)} 2400.751 59.8604 0 0 86 

{Random M(tb)} 2402.701 61.811 0 0 81 
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Table 4. Program MARK output for Pradel survival and recruitment model with Huggins 

closed captures estimator used to select the best fit model parameters for estimating 

Sigmodon hispidus recruitment. Model parameters included apparent survival (f) and 

recruitment (ph) probability with time (t) and/or null effects (.), and the appropriate 

parameters for encounter probabilities (p) were chosen based on the parameters for the 

best fit model in the adult abundance models. Raw data was obtained from live-trapping 

pine control stands (n = 3) and intercropped stands (n = 3) in Kemper County, 

Mississippi. 

Model AICc Delta AICc 
AICc 

Weight 

Model 

Likelihood 
No. Par. 

{p(t), ph(.), f(.)} 4067.1042 0 0.99995 1 19 

{p(t), ph(.), f(t)} 4087.0418 19.9376 0.00005 0.0001 45 

{p(t), ph(t), f(.)} 4091.6482 24.544 0 0 43 
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Table 5. Untransformed mean (± 1SE) recruitment estimates, new individual via birth or 

immigration/existing member/trapping grid, for Sigmodon hispidus by treatment 

calculated in Program MARK; statistical results are from comparisons using a Two 

Sample t-test calculated in R. Untransformed mean (± 1SE) survival estimates for 

Sigmodon hispidus for inter-trapping period intervals by treatment (averaged across time 

and trapping grids within treatment); calculated in Program MARK; statistical results are 

from comparisons using repeated measures ANOVA calculated in SAS. P-values are 

reported as one-sided. Raw data for recruitment and survival estimates were obtained 

from live-trapping pine control stands (n = 3) and intercropped stands (n = 3) in Kemper 

County, Mississippi.  

 

  Recruitment Survival 

Control 0.11 ± 0.02 0.83 ± 0.08 

Intercropped 0.11 ± 0.03 0.92 ± 0.02 

  t = -0.07, df = 4, P = 0.53 F1,4 = 0.41, P = 0.56 
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APPENDIX B 

FIGURES 

Figure 1. I examined rodent community structure and population demographics on 

intercropped stands (n = 3) and pine control stands (n = 3) in Kemper County, MS, USA. 

The study site was established by Catchlight Energy LLC on land owned by 

Weyerhaeuser Company. Live-trapping grids within each stand were 14,400 m². The 

study site is highlighted in red on the inset map.

 



36 

 
 

Figure 2. Rarefaction curves showing the expected number of rodent species on 

intercropped and pine control stands for any given number of individuals. Raw data was 

obtained from live-trapping (6,174 trap nights) using 14,400 m
2
 (120 m × 120 m) 

trapping grids in control (n = 3) and intercropped (n = 3) treatments in 2012. 
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Figure 3. Nonmetric multidimensional scaling (NMDS) plot of small mammal 

communities by treatment (n = 3) in Kemper County, MS, USA in 2012. NMDS plots 

show the relative relationships among sites. Stress = 0.025 
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Figure 4. Untransformed population abundance estimates (mean abundance ± 1 standard 

error) from Program MARK for Sigmodon hispidus by trapping period. Raw data was 

obtained from live-trapping (6,174 trap nights) using 14,400 m
2
 (120 m × 120 m) 

trapping grids in control (n = 3) and intercropped (n = 3) treatments. Seven trapping 

periods took place from June to August 2012. 
 

 


