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Abstract: 

Iron overload has been implicated in decreased bone mineral density. However, the effect of iron overload on 

osteoblast lineage cells remains poorly understood. The purpose of this study was to examine osteoblast 

differentiation, function, and apoptosis in iron-loaded cells from fetal rat calvaria. Cells were incubated with 

media supplemented with 0–10 μM ferrous sulfate (FeSO4) during differentiation (days 6–20). Intracellular iron 

status was assessed by measuring iron content in cell layers and changes in transferrin receptor (TrfR) and 

ferritin gene and protein expression. Osteoblast differentiation and function were evaluated by measuring 

osteoblast phenotypic gene markers and capacity of cultures to form mineralized bone nodules. Apoptotic 

hallmarks were evaluated by microscopy. A 2.3-fold increase in media iron concentration resulted in saturable 

accumulation of iron in the cell layer 20-fold higher than control (p < 0.05) by mid-differentiation (day 15, 

D15). Iron accumulation resulted in rapid and sustained down-regulation of TrfR gene and protein levels 

(within 24 h) and up-regulation of light and heavy chain ferritin protein levels at late differentiation (day 20, 

D20). Concurrently, osteoblast phenotype gene markers were suppressed by D15 and a decreased number of 

mineralized nodules at D20 were observed. Apoptotic events were observed within 24 h of iron loading. These 

results provide evidence that iron overload alters iron metabolism and suppresses differentiation and function of 

cells in the osteoblast lineage associated with increased apoptosis. 
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Article: 

Introduction 

Iron is essential for many biological processes. However, the value of iron in maintaining growth and survival is 

offset by its potential to catalyze formation of highly reactive free radicals, which can damage cellular 

components [1]. Since the human body has no effective mechanism for excreting iron, cells must tightly 

regulate uptake and store iron safely, in order to prevent detrimental effects of free iron. Increasing iron stores 

to levels beyond the tolerable threshold of cells, as seen in iron overload disorders, leads to decreased organ 

functioning (e.g. liver failure), contributing to various diseases. Primary iron overload is due to genetic 

mutations and results in increased intestinal absorption, while secondary iron overload is generally attributed to 

repeated blood transfusions, or is the consequence of increased dietary iron, iron supplementation, and aging 

[2–5]. 

 

Iron overload has been linked to bone metabolic disorders, such as osteopenia, osteoporosis, and osteomalacia 

in humans [6,7] and animals [8–10]. The changes in bone density are often associated with stainable iron in 

osteoid seam, bone marrow stroma, and osteoblasts [2,7,8]. Additionally, osteoblasts express both the iron 

uptake protein transferrin receptor (TrfR) and the iron storage protein light and heavy chain subunits of 

heteromeric ferritin, suggesting that these cells have the ability to accumulate iron [11,12]. Despite the clear 

implication of iron's effects on bone formation, studies designed to establish the extent to which iron alters 

osteoblast differentiation and function are lacking. Therefore, the purpose of the present study was to examine 

differentiation and function of iron-loaded osteoblast-like cells isolated from fetal rat calvaria. 
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Fetal rat calvaria cultures are a well defined model of osteoblastic differentiation, resulting in the formation of 

nodules which contain osteoblast-like cells that secrete functional extracellular matrix that becomes 

mineralized. Cells were exposed to 0– 10 μM concentrations of ferrous sulfate (FeSO4) throughout 

differentiation and samples were taken during acute (up to 48 h) and chronic (up to 2 weeks) exposure to 

FeSO4. The 5 μM FeSO4 treatment increased iron 2.3-fold in the media, which is similar to the 2-fold increase 

in serum iron observed in patients with hemochromatosis [13] and iron-loaded animals with altered bone 

metabolic parameters [8–10]. Alongside the primary aim of describing osteoblast differentiation and function, 

iron concentration was evaluated and transferrin receptor and ferritin light (FerL) and heavy (FerH) subunits are 

described. Since expression of these genes and proteins is canonically regulated by intracellular iron [ 14], any 

alteration should indicate a change in intracellular iron status. Finally, evaluation of apoptosis was assessed 

because iron-induced damage has been shown to lead to programmed cell death in vivo and in vitro [15–17]. 

