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Abstract: 

Neurotoxicity due to excessive brain manganese (Mn) accumulation can occur via occupational exposure to 

aerosols or dusts that contain extremely high levels (> 1–5 mg Mn/m
3
) of Mn, or metabolic aberrations 

(decreased biliary excretion). Given the putative role of astrocytes in regulating the movement of metals across 

the blood-brain barrier, we sought to examine the relationship between iron (Fe) status and Mn transport in 

astrocytes. Furthermore, our study examined the effect of Fe status on astrocytic transferrin receptor (TfR) and 

divalent metal transporter (DMT1) levels and their relationship to Mn uptake, as both have been implicated as 

putative Mn transporters. All experiments were carried out in primary astrocyte cultures derived from neonatal 

rats when the cells reached full confluency (about three weeks in culture). Astrocytes were incubated for 24 h in 

astrocyte growth medium (AGM) containing 200 µM desferroxamine (ID), 500 µM ferrous sulfate (+Fe), or no 

compound (CN). After 24 h, 5 min
 54

Mn uptake was measured and protein was harvested from parallel culture 

plates for DMT-1 and TfR immunoblot analysis. Both iron deprivation (ID) and iron overload (+Fe) caused 

significant increases (p < 0.05) in
 54

Mn uptake in astrocytes. TfR levels were significantly increased (p < 0.05) 

due to ID and decreased in astrocytes exposed to +Fe treatments. As expected, DMT-1 was increased due to Fe 

deprivation, but surprisingly, DMT-1 levels were also increased due to +Fe treatment, albeit not to the extent 

noted in ID. The decreased TfR associated with +Fe treatment and the increased DMT-1 levels suggest that 

DMT-1 is a likely putative transporter of Mn in astrocytes. 
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Article: 

1. Introduction 

Astrocytes maintain brain homeostasis through precise regulation of extracellular constituents. Astrocytes 

perform several functions that are essential for normal neuronal activity, including glutamate uptake, glutamate 

release, ionic buffering, and water transport. Manganese (Mn) is one such constituent in which astrocytic 

control is critical for normal neurological function. The astrocyte efficiently transports Mn, and an astrocyte 

specific manganoprotein critical for ammonia metabolism, glutamine synthetase (GS), accounts for about 80% 

of the total brain Mn (Wedler and Denman, 1984). The precise transporter(s) for Mn into astrocytes is 

unknown; however, it has been suggested that transferrin receptor (TfR) and/or divalent metal transporter 

(DMT-1) proteins may be important. Because these proteins are linked to iron (Fe) homeostasis and the 

response(s) to changes in Fe status by astrocytes are relatively unexplored, we sought to examine the effect of 

varying Fe concentrations on TfR and DMT-1 protein levels in primary astrocyte cultures. Furthermore, we 

sought to study the effects of Fe deprivation and Fe overload on astrocytic Mn uptake. 

 

Animal studies have demonstrated that iron deficiency (ID) enhances Mn absorption across the gastrointestinal 

tract independent of body Mn stores (Chandra and Shukla, 1976; Shukla et al., 1976). An inverse association 

between body Fe stores and Mn absorption has also been demonstrated in humans (Finley, 1999). Competition 

between Mn and Fe for intestinal absorption (Davis et al., 1992) likely occurs by way of DMT-1 (Gunshin et 

al., 1997). Functionally, DMT-1 mediates the intestinal uptake of numerous divalent metal cations, and 

DMT-1 mRNA levels in the duodenum strongly increase in response to Fe depletion (Gunshin et al., 2001). 

Studies in Caco-2 cells (Tallkvist et al., 2000), an in vitro model of the gastrointestinal epithelium, reveal that 
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Fe treatment decreases cellular uptake of Fe, Mn, and zinc, suggesting that these metals may utilize the same 

apical and basolateral transporters. Previous studies from our laboratory showed that dietary ID led to a 

significant increase in brain regional Mn levels, and that DMT-1 may be involved (Erikson et al., 2004). 

 

In the brain, it is known that striatum is a region rich in DMT-1 (Burdo et al., 1999). However, little is known 

about specific brain cell response(s) to changes in Fe status vis-a-vis DMT-1 expression levels and function. 

While DMT-1 mRNA (Williams et al., 2000) and protein levels (Lis et al., 2004) have been measured in 

primary astrocyte cultures, the effects of altering Fe status within the context of modulating Mn transport into 

these cells remain unexplored. 

