INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
- 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
- 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

. ۲.

1

8509177

Kalpagian, Harry S.

THE STRENGTH OF CHEMICALLY BONDED NONWOVEN FABRICS AS A FUNCTION OF THE IONIC CHARGES OF BINDERS AND FIBERS

The University of North Carolina at Greensboro

Рн.D. 1984

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

Copyright 1984 by Kalpagian, Harry S.

All Rights Reserved

·

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\sqrt{}$.

- 1. Glossy photographs or pages
- 2. Colored illustrations, paper or print
- 3. Photographs with dark background
- 4. Illustrations are poor copy _____
- 5. Pages with black marks, not original copy_____
- 6. Print shows through as there is text on both sides of page _____
- 7. Indistinct, broken or small print on several pages _____
- 8. Print exceeds margin requirements
- 9. Tightly bound copy with print lost in spine
- 10. Computer printout pages with indistinct print _____
- 11. Page(s) ______ lacking when material received, and not available from school or author.
- 12. Page(s) _____ seem to be missing in numbering only as text follows.
- 13. Two pages numbered _____. Text follows.
- 14. Curling and wrinkled pages _____
- 15. Other_____

University Microfilms International

THE STRENGTH OF CHEMICALLY BONDED NONWOVEN FABRICS AS A FUNCTION OF THE IONIC CHARGES OF BINDERS AND FIBERS

Бy

Harry S. Kalpagian

A Dissertation Submitted to the Faculty of the Graduate School at The University of North Carolina at Greensboro in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

.

Greensboro 1984

Approved by

ssertation Advi

APPROVAL PAGE

This dissertation has been approved by the following committee of the Faculty of the Graduate School at The University of North Carolina at Greensboro.

Dissertation Adviser Mahrin La Hunner

akend. Committee Members m. w.

November 9, 1984 Date of Acceptance by Committee

November 9, 1984 Date of Final Oral Examination

① 1984 by Harry S. Kalpagian

KALPAGIAN, HARRY S., Ph.D. The Strength of Chemically Bonded Nonwoven Fabrics as a Function of the Ionic Charges of Binders and Fibers. (1984) Directed by Dr. Melvin Hurwitz. 88 pp.

This study compared the tensile strength of chemically bonded nonwoven fabrics as a function of ionic charges of fibers and fiber finishes and of binders and binder emulsifiers. The binders were applied at normal (20%) and low (5%) concentrations; the low binder level was used to avoid possible masking of ionic interactions. In all, 70 different nonwoven fabrics were prepared for tensile measurements.

The means and standard deviations of the tensile data were examined by analysis of variance. The tensiles varied significantly (.05) among the nonwoven fabrics. Multiple comparisons using Scheffé's tests showed which binders differed significantly (.05) from each other. On the basis of rank ordering the results of Scheffé's tests, it appeared that greater tensile strength resulted from ionic interaction between the binders and fiber finishes as well as between the binder emulsifiers and fiber finishes. There was no indication of ionic interaction between the binder and fiber or binder emulsifier and fiber.

These findings are consistent with the knowledge that ionic charges buried in the polymer backbone such as in the fiber and in the binder, would be inaccessible because of distance and lack of mobility. Conversely, these findings are also consistent with ionic interactions found with the fiber finishes and the binder emulsifiers; these are small molecules with mobility.

ACKNOWLEDGMENTS

The author expresses appreciation to the following: Dr. Melvin Hurwitz for assistance, patience, concern, and cooperation in designing the study and preparing the manuscript; Drs. Gail Hennis, Terry Mullins, and Billie Oakland for their help, cooperation, and continuing faith; Dr. William Powers and Ms. Louise McNutt for help in the statistical design and analyses; my wife Jean and daughter Amy for help in cutting and testing the many samples; Fiber Dynamics, Incorporated, especially J. A. M. Kyle, for providing laboratory facilities, encouragement, and opportunity; Jimmie Hall, John Olson, and Phyllis Stanley for help in preparing samples and the manuscript.

iii

TABLE OF CONTENTS

																						F	age
APPROVAL	PAGE .		• •	•		•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	ii
ACKNOWLE	DGMENTS		• •	•		•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	iii
LIST OF	TABLES.	• • •	• •	•	• •	•	•	•	•	•	• •	•	•	٠	•	•	•	•	•	•	•	•	vi
LIST OF	FIGURES	•••	•••	•	• •	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	vii
CHAPTER																							
I.	INTRODU	JCTI ON	• •	•	•••	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	1
	Wet- Fibe Stat Assu Limi Hypo	Laid Laid ers an cement mptio tatio othese nitio	Webs d La of ns . ns . s	tic the	es Pr	obl	lem	•	• • • • •	•	· ·	•	• • • •	• • • • •	• • • • •	• • • • • • • • •	• • • •	• • • • • • • •		• • • •	• • • • • •	• • •	2 6 7 9 10 11
II.	REVIEW	OF LI	TERA	TUR	Ε.	٠	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	13
III.	PROCEDL	JRE	• •	٠	•••	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	17
	Sele Form Appl Desc	ection ection lation licati ripti ngs o	and of on o on o	De Web f A f T	scr s cry est	ipt lic Co	tio L Snd	n .it	of ic	Ac es ns	cry • •	lio		Lat	tic	es	•	•	• • •	• • •	• • •	•	17 19 19 20 22 22
IV.	ANALYSI	S OF	DATA	AN	D D	IS	CUS	SI	ON	01	FR	ESI	JL1	ΓS	•	•	•	•	•	•	•	•	24
	Rati Sc Over	ings o Diutio rall R	f th ns . atin	e P ig a	ick Ind	Eva	o M alu	ea at	su: io:	ren ns	nen	ts	01	F \	/ar	ic	ous	•	•	•	•	•	24 30
۷.	SUMMARY	' AND	CONC	LUS	ION	s.	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	32
	Reco	mmend	atio	ns	• •	٠	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	33
BIBLIOGR	APHY			•					•	•		•			•								35

.

APPENDICES

Appendix A.	Analysis of Variance	36
Appendix B.	Scheffé's Tests of Analysis of Variance and Summary of Scheffé's Tests on ANOVAs	51
Appendix C.	Means and Standard Deviations of Normalized Data	70
Appendix D.	Samples of Dyed Bonded Webs	86

Page

LIST OF TABLES

•

TABLE		F	age
1	Codes and Properties of Selected Fibers	•	, 18
2	Codes and Properties of Selected Latices	•	. 19
3	Weights of Carded/Unbonded Fiber	•	. 21
4	Surface Tension and pH of Binder Mixes	•	. 25
5	Relationship of Highest Tensiles to Ionic Charges	•	. 27
6	Relationship of Highest Tensile to Ionic Charges	•	. 28
7	Analysis of Variance	•	. 37
8	Scheffé's Tests of Analysis of Variance Data	•	. 52
9	Summary of Scheffé's Tests on ANOVAs	•	. 66
10	Means and Standard Deviations of Normalized Data	•	. 71
11	Raw Tensile Data	•	. 75
12	Thickness Measurements in Mils	•	. 79
13	Wet and Dry Pickup Measurements: 20% Binder Solids, Water Only, and Water Plus .20% Wetting Agent	•	. 80
14	Measurement of Dry Binder Add-On on Treated Webs	•	. 82

• ·

.

LIST OF FIGURES

.

,

FIGURE			Pa	ge
1	Side View of a Cross-Lapper	٠	•	3
2	Rando Feeder and Rando-Webber Unit	•	•	3
3	Rodney-Hunt Web Impregnation Unit	•	•	5
4	Vacuum Saturator		•	5
5	Scanning Electron Microscope Views of Well-Bonded Nonwovens	•	•	8
6	Section of Figure 5 Magnified 2000X	٠	•	8
7	Dyed Samples of Webs Bonded With 5% Binder	•	•	87
8	Dyed Samples of Webs Bonded With 20% Binder	•		88

•

CHAPTER I

INTRODUCTION

The manufacture of nonwoven fabrics is the most dynamic and fastest growing segment of the textile industry. A report by Frost and Sullivan, Incorporated predict that the U.S.A. nonwoven fabric market will grow approximately 60% in real terms during the 1978-1988 decade.¹ The report also states fiber consumption will grow at an annual rate of 5.4% for the first five years and diminish to 4.3% for the last five years.

Nonwoven fabrics are used for diaper cover stock, surgical packs and gowns, filtration media, wipes and towels, apparel interlinings (sewn and fusible coated), beddings and home furnishings, carpet components, automotive trunk lining carpets, substrates for coated and laminated products, geotextiles, personal hygiene products, and other industrial uses. These products are produced by one or a combination of the following four basic processes:

- 1. mechanical entanglement of fibers by needles, or jets of air or water
- thermal bonding of fibers by point bonding or the incorporation of either binder-fiber or fusible powders
- 3. spunbonded or spunlaced
- 4. chemical resin bonding of fibers

¹"Growth Predicted for Nonwovens" (Frost & Sullivan, Inc. Report No. 752), <u>Textile Institute and Industry</u> 18 (March 1980):84.

This study is concerned with the last process, chemical resin bonding of fibers, specifically, the bonding of dry-laid webs with acrylic latices. The manufacture of chemical bonded fibers consists of forming a web by either a dry-laid or wet-laid process and applying a latex binder.

Dry-Laid Webs

Dry-laid webs are formed by processing preopened fibers in a conventional card or an air-lay system. Since carded webs are unidirectional, they are usually crosslapped to get some fiber orientation in the transverse direction (figure 1).

Air-laid webs are formed by feeding preopened fibers to a card drum via an inlet aggregate. Due to centrifugal force and an air stream, single fibers are released from the cylinder surface and collect on a moving perforated conveyor screen (figure 2). This forms a continuous web which is doffed.² Binders are applied to dry-laid webs by foam, spray, print-bonding, or saturation.

In foam bonding, the latex binder is diluted with air, resulting in a large volume of encapsulated binder solids which are applied throughout the fibrous web. Normally, a foam is comprised of 5-10% water and 90-95% air.³ Foam is applied by special applicators, nip rolls or an engraved roll. Unless it is applied by padding onto the

²A. T. Purdy, "Developments in Nonwayen Fabrics," in <u>Textile</u> <u>Progress</u> ed. P.W. Harrison. (Manchester, NV: Textile Institute, 1983), <u>P. 15.</u>

3 Dennis E. Wood, "Aerated Latex Bonding of Nonwoven Fabrics," pt. 1., <u>Nonwovens Industry</u> 11 (May 1980):20.

2

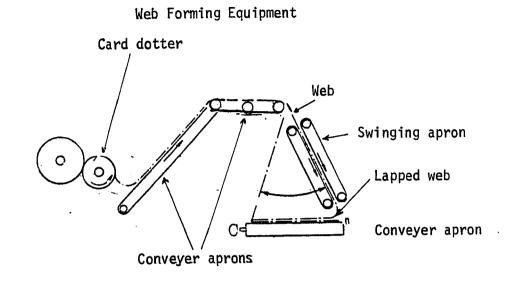
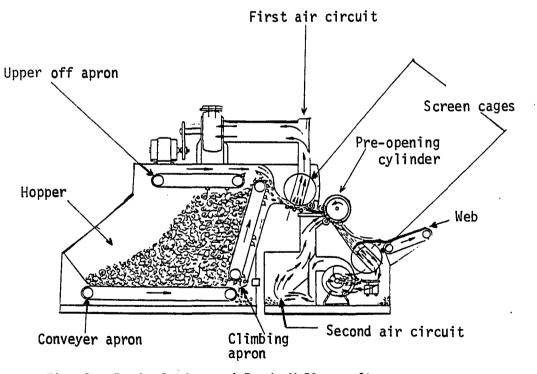
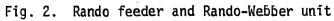




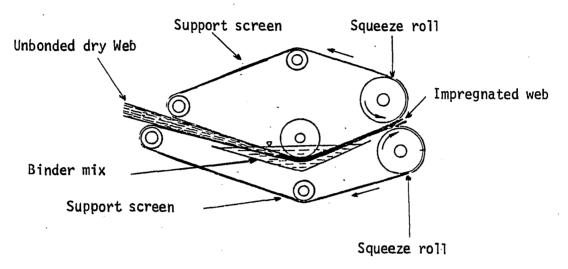
Figure 1. Side view of a cross-lapper

3

•

web, the foam is collapsed and drawn through the fibers by a vacuum slot or box located under the moving web, and the web is then dried on heated steam cans.⁴

Spray bonding is generally done on high loft products used for quilting, bedspreads, comforters, air filtration media, and quilted jacket linings to retain bulk or loft required of these products. Low levels of binder solids are sprayed onto the surface of the moving web by either fixed (stationary) or reciprocating spray guns with little or no binder penetration into the fibrous mat. Both sides of the web are treated in separate stages by processing the web in a two or three pass oven.⁵


Print bonding is the application of a discontinuous coating of adhesive applied in a repetitive pattern which does not completely coat or encapsulate the fibers. This results in a product with a soft hand and moderate drape, but relatively low tensile properties.⁶

Saturation bonding is done by impregnating with squeeze rolls or by immersing the dry web held between two screens or between a drum and a screen, and passing the web over a vacuum slot to remove excess binder (figures 3 and 4). The saturated web is then dried, usually over steam-heated cans.⁷

⁴Ibid.

⁵Personal experience in a production plant. ⁶Purdy, "Developments in Nonwoven Fabrics," p. 50. ⁷Ibid., p. 33. 4

Web Impregnation Equipment

.

Fig. 3. Rodney-Hunt web impregnation unit

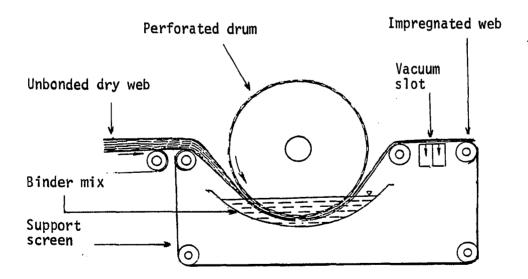


Fig. 4. Vacuum saturator

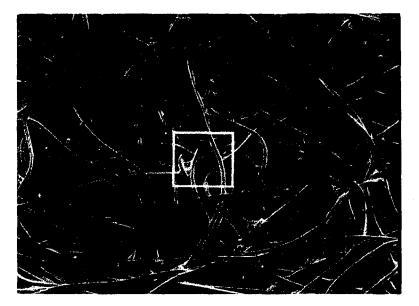
Wet-Laid Webs

Wet-laid webs are formed on some variation of wet-papermaking equipment such as a Fourdriner or cylinder-forming element or an inclined wire screen.⁸ Binders can be applied by wet-end addition which incorporates aqueous polymer emulsions or solvent polymer solutions during web formation and/or the methods used for dry-laid webs.⁹ Thermal binder fibers can also be used in place of latex binders. Since these binder fibers have a lower melt point than conventional fibers, they form bonds in the matrix when the web is exposed to heat.

Fibers and Latices

The principal fibers used are rayon, polyester, and polypropylene. Also nylon, acrylic, glass, and cotton fibers are used but to a much lesser degree. Exotic fibers sometimes used are aramid, polyphenolic sulfide, polyphenolic amide, and carbon where unusual strength is required.

The term latex is a broad umbrella that includes all types of polymer emulsions. The major latices used commercially are acrylates, acrylonitriles, polyvinyl acetate and copolymers, polyvinyl chloride and copolymers, vinylpyrolldene copolymers, and styrene-butadiene (SBR). In addition, new polymer emulsions such as modified silicones have been developed that are just making their entry into the market, e.g. ethylene/vinyl acetate, ethylene/acrylic acid.


⁸Ibid., pp. 43-44. ⁹Ibid., p. 46. It is estimated that in 1982, the U.S.A. nonwovens industry consumed 170 million wet (85 million dry based on 50% solids) pounds of latex to produce latex bonded fabrics, excluding spunbonded, spunlaced, and wood pulp fibers.¹⁰

The purpose of the latex binder is to add strength and integrity or resistance to deformation. It is essential to get good bonding of the fibers with the selected latex to achieve desired end results as illustrated in figures 5 and 6. During the bonding of the fibers with acrylic latices, certain ionic charges may be present that need consideration. Ionic charges can be present in the fiber and its finish, in the binder polymer and its emulsifier and in any added surfactant. Based on a search of the literature and questions posed to both fiber producers and binder manufacturers, no report of an investigation has been found relating these ionic charges to the resulting strength of the nonwoven composite.

Statement of the Problem

The purpose of this study was to compare the tensile strengths of chemically bonded webs made with combinations of selected fibers and acrylic latices carrying anionic, cationic, and no electrical charges. The specific objective of the research was to compare the tensile strength of nonwovens as a function of fiber and binder charges, holding physical and mechanical factors such as fiber length and cross section constant.

¹⁰Telephone interview with John Starr, John Starr Incorporated, Boston, Massachusetts, 1 March 1984.