 

Materials and methods  

Animal care 

Female Sprague–Dawley rats were obtained on day 13 of pregnancy (Harlan, SD, Raleigh, NC) and housed at 

19–20 °C with a 12 h light–dark cycle. Dams had free access to Harlan Teklad 7002 6% mouse/rat diet and 

water. At day 21 of pregnancy, dams were euthanized by CO2 overdose, pups were collected, and calvaria were 

aseptically removed [18]. These procedures were approved by the University of North Carolina at Greensboro 

Animal Care and Use Committee. 

 

Calvaria cultures 

Cells were enzymatically released from calvaria in five sequential collagenase digestions as previously 

described [ 18]. Cells from the last four incubations were plated in separate T-75 flasks and incubated 24 h in α-

MEM (Invitrogen) containing 15% heat-inactivated fetal bovine serum (FBS) (Invitrogen) and 10% antibiotics. 

Antibiotics consisted of 1 mg/mL penicillin (Sigma), 0.5 mg/mL gentamicin (Invitrogen), and 2.5 μg/mL 

fungizone (Invitrogen). Cells from each flask were trypsinized, pooled, and seeded at 3000 cells/cm
2
 in 6 well 

plates. Cells were incubated up to 21 days at 37 °C with 5% CO2 and fresh media was provided every 2–3 days. 

Complete media contained α-MEM, 10% FBS, 10% antibiotics, 25 μg/mL ascorbic acid, 10 mM sodium β-

glycerolphosphate, and 10
−8

 M dexamethasone and was used throughout the entire culture period (D1–21). Iron 

(II) sulfate heptahydrate (FeSO4) (Sigma) was added to complete media at final concentrations of 1–10 μM 

FeSO4. Deionized water was the vehicle control (0 μM). 

 

Iron concentration of individual media components and complete media with or without addition of FeSO4 was 

confirmed by graphite furnace atomic absorbance spectrometry (GFAAS) described below. The iron 

concentration of FBS was 31.5 μmol/L ± 9.55 (n = 2) while other media components had negligible iron 

concentration. Thus, iron concentration in control media was attributed to 10% FBS and confirmed at 3.07 

μmol/L ± 1.03 (n = 2). The addition of 1 and 5 μM FeSO4 increased total iron concentration in complete media 

to 4.07 μmol/L ± 1.50 (n = 2) and 7.20 μmol/L ± 2.61 (n = 2), or about 1.3- and 2.3-fold higher than control, 

respectively. Values for 10 μM were not determined by GFAAS. 

 

To observe effects of acute iron exposure, media was changed at confluence (D6–8) and cells were incubated 24 

h since growth factors may influence expression of TrfR and iron uptake [19]. FeSO4 was spiked directly into 

wells 24 h after changing media. To observe chronic effects of iron exposure, FeSO4 was delivered in fresh 

media beginning at confluence and at subsequent media changes throughout the experiment. 

 

Graphite Furnace Atomic Absorption Spectrometry (GFAAS) 

Iron concentration in the cell layer was analyzed on D 15 and D20 of cell culture using a protocol adapted from 

Erikson and Aschner [20]. Briefly, media was removed and cells were washed twice with PBS. Cell layers 

(cells and extracellular matrix) were detached from plates by scraping in 1 mL of cell dissociation solution 

(Sigma) or PBS. If dissociation solution was used, pellets were obtained by centrifugation and washed with PBS 

before proceeding. Samples were digested in Ultra Pure Nitric Acid (Fisher Scientific) at 60 °C for 48 h in a 

sand bath and then analyzed with a Varian AA240 atomic absorption spectrometer (Varian Inc.). Average 



protein concentration of cell layers (n = 2 wells) was determined by bicinchoninic acid (BCA) assay (Pierce). 

