Functional coding variation in recombinant inbred mouse lines reveals multiple serotonin transporter-associated phenotypes

Ana M. D. Carneiro*, David C. Airey*, Brent Thompson*, Chong-Bin Zhu*, Lu Lu*, Elissa J. Chesler*, Keith M. Erikson*, and Randy D. Blakely1,5,2,3

1Department of Pharmacology, 2Psychiatry, and 3Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232-8548; 4Key Laboratory of Nerve Regeneration, Nantong University, Nantong 226001, China; 5Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163; 6BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6420; and 7Department of Nutrition, University of North Carolina, Greensboro, NC 27402-6170

The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, Slc6a4) figures prominently in the etiology and treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism, and obsessive-compulsive disorder (OCD). Here, we use naturally occurring polymorphisms in recombinant inbred (RI) lines to identify multiple phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J harbors a SERT haplotype defined by 2 nonsynonymous coding variants (Gly-39 and Lys-152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode, respectively, Glu-39 and Arg-152 (ER haplotype), amino acids found also in hSERT. Ex vivo synaptosomal 5-HT transport studies revealed reduced uptake associated with the GK variant, a finding confirmed by in vitro heterologous expression studies. Experimental and in silico approaches using RI lines (C57BL/6J × DBA/2J = BXD) identify multiple anatomical, biochemical, and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are several traits associated with alcohol consumption and multiple traits associated with dopamine signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates iron-regulated DA phenotypes. Our studies provide an example of the power of coordinated in vitro, in vivo, and in silico approaches using mouse RI lines to elucidate and quantify the system-level impact of gene variation.

A complex set of phylogenetically conserved traits relies upon the production, secretion, and inactivation of the biogenic amine 5-HT (1). A critical and conserved mechanism to regulate 5-HT signaling involves the action of the presynaptic 5-HT transporter, SERT (2). SERTs are not only responsible for the clearance of 5-HT after release, but also recycle synaptic 5-HT to sustain adequate stores for 5-HT release (3).

The recognition of the central role played by SERT in 5-HT inactivation has been reinforced by studies where mouse SERT (mSERT) has been eliminated (4), suppressed (5, 6), or enhanced (7). Although investigations with these models provide critical support for a role of SERT in presynaptic 5-HT clearance and homeostasis, inference linking SERT to neural signaling and behavior are complicated by significant compensatory changes in other genes (8). Conversely, a lack of recognition for background genetic diversity in mouse strains likely limits the full elaboration of phenotypes associated with SERT genetic variation (9). Indeed, SERT knockout mice display different phenotypes depending on their genetic background (10).

An alternative approach is the identification of traits that are sensitive to naturally occurring polymorphisms using genetic reference populations, such as BXD recombinant inbred (RI) lines (11). BXD RI lines are isogenic, homozygous mosaics of C57BL/6J and DBA/2J inbred strains, previously created by inbreeding F2 intercross progeny. Conventionally, these populations are used in forward genetic screens to discover unknown polymorphisms affecting a trait. Here we analyze RI lines that share specific 5-HT gene variants against an otherwise randomized genetic background, an advantage over approaches that test allele effects on one or two inbred backgrounds (11–13). Perhaps the greatest strength of this approach is the availability of archived, dimensional data across a large number of phenotypes linked to individual BXD lines (14, 15), including anatomical, neurochemical, and behavioral traits. In this report, we initiate investigation of naturally occurring variation in 5-HT genes via analysis of functional coding polymorphism in mSERT. Furthermore, as this archive is a freely accessible, expanding resource, appreciation for how SERT and 5-HT-linked gene variants impact physiology can be increasingly enriched as additional phenotypes are registered. This integrative approach to reverse genetics of identified polymorphisms should also be applicable to more powerful genetic reference populations (13, 16, 17).

Our report initiates with an analysis of the distribution among laboratory mouse strains, followed by neurochemical analyses of SERT function in synaptosomes from several standard inbred lines. Subsequently, we confirm reduced 5-HT transport mSERT phenotype associated with the GK variant in a heterologous expression system. Controlling for Tph2 variation, we replicate haplotype effects in vivo using select BXD lines then exploit the BXD population to expand analyses to anatomical, biochemical, and behavioral phenotypes. Through this approach, we document multiple SERT-sensitive phenotypes and elucidate a connection to iron homeostasis that we propose links 5-HT signaling to dopamine (DA) modulated behaviors.