Scanning Electron Microscope Views of Well-Bonded Nonwovens

Fig. 5. Magnified 300X

Fig, 6. Section of figure 5 magnified 2000X

Assumptions

In this study, the following was assumed:

- Fiber orientation of like webs was comparable as they were made on the same machine.
- Any differences observed in tensile strength between like webs with the same binder would result from the ionic charges involved.

Limitations

1.1

This study was limited by the following:

- 1. The fibers considered were limited to the rayon control-two polyesters, one modified polyester, one polyester copolymer, and two polypropylenes. All but the two polypropylene webs were formed on a laboratory model Rando Webber^R which yielded randomized webs. The average weight of each was 31.5 grams/yard² \pm 20%. Because of their coarseness and fiber length, the two polypropylene webs were formed on a plant garnett. This resulted in a unidirectional web with very little transverse (cross-machine) fiber orientation and different weight webs for the two fibers. The average web weight for the regular polypropylene was 38.64 grams/yard² \pm 8.3% and for the acid dyeable web, 50.99 grams/yard² \pm 8.8%.
- Only five commercially available acrylic latices were selected. The charges on the binder polymers and their emulsifiers were respectively as follows:

Binder A - cationic/nonionic Binder B - nonionic/anionic Binder C - anionic/nonionic Binder D - nonionic/nonionic Binder E - anionic/anionic

A cationic/cationic was not commercially available.

3. All webs were padded at 20% and 5% dry add-on based on weight of fiber. This range was selected to show differences that may be masked or hidden by higher add-on levels.

Hypotheses

The following primary null hypothesis was tested:

 There are no differences in tensile strength among nonwovens bonded with the five binders at equal add-on on each of the seven webs as a function of the ionic charge on the binder and on the fiber.

In the course of testing the primary hypothesis, the following secondary null hypotheses were also tested:

- There are no differences in tensile strength among nonwovens bonded with the five binders at equal add-on on each of the seven webs as a function of the ionic charge on the binder and the fiber finish.
- 3. There are no differences in tensile strength among nonwovens bonded with the fine binders at equal add-on on each of the seven webs as a function of the ionic charge on the binder emulsifier and the fiber.
- 4. There are no differences in tensile strength among nonwovens bonded with the five binders at equal add-on on each of the seven webs as a function of the ionic charge on the binder emulsifier and the fiber finish.

Definition of Terms

The following definitions have been used for this study:

<u>Anionic</u>. An ion, molecule, or chemical substance having one or more functional groups bearing a negative charge.

<u>Cationic</u>. An ion, molecule, or chemical substance having one or more functional groups bearing a positive charge.

<u>Denier</u>. Denier denotes the fineness or coarseness of a fiber. The lower the number, the finer the fiber. Denier is defined as weight in grams of 9,000 meters of a filament yarn or fiber.

<u>Dynes</u>. A metric unit that measures the force required to accelerate one gram of matter one centimeter per second squared. It is expressed as $dynes/cm^2$.

<u>Elongation</u>. The deformation of a textile fiber or fabric when subjected to a tensile force. It is expressed as a percentage of the length of the test sample held between the jaws of a testing unit.

<u>Emulsifier</u>. A surfactant that helps to disperse and stabilize emulsions.

<u>Fiber spin finish</u>. Generally a water-soluble compound that may be a lubricant or an antistat which is applied to fibers by the fiber producers.

<u>Nonionic</u>. A molecule or chemical substance that bears neither a negative nor positive charge.

<u>Polymer</u>. A chemical compound formed by a chemical reaction in which molecules or a mixture of molecules are combined to form larger molecules that contain structural units of the original molecules. Scrim. A textile fabric used as support or substrate in a composite or laminate.

<u>Stress-strain properties</u>. The amount of deformation with a given force.

<u>Surface tension</u>. A resultant lateral attraction and downward force that makes the surface of a liquid act like an elastic film or rubber sheet.

Tensiles or tensile strength and tenacity. The longitudinal stress required to rupture a solid material such as a textile fabric.

•

CHAPTER II REVIEW OF LITERATURE

Many studies have been made of the contributions of the fiber and binder to the physical properties of a latex bonded nonwoven.¹¹ Initial investigators focused on the role of the fiber as the major factor regarding the stress-strain properties of bonded webs. Hearle and Stevenson reported on the effects of the anisotropy of nonwoven webs and fiber curl as related to modulus, strength, breaking extension, and fiber orientation.¹²

Not all of the earlier research centered on the fiber as the principal factor influencing stress-strain properties of a bonded fabric. Based on laboratory trials with viscose, rayon, and rubber latex, Michie, Peters, and Taylor concluded that as the binder content is increased, the amount of binder at the fiber crossovers and interstices also increases as well as the strength and stiffness of the fabric up to a maximum value. Additional binder above this value will only increase the thickness of the rubber between the fibers at the

13

¹¹M. M. Besso, G. E. Gillburg, and D. E. Stuetz, "Contributions of Binder and Fiber to Nonwoven Properties," <u>Textile Reasearch Journal</u> 52 (September 1982):587.

¹²J. W. S. Hearle and P. J. Stevenson, "Nonwoven Fabric Studies. Part II: The Anisotropy of Nonwoven Fabrics," <u>Textile Research</u> <u>Journal</u> 33 (November 1963):888.

crossovers without much effect on tensile strength which would tend to be constant.¹³

In a later study by Hearle and Newton regarding the role of the fiber network as related to the stress-strain behavior of bonded webs, it was reported that the binder had a much greater effect than suspected.¹⁴ When they compared theoretically determined stress-strain curves with those measured on a few nonwoven fabrics, they found good correlation between theory and experiment, especially if the simple network theory is modified by taking into account fiber slippage through the binder.¹⁵

Zeronian and Wilkinson reported that the more uniform the binder distribution, the more difficult it becomes to delaminate latex bonded fabrics.¹⁶ A study on the migration of binder in fibrous webs during drying found that when binder migrates to the web surface, leaving low levels in the web interior, the fabric will have poor resistance to delamination.¹⁷

¹³R. I. C. Michie, R. H. Peters, and W. Taylor, "Nonwoven Fabric Studies. Part I: Properties of Laboratory-Made Fabrics Bonded with Natural Rubber," Textile Research Journal 33 (May 1963):328.

¹⁴J. W. S. Hearle and A. Newton, "Nonwoven Fabric Studies. Part XV: The Application of the Fiber Network Theory," <u>Textile Research</u> <u>Journal</u> 38 (April 1968):351.

¹⁵Ibid.

¹⁶S. H. Zeronian and J. Wilkinson, "Nonwoven Fabric Studies. Part XI: Binder Distribution Effects," <u>Textile Research Journal</u> 36 (October 1966):866.

¹⁷R. I. C. Michie and J. A. Wilkinson, "Nonwoven Fabrics Studies. Part XII: Observation on Latex Migration in Fiber Webs," <u>Textile</u> <u>Research Journal</u> 37 (June 1967):461. Hearle and Newton recognized that the physical properties of latex bonded fabrics were dependent not only on the properties of the fiber and the binder but also in their interaction in the web.¹⁸ Since the properties of the bonded fabric are dependent upon the behavior of the individual fibers and their bonds within the structure and due to the difficulties in observing minute areas within a bonded web, Hearle and Newton designed systems of model bonds by joining pairs of individual parallel fibers with a single bond.¹⁹ They found when high strain was applied, either the binders broke down at the binder-fiber interface or the fiber ruptured. There was not a single observation where the binder material itself ruptured.²⁰

In one of the latest investigations, the researchers studied not only the contributions of the properties of the fiber and binder but also those of the interfacial properties which included the effects of fiber finish, surface tension of the binder, macroscopic and microscopic binder distribution, and added surfactant.²¹ The observations made in this study show that binder conhesive strength may be more critical than binder adhesive strength as a major factor in the stressstrain behavior of a bonded fabric. No evidence was found of fiber

¹⁸J. W. S. Hearle and A. Newton, "Nonwoven Fabrics Studies. Part XVI: The Behavior of the Model Systems of Bonded Fibers," <u>Textile</u> <u>Research Journal</u> 38 (May 1968):488.

¹⁹Ibid.

²⁰Ibid., p. 496.

²¹Besso, Gillberg, and Stuetz, "Contributions of Binder and Fiber to Nonwoven Properties," pp. 592-594.

breakage which suggests that either deposition of binder occurred along the nonload bearing fiber surfaces or the cohesive strength of the binder now exceeded the adhesive strength of the binder-fiber interface. They concluded that above a certain add-on level, the cohesive strength will surpass adhesive strength.²²

In this same study, it was concluded that nonwoven fabric tensile is not affected by the presence or lack of typical fiber finishes, if allowance is made for variations in add-on levels, but the fiber finishes do have an effect on the rate of binder pick-up into, and the amount of binder retained by the web.²³ They also concluded that surfactants can decrease the binders cohesive strength or make the distribution of the binder less load bearing and also change cohesive failure into adhesive failure.²⁴

²²Ibid., p. 592. ²³Ibid., p. 593. ²⁴Ibid., p. 596.

CHAPTER III PROCEDURE

This study was designed to measure and evaluate both dry and wet tensile values of acrylic latex bonded nonwoven fabrics made with seven selected fibers and five selected acrylic latices. The webs were padded, air dried, oven cured, and tested. Duplicate sets of fabrics were made with fiber and binder.

The procedure for this investigation is divided into the following: selection and description of fibers, selection and description of acrylic latices, formation of dry webs, bonding of fibers, description of test conditions, and rating of results.

Selection and Description of Fibers

Seven commercially available fibers were selected for this study.

- a. One rayon control fiber nonionic, finish cationic.
- b. One modified polyester both fiber and finish anionic.
- c. Two polyesters both fibers nonionic, both finishes cationic.
- d. One polyester copolymer fiber anionic, finish cationic.
- e. Two polypropylenes regular nonionic polypropylene fiber, finish anionic; acid dyeable polypropylene - both fiber and finish cationic.

Selection was based on homogeniety of samples among commercially available fibers in terms of denier, luster, length, and finishes. For identification purposes, numerical codes were assigned to each fiber. A more detailed explanation will be presented under bonding of fibers. table 1 lists the various fibers, their codes, and properties. From this point forward, polyester will be referred to as PE, polyester copolymer as PCP, and polypropylene as PPY. None of the webs was given any pretreatment to remove fiber finish.

Т	аÐ	1	e	1

Cada				luchen.		nic Charge
Code	Fiber [enter	x Length	Luster	Fiber	Fiber Finish
1,2, 21,22	Rayon	3	x 2"	Bright	N	С
11,12, 31,32	PE #2	1.5	x 1.5	OB	N	C
9,10 29,30	РСР	1.5	x 1.5	OB	A	С
3,4, 23,24	PE #1	2.25	x 1.5	OB	N	С
13,14 33,34	MPE	2.25	x 1.5	OB	A	A
5,6, 25.26	R-PPY	7	x 6	Natural	N	A
7,8, 27,28	A-PPY	7	x 6	Natural	C	С
A = C = N =	A = Anionic C = Cationic N = Nonionic					
PE #1 & PE #2 = Polyesters PCP = Polyester Copolymer MPE = Modified polyester R-PPY = Regular polypropylene A-PPY = Acid dyeable polypropylene						

 ${}^{\mu\nu}$

Codes and Properties of Selected Fibers

As shown in table 1, the pairs of fibers, PE #2 and PCP, PE #1 and MPE, and R-PPY and A-PPY are similar in their properties except for the ionic natures of the fiber and for its finish.

Selection and Description of Acrylic Latices

Five commercially available acrylic latices were selected for this study. Table 2 lists the binder polymer, physical properties and codes. Webs of each fiber were padded to yield 20% and 5% dry add-on of each binder (e.g., each bonded web after drying was composed of either 80% fiber/20% binder or 95% fiber/5% binder).

e 2

Codes and Properties of Selected Latices

		0	Ionic Charge				
Code	% Solids	★Tg ⁰ C	Polymer	Emulsifier			
A	60	-18	С	N			
В	60	-15	N	Α			
C	46.0	- 4	А	Ν			
D	45.5	-14	N	N			
E	44.5	- 7 .	A	A			

A = Anionic

C = Cationic

N = Nonionic

*Softening temperature Tg refers to the temperature at which the polymer changes from a glassy or brittle condition to a "liquid" or "rubbery" one.

Formation of Webs

All but the two polypropylene webs were formed on a laboratory model air lay Rando-Webber R . The webs were all processed at identical

¹Paul J. Flory, <u>Principals of Polymer Chemistry</u> (Ithaca: Cornell University Press, 1953), 53. settings except for adjusting fiber feed to attain a target web weight of 28.35 grams/yd². Approximately 15 yards of each web (12" wide) was rolled up in Kraft paper. Fiber orientation in the webs appeared to be typical for this machine--moderately randomized.

Because of their seven inch length, the two polypropylene fibers would have wrapped around the rolls and jammed the laboratory Rando-Webber^R. Therefore, the two polypropylene webs were processed on a production garnett. The fibers were fed into a hopper and feed rolls, and then directly into the garnett. The discharged web was rolled up in Kraft paper without being cross-layed, producing a fairly uniform but highly unidirectional web with little significant cross-machine fiber orientation. The one-yard square weights of each web are listed in table 3.

Application of Acrylic Latices

Prior to applying any binder to the webs, samples of each web were padded separately with water, water and surfactant, and solutions containing 20% binder solids with 0.20% nonionic surfactant. Based on weight measurements before and after padding, drying, and curing, it was possible to predict the required binder solids needed to get the desired add-on. The observations from these pick-up trials will be discussed later in the results.

The dry-formed webs, supported between light weight layers of thermally bonded polypropylene scrim, were padded with each binder to yield 20% and 5% dry add-on, based on data collected from the earlier

lable 3

Weights of Carded/Unbonded Fiber

Webs	on Basis	of One	Yard ²
		• • • • •	

Code	Fiber	Grams/Yard ²	± Percent Variation of Weight in Dry Web
1,2 21,22	Rayon	32.40	16.0
11,12, 31,32	PE #2	30.43	10.98
9,10 29,30	РСР	30.59	14.0
3,4, 23,24	PE #1	28,59	9.7
13,14, 33,34	MPE	29.14	8.0
5,6, 25,26	R-PPY	38.61	8.2
7,8, 27,28	A-PPY	50.99	12.1

pick-up trials. Before padding, all webs were conditioned overnight at $72^{\circ}F \pm 2^{\circ}$ and 65% relative humidity $\pm 2\%$. Each sample was padded single dip on a two-roll laboratory pad at 30 PSI, the scrim was removed and the treated webs were placed on screens to air dry. The samples were turned over at two-minute intervals until dry. After conditioning overnight, all the samples, exclusive of the polypropylenes, were cured at $320^{\circ}F$ for five minutes in a Despatch oven. Due to their low melt

index, the polypropylene fabrics were cured at 270^oF for 2.66 hours.² The cured samples were conditioned overnight and reweighed to determine dry add-on.

Description of Test Conditions

Test samples one inch wide and six inches long in test direction were cut off each bonded web. Due to the limited size of bonded samples the number of test samples cut from each web were machine direction-five dry and five wet; cross-machine direction--three dry and three wet.

Dry tensile samples were conditioned overnight $72^{\circ}F \pm 2^{\circ}$ and 65% relative humidity $\pm 2\%$ before testing. Wet tensile samples were soaked for 20 minutes in water containing .10% nonionic surfactant to ensure uniform wet-out of material.

All tensiles were run on a Model X-3 Scott tester which had just been serviced and calibrated. Samples were tested according to ASTM-Dlll7 at a (CRT) constant rate of Traverse of 12.0 \pm 0.5 inches/minute and a gauge length of 3.0 inches. Test results were recorded in pounds/ inch.

Ratings of Results

Samples from each treated web were tested for both dry and wet tensile strength. Since there were no statistical differences (.05) between the duplicates of each set of fiber and binder, a representative sample of each set was dyed with an identification stain that dyed the fiber and binder a different color.³

²Approximation using Arrhenius Energy of Activation Equation. ³T.I.S. Identification Stain #2, Test Fabrics, Inc.

22

Tensile strengths were examined by analysis of variance (significant at the .05 level) for differences as a function of the following variables:

1. the five binders

2. the replicates (duplicate sets)

3. the five binders and replicates

Results of the analysis of variance, significant at the .05 level, were tested by Scheffé's tests to determine where the differences lie.

The dyed samples were examined by microscope to assure that the binders were homogeneously distributed throughout the bonded webs (figures 7 and 8, appendix D). Additional data collected included thickness measurements of each treated web and measurements of the initial wet and dry pick-ups of various binder solutions by webs made of each fiber (chapter III, Application of Acrylic Latices; appendix C, table 13).

CHAPTER IV

ANALYSIS OF DATA AND DISCUSSION OF RESULTS

This chapter is a presentation of data collected on each experimental factor in the study. Each factor will be discussed, including data with tests for statistical significance. Machine direction will be referred to as MD and transverse (cross-machine) direction as TD.