Iron concentration values are expressed as nmol Fe/mg protein. Media and reagent samples were also diluted in 

Ultra Pure Nitric Acid and analyzed. 

 

RT-PCR 

Cells were collected in 1 mL of TRIZOL (Invitrogen) by scraping and RNA was extracted using the procedures 

specified by the manufacturer. Isolated RNA was dissolved in nuclease-free water and DNase treated with 

Turbo DNA-free (Ambion) per manufacturer's instructions. RNA purity and concentration were determined 

spectro-photometrically at 260 and 280 nm using a Beckman Spectro-photometer. One microgram of RNA was 

primed with Oligo(dT) (Amersham) and reverse transcribed using Omniscript RT kit (Qiagen) by the 

manufacturer's instructions. One microliter of diluted cDNA was submitted to PCR reaction using Qiagen Taq 

polymerase PCR kit. Primer sequences, annealing temperatures, and amplimer sizes are listed in Table 1. 

Primer sequences designed for this study (alkaline phosphatase, ALP; FerH; FerL) spanned at least one 

exon/exon boundary. Primer sequences for ribosomal protein L32, collagen 1 (COLL 1), bone sialoprotein 

(BSP), osteocalcin (OCN), and TrfR were previously described [21,22]. Amplimers were resolved on a 1% 

agarose gel stained with ethidium bromide. The number of cycles was optimized for each gene within the 

exponential phase of amplification (not shown). Non-specific amplification due to genomic DNA or reagent 

contamination was not observed in control lanes (not shown).

 
 

Western blotting 

Cells were lysed in 150 μL of RIPA buffer, containing 10 mM sodium fluoride, 20 mM β-glycerolphosphate, 

0.1 mM sodium orthovanadate, and protease inhibitor cocktail (Calbiochem). Lysates were sonicated on ice and 

centrifuged at 16,000 ×g for 20 min. Supernatants were removed and stored at — 80 °C before protein 

concentrations were determined with BCA assay (Pierce). 

 

Twenty micrograms of proteins per well was resolved on NuPage 4-12% bis-tris gels (Invitrogen). Proteins 

were transferred onto polyvinylidene difluoride membranes (Immobilon) and blocked in 5% (w/v) milk 

dissolved in Tris-buffered saline with 0.05% (w/v) Tween-20 (TBS-T) (Sigma). Membranes were then 

incubated with primary antibodies overnight at 4 °C, washed in TBS-T, and incubated with secondary 

antibodies for 30 min at room temperature. Primary antibodies were diluted in 5% (w/v) bovine serum albumin 

(Sigma) in TBS-T and included mouse anti-β-actin (Sigma), mouse anti-transferrin receptor (Zymed), rabbit 

anti-ferritin light chain (Alpha Diagnostic) and rabbit anti-ferritin heavy chain (Alpha Diagnostic). HRP-

conjugated secondary antibodies include donkey anti-mouse (Affinity BioReagents) and goat anti-rabbit (Cell 

Signaling). Signal was detected with Western Lightning Chemiluminescence Reagent Plus kit (PerkinElmer). 

 

 

 



Staining 

These methods are described in detail elsewhere [23]. Briefly, cells were washed in PBS, fixed in 10% neutral 

formalin buffer, and rinsed with deionized water. ALP-positive cells were stained using Naphthol AS MX-PO4 

(Sigma) as substrate and Red Violet LB salt (Sigma) as coupler. Mineralized nodules were stained using the von 

Kossa method by incubating cells with 2.5% (w/v) silver nitrate (Fisher) solution for 30 min. Culture dishes 

were then rinsed in tap water and air dried overnight. Dishes of stained cells were scanned on a flatbed scanner 

at a resolution of 600 dpi. 

 

Bone nodule quantification 

The numbers of mineralized and unmineralized nodules were counted under bright field illumination in dishes 

of stained cells set atop a transparent plastic grid. Unmineralized nodules were defined as multilayered areas 

containing foci of cuboidal cells that were intensely ALP-positive with little or no von Kossa staining. 