Results

Identification of Slc6a4 Coding Variation in Inbred Mouse Lines

Analysis of Slc6a4 DNA sequences from 40 mouse inbred lines deposited in the Mouse Phenome database (http://aretha.jax.org).

The authors declare no conflict of interest.

This article contains supporting information online at www.pnas.org/cgi/content/full/0809449106/DCSupplemental.

© 2009 by The National Academy of Sciences of the USA

www.pnas.org/cgi/doi/10.1073/pnas.0809449106

PNAS | February 10, 2009 | vol. 106 | no. 6 | 2047–2052
Characterization of the Slc6a4 Haplotype in Inbred Mouse Lines. For initial inspection of functional differences between mSERT ER and GK, we compared 5-HT uptake rates in midbrain synaptosomes prepared from multiple strains discordant for the 2 haplotypes, but concordant for the same, high functioning Tph2 genotype, a potentially confounding factor (18) (Table S1). Strains bearing the GK haplotype (C57BL/6J and C57BL/10J) demonstrated significantly reduced 5-HT uptake as compared with strains carrying the ER haplotype (CBA/J, 129/SvJ, and C57BLKS/J) (Fig. 1 E, nested ANOVA, F(1, 3) = 12.21, P = 0.039, \(\eta^2 = 0.61 \)). These functional differences could not be attributed to changes in mSERT density, as levels of [3H]paroxetine binding did not differ across strains (Fig. 1 F, unpaired Student’s t test, P > 0.05). Haplotype-associated differences in midbrain mSERT activity could not be ascribed to general alterations in ion gradients or membrane potential because no differences were observed in dopamine or norepinephrine transport across the same preparations (Fig. S1A). Consistent with the identity of the Tph2 isoforms across these lines, we also found no differences in midbrain or cortical 5-HT or 5-HIAA tissue levels that might account indirectly for uptake differences (Fig. S1B).

Characterization of Coding Variants in mSERT-Transfected HEK-293 Cells. Unknown genetic variation that cosegregates with ER/GK could underlie the differences in 5-HT uptake in synaptosomes. We therefore monitored mSERT activity in HEK-293 cells transfected with full-length transporter cDNAs. Here again, kinetic analyses revealed significantly lower SERT activity associated with the GK haplotype (Fig. 2.4, 2-way ANOVA, \(P < 0.0001, n = 6, \eta^2 = 0.17 \)), with changes arising from a significant, 4-fold reduction in 5-HT transport \(V_{\text{MAX}} \) (Fig. 2B; ER, 4414 ± 715 fmol/min, \(n = 6 \); GK, 1219 ± 274 fmol/min \(n = 6 \), unpaired Student’s t test, \(P < 0.01 \)). Cohen’s \(d = 2.77 \) but no discernible haplotype impact on 5-HT transport \(K_m \) (ER, 2.970 ± 0.808; GK, 1.041 ± 0.056). As with inbred line studies, no overall differences in total mSERT expression were observed either by Western blots or by membrane binding assays using the cocaine analog [125I]RTI-55 (data not shown). These measures yield an estimate of SERT catalytic rate of GK SERT ~50% that of ER SERT. Analysis of cDNAs expressing individual variants indicates that the reduced SERT activity of the GK haplotype arises from the Glu-39 substitution (Fig. 2.4, 2-way ANOVA, \(P < 0.0001, n = 6, \eta^2 = 0.17 \), Bonferroni’s post hoc test, \(P < 0.05 \)).