Ratings of the Pick-Up Measurements

of Various Solutions

The results of the various pick-up trials discussed in chapter III, Application of Acrylic Latices, were unexpected. All seven webs had the highest wet pick-up when padded with water only. The lowest wet pick-up, except for the rayon and PCP, was when the seven webs were padded with water and .20% nonionic surfactant. The most notable phenomena occurred when the webs were padded with water, nonionic surfactant and binder. The correlation between wet binder pick-up and dry solid add-on was not as expected. Rayon, with the highest wet pick-up, had next to the lowest dry add-on, while the PCP, MPE, and PE #2 with lower wet pick-up had approximately 50% higher add-on of solids (appendix C, table 13). Surface tension and pH of the various mixes are listed in table 4 along with the charges.

It should be noted that with the exception of the rayon webs the 5% dry add-on resulted in many samples having very low tensile measurements, specifically in the wet tests where several zero readings were

- -

24

Binder	Charg Binder	e Emulsifier	20% Solids Surface Tension Dynes/cm ²	pН	5% Solids Surface Tension Dynes/cm ²	рН
A	С	N	33.5	5.5	30.7	6.0
В	N	A	31.5	5.0	31.2	5.5
С	A	N	36.6	5.5	32.7	6.0
D	N	N	34.0	5.0	32.2	5.5
Е	А	А	31.3	5.0	30.9	5.5

Surface	Tension	and	рH	of	Binder	Mixes
0411000	1 4110 1 011	~	r	•••		

Table 4

obtained. This was probably due to having inadequate binder add-on on the hydrophobic fibers.

The means of the measurement data were examined by analysis of variance for differences in tensile strength and found to differ significantly (.05 level) on the five binders (appendix A, table 7).

The analysis of variance looked separately at the MD and TD tensiles on each web with the five binders at each level of dry add-on for the dry and wet tests. This generated 56 sets of data of which 10 were not computed because no differences were present, specifically, zero standard deviations and some zero tensiles in the measurement data at 5% add-on.

Of the remaining 46 sets, 40 showed significant differences at .05 and even at .01 among the five binders. Since each factor was looked at separately, the same binder was not necessarily the strongest

in both MD and TD for the same web at the same add-on. Also, the strength of the various binders was not the same when tested dry and wet.

All 40 were tested by Scheffé's tests to determine which binders differed significantly from each other at the .05 level (appendix B, table 8). On the basis of Scheffe's tests, it was possible to state which binders were the strongest with each fiber. These results were summarized and rank ordered in appendix B, table 9. It should be noted that since each of the ANOVAs was independent, each analysis of variance (ANOVA) had to be ranked separately. For example, on table 8 in appendix B, set number 30 at 20% add-on, dry test for PE #]--TD sample, binder C, which had the highest tensile measurement, differs significantly (.05) from binders A, B, D, and E, was assigned a ranking of 1. Binder E, with the second highest tensile measurement and significantly different (.05) from binders A, B, and D, was assigned a ranking of 2. Binder A, with the lowest tensile and significantly different from binders B, C, D, and E, was assigned a ranking of 5. Each ANOVA was ranked in the same manner. In the event of ties, e.g., set number 2, dry test for PE # 1--MD test samples, binders C and E were each ranked 1.5 and binders A, B, and D were ranked 4,

On the basis of the ranked data, the strongest binder on each web was selected from each ANOVA and classified according to the four following variables (summarized in tables 5 and 6):

1. Binder charge vs. fiber charge.

2. Binder charge vs. fiber finish charge.

Table 5

Relationship of Highest Tensiles to Ionic Charges

		N	umber of Hig	ghest Tensiles Wet Te	
Binder	rges Fiber	Dry MD	TD	Wet Te MD	st TD
C C C N N A A A	N A C N A C N A C	1 1 0 1 0 0 4 2 0	1 1 0 3 1 0 6 1 1	0 0 1 0 1 3 1 2	0 1 0 0 0 3 2 0
Binder	Fiber Finish				
C C N A A	С А С А С	0 2 1 0 4 2	0 2 3 0 6 3	0 0 2 0 4 1	0 1 0 4 1
Binder Emulsifier	Fiber				
N N A A A	N A C N A C	3 3 0 3 0 0	6 3 0 3 1 1	1 1 2 3 0 1	1 2 0 2 1 0
Binder Emulsifier	Fiber Finish				
N N A A	C A C A	2 4 3 0	5 4 4 1	4 0 3 1	1 2 3 0

•

20% Binder Add-On

Table 6

Relationship of Highest Tensile to Ionic Charges

		Number of Highest Tensiles				
Char	ges	Dry	Test	Wet To	est	
Binder	Fiber	MD	TD	MD	TI	
C	N	0	0	0	(
C C	A	0	0	0	(
	C	0	. 0	Q		
N	N	2	1	5		
N	A	1	1	1		
N	C	0	0	2	(
A	N	4	2	3	(
A	Ä	Q	1	0	(
A	C	1	0	2	(
Binder	Fiber Finish					
С	C	0	0	0	(
C	Α	0	0	0	(
N	C	3	2	7		
N	A	0	0	1	1	
A	C	4	3	4	(
А	А	1	0	1	(
Binder						
Emulsifier	Fiber					
N	Ν	2	1	2	(
Ν	А	0	0	0	(
Ν	С	1	0	2 6	(
A	N	4	2	6	1	
A	А	1	2	1		
A	C	0	0	2	(
Binder						
Emulsifier	Fiber Finish					
N	C	3	1	4	(
N	A	0	0	0	(
A	C	4	4	7		
А	A	1	0	2	(

5% Binder Add-On

- 3. Binder emulsifier charge vs. fiber charge.
- 4. Binder emulsifier charge vs. fiber finish charge.

The following is an evaluation of the four above variables:

- Binder charge vs. fiber charge. The highest number of strong bonds are seen when the binder charge is anionic and the fiber charge is nonionic at both levels of add-on, dry and wet tests and both MD and TD samples.
- 2. <u>Binder charge vs. fiber finish charge</u>. The highest number of strong bonds is seen when the binder charge is anionic and the fiber finish charge is cationic. This holds for 20% add-on both dry and wet and both MD and TD tests. It also holds up at 5% add-on for the dry tests on both MD and TD but not for the wet tests.
- 3. <u>Binder emulsifier vs. fiber charge</u>. At 20% add-on MD dry tests, there are three ties for the highest number of strong bonds among the following: (a) nonionic emulsifier/nonionic fiber, (b) nonionic emulsifier/anionic fiber, and (c) anionic emulsifier/nonionic fiber. At 20% TD dry test, the highest number of strong bonds was present where both emulsifier and fiber had nonionic charges. At 5% add-on, both MD and TD dry and wet tests showed the highest number of strong bonds where the emulsifier was anionic and the fiber was nonionic.
- 4. <u>Binder emulsifier vs. fiber finish</u>. At 20% add-on, the results on both MD and TD dry tests were about equal, except

when anionic charges were on both emulsifier and fiber finish. At 20% add-on, MD wet test, the highest number of strong bonds was present when the charge on the emulsifier was nonionic and cationic on the fiber finish. At 5% add-on, the highest number of strong bonds was noted for both MD and TD dry and wet tests when binder emulsifier was anionic and fiber finish cationic.

Overall Rating and Evaluations

While no one binder yielded the highest tensiles on every fiber, the two binders (A and E) with anionic charged polymers had higher tensiles overall than any of the others. The two anionic binders also have the highest Tg which means they will form the stiffest films. However, with some fibers, the two softest binders (A and B) did have some high values equal to the others. The best result for binder D, with nonionic charges on both polymer and emulsifier, was a four-way tie on rayon at 20% add-on on the TD dry test.

The results of the data from the analysis of variance showed significant differences (.05) among the five binders. Scheffé's tests showed which binders differed significantly (.05) from each and also, which were the strongest on each web.

The conclusions made here are made in relation to the hypotheses of chapter I based on ranking Scheffe's tests.

H₁: There are no differences in tensile strength among nonwovens bonded with the five binders at equal add-on on each of the seven webs as a function of the ionic charge on the binder and on the web. This hypothesis was accepted.

- H₂: There are no differences in tensile strength among nonwovens bonded with the five binders at equal add-on on each of the seven webs as a function of the ionic charge on the binder and the fiber finish. This hypothesis was rejected.
- H₃: There are no differences in tensile strength among nonwovens bonded with the five binders at equal add-on on each of the seven webs as a function of the ionic charge on the binder emulsifier and the fiber. This hypothesis was accepted.
- H₄: There are no differences in tensile strength among nonwovens bonded with the five binders at equal add-on on each of the seven webs as a function of the ionic charge on the binder emulsifier and fiber finish. This hypothesis was rejected.

CHAPTER V SUMMARY AND CONCLUSIONS

In this study, individual webs were carded from seven chemically different fibers--one rayon control, two polyester, one modified polyester, one polyester copolymer, and two polypropylenes. The webs were padded with five chemically different acrylic binders at 5% and 20% dry add-on. The treated webs were air dried, oven cured, conditioned, and then tested to determine thickness and both dry and wet tensiles. The selected fibers and binders had varying ionic charges on the binder polymer and its emulsifier, and on the fiber and its finish. Due to differences in weight among the seven webs, the tensile data were normal-ized to a standard fabric weight of 1.0 ounce per square yard (oz/yd^2) .

The following conclusions are based on the ranking of Scheffe's tests (.05):

- Significant differences in tensile strength were found among the five binders on the seven fabrics.
- There was no indication of ionic interaction to yield greater tensile strength as a function of charges on the binder and on the fiber.
- Ionic interaction between the binder and the fiber finish appeared to yield greater tensile strength on the fabrics.

- There was no indication of ionic interaction to yield greater tensile strength as a function of charges on the binder emulsifier and on the fiber.
- 5. Ionic interaction between the binder emulsifier and the fiber finish appeared to yield greater tensile strength on the fabrics; this suggests that ionic charge interaction may be responsible for better wetting of the fiber by the binder.
- There was no indication that the surface tensions of the binders in this study had any bearing on the tensile strength of the fabrics.
- Unrelated to ionic charges, the tensile strength is positively related to binder stiffness.

The above conclusions are consistent with the knowledge that ionic charges buried in polymer backbones such as fibers and binders should not interact because of excessive separation between charges and immobility. However, when charges are present in small molecules and on the surface as in fiber finishes and binder emulsifiers, interactions should be expected and were found.

Recommendations

Future research should be carried out using a factorial design to give further insight into the role of ionic charges in the resulting tensile strength of chemically bonded nonwoven fabrics. The statistical predictions of the study should be validated by actual preparation of nonwoven fabrics. A study of bonded webs by means of a scanning electron microscope could provide valuable information in regard to the bonding in these systems.

BIBLIOGRAPHY

- Besso, M. M.; Gillburg, G. E.; and Stuetz, D. E. "Contributions of Binder and Fiber to Nonwoven Properties." <u>Textile Research</u> Journal 52 (September 1982):587-597.
- Flory, Paul J. <u>Principles of Polymer Chemistry</u>. Ithaca: Cornell University Press, 1953.
- "Growth Predicted for Nonwovens"((Frost and Sullivan, Incorporated, Report No. 752). <u>The Textile Institute and Industry</u> 18 (March 1980):84.
- Hearle, J. W. S., and Newton, A. "Nonwoven Fabric Studies. Part XV: The Application of the Fiber Network Theory." <u>Textile Research</u> <u>Journal</u> 38 (April 1968):343-351.
- Hearle, J. W. S., and Newton, A. "Nonwoven Fabric Studies. Part XVI: The Behavior of Model Systems of Bonded Fibers." <u>Textile</u> Research Journal 38 (May 1968):488-496.
- Hearle, J. W. S., and Stevenson, P. J. "Nonwoven Fabric Studies. Part III: The Anisotropy of Nonwoven Fabrics." <u>Textile Research</u> <u>Journal</u> 33 (November 1963):877-888.
- Michie, R. I. C.; Peters, R. H.; and Taylor, W. "Nonwoven Fabrics Studies. Part I: Properties of Laboratory-Made Fabrics Bonded with Natural Rubber." <u>Textile Research Journal</u> 33 (May 1963): 325-329.
- Michie, R. I. C., and Wilkinson, J. A. "Nonwoven Fabric Studies". Part XII: Observations on Latex Migration in Fiber Webs." Textile Research Journal 37 (June 1967):461-466.
- Purdy, A. T. "Developments in Nonwoven Fabrics." In <u>Textile Progress</u>. Edited by P. W. Harrison. Manchester, N.Y.: Textile Institute, 1983.
- Starr, John. John Starr Incorporated, Boston, Massachusetts. Telephone interview, 1 March 1984.
- Wood, Dennis, E. "Aerated Latex Bonding of Nonwoven Fabrics: Part 1." Nonwovens Industry 11 (May 1980):18-26.
- Zeronian, S. H., and Wilkinson, J. "Nonwoven Fabric Studies. Part XI: Binder Distribution Effects." <u>Textile Research Journal</u> 36 (October 1966):866-873.

APPENDIX A

•...

ANALYSIS OF VARIANCE

.

•

. -

. .

ANOVA	df	SS	MS	<u>F</u>	
Set #1 Composed	d of MD	- Dry Samples A	1-E2		
Binder	4	6032842.183	1508210.546	22.058*	F4,40
Rep	1	8180.744	8180.744	**	F1,40
Binder & Rep	· 4	90270,563	22567,641	**	F4,40
Error	40	2734967.000	68374.175		
Total	49				
Set #2 Composed	d of MD	- Dry Samples A	<u>13-E4</u>		
Binder	4	625901.322	156475.330	7.340*	F4,40
Rep	1	2541,474	2541.474	**	F1,40
Binder & Rep	4	24563.623	6140.906	**	F4,40
Error	40	852680.300	21317.008		
Total	49				
Set #3 Composed	t of MD	- Dry Samples A	<u>15-E6</u>		
Binder	4	181010.269	45252,565	4.165*	F4,40
Rep	1	2625.696	2625.696	**	F1,40
Binder & Rep	4	4157 .3 48	1039.337	**	F4,40
Error	40	434576,200	10864.405		
Total	49				
Set #4 Composed	d of MD	- Dry Samples A	<u>7–E8</u>		
Binder	4.	26960,622	6740.155	1.317**	F4,40
Rep	1	2867.604	2867,604	**	F1,40

5116.000

Binder & Rep

Error

Total

4

40

49

4840.017

204640.000

Та	able	e 7
		\$
Analysis	of	Variance

F4,40

**

		· · · · · ·	· · · · · · · · · · · · · · · · · · ·		
ANOVA	df	<u>SS</u>	MS	<u>F</u>	
Set #5 Composed	of MD ·	- Dry Samples	<u>A9-E10</u>		
Binder	4	1044954.530	261238.630	5.867*	F4,40
Rep	٦	3135,024	3135.024	**	F1,40
Binder & Rep	4	14992.878	3748.219	**	F4,40
Error	40	1781001.000	44525,025		
Total	49				
Set #6 Composed	of MD -	Dry Samples	A11-E12		
Binder	4	862789.576	215697.390	4.531*	F4,40
Rep	1	8.427	8,427	**	F1,40
Binder & Rep	4	4469.743	1117.436	**	F4,40
Error	40	1904388.000	47609.700		
Total	49				
Set #7 Composed	of MD -	- Dry Samples	A13-E14		
Binder	4	308009.293	77002,323	37,462*	F4,40
Rep	٦	296,916	296.916	**	F1,40
Binder & Rep	4	880.081	220.020	**	F4,40
Error	40	82218,530	2055.463		
Total	49				
Set #8 Composed	of MD ·	- Dry Samples	A21-E22		
Binder	4	162415.294	40603 .823	1.859**	F4,40
Rep	1	457.652	457.652	**	F1,40
Binder & Rep	4	7057.420	1764.355	**	F4,40
Error	40	873795.200	21844.880		
Total	49				

•

Table 7 - Continued

N 1

ANOVA	df	<u>SS</u>	MS	<u>F</u>	
Set #9 Composed	i of MD -	Dry Samples A23	3-E24		<u> </u>
Binder	4	7921.274	1980.319	3.924*	F4 , 40
Rep	I	19,768	19.768	**	F1,40
Binder & Rep	4	198,923	49.731	**	F4,40
Error	40	20186.200	504.655		
Total	49				
Set #10 Compose	ed of MD	- Dry Samples A2	25-E26		
Binder	4	12676.116	3169.028	8.696*	F4,40
Rep	1	1.136	1.136	**	F1,40
Binder & Rep	4	13.490	3.373	**	F4,40
Error	40	14576.870	364.422		
Total	49				
Set #11 Compose	ed of MD	- Dry Samples A	27-E28		
Binder	4	5313,933	1328.483	8,508*	F4,40
Rep	1	17.344	17.344	**	F1,40
Bin der & Rep	4	33,430	8,358	**	F4,40
Error	40	6245,886	156.147		
Total	49				
Set #12 Compose	ed of MD	- Dry Samples A	29-E30		
Binder	4	110461.867	27615.465	7.139*	F4,40
Rep	1	1277.804	1277.804	**	F1,40
Binder & Rep	4	2172.112	543.028	**	F4,40
Error	40	154726.900	3868.173		
Total	49				