Mineralized nodules were defined as multilayered areas of intensely ALP-positive cells strongly associated with 

von Kossa staining, which appears brown/ black. 

 

TUNEL assay 

Cells were washed in PBS, fixed in 10% neutral formalin buffer and stored at 2 °C up to one week before 

completing analysis. Endogenous peroxidases were blocked by incubating cells with 0.3% hydrogen peroxide in 

methanol for 30 min at room temperature. Apoptotic DNA was labeled with In Situ Cell Death Detection Kit, 

POD (Roche Diagnostics) using the manufacturer's instructions for adherent cells. Fluorescent signal was 

converted to colorimetric indicator using Metal Enhanced DAB Substrate Kit (Pierce) per manufacturer's 

instruction. Positive controls included hydrogen peroxide (H2O2) spiked directly into wells at 150 μM final 

concentration [24] or incubation of fixed cells with DNase I at 2200 U/mL and 10 mM MgCl2 for 30 min at 

room temperature just before performing the assay. 

 

Annexin V, propidium iodide staining 

Phosphatidyl serine translocation to the outer cell membrane was labeled with reagents provided in a kit from 

Roche Applied Science. Staining was performed as indicated in the protocol before analyzing with fluorescence 

microscopy. Apoptotic cells appeared green and were distinguished from necrosis and secondary necrosis by 

costaining cells with propidium iodide, which appears red. Hydrogen peroxide (H2O2) was used as a positive, 

treatment control. 

 

Assessment of cell death staining 

Cells were evaluated microscopically on an Olympus IX70 microscope and representative fields were 

photographed at 100×. Images were scored on a 4-point scale based on the intensity of the stain, where, + + + 

indicates high staining; + + indicates moderate staining; + indicates low staining; and — indicates no detectable 

stain. Images from 2 independent studies were analyzed. 

 

Statistical analysis 

Data are expressed as mean ± SEM. One-way analysis of variance (ANOVA) was performed with Tukey post 

hoc analysis for multiple comparisons within the time point evaluated. Statistics were performed using SPSS 

version 15.0.1 for Windows (SPSS Inc., Chicago, IL, USA). A p-value less than 0.05 was considered 

significant. 

 

Results 

Iron concentration 

Iron concentration in cell layers is shown in Fig. 1. The 5 μM treatment resulted in significantly higher (p<0.05) 

iron levels in the cell layer by D15 that were approximately 20 times higher than control. Values were similar 

on D20 and there was no significant difference between 5 and 10 μM FeSO4 (p > 0.05). Treatment with 1 µM 

DFOM did not result in significant iron accumulation compared to control on D15 or on D20 (p > 0.05). 

 



 

 

Iron-regulated gene and protein expression after acute or chronic FeSO4 treatment 

TrfR gene expression was markedly down-regulated between 3 and 48 h after acute exposure to all doses of 

FeSO4. Data through 24 h is shown in Fig. 2A. FerH and FerL gene expression was not altered at any dose or 

time point. Congruent with gene expression, TrfR protein was markedly decreased after 24 h of incubation with 

10 μM FeSO4 compared to 24 h control (Fig. 2B), and no changes in FerH or FerL protein expression were 

observed during acute exposure (not shown). 

 

Chronic exposure to 5 μM FeSO4 was associated with down-regulated TrfR gene expression by D15 which was 

sustained at D20, but no effect was seen on FerL or FerH genes (Fig. 3A). The 5 and 10 μM FeSO4 treatments 

produced similar effects on gene expression by D20. Down-regulation of TrfR protein matched gene expression 

after chronic exposure to 5 and 10 μM FeSO4 on D15 (not shown) and D20 (Fig. 3B). In contrast, FerH and 

FerL proteins were only up-regulated at D20 after chronic exposure to 5 or 10 μM FeSO4 treatments (Fig. 3B). 