Impact of Slc6a4 Variation in Recombinant Inbred Mouse Lines Concordant for the Pro-447 Tph2 Allele. To establish a Systems-level evaluation of 5-HT genetic variation, we extended our investigation of mSERT GK/ER-associated phenotypes to (Bxd) lines. By determining the status of R1 strains for Slc6a4 and Tph2
variants, we were able to identify and acquire 27 BXD strains concordant for the common, high-functioning C57BL/6 Tph2 allele (Pro-447) that could be divided into 13 lines with the Slc6a4 DBA/2J ER haplotype (nos. 9, 11, 31, 39, 40, 45, 50, 56, 63, 66, 75, 76, 83) and 14 lines with the Slc6a4 C57BL/6J GK haplotype (nos. 43, 44, 48, 51, 60, 61, 67, 69, 73, 77, 90, 92, 96, 97). We prepared midbrain and forebrain synaptosomes from 7 lines of each Slc6a4 haplotype and determined SERT activity. BXD RI lines bearing the GK haplotype demonstrated reduced 5-HT uptake in midbrain and forebrain synaptosomes (mixed model, likelihood ratio test (LRT) of genotype effect across brain areas, χ^2 (df = 1) = 3.95, $P = 0.047$, $\eta^2 = 0.25$) (Fig. 3A).

As expected, 5-HT uptake was significantly higher in midbrain than in forebrain (LRT χ^2 (df = 1) = 6.65, $P = 0.010$, $\eta^2 = 0.07$) and genotype was equally penetrant in both brain regions (i.e., interaction was not significant, LRT χ^2 (df = 1) = 0.01, $P = 0.932$) (Fig. 3A). These findings reinforce our conclusion that the Slc6a4 GK haplotype exhibits reduced 5-HT transport activity.

We assessed BXD lines bearing GK and ER for differences in levels of 5-HT and metabolites. Although again no significant differences were found (data not shown), tissue measurements of neurotransmitters are a fairly insensitive indication of synaptic 5-HT availability and action. We therefore sought a behavioral readout known to be sensitive to SERT function (19, 20). We tested BXD lines in marble burying, nestlet shredding, basal tail suspension, and open field tests, each known to be sensitive to selective serotonin reuptake inhibitor (SSRI) drugs or SERT ablation (10, 20, 21). Although no significant differences between ER and GK lines were detected in either marble burying or nestlet shredding behaviors (Fig. S2), lines expressing the reduced function GK variant exhibited significantly decreased basal tail suspension immobility (Fig. 3b, unpaired Student’s t test, $P = 0.037$, Cohen’s $d = 0.88$). Immobility in the tail suspension test (TST) is believed to reflect diminished capacity for stress-alleiating behaviors, and reduced SERT function achieved with acute SSRI treatment decreases immobility (22). Despite differences in basal TST immobility, sensitivity to citalopram (20 mg/kg) appeared identical between genotypes (shown as % reduction in immobility over saline, Fig. S3). When we tested GK and ER lines for their locomotor response to an open field, we found horizontal activity to be indistinguishable (Fig. 3D), suggesting a lack of impact of mSERT variants on overall motor function or psychomotor activation. Nonetheless, GK lines differed from ER lines in time spent in the chamber center, often considered a measure of anxiety (Fig. 3 E and F, unpaired Student’s t test, $P = 0.020$, Cohen’s $d = 0.79$).

In Silico Identification of Phenotypes Influenced by Slc6a4 Coding Variation. To identify unique phenotypes affected by ER/GK variation, we performed an in silico analysis of 843 archived BXD phenotypes registered at Genenetwork.org (11) including anatomical, biochemical, and behavioral traits. We analyzed trait dependence on genotype using a 2-gene model comprising independent effects of the Slc6a4 ER/GK and Tph2 Arg447Pro variants and allowing for gene–gene interaction. Fig. S3 shows phenotypes more associated with the independent effects of the mSERT GK haplotype, and include several traits linked to alcohol sensitivity or tolerance, including mean and total ethanol consumption and ethanol-conditioned taste aversion, consistent with previous findings in SERT knockout mice (23, 24). Traits influenced by interactions of Slc6a4 and Tph2 variants are provided in Table S2 (independent Tph2-associated traits are presented in Table S3).