•

Table 7 - Continued

ANOVA	df	<u>SS</u>	MS	F	
Set #13 Compose	d of MD	- Dry Samples A	31-E32	<u>*************************************</u>	
Binder	4	60816.087	15204.022	8.944*	F4,40
Rep	1	4.624	4.624	**	F1,40
Binder & Rep	4	724.383	181.096	**	F4,40
Error	40	68004.280	1700.107		
Total	49 ⁻				
Set #14 Compose	d of MD	- Dry Samples A	<u>33-E34</u>		
Binder	4	2609.665	652.416	1.208**	F4,40
Rep	1	119.094	119.094	**	F1,40
Binder & Rep	4	267.207	66.802	**	F4,40
Error	40	21610.260	540.257		
Total	49				
Set #15 Compose	d of MD	- Wet Samples A	<u>1-E2</u>		
Binder	4	876289.807	219072.450	105.276*	F4,40
Rep	1	7174.898	7174.898	3.448**	F1,40
Binder & Rep	4	84845.590	21211.398	10.193*	F4,40
Error	40	832371.200	2080.928		
Total	49				
Set #16 Compose	d of MD	- Wet Samples A	<u>3-E4</u>		
Binder	4	181839.803	45459.950	4.596*	F4,40
Rep	ſ	6.691	6.691	**	F1,40
Binder & Rep	4	2719.453	679.856	**	F4,40
Error	40	395655.900	9891.398		
Total	49				

Table 7 - Continued

ANOVA	<u>df</u>	<u>SS</u>	MS	<u>F</u>	
Set #17 Compose	ed of MD	- Wet Samples A	5 - E6		
Binder	4	45091.439	11272.860	9.238*	F 4, 40
Rep	1	1529.427	1529.427	1.253**	F1,40
Binder & Rep	4	9 66.8 66	241.716	**	F4,40
Error	40	48808.480	1220.212		
Total	49				
Set #18 Compose	ed of MD	- Wet Samples A	7 - E8		
Binder	4	24410.516	6102,629	9.335*	F4,40
Rep	1	145.390	145,390	**	F1,40
Bin de r & Rep	4	750.594	187.648	**	F4,40
Error	40	26148.610	653,715		
Total	49				
Set #19 Compose	d of MD	- Wet Samples A	9-E10		
Binder	4	114416.248	28604,063	8.170*	F4,40
Rep	1	125.387	125,387	**	F1,40
Binder & Rep	4	4170.503	1042.626	**	F4,40
Error	40	140040.100	3501.003		
Total	49				
Set #20 Compose	ed of MD	- Wet Samples A	<u>11-E12</u>		
Binder	4	144174.318	36043.578	4.470*	F4,40
Rep	1	463.761	463,761	**	F1,40
Binder & Rep	4	3657.253	914,313	**	F4,40
Error	40	322508.400	8062,710		
Total	49				

. .

Table 7 - Continued

ANOVA	<u>df</u>	<u>SS</u>	MS	<u>F</u>	
Set #21 Co	mposed of	MD - Wet Samples	A13-E14		
Binder	4	26964.052	6741.013	2.464**	F4,40
Rep	1	49.551	49.551	**	F1,40
Binder & R	ep 4	368,673	92,168	**	F4 , 40
Error	40	109426.300	2735.658		
Total	49				
<u>Set #22 Co</u>	mposed of	MD - Wet Samples	A21-E22		
Binder	4	175269,645	43817.410	8.654*	F4,40
Rep	1	138.607	138.607	, **	F1,40
Binder & R	ep 4	10979.813	2744.953	**	F4,40
Error	40	202537.000	5063.425		
Total	49				
<u>Set #23 Co</u>	nposed of	MD - Wet Samples	A23-E24		
Binder	4	6799,592	1699.898	16.951*	F4,50
Rep	1	36,366	36.366	**	F1,40
Binder & R	ep 4	48,344	12.086	**	F4,40
Error	40	4011.380	100.285		
Total	49				
<u>Set #24 Co</u>	nposed of	MD - Wet Samples	A25-E26		
Binder	4	8345.202	2086.301	13.914*	F4,40
Rep	1	10.000	10.000	**	F1,40
Binder & R	ep 4	184.930	46.232	**	F4,40
Error	40	5997.621	149.941		
Total	49				

Table 7 - Continued

ANOVA	df	SS	MS	<u> </u>	
Set #25 Compose	ed of MD	- Wet Samples A2	7-E28		
Binder	4	2111,409	527.852	8.861*	F4,40
Rep	1	0	0	**	F1,40
Binder & Rep	4	1.445	.361	**	F4,40
Error	40	2382.716	59.568		
Total	49				
Set #26 Compose	ed of MD	- Wet Samples A2	<u>9-E30</u>		
Binder	4	37336.604	9334.151	7.407*	F4,40
Rep	1	4788.219	4788.219	3.799**	F1,40
Binder & Rep	4	5265,403	1316.351	1.045*	F4,40
Error	40	50406.500	1260.163		
Total	49				
Set #27 Compose	ed of MD	- Wet Samples A3	<u>1-E32</u>		
Binder	4	8658.411	2164,603	4.618*	F4,40
Rep	ſ	227.338	227.338	**	F1,40
Binder & Rep	4	1148.622	287,155	**	F4,40
Error	40	18749.220	468.731		
Total	49				
Set #28 Compose	ed of MD	- Wet Samples A3	<u>3-E34</u>		
Binder	4	412.664	103.166	1.184**	F4,40
Rep	1	1.665	1.665	**	F1,40
Binder & Rep	4	20.664	5.659	**	F4,40
Error	40	3485.878	87.147		
Total	49				

Table 7 - Continued

ANOVA	df	<u>SS</u>	MS	<u>F</u>	
Set #29 Composed	of	TD - Dry Samples A	<u>1-E2</u>		
Binder	4	2246470.651	561617.680	13.836*	F4,20
Rep	1	100.997	100.997	**	F1,20
Binder & Rep	4	31754.231	7938.558	**	F4,20
Error	20	811824,500	40591.225		
Total	29				
Set #30 Composed	of	TD - Dry Samples A	<u>3-E4</u>		
Binder	4	134816.378	33704.093	45.691*	F4,20
Rep	1	588.749	_ 588.749	**	F1,20
Binder & Rep	4	1818.869	454.717	**	F4,20
Error	20	14752.920	737.646		
Total	29				
Set #31 Composed	of	TD - Dry Samples A	<u>5-E6</u>		
Binder	4	6466.154	1616.539	20.379*	F4 ,2 0
Rep	1	9.101	9.101	**	F1,20
Binder & Rep	4	107.658	26.915	**	F4,20
Error	20	1586,495	79.325		
Total	29				
Set #32 Composed	of	TD - Dry Samples A	<u>7-E8</u>		
Binder	4	2034.778	508.695	12.963*	F4,20
Rep	1	.188	.188	**	F1,20
Binder & Rep	4	70.236	17.559	**	F4,20
Error	20	784,790	39.239		
Total	29				

Table 7 - Continued

ANOVA	df	<u>SS</u>	MS	<u>F</u>	
Set #33 Compose	d of TI) - Dry Samples	A9-E10		
Binder	4	162415.294	40603.823	40.579*	F4,20
Rep	1	457.652	457.652	**	F1,20
Binder & Rep	4	7057.420	1764.355	1.763**	F4,20
Error	20	20012.295	1000.615		
Total	29				
Set #34 Compose	d of TC) - Dry Samples	A11-E12		
Binder	4	306554.473	76638.518	60.751*	F4,20
Rep	1	1080.976	1080.976	**	F1,20
Binder & Rep	4	5127.257	1281.814	1.016**	F4,20
Error	20	25230.500	1261,525		
Total	29				
Set #35 Compose	d of TI) - Dry Samples	A13-E14		
Binder	· 4	231983,185	57995.795	164.423*	F4,20
Rep	1	.185	.185	**	F1,20
Binder & Rep	4	215,119	.610	**	F 4 ,2 0
Error	20	7054.475	352,724		
Total	29				
Set #36 Compose	d of TC) – Dry Samples	A21-E22		
Binder	4	128230.360	32057.588	12.911*	F4,20
Rep	1	3330.990	3330.990	1.342**	F1,20
Binder & Rep	4	3086.418	771.605	**	F4,20
Error	20	49659.9 50	2482.998		
Total	29				

•

-1

Table 7 - Continued

ANOVA	df		• • • •	<u>SS</u>		MS	<u> </u>	<u> </u>
Set #37 Composed	of	TD	- Dry	Samples	A23-E24	- No	Differences	
Binder	4							
Rep	I							
Binder & Rep	4							
Error	20							
Total	29							
Set #38 Composed	of	TD	- Dry	Samples	A25-E26	- No	Differences	
Binder	4							
Rep	1							
Binder & Rep	4							
Error	20							
Total	29							
Set #39 Composed	of	TD	- Dry	Samples	A27-E28	– No	Differences	
Binder	4							
Rep	1							
Binder & Rep	4							
Error	20							
Total	29							
Set #40 Composed	of	TD	- Dry	Samples	A29-E30	– No	Differences	
Binder	4		293	355.825	73	33.95	5 10.469*	F4,20
Rep	1			47.480		47.48) **	F1,20
Binder & Rep	4		10	630.611	4	07.65	3 **	F4,20
Error	20		140	011.415	7	00.57	I	
Total	29							

Table 7 - Continued

ANOVA	<u>df</u>	<u>SS</u>	MS	<u>F</u>	
Set #41 Compose	d of TD	- Dry Samples A3	81-E32		
Binder	4	1452.229	363.057	1.442**	F4,20
Rep	ſ	4.020	4.020	**	F1,20
Binder & Rep	4	1303.461	325.865	1,294**	F4,20
Error	20	5036.000	251.800		
Total	29				
Set #42 Compose	d of TS	- Dry Samples A3	<u> 3-E34</u> - No Difi	ferences	
Binder	4				
Rep	1				
Binder & Rep	4				
Error	20				
Total	29				
Set #43 Compose	d of TD	- Wet Samples Al	-E2		
Binder	4	339794,593	84948.648	76.297*	F4,20
Rep	1	10983.922	10983.922	9.865*	F1,20
Binder & Rep	4	14543.545	3635.886	3.266*	F4,20
Error	20	22267.990	1113.400		
Total	29				
Set #44 Compose	d of TD	- Wet Samples A3	-E4		
Bin d er	4	17825.388	4456,347	12.083*	F4,20
Rep	1	109.760	109.760	**	F1,20
Binder & Rep	4	884.277	221.069	**	F4,20
Error	20	7376.525	368,826		
Total	29	•			

Table 7 - Continued

ANOVA	df	<u>SS</u>	MS	<u>F</u>	
Set #45 Composed	of	TD - Wet Samples A	<u>N5-E6</u> - No Diffe	rences	
Binder	4				
Rep	1				
Binder & Rep	4				
Error	20				
Total	29				
Set #46 Composed	of	TD - Wet Samples A	<u>7-E8</u> - No Diffe	rences	
Binder	4				
Rep	1				
Binder & Rep	4				
Error	20				
Total	29				
Set #47 Composed	of	TD - Wet Samples A	<u>9-E10</u>		
Binder	4	58767.941	14691.985	75.441*	F4,20
Rep	1	2.070	2.070	**	F1,20
Binder & Rep	4	236.335	59.084	**	F4,20
Error	20	3894.955	194,748		
Total	29				
Set #48 Composed	of	TD - Wet Samples A	11-E12		
Binder	4	116248.515	29062.128	110.137*	F4,20
Rep	1	40.000	40.000	**	F1,20
Binder & Rep	4	415.705	103.926	**	F4,20
Error	20	5277.435	263,872		
Total	29				

•

Table 7 - Continued

ANOVA	df	SS	MS	<u> </u>	
Set #49 Composed	d of T	D - Wet Samples A	13-E14		
Binder	4	37230.919	9307.730	8,241*	F4,20
Rep	1	26.732	26.732	**	F1,20
Binder & Rep	4	67.271	16.818	**	F4,20
Error	20	22587.165	1129.358		
Total	29				
Set #50 Composed	l of T	D - Wet Samples A2	21-E22		
Binder	4	44804.033	11201.008	12.823*	F4,20
Rep	1	720,631	720.631	**	F1,20
Binder & Rep	4	2792.891	698.223	**	F4,20
Error	20	17469.875	873.494		
Total	29				
Set #51 Composed	l of T	D - Wet Samples A2	<u> 23-E24</u> - No Dif	ferences	
Binder	4				
Rep	1				
Binder & Rep	4				
Error	20				
Total	29				
Set #52 Composed	l of T	D - Wet Samples A2	<u>25-E26</u> - No Dif	ferences	
Binder	4				
Rep	1				
Binder & Rep	4				
Error	20				
Total	29				

Table 7 - Continued

ANOVA	df	<u>SS</u>	<u>MS</u>	<u> </u>	
Set #53 Compos	ed of TD) - Wet Samples A2	7 <u>-E28</u> - No Diff	erences	
Binder	4				
Rep	ſ				
Binder & Rep	4				
Error	20				
Total	29				
Set #54 Compos	ed of TD	- Wet Samples A29	9-E30		
Binder	4	6691.341	1672.835	8.536*	F4,20
Rep	1	15.080	15.080	**	F1,20
Binder & Rep	4	1121.494,	280.374	1.431**	F4,20
Error	20	3919.412	195.971		
Total	29				
Set #55 Compos	ed of TD	- Wet Samples A3	I-E32		
Binder	4	3987.756	996,939	6.977*	F4,20
Rep	1	272.588	272,588	1.908**	F1,20
Binder & Rep	4	578,743	144.686	1.013**	F4,20
Error	20	2857.844	142,892		
Total	29				
Set #56 Compos	ed of TD	- Wet Samples A33	<u>8-E34</u> - No Diff	erences	
Binder	4				
Rep	1				
Binder & Rep	4				
	20				
Error					

Table 7 - Continued

**Not significant at .05

APPENDIX B

SCHEFFÉ'S TESTS OF ANALYSIS OF VARIANCE SUMMARY OF SCHEFFÉ'S TESTS ON ANOVAS

TABLE 8

SCHEFFÉ'S TESTS OF ANALYSIS OF VARIANCE DATA

SET NUMBER 1	SET NUMBER 2
SAMPLES:MD-DRY A1-E2	SAMPLES:MD-DRY A3-E4
CRITICAL DIFFERENCE 377.84	CRITICAL DIFFERENCE 210.97
A= 148.50	A= 392.55
B= 2796.64	B= 528.91
C= 3125.79	C= 1019.23
D= 3059.96	D= 478.97
E= 3473.10	E= 910.27
$\begin{array}{l} A-B=-2648.14\\ A-C=-2977.29\\ A-D=-2911.46\\ A-E=-3324.60\\ B-C=-329.15\\ B-D=-263.32\\ B-E=-676.46\\ C-D=-65.83\\ C-E=-347.31\\ D-E=-413.14 \end{array}$	$\begin{array}{rcl} A-B=&-136.36\\ A-C=&-626.68\\ A-D=&-86.42\\ A-E=&-517.72\\ B-C=&-490.32\\ B-D=&49.94\\ B-E=&-381.36\\ C-D=&540.26\\ C-E=&108.96\\ D-E=&-431.30 \end{array}$
SET NUMBER 3	SET NUMBER 4
SAMPLES:MD-DRY A5-E6	SAMPLES:MD-DRY A7-E8
CRITICAL DIFFERENCE 150.61	CRITICAL DIFFERENCE O
A= 692.35	A= 522.10
B= 357.30	B= 519.83
C= 708.24	C= 467.70
D= 466.94	D= 425.17
E= 597.01	E= 581.12
$\begin{array}{rcrrr} A-B=& 335.05\\ A-C=& -15.89\\ A-D=& 225.41\\ A-E=& 95.34\\ B-C=& -350.94\\ B-D=& -109.64\\ B-E=& -239.71\\ C-D=& 241.30\\ C-E=& 111.23\\ D-E=& -130.07 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TABLE 8-Continued

.