 

Function of osteoblast-like cells is suppressed by FeSO4 treatment 

Representative cell culture wells and micrographs of typical morphology of nodules at D20 are shown in Figs. 

4A and B, respectively. The total number of nodules was similar among treatments (p > 0.05). However, the 

proportion of unmineralized or poorly mineralized nodules increased dose-dependently after chronic exposure 

to FeSO4, while mineralized nodules exhibited reciprocal trend (Fig. 4C). 

 

 

 

 



 
 

Osteoblast phenotype gene markers are down-regulated by FeSO4 treatment 

Genes characteristic of the osteoblast phenotype are expressed in a well-described, time-dependent pattern in 

fetal rat calvaria cell cultures [25]. Generally, COLL1 up-regulation is followed by ALP and BSP while the 

most specific osteoblast phenotype marker, OCN, is highly expressed at the end of culture. The 5 μM FeSO4 

treatment markedly suppressed osteoblast phenotype genes, particularly BSP and OCN, by D15 in culture (Fig. 

5). Similar results are seen on D20, however, 10 μM FeSO4 had the most pronounced suppressive effect in 

comparison to control. 

 

Acute iron exposure is associated with apoptotic events 

Condensed, TUNEL-positive nuclei were generally observed in cells treated with iron and resembled the 

labeled nuclei detected after treatment with 150 μM hydrogen peroxide (Fig. 6, Table 2). Iron-treated cells 

achieved moderate staining intensity compared to low staining intensity in 0 μM, while all nuclei were labeled 

in DNase I-treated control cells. Apoptosis in iron-treated cells was confirmed by observation of phosphatidyl 

serine translocation labeled by Annexin V antibody (Fig. 7, Table 3). Treatments resulted in staining intensity 

that was similar to that of TUNEL assay. A moderate degree of Annexin V/propidium iodide costaining was 

observed in nodules in all treatments, indicating necrotic cell death or secondary necrosis, which occurs in later 

stages of apoptosis. 

 

Discussion 

This is the first report describing iron accumulation in osteoblasts in vitro. Increased intracellular iron 

concentration is associated with suppressed osteoblast differentiation and function, which is consistent with 

decreased bone mineral density in vivo. Acute iron exposure is also associated with cell death characteristic of 

apoptosis. 

 

 Iron concentrations in osteoblast cell layers remained low after chronically elevating iron 1.3-fold (1 μM 

FeSO4). The 2.3-fold higher treatment (5 μM FeSO4) resulted in saturated iron levels in the cell layer by D15. 

Similarly, primary hepatocytes, astrocytes, and HepG2 cells exposed to excess iron effectively prevent 

intracellular iron accumulation at low doses, while higher doses result in time-dependent plateau of iron 

accumulation [26–28]. 



 

Coinciding modulation of gene and protein levels of TrfR and ferritin is consistent with intracellular iron 

accumulation, although iron concentration was determined from the entire cell layer, and therefore some iron 

may have been located within the extracellular matrix. The occurrence of extracellular iron accumulation in 

bone is supported by literature in which iron staining in noncellular osteoid has been observed. 

 

Unlike other cell types, the regulation of iron metabolism in osteoblasts has not been studied extensively. In the 

present study, it appears that the plateau in intracellular iron concentration is a result of the rapid and sustained 

down-regulation of TrfR protein. However, post-translational glycosylation and phosphorylation of TrfR have 

been reported, suggesting that modification of TrfR activity as well as participation by other iron-handling 

proteins could fine-tune iron uptake in osteoblast-like cells [4,29,30]. Classical iron-mediated up-regulation of 

ferritin involves increased translation, which is consistent in the present study on D20, in which proteins are up-

regulated in the absence of detectable up-regulation of mRNA levels. However, it was surprising that the up-

regulation did not coincide with saturation of iron levels at D 15. The reason for this remains unclear but alludes 

to the possibility that FerH and FerL regulation in osteoblasts relies on signals other than intracellular iron. It 

appears that, beyond direct regulation by iron, transcriptional and post-transcriptional regulation of ferritin 

subunits depends on both stimulus and cell type [31]. Furthermore, ascorbic acid is a known regulator of ferritin 

metabolism but is required in calvaria-derived osteoblastic cell cultures for appropriate collagen formation and 

matrix maturation [32], thus potentially confounding in vitro results. 