An assessment of archived biochemical traits revealed the GK haplotype to be associated with ventral midbrain dopamine D2 receptor (Drd2) expression, and caudate-putamen dopamine transporter (Slc6a3) density (Fig. 4A and B). Interestingly, a prior analysis has revealed that these (and other) DA-related phenotypes are associated with midbrain iron levels (25). Consistent with these findings, the GK mSERT haplotype associates significantly with elevated iron levels in both the region of DA cell bodies (ventral midbrain) and DA terminal fields (caudate-putamen) (Fig. 4C and D).

To test whether the changes observed in iron levels are the result of genetic variation in SERT vs. that of a gene in linkage disequilibrium, we measured brain iron levels in Slc6a4 knockout (KO) mice. SERT KO mice exhibit significantly reduced midbrain iron levels (Fig. 4D, $-/-$: 4.123 ± 0.5349 n = 11; +/-: 6.678 ± 0.3726 n = 8, unpaired t test $P < 0.005$, Cohen’s $d = 1.53$). Hippocampal tissue did not differ in iron levels ($-/-$: 8.973 ± 1.327 n = 12; +/-: 8.466 ± 1.644 n = 10, unpaired t test, $P = 0.810$).

Discussion

In this study, we characterize a naturally occurring haplotype in the mSERT gene, where Gly-39 and Lys-152 replace Ghu-39 and Arg-152, respectively. Our findings are of general relevance in that they illustrate an integrative approach to identifying quantitative phenotypes influenced by mouse genetic variation. More specifically, our findings capitalize on naturally occurring variation in mSERT to establish a platform for associating molecular and system level phenotypes of 5-HT signaling genes. RI lines with the mSERT GK haplotype displayed reduced basal immobility in the TST, consistent with ex vivo and transfected cell studies that identify reduced SERT activity with the GK variant. Nonetheless, the reduced SERT activity in the GK lines is still adequate for acute potentiation of 5-HT signaling by...
an SSRI (citalopram). One might expect that reduced SERT activity might have resulted in altered citalopram responsiveness; however, the dosage of citalopram optimized for responses in the TST paradigm may simply be above that required to distinguish SSRI sensitivities in vivo, although it should also be noted that the variants are not located in the predicted binding pocket for citalopram (26, 27). We also found equivalent citalopram recognition by GK/ER variants in our transfection studies (Fig. 4).

A larger physiological significance of mSERT GK/ER variation becomes most evident via inspection of archived phenotypes associated with lines segregating the ER/GK haplotype. An important strength of this approach is that traits assessed in this paradigm do not derive from a priori functional hypotheses, although by necessity they reflect the interests of the research community using RI lines. In this effort, we found a significant impact of the GK haplotype on body weight, confirmed by our own assessments (data not shown) and the known anorexigenic action of elevated extracellular 5-HT (28, 29). We were struck by the multiple associations between the GK haplotype and ethanol-related behaviors, where the GK low-uptake activity is associated with lower ethanol consumption and acceptance. In humans, individuals with the low-functioning 5 allele of the SHTTLPR, and presumably increased synaptic 5-HT availability, demonstrate lower voluntary ethanol consumption (30, 31). These findings also point to further utility of gene x environment designs in the analysis of the functional impact of the ER/GK haplotype.

Possibly, the associations of the ER/GK haplotype with ethanol sensitivity/consumption traits relate to a more global modulation of reward pathways, such as those through which DA signaling modulates reinforcement. Consistent with this idea, we found the ER/GK haplotypes to associate with altered DAT and D2 receptor expression. DAT and D2 receptor expression are known to be under significant genetic influence (29, 32). Importantly, serotonergic innervation regulates both somatic DA neuron excitability and terminal field DA release (33, 34).

Although it is reasonable to expect that ER/GK haplotype-driven differences in SERT activity impact DA signaling directly, we identified an indirect pathway involving midbrain iron homeostasis that may have even larger significance. A 3-way association between ER/GK haplotype, SERT, iron, and dopaminergic traits cannot alone define epistatic relationships. However, our evaluation of SERT knockout mice, where we observed a significant reduction in midbrain iron levels in SERT KO mice relative to controls, raises the possibility that 5-HT signaling has a significant effect on dopaminergic traits via the control of mesencephalic and basal ganglia iron homeostasis. The rate-limiting step in the production of dopamine is the activity of tyrosine hydroxylase, an iron-requiring enzyme (35, 36). Additionally, 5-HT, acting via 5-HT2C receptors in the choroid plexus, regulates transferrin receptor expression (37). Region-specific alterations in iron homeostasis in SERT KO mice indicate additional factors key to iron sequestration that may also be differentially impacted by 5-HT signaling. Importantly, dietary iron reductions produce reversible reductions in CNS DAT and D2 receptor expression (38, 39).