SET NUMBER 5	SET NUMBER 6
SAMPLES:MD-DRY A9-E10	SAMPLES:MD-DRY A11-E12
CRITICAL DIFFERENCE 304.90	CRITICAL DIFFERENCE 315.29
A= 1162.24	A= 921.62
B= 1432.37	B= 1432.37
C= 1713.85	C= 1364.27
D= 760.45	D= 631.06
E= 1080.52	E= 1089.65
A-B= -270.13	A-B= -510.75
A-C= -551.61	A-C= -442.65
A-D= 401.79	A-D= 290.56
A-E= 81.72	A-E= -168.03
B-C= -281.48	B-C= 68.10
B-D= 671.92	B-D= 801.31
B-E= 351.85	B-E= 342.72
C-D= 953.40	C-D= 733.21
C-E= 633.33	C-E= 274.62
D-E= -320.07	D-E= -458.59
SET NUMBER 7	SET NUMBER 8
SAMPLES:MD-DRY A13-E14	SAMPLES:A21-E22
CRITICAL DIFFERENCE 65.51	CRITICAL DIFFERENCE 0
A= 658.30	A= 449.92
B= 268.99	B= 994.26
C= 651.49	C= 1327.95
D= 256.28	D= 1223.53
E= 465.35	E= 1452.80
A-B= 389.31 A-C= 6.81 A-D= 402.02 A-E= 192.95 B-C= -382.50 B-D= 12.71 B-E= -196.36 C-D= 395.21 C-E= 186.14 D-E= -209.07	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TABLE 8-Continued

SET NUMBER 9 SAMPLES:MD-DRY A23-E24	SET NUMBER 10 SAMPLES:MD-DRY A25-E26
CRITICAL DIFFERENCE 32.46	CRITICAL DIFFERENCE 27.58
$ \begin{array}{rrrrr} A = & 0.00 \\ B = & 79.45 \\ C = & 69.69 \\ D = & 64.24 \\ E = & 61.06 \end{array} $	A = 0.00 B = 49.72 C = 74.91 D = 46.99 E = 108.28
A-B= -79.45 A-C= -69.69 A-D= -64.24 A-E= -61.06 B-C= 9.76 B-D= 15.21 B-E= 18.39 C-D= 5.45 C-E= 8.63 D-E= 0.3.18	$\begin{array}{rcrrr} A-B= & -49.72\\ A-C= & -74.91\\ A-D= & -46.99\\ A-E= & -108.28\\ B-C= & -25.19\\ B-D= & 2.73\\ B-E= & -58.56\\ C-D= & 27.92\\ C-E= & -33.37\\ D-E= & -61.29 \end{array}$
SET NUMBER 11 SAMPLES:MD-DRY A27-E28	SET NUMBER 12 SAMPLES:MD-DRY A29-E30
CRITICAL DIFFERENCE 18.07	CRITICAL DIFFERENCE 89.87
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	A= 218.15 B= 508.48 C= 240.62 D= 361.15 E= 283.06

•

.

.

.

.

SET NUMBER 13 SET NUMBER 14 SAMPLES:MD-DRY A31-E32 SAMPLES:MD-DRY A33-E34 CRITICAL DIFFERENCE O CRITICAL DIFFERENCE 59.58 45.17 A= 217.92 A= B= 83.09 274.89 B= C= C= 214.06 66.06 D= 135.74 D= 91.49 E= 371.14 E= 79.22 A-B=A-B= -56.97 0.00 A-C= 3.86 A - C =0.00 A-D=82.18 A-D=0.00 A-E= -153.22 A - E =0.00 B-C=60.83 B-C=0.00 139.15 B-D=B-D= 0.00 B-E=-96.25 B-E=0.00 0.00 C-D= 78.32 C-D= 0.00 C-E = -157.08C-E=D-E=0.00 D-E = -235.40SET NUMBER 15 SET NUMBER 16 SAMPLES:MD-WET A1-E2 SAMPLES:MD-WET A3-E4 CRITICAL DIFFERENCE 65.91 CRITICAL DIFFERENCE 143.71 A= 681.00 242.89 A= B= 1480.04 B= 221.55 C = 1407.04C= 251.74 D= 1348.38 D= 212.70 E= 1418.75 567.50 E= A-B = -799.04A - B =21.34 A-C = -726.04A-C=-8.85 A-D = -667.38A - D =30.19 . A-E= -737.75 A - E = -324.61B-C=73.00 B-C= -30.19B-D=131.66 B-D=8.85 B-E=61.29 B-E = -345.95C-D=C-D= 39.04 58.66 C-E= -315.76 C - E =-11.71 D-E= -70.37 D-E = -354.80

TABLE 8-Continued

TABLE 8-Continued

•

.

.

SET NUMBER 17	SET NUMBER 18
SAMPLES:MD-WET A5-E6	SAMPLES:MD-WET A7-E8
CRITICAL DIFFERENCE 50.47	CRITICAL DIFFERENCE 36.94
A= 90.80	A= 85.80
B= 212.24	B= 160.71
C= 153.68	C= 240.07
D= 225.41	D= 204.75
E= 288.60	E= 223.14
$\begin{array}{rcl} A-B= & -121.44\\ A-C= & -62.88\\ A-D= & -134.61\\ A-E= & -197.80\\ B-C= & 58.56\\ B-D= & -13.17\\ B-E= & -76.36\\ C-D= & -71.73\\ C-E= & -134.92\\ D-E= & -63.19 \end{array}$	A-B= -74.91 A-C= -154.27 A-D= -118.95 A-E= -137.34 B-C= -79.36 B-D= -44.04 B-E= -62.43 C-D= 35.32 C-E= 16.93 D-E= -18.39
SET NUMBER 19	SET NUMBER 20
SAMPLES:MD-WET A9-E10	SAMPLES:MD-WET A11-E12
CRITICAL DIFFERENCE 85.49	CRITICAL DIFFERENCE 129.74
A= 599.28	A= 513.02
B= 526.64	B= 419.04
C= 612.90	C= 687.81
D= 314.16	D= 325.51
E= 522.10	E= 508.48
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	A-B= 93.98 A-C= -174.79 A-D= 187.51 A-E= 4.54 B-C= -268.77 B-D= 93.53 B-E= -89.44 C-D= 362.30 C-E= 179.33 D-E= -182.97

`

······	
SET NUMBER 21 SAMPLES:MD-WET A13-E14	SET NUMBER 22 SAMPLES:MD-WET A21-E22
CRITICAL DIFFERENCE O	CRITICAL DIFFERENCE 102.82
A= 277.62 B= 184.10 C= 244.03 D= 146.19 E= 274.67	A= 311.89 B= 705.97 C= 594.74 D= 553.88 E= 619.71
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{rcrrr} A-B=&-394.08\\ A-C=&-282.85\\ A-D=&-241.99\\ A-E=&-307.82\\ B-C=&111.23\\ B-D=&152.09\\ B-E=&86.26\\ C-D=&40.86\\ C-E=&-24.97\\ D-E=&-65.83 \end{array}$
SET NUMBER 23 SAMPLES:MD-WET A23-E24	SET NUMBER 24 SAMPLES:MD-WET A25-E26
CRITICAL DIFFERENCE 14.47	CRITICAL DIFFERENCE 17.69
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	A= 0.00 B= 71.73 C= 48.12 D= 51.07 E= 84.67
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

•

TABLE 8-Continued

.

/

TABLE 8-Continued

SET NUMBER 25	SET NUMBER 26								
SAMPLES:MD-WET A27-E28	SAMPLES:MD-WET A29-E30								
CRITICAL DIFFERENCE 11.15	CRITICAL DIFFERENCE 51.29								
A= 0.00	A= 171.61								
B= 39.27	B= 324.38								
C= 39.27	C= 156.18								
D= 28.14	D= 241.98								
E= 32.23	E= 189.54								
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$								
SET NUMBER 27	SET NUMBER 28								
SAMPLES:MD-WET A31-E32	SAMPLES:MD-WET A33-E34								
CRITICAL DIFFERENCE 31.28	CRITICAL DIFFERENCE O								
A= 139.83	A= 82.63								
B= 150.73	B= 83.31								
C= 113.04	C= 88.08								
D= 68.55	D= 71.28								
E= 137.79	E= 73.10								
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$								

TABLE 8-Continued

.

SET NUMBER 29	SET NUMBER 30
SAMPLES:TD-DRY A1-E2	SAMPLES:TD-DRY A3-E4
CRITICAL DIFFERENCE 394.11	CRITICAL DIFFERENCE 53.12
A= 577.96	A= 249.01
B= 1593.54	B= 335.96
C= 1845.51	C= 578.95
D= 1464.15	D= 392.71
E= 1850.05	E= 494.86
A-B=-1015.58	A-B= -86.95
A-C=-1267.55	A-C= -329.94
A-D= -886.19	A-D= -143.70
A-E=-1272.09	A-E= -245.85
B-C= -251.97	B-C= -242.99
B-D= 129.39	B-D= -56.75
B-E= -256.51	B-E= -158.90
C-D= 381.36	C-D= 186.24
C-E= -4.54	C-E= 84.09
D-E= -385.90	D-E= -102.15
SET NUMBER 31	SET NUMBER 32
SAMPLES:TD-DRY A5-E6	SAMPLES:TD-DRY A7-E8
	SAMPLES:TD-DRY A7-E8
SAMPLES:TD-DRY A5-E6	SAMPLES:TD-DRY A7-E8

,

TABLE 8-Continued

.

SET NUMBER 33	SET NUMBER 34
SAMPLES:TD-DRY A9-E10	SAMPLES:TD-DRY A11-E12
CRITICAL DIFFERENCE 61.87	CRITICAL DIFFERENCE 69.47
A= 649.22	A= 642.41
B= 799.04	B= 433.34
C= 740.02	C= 783.15
D= 428.80	D= 273.31
E= 603.82	E= 574.31
A-B= -149.82	A-B= 209.07
A-C= -90.80	A-C= -140.74
A-D= 220.42	A-D= 369.10
A-E= 45.40	A-E= 68.10
B-C= 59.02	B-C= -349.81
B-D= 370.24	B-D= 160.03
B-E= 195.22	B-E= -140.97
C-D= 311.22	C-D= 509.84
C-E= 136.20	C-E= 208.84
D-E= -175.02	D-E= -301.00
SET NUMBER 35	SET NUMBER 36
SAMPLES:TD-DRY A13-E14	SAMPLES:TD-DRY A21-E22
CRITICAL DIFFERENCE 36.73	CRITICAL DIFFERENCE 97.47
A= 499.40	A= 246.29
B= 196.81	B= 510.75
C= 517.56	C= 558.42
D= 159.35	D= 372.05
E= 256.96	E= 494.86
A-B= 302.59 A-C= -18.16 A-D= 340.05 A-E= 242.44 B-C= -320.75 B-D= 37.46 B-E= -60.15 C-D= 358.21	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

	JMBER 37 ES:TD-DRY A23-E24	SET NUMBER 38 SAMPLES:TD-DRY A25-E26
CRITIC	CAL DIFFERENCE O	CRITICAL DIFFERENCE O
B= C= D=	0.00 32.69 44.95 50.39 46.99	A= 0.00 B= 0.00 C= 0.00 D= 0.00 E= 0.00
A - B = A - C = A - D = B - C = B - D = B - E = C - D = C - E = D - E =	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
		•
	IMBER 39 S:TD-DRY A27-E28	SET NUMBER 40 SAMPLES:TD-DRY A29-E30
SAMPLE		
SAMPLE CRITIC	S:TD-DRY A27-E28	SAMPLES:TD-DRY A29-E30

TABLE 8-Continued

.

SET NUMBER 41 SAMPLES:TD-DRY A31-E32	SET NUMBER 42 SAMPLES:TD-DRY A33-E34
CRITICAL DIFFERENCE O	CRITICAL DIFFERENCE O
A= 137.11 B= 170.25 C= 157.54 D= 157.09 E= 169.80	A= 19.98 B= 76.96 C= 43.81 D= 39.73 E= 39.50
A-B= 0.00 A-D= 0.00 A-D= 0.00 A-E= 0.00 B-C= 0.00 B-D= 0.00 C-D= 0.00 C-E= 0.00 D-E= 0.00	A-B= 0.00 A-C= 0.00 A-D= 0.00 B-C= 0.00 B-D= 0.00 B-E= 0.00 C-D= 0.00 C-E= 0.00 D-E= 0.00
SET NUMBER 43 SAMPLES:TD-WET A1-E2	SET NUMBER 44 SAMPLES:TD-WET A3-E4
CRITICAL DIFFERENCE 65.27	CRITICAL DIFFERENCE 37.56
A= 335.96 B= 519.83 C= 690.08 D= 658.30 E= 889.84	A= 115.09 B= 112.36 C= 179.78 D= 157.31 E= 225.08
A-B= -183.87 A-C= -354.12 A-D= -322.34 A-E= -553.88 B-C= -170.25 B-D= -138.47 B-E= -370.01 C-D= 31.78 C-E= -199.76	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TABLE 8-Continued

TABLE 8-Continued

•

.

SET NUMBER 45	SET NUMBER 46							
SAMPLES:TD-WET A5-E6	SAMPLES:TD-WET A7-E8							
CRITICAL DIFFERENCE 0	CRITICAL DIFFERENCE O							
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	A= 0.00 B= 29.06 C= 52.21 D= 33.82 E= 32.00							
A-B= 0.00 A-C= 0.00 A-D= 0.00 A-E= 0.00 B-C= 0.00 B-D= 0.00 B-E= 0.00 C-D= 0.00 D-E= 0.00	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							
SET NUMBER 47	SET NUMBER 48							
SAMPLES:TD-WET A9-E10	SAMPLES:TD-WET A11-E12							
CRITICAL DIFFERENCE 27.29	CRITICAL DIFFERENCE 31.77							
A= 304.86	A= 386.81							
B= 225.18	B= 230.17							
C= 291.47	C= 439.24							
D= 111.91	D= 141.42							
E= 320.52	E= 261.05							
A-B= 79.68	A-B= 156.64							
A-C= 13.39	A-C= -52.43							
A-D= 192.95	A-D= 245.39							
A-E= -15.66	A-E= 125.76							
B-C= -66.29	B-C= -209.07							
B-D= 113.27	B-D= 88.75							
B-E= -95.34	B-E= -30.88							
C-D= 179.56	C-D= 297.82							
C-E= -29.05	C-E= 178.19							
D-E= -208.61	D-E= -119.63							

.

•

TABLE 8-Continued

.

SET NUM SAMPLES	1BER 49 5:TD-WET A13-E14	SET NUMBER 50 SAMPLES:TD-WET A21-E22
CRITICA	L DIFFERENCE 65.73	CRITICAL DIFFERENCE 57.81
D= 8		A= 181.37 B= 385.90 C= 328.92 D= 286.24 E= 296.91
A-C= A-D= B-C= B-D= B-E= C-D= C-E=	154.81 106.69 177.06 109.41 -48.12 22.25 -45.40 70.37 2.72 -67.65	$\begin{array}{rcrrr} A-B=&-204.53\\ A-C=&-147.55\\ A-D=&-104.87\\ A-E=&-115.54\\ B-C=&56.98\\ B-D=&99.66\\ B-E=&88.99\\ C-D=&42.68\\ C-E=&32.01\\ D-E=&-10.67\\ \end{array}$
SET NUM SAMPLES	1BER 51 5:TD-WET A23-E24	SET NUMBER 52 SAMPLES:TD-WET A25-E26
CRITICA	AL DIFFERENCE O	CRITICAL DIFFERENCE O
B= 4 C= 4 D= 3	44.95	A= 0.00 B= 0.00 C= 0.00 D= 0.00 E= 0.00
A-B= A-C= A-D= A-E= B-C= B-D= B-E=	0.00 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

SET NUMBER 53 SAMPLES:TD-WET A27-E28	SET NUMBER 54 SAMPLES:TD-WET A29-E30						
CRITICAL DIFFERENCE O	CRITICAL DIFFERENCE 27.38						
$ \begin{array}{rcl} A = & 0.00 \\ B = & 0.00 \\ C = & 0.00 \\ D = & 0.00 \\ E = & 0.00 \end{array} $	A= 104.42 B= 159.12 C= 79.90 D= 119.40 E= 122.58						
A-B= 0.00 A-C= 0.00 A-D= 0.00 B-C= 0.00 B-D= 0.00 B-E= 0.00 C-D= 0.00 C-E= 0.00 D-E= 0.00	A-B= -54.70 A-C= 24.52 A-D= -14.98 A-E= -18.16 B-C= 79.22 B-D= 39.72 B-E= 36.54 C-D= -39.50 C-E= -42.68 D-E= -3.18						
SET NUMBER 55 SAMPLES:TD-WET A31-E32	SET NUMBER 56 SAMPLES:TD-WET A33-E34						
CRITICAL DIFFERENCE 23.38	CRITICAL DIFFERENCE O						
A= 114.63 B= 121.90 C= 81.04 D= 68.55 E= 96.25	A= 82.62 B= 41.77 C= 43.81 D= 39.72 E= 39.50						
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						

TABLE 8-Continued

Table 9

.

.