 



 

 

The lowest dose of iron (1 μM), which did not result in increased cellular iron content, also did not produce 

deleterious effects on osteoblast function or phenotype. This supports Morais et al. [33] who found that a low, 

1.5-fold increase in iron during the first week of differentiation only slightly decreased ALP activity and did not 

affect mineralization.  

 



In contrast, saturable iron levels appear to have been achieved in the present study at 5 μM and were associated 

with decreased osteoblast development. At saturable levels, oxidative stress is generally considered the 

mediator of iron's cytotoxic effects since free iron catalyzes free radical formation through Fenton chemistry 

[1]. Cytotoxicity due to the oxidative stress brought about by high iron concentrations is supported in the 

present study by apoptotic cells in the 5 μM and 10 μM treated wells compared to controls. Moderate levels of 

stained apoptotic cells were observed primarily within and surrounding multilayered nodules, suggesting that 

cell death among the osteoprogenitor population may contribute to the phenotypic suppression observed during 

iron overload. However, since cell death did not completely diminish the presence of nodules by the end of the 

2-week differentiation period (D20), it is unlikely that apoptosis is the only factor contributing to suppressed 

phenotype. 

 

The findings from this study suggest that iron affects osteoblast phenotypic development and function after 

acute exposure as well as during early (D6-15) and late (D15-21) phases of chronic exposure to FeSO4. 

Introduction of iron to cultures at the beginning of differentiation (D6) resulted in dramatic intracellular 

alterations of TrfR gene expression between 3 and 24 h after introduction to the media, which was followed by 

suppressed phenotype markers by D15. This suggests that excess iron may effectively prevent recruitment of 

non-differentiated cells by interfering with transcription pathways that commit cells to the osteoblast lineage or 

by contributing to apoptosis of committed osteoprogenitor cells. Researchers have shown that crucial 

transcription pathways for osteoblast development, including Runx2, Wnt-β catenin, and ERK, are modulated 

by oxidative stress [34–36]. 

 

The presence of multilayered cuboidal cells suggests that iron fails to completely disrupt early stages of 

osteoblast development but may inhibit matrix maturation and mineralization that occur later in culture. 
 

 



Moreover, iron overload may elicit additive effects during the later stages of differentiation, as it is well 

established that osteoblast differentiation and matrix maturation are functionally coupled [37]. Iron has been 

shown to alter collagen turnover, fibronectin degradation, matrix metalloprotease activity, and expression of 

cellular adhesion molecules [38–40], all of which are required to form a functional matrix, while proteins, such 

as OCN and BSP, are thought to be required for mineralization. The additive effects of excessive iron 

concentrations may also extend to iron pools not associated with the cell layer. This may explain the surprising 

maximal suppression of osteoblastogenesis and mineralization by the 10 μM dose rather than the 5 μM dose, 

which had resulted in iron saturation in the cell layer and maximum alteration of iron metabolic proteins. Thus, 

at the higher dose a free iron pool may exert effects that result in altered osteoblast outcomes independently of 

iron directly associated with the cell layer. Recently, direct inhibition of hydroxyapatite accumulation by iron 

in a cell free model has been reported [41]. 

 
 

In conclusion, intracellular iron accumulation suppresses osteoblast phenotype and function in vitro. Therefore, 

bone metabolic diseases resulting from iron overload disorders may be attributed to lower numbers of 

osteoprogenitors due to cell death or decreased recruitment of cells into the osteoblast lineage, a decreased 

function of cells already committed to the osteoblast lineage, or both. Understanding the exact mechanisms by 

which iron exerts its effects on osteoblasts will elucidate potential therapies designed to prevent or offset the 

consequences of low bone mass that arise from iron overload. 
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