 

Recently, it has been shown that ID causes a significant increase in Mn concentrations throughout the rat brain 

(Erikson et al., 2002, 2004). Glial cells, particularly astrocytes represent a “sink” for brain Mn (Wedler and 

Denman, 1984), with concentrations 10–50 folds greater than in neurons. Furthermore, astrocytes are critical for 

the proper functioning of the blood-brain barrier (BBB) (Kimelberg, 1983). Accordingly, understanding 

potential interactions between Fe status and Mn transport is warranted. Prior cellular studies have shown that 

Mn toxicity leads to altered Fe status in the brain (Zheng et al., 1999), but the consequences of altering Fe status 

and its effect on Mn transport in various cell models is relatively unknown. As discussed above, some of these 

interactions are likely to be mediated by DMT-1 and TfR. The latter is quite abundant in oligodendrocytes 

compared to neurons or astrocytes (Moos and Morgan, 2002). While past studies have used 

immunohistochemical techniques to examine whole brain TfR level, a recent study using Western blot analysis 

and primary astrocyte cultures showed that astrocytes contain TfR and respond to changes in Fe status as in 

other cell types (e.g., ID causes increased TfR and overload leads to decreased TfR levels) (Hoepken et al., 

2004). 

 

The present study was designed to accommodate two major objectives. The first objective was to ascertain the 

effect(s) of altered Fe status on Mn transport into the astrocyte. We measured Mn transport both by examining 

radiolabelled Mn (
54

Mn) uptake and measuring intracellular Mn concentrations in Fe-depleted and -overloaded 

astrocytes. We used both methods in order to explore a potential alternative to using radiolabelled materials 

(i.e., if Mn is detectable via atomic absorption spectroscopy than it could be used instead of radioisotopes). The 

second goal was to examine the effect of changes in Fe status on TfR and DMT-1 levels in primary astrocyte 

cultures. Our overall hypothesis was that: (1) iron deprivation will cause increased astrocytic Mn transport (i.e., 

increased intracellular Mn concentrations) and that this increased transport is related to increased levels of 

DMT1 and/or TfR; (2) iron overload will cause decreased Mn transport into exposed astrocytes due to 

decreased levels of TfR and perhaps DMT-1.  

 

2. Methods and materials  

2.1. Cell cultures 

Primary astrocyte cultures were prepared as described by Frangakis and Kimelberg (1984). Briefly, the cerebral 

hemispheres of newborn Sprague-Dawley rats were removed and meninges were carefully dissected off. The 

basal ganglia and midbrain were removed and the remaining cortical tissue dissociated with Dispase (Life 

Technologies, Gaithersburg, MD). Cells were grown in minimal essential medium (MEM), supplemented with 

10% horse serum (AGM). The cultures were maintained in a humidified atmosphere of 95% air/5% CO2 at 37 

°C. The media was changed twice weekly.
 54

Mnuptake experiments and Western blots were performed after 3 

weeks in culture, when the cells have formed a confluent monolayer. Immunocytochemically, >95% of the cells 

stained positively for the astrocytic marker glial fibrillary acidic protein (GFAP). 

 

2.2.
 54

Mn-uptake experiments 

Uptake of
 54

Mn was measured as described by Aschner et al. (1992). Astrocytes (grown on six well plates for 3–

4 weeks) were incubated overnight at 37 °C with AGM containing 0 or 200 µM desferoxamine (DFO) or 500 

µM ferrous sulfate (+Fe). A subset of cells were exposed to 500 µM ferrous sulfate for 15 min immediately prior 

to the uptake experiments (15 min +Fe) to assess the effects of acute iron overload on manganese uptake in 

astrocytes. We hypothesized that the Fe would compete with Mn and lower Mn uptake. The next day, cells were 



washed 3 x with HEPES buffer and incubated 5 min with HEPES buffer containing 0.5 µCi
 54

Mn. The reaction 

was stopped by aspirating the buffer and washing the cells 4 x with cold (4 °C) 290 mM mannitol buffer 

containing 0.5 mM calcium nitrate to maintain cell adhesion to the substrate. Cells were solubilized in 2 ml1 M 

NaOH, and aliquots (750 µl) were neutralized for β-counting with a Beckman LS 3801 liquid scintillation 

analyzer (Beckman Instruments), and for protein determination (50 µl) with the bicinchonic assay (BCA, Pierce 

Chemicals). We initially performed uptake experiments with AGM containing 0 or 200 µM desferoxamine 

(DFO) and incubated the cells for 1, 2, 5 and 15 min. We saw a significant difference in
 54

Mn uptake between 

the Fe-deprived (DFO) and control cells beginning at 5 min. While the concentration of Mn entering the cells 

increased in a time dependent manner, the overall difference in
 54

Mn uptake between DFO and control was 

similar at both 5 and 15 min. Therefore, we used the 5 min time point for this pilot study. 