2

20% Add-on - Dry Tensil	es	•	Jannau	or sene		.50 011								
Fiber	Rayo	n	PE	#1	MPE		R-P	PPY	A-	PPY	P(:P	PE	#2
Fiber ID codes Ionic nature Fiber Ionic nature Fiber Finish	1,2 N C			,4 N C	13,1 A A	4	5, N A			,8 C C	9,1 A	0	11	1
Fiber orientation in test sample	MD	TD	MD	TD	MD	TD	MD	TD	MD	TD	MD	TD	MD	TD
3inder A *Rank	5	5	4	5	1.5	1.5	1.5	2	NS	5	3.5	3.5	4.5	2.5
fg-18 Conic nature - Polymer - C Conic nature - Emulsifier - N														
tronger at .05 than binder(s)	0	0	0	0		B,D,E	B,D	B,D		0	D	D	0	B,D
Binder B *Rank Ig-15	3	2.5	- 4	4	4.5	4	4.5	5	NS	3	2	1.5	1	4
Ionic nature - Polymer - N Ionic nature - Emulsifier - A Stronger at .05 than binder(s) Binder C *Rank Ionic nautre - Polymer - A Ionic nature - Emulsifier - N	A 3	A 2.5	0 1.5	A 1	0 1.5	0 1.5	0 1.5	0 2	NS	A 3	D,E T	A.D.E 1.5	A,D,E 2	D 1
stronger at .05 than binder(s)	<u>A</u>	<u> </u>	A,B,D	A,B,D,E		B,D,E		<u> </u>		<u> </u>	<u>A,D,E</u>	A,D,E		<u>1,8,D,E</u>
Binder D *Rank Ig-14 Lonic nature – Polymer – N Lonic nature – Emulsifier – N	<u></u>	2.5	4	3	4.5	5	4.5	4	NS	3	5	5	4.5	
stronger at .05 than binder(s)	A	A	0	A,B	0	0	0	В	-	A	0	0	0	0
Binder E *Rank 1g-7	1	2.5	1.5	2	3	3	3	2	NS	1	3.5	3.5	3	2.5
lonic nature - Polymer - A lonic nature - Emulsifier - A														
tronger at .05 than binder(s)	A,B,D	A	A,B,D	A,B,D	B,D	B,D	B	B,D		A,C,D	D	D	D	B,D
*Pank Arder - 1 = strongest														

•

20% Add on Dwy Tonstlos

.

Summary of Scheffe's Test on ANOVAs

*Rank Order - 1 = strongest 5 = weakest NS = ANOVA showed no significant differences at .05

20%	Add-on	-	Wet	Tensiles	

.

iber	Ray	on	PE	#1	MP	Ε·	R-P	PY	A-P	PY	P	CP	PE	#2
iber ID codes onic nature Fiber onic nature Fiber Finish iber orientation in test sample	1,1 N C MD	2 TD	3, N KD		13 Å Å MD		5, N A MD		7, 0 MD		9, Å C MD		1	,12 N C. TD
inder A *Rank	5	5	3.5	4.5	NS	1.0	5	NS	5	NS	3	2.5	2.5	2
g-18 onic nature - Polymer - C onic nature - Emulsifier - N														
tronger at .05 than binder(s)	0	0	0	0		B,C,D,E	0	-	0	-	D	B,D	<u>D</u>	B,D
inder B *Rank	1	4	3.5	4.5	NS	4.5	2.5	NS	4	NS	3	4	4.5	3.
g-15 onic nature - Polymer - N onic nature - Emulsifier - A											_			
tronger at .05 than binder(s)	A,C,D	A	0	0	-		A,C	-	A	-	<u>D</u>	D	0	D
inder C *Rank	3.5	2.5	3.5	2.5	NS	2.5	4	NS	2	NS		2.5	1	<u> </u>
g-4 onic nature - Polymer -A onic nature - Emulsifier - N														
tronger at .05 than binder(s)	<u> </u>	A,B	0			B,D	<u>A.</u>		A,B			the second s	,8,D,E	_
inder D *Rank	3.5	2.5	3.5	2.5	NS	5	2.5	NS	2	NS			4.5	• 5
g-14 onic nature - Polymer - N onic nature - Emulsifier - N														
tronger at .05 than binder(s)	<u>A</u>	A,B	0.	A.B		0	- A,C	-	A,B	-	0	0	0	0
inder E *Rank	2		1	1	NS	2.5	1	NS	2	NS	3	1	2.5	3.
g-7 onic nature - Polymer - A onic nature - Emulsifier - A														
tronger at .05 than binder(s)	A,D	A,B, C,D	A,B, C,D	A,B, C,D	-	B "D	A,B, C,Đ	🖷 .	A.,B		D	B,C,D	0	D

.

~

5 = weakest NS = ANOVA showed no significant differences at .05

on - Dry Te	siles
on - Dry Te	stles

Table 9 - Continued

.

.

Fiber	Ray	/on	PE	#1	M	ΡE	R-PP	Y .	A-PI	PY	P	CP	PE	#2
Fiber ID codes Ionic nature Fiber Ionic nature Fiber Finish	21	22	23, N	1	33	34	25,2 N A	6	27, C C	28	29	,30 A C	31, N C	
Fiber orientation in test sample	MD	TD	MD	TD	MD	TD	MD	TD	MD	TD	MD	TD	MD	TD
Binder A *Rank	NS	5	5	NS	NS	NS	5	NS	5	NS	4	4.5	3.5	NS
Tg-18 Ionic nature - Polymer - C Ionic nature - Emulsifier - N														
Stronger at .05 than binder(s)		0	0	-			0		0	- 10-	0	0	D	
Binder B *Rank Tg-15	NS	2	2.5	NS	NS	NS	3.5	NS	3	NS		1.5		NS
Ionic nature - Polymer - N Ionic nature - Emulsifier - A Stronger at .05 than binder(s)		A,D					A			<u> </u>	A,C,D,	E A,C,D	<u> </u>	
Binder C *Rank	NS	2	2.5	NS	NS	NS	2	NS		NS	4	4.5	3.5	NS
Tg-4 Ionic nature - Polymer - A Ionic nature - Emulsifier - N														
Stronger at .05 than binder(s)		A,D	<u>A</u>	-	-		A,B,D	-	A,B,D	-	0	0	D	-
Binder D *Rank Tg-14	NS	4	2.5	NS	NS	NS	3.5	N5	3	NS	2	3	5	NS
Ionic nature - Polymer - N Ionic nature - Emulsifier - N	<u></u>													
Stronger at .05 than binder(s)		<u>A</u>	A			-	<u> </u>		<u>A</u>		<u>A_C</u>	A	0	
Binder E *Rank Tg-7 Iónic nature - Polymer - A Ionic nature - Emulsifier - A	NS	2	2.5	NS	NS	NS	1	NS	3	NS	4	1.5	<u> </u>	NS
Stronger at .05 than binder(s)	-	A,D	A	-			A,B,C,D	-	A	-	0	A,C,D	A,B,C,	D -
*Rank Order - $1 = strongest$ 2 = weakest														

2 = weakest NS = ANOVA showed no significant differences at .05

89

5% Ury Add-on	- Wet lensi	les													
Fiber		Ray	on	PE	#1	M	PE	R-P	PY	A-P	PY	PC	;P	Pl	E #2
Fiber ID codes Ionic nature Fib Ionic nature Fib	er er Finish	21, N		23	8,24 N C	33	8,34 A A	25, N		27	28	29		1	,32 N C
Fiber orientation in te		MD	TE	MD	TD	MD	TD	MD	TD	MD	TD	MD	TD	MC	TD
	ank	5	5	5	NS	NS	NS	5	NS	5	NS	4	4.5	3	2
Tg-18 Ionic nature - Polymer Ionic nature - Emulsifi	er - N														
Stronger at .05 than bi	nder(s)	0	0	0				0	-	. 0	-	0	0	D	C,D
Binder B *R Tg-15	ank	1	<u> </u>	2.5	NS	NS	NS	1.5	NS	2.5	NS	1	1	<u> </u>	1
fg-4 Ionic nature - Polymer Ionic nature - Emulsifi	er – A nder(s) ank - A er – N	A,C,D 3	A,D,E 3	A 2.5	NS	NS	NS	A,C,D 3.5	NS	A 2.5	NS	A,C,D,E 4	A,C,D, 4.5	<u>e C,D</u> 3	C,D,E 4.5
stronger at .05 than bi	nder(s)	A	<u>A</u>	A				A		A	-	0	0	D	0
fg-14 Ionic nature - Polymer Ionic nature - Emulsifi	er – N	3	3	2.5	NS	NS	NS	3.5	NS	2.5	NS	2	2,5		4.5
tronger at .05 than bi		<u>A</u>	A	A				A		A		A,C,E	C	0	0
<u>Binder E *R</u> Ig-7 Ionic nature – Polymer Ionic nature – Emulsifi	er – A	3	3	2.5	NS	NS	NS	1.5	NS	2.5	NS	4	2.5	3	3
	nder(s)														0

5% Dry Add-on - Wet Tensiles

Table 9 - Continued

.

-

.

.

*Rank Order - 1 = strongest 2 = weakest NS = ANOVA showed no significant differences at .05

APPENDIX C

.

.

.

.

MEANS AND STANDARD DEVIATIONS OF NORMALIZED DATA

#3

Table	10
-------	----

Sample		Dry	We		· [Dry	W	et
ID.	MD	<u>SD</u>	MD	<u>SD</u>	TD	<u>SD</u>	TD	<u>SD</u>
A1	1253	212.06	695	125.07	558	57.75	341	26.71
A2	1244	241.21	667	176.48	568	50.98	331	9.72
B1	2701	238.39	1335	237.81	1571	231.39	508	32.09
B2	2892	274.36	1625	129.76	1616	232.55	531	40.34
C1	3196	253.00	1489	105.34	1920	95.72	726	47.87
C2	3055	183.15	1326	107.66	1771	100.24	654	41.25
D1	3037	286.35	1416	68.08	1380	48.65	695	18.38
D2	3083	245.12	1280	97.30	1548	48.65 349.82	622	9.18 39,70
E1	3659	306.75	1535 1303	167.90 151.44	1902 1798	349.82	990 790	40.96
E2 A3	3287 386	338.76 71.59	245	41.18	241	20.09	108	11.57
AS A4	399	98.24	245	36.46	257	23.53	122	0
B3	549	19.38	239	46.67	346	11.46	119	Ő
B4	508	22.53	204	32.85	326	17.11	106	29,99
C3	1108	92.42	241	31.72	595	41.79	181	20.07
C4	931	92.58	262	38.24	563	41.38	179	34,46
D3	518	51.73	227	47,99	386	13,92	177	0
D4	440	26.98	198	28,92	400	13.53	138	10.99
E3	849	220.70	540	192.76	522	40.26	222	20.13
E4	972	250.37	595	223.31	468	23.21	229	23.21
A5	672	123.37	91	20.50	104	0	0	0
A6	713	144.06	91	31.65	108	3.19	0	0
B5	377	61.38	194	37.40	50	0	25	0
B6	338	46.14	231	46.94	41	0	27	0
C5	695	163.02	151	15.17	114	15.33	0	0
C6 D5	722 444	176.73 46.26	156 211	20.78 36.55	112 68	6.33 0	0 27	0 0
D5 D6	490	67.76	240	55.92	75	15.42	27	0
E5 .	554	25.27	262	13.48	99	14.13	42	0
E6	640	39.94	315	43.26	108	8.40	44	Ö
A7	545	48.05	91	14,18	53	6.67	0	Õ
A8	499	90,49	81	18.33	51	6.67	õ	õ
B7	572	46.68	181	25.01	87	5.98	31	Ō
B8	468	30.66	141	15.94	82	2.42	27	6.06
C7	499	92.19	203	38.67	82	0	51	0
C8	454	20.83	205	21.92	79	6.16	53	0
D7	421	65.92	205	18.90	81	0	35	0
D8	429	46.56	205	18.62	80	11.12	33	0
E7	572	114.01	218	32.76	90	10.01	30	. 0
E8	590	95.39	228	36.98	100	0	34	0
A9	1103	207.71	590	60.92	631	21.13	309	9.28
A10	1221	220.30	608	60.00	667	23.16	301	8.83
B9	1403	225.37	504	92.75	772	62.01	217	16.74
B10	1462	241.57	549	67.60	826	41.87	233	9.59

Means and Standard Deviations of Normalized Data

•

Sample		Dry		let	 ח	ry	<u>ا</u> با	 et
ID.	MD	SD	MD	<u>SD</u>	TD	SD	TD	<u>SD</u>
ID. C9 C10 D9 D10 E9 E10 A11 A12 B11 B12 C11 C12 D11 D12 E11 E12 A13 A14 B13 B14 C13 C14 D13 D14 E13 E14 A21 A22 B21 B22 C21 C22 D21 D22 E21 B22 C21 D22 E21 E22 A23 B24 C23 D24 E23 E24	MD 1752 1675 1026 1350 1426 1389 1426 1426 1426 1426 1428 1516 1289 1516 1289 1516 1289 1516 1289 1516 1289 1516 1289 1516 1589 15	$\begin{array}{c} \text{SD}\\ 200.25\\ 228.58\\ 177.44\\ 163.06\\ 162.11\\ 260.24\\ 166.24\\ 187.42\\ 150.79\\ 199.84\\ 170.77\\ 136.06\\ 170.77\\ 136.06\\ 170.77\\ 148.02\\ 332.43\\ 377.11\\ 41.21\\ 36.54\\ 28.78\\ 37.91\\ 69.87\\ 63.84\\ 39.70\\ 41.76\\ 45.53\\ 30.09\\ 56.94\\ 74.85\\ 189.25\\ 265.59\\ 137.88\\ 152.83\\ 108.51\\ 122.34\\ 127.41\\ 133.82\\ 0\\ 29.43\\ 40.53\\ 33.99\\ 19.04\\ 8.70\\ 10.67\\ 21.28\\ 19.43\\ \end{array}$	$ \begin{array}{c} MD \\ 645 \\ 581 \\ 309 \\ 549 \\ 549 \\ 549 \\ 549 \\ 549 \\ 549 \\ 549 \\ 531 \\ 53$	$\begin{array}{c} \underline{SD}\\ 20.38\\ 19.90\\ 35.97\\ 29.03\\ 63.54\\ 86.84\\ 70.57\\ 50.95\\ 101.12\\ 77.35\\ 100.60\\ 124.79\\ 72.71\\ 94.87\\ 81.11\\ 101.41\\ 63.26\\ 67.49\\ 52.39\\ 54.21\\ 3.589\\ 63.84\\ 21.33\\ 25.12\\ 63.14\\ 51.77\\ 29.60\\ 24.47\\ 45.84\\ 156.83\\ 48.40\\ 70.52\\ 71.64\\ 50.57\\ 0\\ 10.13\\ 19.38\\ 12.24\\ 12.43\\ 0\\ 10.62\\ 10.37\\ \end{array}$	$\begin{array}{c} 1 \\ \hline \\ 781 \\ 699 \\ 431 \\ 426 \\ 572 \\ 636 \\ 640 \\ 645 \\ 430 \\ 799 \\ 767 \\ 263 \\ 284 \\ 627 \\ 522 \\ 495 \\ 504 \\ 193 \\ 201 \\ 522 \\ 513 \\ 162 \\ 255 \\ 468 \\ 531 \\ 586 \\ 351 \\ 393 \\ 504 \\ 480 \\ 0 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 60 \\ 22 \\ 43 \\ 445 \\ 50 \\ 48 \\ 46 \\ 10 \\ 22 \\ 43 \\ 44 \\ 45 \\ 50 \\ 48 \\ 46 \\ 10 \\ 22 \\ 43 \\ 44 \\ 45 \\ 50 \\ 48 \\ 46 \\ 10 \\ 22 \\ 43 \\ 44 \\ 45 \\ 50 \\ 48 \\ 46 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	$\begin{array}{c} \text{SD}\\ 15.63\\ 17.45\\ 18.35\\ 33.41\\ 29.67\\ 23.30\\ 6.48\\ 9.42\\ 52.58\\ 41.00\\ 28.84\\ 27.69\\ 37.56\\ 42.57\\ 33.87\\ 45.50\\ 10.84\\ 21.91\\ 20.99\\ 18.28\\ 9.97\\ 18.99\\ 10.78\\ 11.09\\ 25.81\\ 30.51\\ 22.91\\ 54.99\\ 25.81\\ 30.31\\ 83.79\\ 77.27\\ 78.47\\ 10.32\\ 17.88\\ 19.52\\ 0\\ 0\\ 0\\ 11.24\\ 8.91\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	1D 297 286 114 109 318 323 375 399 230 231 435 138 256 256 266 200 156 256 266 200 156 256 266 200 156 256 266 200 370 345 312 303 200 453 444 459 39 48 46 453 445 39 48 46 453 445 39 48 46 453 20 10 156 20 10 156 20 10 156 20 10 156 20 10 156 20 10 156 20 10 156 20 20 10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	$\begin{array}{c} \underline{SD}\\ 15.63\\ 20.18\\ 9.99\\ 11.27\\ 11.19\\ 20.19\\ 18.73\\ 9.42\\ 10.49\\ 20.48\\ 19.21\\ 18.73\\ 9.42\\ 10.49\\ 20.48\\ 19.21\\ 18.73\\ 9.42\\ 10.49\\ 20.48\\ 19.70\\ 10.84\\ 19.70\\ 10.84\\ 0\\ 20.99\\ 18.28\\ 17.30\\ 10.84\\ 0\\ 20.99\\ 18.28\\ 17.30\\ 10.84\\ 0\\ 20.99\\ 18.28\\ 17.30\\ 10.84\\ 0\\ 20.99\\ 18.28\\ 19.70\\ 10.84\\ 0\\ 20.99\\ 18.28\\ 19.70\\ 10.85\\ 10.30\\ 37.58\\ 10.30\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$

Table 10 - Continued

Dry Wet Dry Wet Sample MD SD MD SD SD TD TD SD ID A25 A26 B25 28.81 18.37 13.23 Õ 8.64 B26 18,60 C25 13.59 18.12 C26 16.11 23.92 18.85 20.83 D25 D26 E25 19.64 E26 27.89 9.11 A27 Ö A28 17.00 15.00 15.34 21.18 15,98 B27 9.32 B28 C27 13.41 .0 C28 11.21 5.59 D27 9.97 D28 6.51 7,63 E27 E28 8.96 19.12 A29 38.84 74.42 72.32 53.25 47.47 472 18.60 17.70 28.39 20.42 A30 B29 92.65 49.90 28.43 **B30** 21,47 21.45 28.02 48,91 C29 47.88 13.00 10.58 C30 25.41 22.23 44.75 73.71 36.15 D29 65.58 31.43 40.00 D30 12.80 31.64 E29 E30 A31 216 48.19 42.96 162 24.36 23.46 144 33.92 17.99 115 17.59 11.74 A32 44.18 11.13 11.74 25,46 B31 46.62 22,53 22.53 B32 39.88 25.80 11.08 43.78 16.88 **C**31 Ò C32 46.48 23.02 23,30 D31 45.05 17.75 12.23 12.23 E31 30.63 35,16 11.15 28.70 13.92 E32 12.34 12.34 A33 10.67 A34 2 B33 43.60 **B34** 29.37 33.45

Table 10 - Continued

Sample	0	Iry	Wet		Dry	Dry		et
ID	MD	<u>SD</u>	MD		. TD	<u>SD</u>	TD	<u>SD</u>
C33	66	0	89	0	44	0	44	0
C33 C34 D33	66	0	88	0	44	0	44	0
D33	95	8.82	71	18.87	40	0	40	0
D34	88	38.94	72	10.90	40	0	40	0
D34 E33	74	21.30	70	10.63	39	Ö	39	Õ
E34	84	16.84	76	16.84	40	0	40	Ō

.

Table 10 - Continued

.

a -

Raw Tensile Data (Pounds/Inches)

Sample	D	Iry		let		Dry		et
ID	MD	<u>SD</u>	MD	<u>SD</u>	TD	<u>SD</u>	TD	<u>SD</u>
A1 A2 B1 B2 C1 C2 D1 E1 E2 A3 A4 B3 C4 D3 E4 5 A6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	3.59 3.69 8.42 8.28 10.20 9.80 9.54 9.68 12.20 10.60 .96 1.38 1.29 2.76 2.34 1.34 1.15 2.11 2.596 1.25 2.569 1.25 2.569 1.25 2.569 1.25 2.569 1.25 2.569 1.25 2.563 1.644 1.962 2.365 2.76 2.363 1.844 1.962 2.365 2.563 1.844 1.962 2.365 2.563 1.844 1.962 2.365 2.576 2.364 1.844 1.962 2.365 2.563 1.844 1.962 2.365 2.576 2.365 2.563 1.844 1.962 2.365 2.576 2.204 2.365 2.563 1.833 1.833 2.866 3.433 3.986 3.98	.6066 .7144 .7429 .7855 .8075 .5874 .8988 .7694 1.0222 1.0941 .1782 .2409 .0487 .0574 .2302 .2329 .1342 .0707 .5482 .6215 .4761 .5189 .2434 .1681 .6138 .6448 .1710 .2535 .0894 .1369 .2074 .3905 .2247 .1458 .4491 .0974 .2869 .2093 .5694 .4775 .6447 .7182	$\begin{array}{c} 1.99\\ 1.98\\ 4.16\\ 4.66\\ 4.76\\ 4.54\\ 4.54\\ 4.54\\ 4.54\\ 4.52\\ 5.11\\ 4.21\\ .61\\ .59\\ .60\\ .52\\ .60\\ .52\\ 1.34\\ 1.48\\ .35\\ .57\\ .90\\ .93\\ 1.08\\ .40\\ .357\\ .67\\ .99\\ .92\\ 1.09\\ 1.14\\ 1.83\\ 1.98\end{array}$.3578 .5227 .7411 .3715 .3362 .3453 .2137 .3154 .5595 .4891 .1025 .0894 .1173 .0837 .0790 .0962 .1245 .0758 .4788 .5552 .0791 .1140 .0571 .0758 .1351 .2092 .0447 .1483 .0612 .0791 .1204 .0758 .1851 .1891 .1956	$\begin{array}{c} 1.59\\ 1.69\\ 4.90\\ 4.63\\ 6.73\\ 4.63\\ 4.63\\ 4.63\\ 4.63\\ 4.63\\ 4.63\\ 4.63\\ 4.63\\ 1.42\\ 1.60\\ 1.63\\ 1.48\\ 1.42\\ 1.42\\ 1.05\\ 1.30\\ 1.16\\ .49\\ .20\\ .15\\ .43\\ .28\\ .35\\ .22\\ .49\\ .35\\ .50\\ 1.96\\ 2.17\end{array}$	$\begin{array}{c} .1652\\ .1510\\ .7211\\ .6658\\ .3055\\ .3215\\ .1527\\ .1527\\ .1527\\ .1527\\ .1657\\ 1.2320\\ .0500\\ .0577\\ .0288\\ .0436\\ .1041\\ .1041\\ .0361\\ .0500\\ .1000\\ .0577\\ .0288\\ .0436\\ .1041\\ .1041\\ .0361\\ .0500\\ .0577\\ .0288\\ .0436\\ .00577\\ .0288\\ $.97 .98 1.65 1.52 2.32 2.10 2.18 3.30 2.55 .30 .27 .30 .27 .30 .27 .30 .27 .30 .27 .45 .45 .45 .57 0 .10 .10 .15 .1	.0764 .0288 .1000 .1155 .1528 .1323 .0577 .0288 .1323 .1323 .0288 0 0 .0764 .0500 .0867 0 .0867 0 .0288 .0500 .0572 0 0 0 0 0 0 0 0

Sample	D	ry		let	D	ry		et
ID	MD	<u>SD</u>	MD	<u>sd</u>	TD	<u>SD</u>	TD	<u>SD</u>
ID B9 B10 C9 C10 D9 D10 E9 E10 A11 A12 B11 B12 C11 C12 D11 D12 E11 E12 A13 A14 B13 B14 C13 C14 D13 D14 E13 E14 A22 B21 B22 C21 C22 D21 D22 E21 E22 A23 A24	MD 4.19 4.39 5.61 4.80 2.24 1.90 2.64 2.38 2.91 3.95 4.02 4.14 3.72 1.64 1.75 2.85 2.70 1.73 1.76 .69 1.16 1.18 1.15 1.09 2.18 2.70 3.84 3.27 3.26 3.58 4.66 4.10 0 0 0	SD .6731 .7258 .6407 .6548 .5116 .4168 .4174 .6446 .4438 .5727 .4138 .5630 .5128 .3667 .4547 .4016 .8500 .9572 .0952 .0952 .0952 .0952 .0952 .0962 .0791 .1037 .2019 .1681 .1061 .1084 .1140 .0758 .1581 .1673 .4055 .3029 .3421 .3912 .3742 .00 0	MD 1.51 1.65 2.06 1.67 .92 .79 1.29 1.35 1.31 1.64 1.18 1.15 2.15 1.82 .90 1.36 1.23 .72 .63 .38 .90 1.36 1.23 .72 .63 .38 .72 .63 .39 .70 .68 .79 .76 1.67 1.67 1.67 1.67 1.68 1.67 1.67 1.64 1.67 .72 .63 .39 .70 .64 1.67 .72 .63 .39 .70 .64 1.67 .72 .63 .39 .70 .66 .72 .63 .39 .70 .66 .72 .63 .39 .70 .66 .72 .63 .39 .70 .66 .72 .63 .39 .70 .66 .72 .63 .39 .70 .66 .79 .76 1.67 1.67 1.67 1.64 1.67 .75 .48 .53 .72 .63 .39 .70 .66 .79 .76 1.67 1.67 1.64 1.67 1.67 1.67 1.67 1.64 1.70 0 0 0 0 0 0 0 0 0 0 0 0 0	SD .2770 .2031 .0652 .0570 .1037 .0742 .1636 .2151 .1884 .1557 .2775 .2179 .3021 .3439 .1936 .2574 .2000 .1981 .11516 .1414 .000 .000	$\begin{array}{c} TD \\ 2.31 \\ 2.48 \\ 2.50 \\ 2.00 \\ 1.24 \\ 1.09 \\ 1.47 \\ 1.57 \\ 1.71 \\ 1.97 \\ 1.8 \\ 1.29 \\ 2.40 \\ 2.12 \\ .70 \\ 1.33 \\ 1.32 \\ 1.33 \\ 1.51 \\ 1.35 \\ .42 \\ .66 \\ .57 \\ 1.18 \\ 1.33 \\ 1.43 \\ .56 \\ .57 \\ 1.18 \\ 1.33 \\ 1.43 \\ 1.56 \\ .57 \\ 1.18 \\ 1.33 \\ 1.43 \\ 1.56 \\ .57 \\ 1.18 \\ 1.33 \\ 1.43 \\ .56 \\ .57 \\ 1.18 \\ 1.33 \\ 1.43 \\ .56 \\ .57 \\ 1.18 \\ 1.33 \\ 1.43 \\ .56 \\ .57 \\ 1.18 \\ 1.33 \\ 1.43 \\ .56 \\ .57 \\ 1.18 \\ 1.33 \\ 1.50 \\ .57 \\ 1.18 \\ 1.33 \\ 1.43 \\ .56 \\ .57 \\ 1.18 \\ 1.33 \\ 1.43 \\ .56 \\ .57 \\ 1.18 \\ 1.33 \\ 1.43 \\ .56 \\ .57 \\ 1.18 \\ 1.33 \\ 1.43 \\ .56 \\ .57 \\ 1.18 \\ 1.33 \\ 1.43 \\ .56 \\ .57 \\ 1.18 \\ 1.33 \\ 1.55 \\ 1.43 \\ .15 \\ 0 \end{array}$	<u>SD</u> .1852 .1258 .0500 .0500 .0529 .0854 .0764 .0577 .0173 .0288 .1443 .1155 .0866 .0763 .1000 .1155 .0866 .1154 .0288 .0577 .0577 .1483 .0288 .0577 .0577 .1527 .0577 .1527 .0577 .1527 .0577 .0577 .0763 .2020 .2082 .2082 .2082 .2082 .2082 .2082 .0500 .0500 .0577 .0763 .2020 .2082 .2082 .2082 .2082 .0500 .0577 .0577 .0577 .0763 .2020 .2082 .2082 .2082 .0500 .0577 .0577 .0763 .2020 .0577 .0577 .0763 .2020 .0507 .0577 .0763 .2020 .0500 .0500 .0500 .0500 .0500 .0500 .0500 .0500 .0577 .0763 .00500 .0577 .0577 .0763 .00500 .0577 .0577 .0577 .0577 .0577 .0577 .0763 .0500 .0500 .0500 .0500 .0500 .0500 .0500 .0500 .0500 .0500 .0500 .0500 .0500 .0500 .0500 .0577 .00500 .05000 .05000 .05000 .05000 .05000 .050000 .0500000 .0500000000	TD .65 .70 .95 .82 .33 .28 .80 1.00 1.20 .63 .63 1.33 1.20 .63 .63 1.33 1.20 .63 .63 1.33 1.20 .63 .63 1.33 1.20 .68 .68 .68 .70 .28 .30 .40 .68 .65 .40 .22 .38 .38 .45 .93 .97 .93 .82 .80 .00 .22 .30 .45 .40 .22 .38 .45 .40 .22 .38 .45 .45 .45 .40 .22 .38 .45 .45 .45 .40 .22 .38 .45 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40	<u>SD</u> .0500 .0500 .0578 .0288 .0288 .0288 .0288 .0500 .0288 .0500 .0288 .0577 .0577 .0500 .0288 .0577 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0577 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0577 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0500 .0288 .0577 .0577 .0577 .0500 .0288 .0577 .0577 .0577 .0500 .0288 .0577 .0577 .0577 .0577 .0500 .0288 .0577 .0577 .0500 .0288 .0577 .0577 .0577 .0500 .0288 .0577 .0577 .0500 .0288 .0577 .0577 .0500 .0288 .0577 .0500 .0288 .0577 .0500 .0288 .0577 .0500 .0288 .0577 .0500 .0288 .0577 .0500 .0288 .0577 .0500 .0288 .0577 .0500 .0288 .0577 .0500 .0288 .0577 .0500 .0288 .0570 .0570 .0500 .0577 .0500 .0577 .0500 .0577 .0500 .0577 .0500 .0577 .0500 .0588 .0288 .0288 .0288 .0288 .0288 .0288 .0288 .0288 .0288 .0288 .0288 .0288 .0288 .0500 .0288 .0288 .0288 .0500 .02888 .0288 .0288 .0288 .0288 .0288 .0288 .0288 .0288 .0288 .0288
B23 B24 C23 C24 D23 D24	.16 .20 .17 .14 .16 .17	.0651 .0935 .0758 .0418 .0223 .0273	.14 .17 .13 .13 .15 .15	.0224 .0447 .0273 .0273 0 0	.05 .10 .10 .10 .13 .13	0 0 0 .0288 .0288	.10 .10 .10 .10 .10 .10	0 0 0 0 0

Table 11 - Continued

			· · · ·					
Sample		ry	V	let	D	<u>ry</u>	W	et
ID	MD	<u> </u>	MD	<u>SD</u>	TD	<u>SD</u>	TD	<u>SD</u>
E23	.12	.0447	.14	.0223	.10	0	.10	0
E24 A25	.14 0	.0418 0	.16 0	.0223 0	.10 0	0 0	.10 0	0 0
A26	ŏ	ů	ŏ	Ö	ŏ	ŏ	ŏ	Ő
B 2 5	.16	.0894	.22	.0570	0	0	0	0
B26 C25	.14 .25	.0418	.23 .17	.0273	0 0	0	0	0
C25 C26	.25	.0612 .0612	.17	.0447 0	0	0 0	0 0	0 0
D25	.16	.0547	.20	.0707	õ	õ	ŏ	Ő
D26	.16	.0821	.15	0	0	0	0	0
E25 E26	.31 .33	.0547 .0836	.23 .27	.0570 .2073	0 0	0 0	0 0	0 0
A27	.33	.0050	/	.2073	0	0	0	0
A28	0	0	. 0	0	0	0	0	0
B27	.16	.0651	.15	.0612	0	0	0	0
B28 C27	.17 .31	.0570 .0651	.15 .17	.0354 .0570	0 0	0 0	0 0	0 0
C28	.28	.0821	.15	0	ŏ	Õ	ŏ	ŏ
D27	.18	.0477	.11	.0223	0	0	0	0
D28 E27	.16 .25	.0418 .0353	.12 .15	.0273 0	0 0	0 0	0 0	0 0
E28	.23	.0353	.15	0	0 0	0	0	0
A29	.61	.1140	.44	.0547	.30	0	.30	0
A30	.60	.2000	.51	.1431	.30	.0500	.28	.0763
B29 B30	1.34 1.47	.2043 .2490	.74 1.04	.1341 .1341	.65 .68	.0500 .0764	.47 .43	.0577 .0577
C29	.56	.1140	.30	0	.25	.0500	,15	0
C30	.68	.1304	.50	.0354	.32	.0763	.26	.0288
D29 D30	.84 .89	.1674 .1475	.56 .60	.0821 .0707	.43 .35	.0577 .0500	.30 .27	0 0288,
E29	.60	.0707	.41	.0894	.50	,1000	.25	,0200 0
E30	.67	.1095	.41	.0548	.48	.0763	,25	0
A31	.60	.1275	.45	.0707	.40	.0500	.32	.0288
A32 B31	.54 .69	.1084 .1194	.33 .36	.0273 .0652	.32 .42	.0288 .0577	.28 .33	.0288 .0577
B32	.73	.1037	.42	.0671	.46	.0288	.30	.03/7
C31	.54 .52	.1034	.29	.0418	.40	0	.20	0
C32 D31	.52	.1151 .1061	.27 .16	.0570 .0418	.38 .33	.0577	.20 .16	0
D32	.33	.0908	.16	.0418	.40	.0288 .0500	.16	.0288 .0288
E31	1.00	.0791	.48	.0908	.38	.0288	.30	0
E32 A33	.83	.0670	.30	0	.36	.0288	.18	.0288
A33 A34	.10 .12	.0353 .0274	.20 .20	0 0	.05 .05	0 0	.20 .20	0 0
B33	.17	.1036	.20	õ	.15	0	.10	Ö