 

2.3. Intracellular Mn concentration analyses 

Intracellular Mn concentrations were measured with graphite furnace atomic absorption spectroscopy (Varian 

AA240, Varian Inc., USA). Astrocytes were cultured in 100 mm plates for 3–4 weeks until fully confluent. One 

hour Mn uptake (300 µM MnCl2) was measured under normal conditions (CN), Fe deprivation (ID), or Fe 

overload (+Fe). After 1 h, cells were harvested and protein was measured. Cells were then digested in ultrapure 

nitric acid (0.1 ml) for 48 h in a sandbath (60 °C), digested tissue was brought to 1 ml total volume with 2% 

nitric acid and analyzed for Mn. It should be noted that the 300 µM MnCl2 used in this experiment was 

representative of the concentration of the Mn used in the
 54

Mn uptake experiment which was calculated based 

on the specific activity of the radioligand; and during manganese toxicity, this concentration is also considered 

physiologically relevant in terms of reported concentrations in vivo (Ingersoll et al., 1999; Lai et al., 1999; 

Roels et al., 1997). 

 

2.4. Western blot analysis 

Astrocytes were cultured in 100 mm plates for 3–4 weeks until fully confluent. Cells were incubated as 

described above and the following day Western blot analysis was utilized to measure DMT-1 and TfR levels. 

Briefly, cell lysates were sonicated in five volumes (1:5, w:v) of tissue lysis buffer (10 mM Tris–HCl; 1 mM 

sodium orthovanadate; 1% SDS, pH 7.4). Tissue lysates were centrifuged for 10 min at 10,000 x g to remove 

cellular debris, and the protein content of the resultant supernatant was determined with the bicinchoninic acid 

method (Pierce Chemical, Rockford, IL). 

 

Following fractionation, proteins were electrophoretically transferred to a nitrocellulose membrane (Protran, 

BA83, Schleicher and Schuell, Keene, NH) in 20% methanol, 0.1% SDS, 25 mM Tris and 192 mM glycine for 

3 h at 60 V. Membranes were blocked with 5% low-fat powdered milk in Tris-buffered saline with Tween 

(TBST, 0.1% Tween, 150 mM NaCl, 20 mM Tris). DMT-1 was detected using a Goat IGg polyclonal antibody 

[Santa Cruz, Temecula, CA; DMT-1 antibody is made to a portion of the protein (fourth extracellular domain) 

and recognizes both the IRE and non-IRE forms of the protein] diluted to 1:500 followed by incubation with a 

horseradish peroxidase-conjugated rabbit anti-goat secondary antibody diluted to 1:3000 (Santa Cruz, 

Temecula, CA), both in TBST and 1 % milk for 2 and 1 h, respectively. Membranes were stripped with Restore 

Western Blot Stripping Buffer
©

 (Pierce Chemical) and probed for TfR by using a mouse anti-rat IGg 

monoclonal antibody (Chemicon, Temecula, CA) diluted 1:1000 followed by incubation with a horseradish 

peroxidase-conjugated rabbit anti-mouse secondary antibody diluted 1:5000 (Santa Cruz, Temecula, CA), both 

in TBST and 1% milk for 2 and 1 h, respectively. Protein bands were visualized with the Western enhanced 

chemiluminescence system (Pierce Chemical, Rockford, IL). The autoradiograms were quantified by 

densitometry scanning in conjunction with the TINA v2.09e computer program (Raytest USA Inc., Wilmington, 

NC). 

 

2.5. Statistical analysis 

All experiments were conducted in five astrocyte preparations (separate culture dates) 1–2 replicates (Western 

blot analysis), or 3–6 replicates per treatment (uptake experiments). The data were analyzed with the SPSS 

system v11.2 statistical analysis package (SPSS Inc., Chicago, IL). One-way analysis of variance (ANOVA) 

was performed to test for treatment-dependent effects. For the time-course study, we utilized one-way repeated 



measures ANOVA to test for treatment-dependent effects within each time point. Dunnet’s procedure was used 

to evaluate mean differences compared to control. The alpha level for the analyses was set at p < 0.05. 

 

3. Results 

3.1.
 54

Mn uptake and intracellular Mn concentrations 

Iron deprivation (ID) caused a significant increase in
 54

Mn uptake at 5 and 15 min compared to control (p < 

0.01) (Fig. 1a). Because there was no difference in
 54

 Mn uptake at 5 and 15 min in the control cells (Fig. 1a), 

subsequent studies were performed at 5 min to minimize possible effects of efflux. Astrocytes incubated with 

200 µM DFO (ID) and 500 µM ferrous sulfate (+Fe) for 24 h displayed significantly increased (p < 0.05)
 54

Mn 

uptake (Fig. 1b). Both Fe-depleted (ID) and - overloaded (+Fe) astrocytes displayed an equally significant 

increase (p = 0.002) in intracellular Mn levels compared to control cells (Fig. 2). This effect was evident after 1 

h of incubation with MnCl2. 

 

 

 



 
 

 
 
 

3.2. Transferrin receptor levels and divalent metal transporter 

 Transferrin receptor (TfR): Iron deprivation (ID) caused a significant increase (p < 0.05), and Fe overload 

(+Fe) caused a significant decrease (p < 0.05) in astrocytic TfR protein levels compared to control (Fig. 3). 

 Divalent metal transporter (DMT-1): Iron deprivation (ID) caused a significant increase (p < 0.05), in 

astrocytic DMT-1 protein expression levels compared to control (Fig. 4). Iron overload (+Fe) increased DMT-1 

protein levels compared to CN levels. Although this increase was not statistically significant (p = 0.09) it is 

indicative of a trend towards significance. 

 

4. Discussion 

We showed for the first time that astrocyte cultures exposed to both an Fe-deprived (depleted) and Fe-

overloaded media increase Mn transport and intracellular concentrations (Figs. 1b and 2). Atomic absorption 

spectroscopy (AAS) possesses adequate sensitivity to measure intracellular Mn concentrations. This provides a 

viable alternative to using radiolabelled Mn in metal transport studies with sufficient sensitivity to study uptake 

kinetics in cultured cells. The absolute concentrations were different (about 100 folds higher for the AAS 

analyzed cells compared to the
 54

Mn studies). This difference in concentrations is likely due to the shorter 



incubation time for the radiolabelled experiments (5 min) compared to the “cold Mn” experiments (1 h), but 

could also be due to the endogenous Mn levels which the AAS (“cold Mn”) experiments measured and the 

radiolabelled experiments did not analyze. In either case, the measured increase in Mn concentrations due to Fe 

deprivation/overload was consistent between the two methods (50–70% rise). Both TfR and DMT-1 protein 

levels rose significantly during Fe deprivation (depletion) and are likely involved in the observed increased Mn 

transport. However, the precise involvement of these two proteins and the proportionality of the enhanced 

transport that may be ascribed to each of the astrocytic transporter proteins will have to await additional studies, 

where transporter expression can be modulated by anti-sense or siRNA (silencing mRNA). The uptake of Mn in 

astrocytes exposed to a Fe enriched media is less clear (see below). 

 
One would hypothesize that TfR and DMT-1 levels would decrease when exposed to Fe for 24h. While TfR 

levels decreased slightly in Fe exposed astrocytes, DMT-1 levels unexpectedly increased (Fig. 4). This finding 

may be due to the non-specific polyclonal antibody used to detect DMT-1 levels. The antibody used in this 

study indiscriminately detects all four isoforms of DMT-1. This is because it was directed at detecting an 

internal region on the protein. Whereas the isoforms differ in their N- and C-terminal residues the antibody used 

in this study would not be expected to reveal any isoform-specific changes. Two of the isoforms are translated 

from mRNA that possess an iron response element (IRE+) and the other two do not (IRE-); therefore, two 

isoforms of DMT-1 are responsive to changes in cellular Fe status and two lack this response (see Roth and 

Garrick, 2003 for review). Accordingly, it is likely that the antibody used in this study was indiscriminate in its 

detection of DMT-1 isoforms (i.e., measuring changes in Fe responsive and non-responsive DMT-1). We chose 

this antibody for this pilot study because it would allow us to assess general DMT-1 levels in primary astrocyte 

cultures that were exposed to varying Fe status in order to manipulate Mn uptake. We had hypothesized that ID 

would lead to increased levels and Fe overload would cause decreased levels; however, in retrospect, it will 

behoove us to use more specific antibodies in our future studies in order to resolve this limiting factor. 