Table 11 - Continued

,

Sample	Dry		· • •	let	Ď	ry	Wet	
ID	MD	<u>SD</u>	MD	<u>SD</u>	TD	SD	TD	<u>SD</u>
B34	.23	.0670	.20	0	.22	,0763	.10	0
C33	.15	0	.20	0	.10	0	.10	0
C34	.15	0	,20	0	.10	0	.10	0
D33	.24	.0223	.18	.0447	.10	0	,10	0
D34	.22	.0975	,18	.0273	.10	0	.10	Ó
E33	.19	.0547	.18	.0273	.10	0	.10	Ō
E34	.21	.0418	.19	.0418	.10	0	.10	Ō

Table11 - Continued

Table 12

•

Thickness Measurements in Mils

Table 13

Wet and Dry Pickup Measurements: 20% Binder

Solids, Water Only, and Water Plus .20%

Wetting Agent

		· · · · · · · · · · · · · · · · · · ·			
	Untreated	Trea		. .	
Binder	Weight (grams)	Wet Weight	Dry Weight (grams)		ual Pickup % Dry Add-On
	(91 01137	(91 ams /	(91 ans /	N WEL	
<u>Fiber - Rayo</u>	on, Codes 1	,2,21,22			
A B C D E Water only Water + WA*	3.40 3.40 3.20 3.40 0.9268 1.0750	9.00 8.95 8.60 8.60 8.90 2.6831 2.9340	4.10 4.15 4.10 3.85 4.05	164.71 163.24 152.94 168.75 161.76 189.50 174.21	20.59 22.06 20.59 20.31 19.12
Fiber - PE			-	(/4,2)	-
	11, 000cb 0	51,20,21			
A B C D Water only Water + WA*	2.90 2.65 2.55 2.65 2.15 0.6632 0.7840	5.90 7.30 5.55 5.50 4.50 2.3779 1.4539	3.50 3.20 3.05 3.20 2.60 -	103.45 175.47 117.65 107.55 109.30 258.55 85.45	20.69 20.75 19.61 20.75 20.93
<u>Fiber - MPE</u>	, Codes 13,	14,33,34			
A B C D Water only Water + WA*	2.70 2.80 2.90 3.00 2.70 0.8230 0.9757	7.50 7.25 6.00 7.30 6.90 2.8144 1.8292	3.50 3.65 3.60 3.90 3.55	177.78 158.93 100.90 143.33 155.56 241.97 87.47	29.63 30.63 31.03 30.00 31.48

	ntreated Weight (grams)	Trea Wet Weight (grams)	ted Dry Weight (grams)		1 Pickup % Drv Add-On
Fiber - PCP,			(grand)		
A B C D E Water only Water + WA*	4.00 3.60 3.30 3.90 3.45 1.1400 1.3534	9.80 9.40 8.25 9.90 9.70 3.9116 3.7550	5.20 4.75 4.30 5.10 4.50	145.00 161.11 150.00 153.85 181.20 243.12 177.45	30.00 31.94 30.30 30.77 30.43
Fiber - PE #2 A B C D E Water only Water + WA* Fiber - R-PPY	2.90 2.95 3.20 2.70 2.60 0.7556 0.8790	7.10 8.30 7.50 6.40 5.90 2.5541 1.8336	3.80 3.90 4.20 3.55 3.40	144.83 181.36 134.38 137.04 126.92 238.02 108.60	31.03 32.20 31.25 31.48 30.77
A B C D Water only Water + WA* Fiber - A-PPY	4.90 6.40 6.50 6.50 6.00 3.2066 2.8424	9.20 14.30 12.30 12.70 11.40 11.0070 4.9980	6.00 7.70 7.75 7.70 7.20	87.76 123.44 89.23 95.38 90.00 243.06 75.84	22.45 20.31 19.23 18.46 20.00
A B C D E Water only Water + WA*	8.20 8.80 8.70 8.80 7.80 4.6024 3.6212	15.40 18.80 16.30 17.70 14.90 14.1232 6.3366	9.80 10.80 10.45 10.70 9.40	87.80 113.60 87.36 101.14 91.03 206.87 74.99	19.51 22.73 20.11 21.59 20.51 -

Table 13 - Continued

*WA = wetting agent

.

Table 14	able 14
----------	---------

Measurement of Dry Binder Add-On on Treated Webs

•

.

Sample	Inches ²	Actual Wt.	ited Web Equivalent (gm/yd ²)	<u>Treated/(</u> Actual Wt. (grams)	Cured Web Equivalent (gm/yd ²)	% Day Add-on
A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 A3 A4 B3 B4 C3 C4 D3 D4 E3 E4 A5 A6 B5 B6 C5 C6 D5 D6 E5 E6 A7 A8 B7 B8 C7 C8 D7 B8 C7 E3 E7 E8	165.41 166.60 165.41 165.41 165.60 161.66 166.80 163.20 168.36 161.84 158.12 161.46 159.46 157.95 159.30 159.12 155.61 158.12 157.95 172.20 170.50 168.84 171.36 179.20 175.00 173.60 173.60 173.60 173.60 173.60 173.00 175.	3.80 4.00 4.30 3.90 4.40 4.30 4.30 4.30 4.30 4.50 3.20 3.20 3.40 3.20 3.40 3.20 3.40 3.20 3.40 3.20 3.40 3.20 3.40 3.20 3.40 3.20 3.40 3.20 3.40 3.20 3.40 3.20 3.45 3.20 5.40 5.05 5.15 5.50 5.10 5.25 4.95 4.95 4.95 6.20 6.80 6.80 6.40 7.20 7.20	$\begin{array}{c} 29.77\\ 31.13\\ 33.69\\ 30.58\\ 34.43\\ 34.47\\ 33.41\\ 33.41\\ 35.74\\ 34.64\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.25\\ 28.10\\ 28.32\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.23\\ 26.25\\ 38.82\\ 39.77\\ 38.25\\ 38.82\\ 39.77\\ 38.25\\ 38.82\\ 36.95\\ 35.80\\ 45.92\\ 45.17\\ 51.51\\ 50.76\\ 48.60\\ 45.57\\ 47.73\\ 53.32\\ 53.32\\ 53.32\end{array}$	$\begin{array}{c} 4.70\\ 4.90\\ 5.15\\ 4.70\\ 5.25\\ 5.15\\ 5.20\\ 5.20\\ 5.40\\ 5.40\\ 4.00\\ 3.85\\ 4.10\\ 4.00\\ 3.85\\ 4.10\\ 4.00\\ 3.85\\ 4.10\\ 4.05\\ 3.98\\ 4.10\\ 4.05\\ 3.90\\ 6.60\\ 6.10\\ 6.65\\ 6.20\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 6.20\\ 6.25\\ 6.45\\ 6.10\\ 7.50\\ 7.50\\ 8.30\\ 8.20\\ 8.40\\ 7.85\\ 8.00\\ 8.68\\ 8.70\\ 8.70\\ 8.68\\$	$\begin{array}{c} 36.82\\ 38.12\\ 40.11\\ 36.85\\ 41.08\\ 41.28\\ 40.40\\ 40.40\\ 42.85\\ 41.57\\ 32.04\\ 31.56\\ 32.35\\ 32.79\\ 32.06\\ 32.38\\ 33.39\\ 33.73\\ 31.97\\ 32.06\\ 32.38\\ 33.39\\ 33.73\\ 31.97\\ 32.06\\ 32.38\\ 33.39\\ 33.73\\ 31.97\\ 32.06\\ 49.67\\ 46.36\\ 51.04\\ 46.89\\ 48.46\\ 46.96\\ 47.58\\ 48.15\\ 45.54\\ 44.12\\ 55.55\\ 55.54\\ 61.96\\ 61.21\\ 62.70\\ 60.18\\ 55.90\\ 57.86\\ 64.28\\ 64.43\\ \end{array}$	$\begin{array}{c} 23.68\\ 22.50\\ 19.76\\ 20.51\\ 19.32\\ 19.77\\ 20.93\\ 20.93\\ 20.93\\ 20.00\\ 20.50\\ 21.21\\ 20.31\\ 20.58\\ 21.21\\ 20.31\\ 20.61\\ 19.12\\ 21.88\\ 22.22\\ 0.61\\ 19.12\\ 21.88\\ 22.22\\ 0.22\\ 20.38\\ 21.88\\ 22.22\\ 0.22\\ 0.38\\ 21.88\\ 22.55\\ 22.66\\ 23.23\\ 23.53\\ 23.81\\ 22.66\\ 21.21\\ 20.56\\ 20.83\\ \end{array}$

	_	A - + + + - 7 1/+	ted Web Equivalent	Treated/C Actual Wt.	Laurine Lauri	% Day
Sample	Inches ²	(grams)	(gm/yd ²)	(grams)	(gm/yd ²)	Add-on
A9	165.41	4,20	32.80	5.10	39,95	21.43
A10	166.80	4.40	34.19	5,40	41,96	22.73
B9	165.20	4.00	31.38	4.90	38.44	22.50
B10 C9	164.22 166.80	4.00 4.40	31.57 34.19	4.90 5.30	38.67 41.18	22.50 20.45
C10	161.66	3.80	30.46	4.60	36,87	21.05
D9	163,80	3.90	30,86	4.69	37.11	20.26
D10	165.41	3.50	27.42	4.20	32.90	20.00
E9 E10	168.19 162.63	3.50 3.30	26.97 26.30	4.30 4.00	33.14 31.88	22.86 21.21
A11	164.02	3.60	28.41	4.35	34,36	20.83
A12	161.46	4.00	32.11	4,90	39.33	22.50
B11	161.46	3.60	28.90	4.40	35.32 36.26	22.22 19.74
B12 C11	162.63 162.63	3.80 4.00	30.28 31.88	4.55 4.85	38.65	21.25
C12	162.63	3.70	29,49	4.45	35.47	20.27
D11	162.63	3.60	28.69	4.30	34.27	19.44
D12 E11	161.46 161.46	3.60 3.40	28.90 27.29	4.35 4.10	34.92 32.91	20.83 20.59
E12	162.63	3.40	27.09	4.10	32.67	20.59
A13	155.40	3.35	27,94	4.10	34.20	22.39
A14 B13	156.80 157.50	3.40	28.10	4.10 4.30	33.89	20.59
B13 B14	157.50	3.60 3.50	29.62 29.34	4.30	35.38 35.21	19.44 20.00
C13	156.80	3.70	30.58	4,50	37.19	21.62
C14	156.80	3.38	27.93	4.10	33.89	21.30
D13 D14	152.55 157.07	3.40 3.40	28.88 28.05	4.05 4.05	34.40 33.41	19.12 19.12
E13	156.80	3.25	26.86	3.90	32.23	20.00
E14	161.88	3.40	27.22	4.05	32.42	19.12
A21	164.22	4.30	33.93	4.53 3.70	35.74 28.77	5.34 5.71
A22 B21	166.60 168.00	3.50 4.00	27.22 30.86	4,20	32.40	5,40
B22	162.84	3.70	29.44	3.90	31.03	5.40
C21	164.40	4.20	33.11	4.40	34.68	4.76
C22 D21	166.98 166.98	4.20 4.40	32.60 34.15	4.40 4.63	34.15 35.93	4.76
D22	165.60	4.40	34.13	4.60	35.95	4.55
E21	165.60	4.80	37.57	5.05	39.52	5.21
E22	168.70	4.70	36.11	4.95	38.03	5.32
A23 A24	161.00 161.00	3.35 4.00	26.97 32.20	· 3.52 4.20	28.34 33.81	5.07 5.00
B23	157.95	3.30	27.08	3.47	28.47	5.15
B24	170.20	3.70	28.17	3,90	29.69	5.40

Table 14 - Continued

. ·

			• • • • • • • • • •			······································
	0	Actual W+	ted Web Equivalent	Treated/C Actual Wt.	Equivalent	% Day
Sample	Inches ²	(grams)		(grams)	(gm/yd ²)	Add-on
C23	160.29	3.40	27.49	3.55	28.70	4,41
C24 D23	159.12 159.12	3.30 3.85	26.88 31.36	3.47 4.10	28.26 32.99	5.15 5.19
D24	155.44	3.75	31.27	3.95	32,94	5.33
E23 E24	160.65 159.12	3.20 3.25	25.82 26,47	3.35 3.40	27.03 27.69	4.69 4.62
A25	172.62	5.00	37.54	5,30	39.79	6.00
A26 B25	173.88 179.55	5.60 6.20	41.74 37.81	5.90 6.55	43.98 39.94	5.36 5.64
B26	178.50	5.30	38.48	5.62	40.68	5.71
C25 C26	170.80 172.90	5.30 5.50	40.22 41.23	5.58 5.80	42.35 43.48	5.28 5.45
D25	175.00	5,60	41.47	5,90	43.69	5.36
D26 E25	161.28 175.26	5.20 4.80	41.78 35.50	5.50 5.05	44.18 37.35	5.76 5.21
E26	169.66	4.80	36.67	5.05	38.58	5.21
A27 A28	172.50 179.90	6.80 6.85	51.09 49.35	7.20 7.20	54.09 51.87	5.88 5.11
B27	172.20	6.20	46.66	6.55	49,29	5.64
B28 C27	175.46 165.60	6.30 6.80	46.53 51.65	6.62 7.20	48.89 54.69	5.07 5.88
C28 D27	169.40 162.25	6.20	47.43	6.52	49.88	5.16
D27	157.32	6.10 6.20	48.72 51.08	6.42 6.55	51.32 53.96	5.33 5.64
E27 E28	137.16 154.29	6.50 6.80	56.69	6.30 7.15	59.52	5.00 5.14
A29	165.41	4.45	57.12 34.87	4.70	60.06 36.83	5.61
A30 B29	165.60 168.19	4.20 4.50	32.87 34.68	4.40 4.73	34.59 36.36	5.23 5.11
B30	165.60	4.20	32.87	4.42	34,59	5.23
C29 C30	158.92 168.19	3.50 4.30	28.54 33.13	3.68 4.55	30.00 35.05	5.14 5.81
D29	164.02	3,50	27.66	3.70	29,23	5.71
D30 E29	165.41 178.02	3.95 3.75	30.95 27.30	4.15 3.95	32.52 28.76	5.06 5.33
E30	165.60	3.50	27.39	3.70	28,95	5.71
A31 A32	161.24 160.08	4.20 3.70	33.76 29.96	4.45 3.90	35.77 31.58	5.95 5.41
B31	161.24	3.90	31.35	4.10		5.13
B32 C31	162.63 162.63	4.00 3.78	31.88 30.12	4.20 .4.00	33.47 31.87	5.00 5.82
C32	162.63	3.80	30.28	4.00	31,87	5,26
D3 1 D3 2	162.40 162.63	3.60 3.50	28.73 27.89	3.80 3.70	30.31 29.48	5.55 5.71
	106100	0.00		0.70	23.70	5.71

Table 14 - Continued

		Untreated Web Treated/Cured Web		ured Web		
Sample	Inches ²	Actual Wt. (grams)	Equivalent (gm/yd ²)	Actual Wt. (grams)	Equivalent (gm/yd ²)	% Day Add-on
E31	159.85	3.90	31.62	4.10	33.24	5.13
E32 A33	163.80 156.80	3.60 3.75	28.48 30.99	3.80 3.95	30. 55 32.64	5.55 5.33
A34 B33	156.80 156.80	3.80 3.50	31.41 28.93	4.00 3.70	33.06 30.58	5.26 5.71
B34	158.20	3.60	29.49	3,80	31.11	5.55
C33 C34	155.40 158.90	3.30 3.40	27.52 27.73	3.48 3.60	29.02 29.36	5.45 5.88
D33 D34	155.40 156.80	3.70 3.70	30.86 30.58	3.90 3.90	32.53 32.23	5.41 5.41
E33	156.80	3.80	31.41	4.00	33.06	5.26
E34	158.20	3.70	30.31	3.90	31.95	5.41

Table 14 - Continued

APPENDIX D

SAMPLES OF DYED BONDED WEBS

.

•

86

BINDER	RAYON	PE# 1	MPE	R-PPY	A-PPY	PCP	PE# 2
А							
В							
С							
D							
E							

DYED SAMPLES OF WEBS BONDED WITH 5% BINDER

FIGURE 7

87

BINDER	RAYON	PE# 1	MPE	R-PPY	A-PPY	PCP	PE# 2
A				•			
В					1 4 1		
с							
D					•		
E							

FIGURE 8 DYED SAMPLES OF WEBS BONDED WITH 20% BINDER

.

. 88