 

A possible reason that astrocytes dramatically increase Mn uptake upon Fe exposure (Fe addition to the media) 

is that these cells possess the ability to respond to increases in extracellular (media) divalent metal 

concentrations, and, therefore, increased Mn uptake is a byproduct of this response. TfR and DMT-1 are both 

associated with the foot processes of astrocytes (Burdo et al., 1999; Malecki et al., 1999; Roth and Garrick, 

2003; Zheng et al., 2003) and play an integral role in maintaining extracellular concentrations of Mn and Fe in 

the brain. It is reasonable to assume that astrocytes would have mechanisms that respond to sudden changes in 

Fe status in a different manner than other cells (e.g., enterocytes) whose role is facilitating the absorption and 

transport of this metal. In other words, astrocytes have the responsibility for maintaining tight control over 

extracellular milieu including metals, thus these cells need to respond to sudden and drastic changes in metal 

concentrations and this responsibility is unique to these cells. Since this study was carried out at short time 

points (<24 h), it represents an “acute” response. Therefore, it would be interesting to see whether the same 



types of responses for DMT-1 and TfR are inherent to longer exposure time (>48 h) in the presence of Fe 

overload. 

 

While this study did not examine other potential mechanisms of Mn transport, it has been suggested that some 

candidate transporters are a monocarboxylic transporter, voltage-regulated calcium channels (Yokel and 

Crossgrove, 2004), and/or possibly an anion exchange transporter. It is quite clear that Mn transport into, and 

within the brain has both Fe-dependent (e.g., the effects of Fe deprivation on astrocytic Mn uptake), as well as 

Fe-independent characteristics (e.g., the effects of Fe overload on astrocytic Mn uptake) associated with it. 

From a biological relevance point, it is logical that Mn transport into astrocytes could occur independently of Fe 

status, primarily due to its critical role as a cofactor for the enzyme glutamine synthetase. 

 

There is growing evidence that DMT-1 is involved in brain Mn delivery (Roth et al., 2000). In the microcytic 

anemia (mk) mouse and the phenotypically similar Belgrade (b) rat (Fleming et al., 1997, 1998; Su et al., 1998), 

orthologous mutations (glycine 185 to arginine) in the DMT-1 gene result in significantly reduced dietary Fe 

absorption. The role of the defective DMT-1 allele in the transport of Mn across the blood-brain barrier has 

been recently evaluated in homozygous Belgrade (b/b) rats that exhibit hypochromic anemia, and heterozygous 

(+/b) Belgrade rats (Chua and Morgan, 1997). Plasma clearance and uptake by the central nervous system after 

intravenous injection of radioactive
 54

Mn bound to transferrin or mixed with serum have demonstrated that 

plasma clearance of Mn-transferrin was much slower than Mn-serum, but both were faster than the clearance of 

Fe-transferrin. Uptake of
 54

Mn, as well as
 59

Fe by the brain was less in b/b than +/b rats, suggesting that the 

defective DMT-1 allele affects the metabolism of both metals, and that Mn and Fe might share DMT-1 

transporters in the blood-brain barrier (Chua and Morgan, 1997). 

 

In conclusion, Mn transport into astrocytes is significantly affected by Fe status. Both Fe deprivation and Fe 

overload caused significant increases in Mn uptake and the resulting rise of intracellular Mn concentrations. 

While the majority of studies suggest that Mn and Fe compete for the same carrier, it should be noted that Mn 

and Fe transport from the plasma to the brain has been postulated to be synergistic rather than competitive in 

nature, and that excessive intake of Fe plus Mn may accentuate the risk of tissue damage caused by one metal 

alone (Chua and Morgan, 1996). These studies suggest that Mn dosimetry is complex and multiple pathways 

may be involved in the delivery and the regulation of Mn into astrocytes, and likely other cells as well. 
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