An important, additional strength of studies examining natural gene variation in murine RI strains, is the opportunity to characterize the impact of genetic interactions in defining complex traits. For example, BXD lines also exhibit functional variation at the locus encoding the enzyme responsible for CNS serotonin synthesis, Tph2 (18). C57BL/6J inbred mice express the high-functioning Tph2 allele and, as we have shown, a low-functioning SERT variant. Synaptically, this would suggest that in C57BL/6J, high levels of 5-HT production and release are accompanied by relatively low rates of 5-HT clearance. In contrast, DBA/2J mice express the low-functioning Tph2 Arg-447 variant in the context of a high-functioning mSERT ER variant. Here, the predicted effect is relatively reduced 5-HT synthesis and release in the context of high 5-HT clearance capacity. Together, these allelic combinations are predicted to drive ceiling and floor levels of synaptic 5-HT in B and D RI lines, respectively. The designation of mSERT and Tph2 variants in these lines is but one example of an advancing sophistication in our understanding of how to model 5-HT impact on complex traits, many of which are routinely used to model components of neuropsychiatric disease risk and the effects of medications (40, 41).

Experimental Procedures

Cell Transfections and Transport Assays. The Stratagene QuikChange kit was used to generate the coding mutants in the mSERT/pCdnA3-1. Mutants were confirmed by fluorescent DNA sequencing (Center for Molecular Neuroscience, Neurogenomics and Sequencing Core Facility, Vanderbilt University Nashville, Tennessee). HeLa cells were transfected and 1H 5-HT uptake was performed as previously described (42). K and Vmax values obtained from evaluation of transport activity were derived using a nonlinear curve fit as a function of 5-HT concentration (100 nM to 10 μM) (Prism4 for PC, Graphpad software). We normalized total uptake data by the mSERT expression levels obtained by Western blot analysis of each individual experiment. All experiments were performed in triplicate and repeated in 6 or more separate assays.

Synaptosomal Uptake and Binding. Mouse studies were performed in accordance with humane guidelines established by the Vanderbilt Institutional Animal Care and Use Committee (IACUC) under an approved protocol (M/04/376). Inbred mice were obtained from The Jackson Laboratory (Bar Harbor, Maine) and killed at 8–10 weeks of age. BXD male mice were obtained from the University of Tennessee Health Science Center and Oak Ridge National Laboratory. Brain tissue was dissected and homogenized for synaptosomal uptake and binding as described previously (43). The following BXD lines were used: ER lines: 44, 61, 60, 77, 90, and 97 (n = 26) and GK lines: 83, 75, 40, 66, 31, 76, and 56 (n = 24).

Tail Suspension Test. Basal TST was performed manually by 2 independent researchers blind to genotype. Each mouse was suspended by its tail and total
duration of immobilization was calculated as the time the mouse became immo-
bile during a 6-min test session. Mice that either climbed the apparatus or
failed to exhibit immobilization were removed from the analysis. For analysis of
basal TST, unpaired Student’s t tests were used to compare in 7 GK BXD lines
(nos. 31, 40, 56, 66, 75, 76, and 83; n = 23) and 7 ER BXD lines (nos. 44, 60, 61,
77, 90, 96, and 97; n = 26). For the SSR1 sensitivity studies, we used the BXD
lines: nos. 89, 61, 69, 51, 90, 48, 67, 97, 43, 92 (ER, n = 88) and 66, 75, 50, 11,
9, 40, 31, 45, 39, 63 (GK, n = 71). Racemic citalopram hydrobromide was
prepared fresh daily by dissolving the powder in deionized water. Drug was
administered by i.p. injection in a volume of 0.01 mL/g body weight and the
dose was 20 mg/kg calculated as the weight of the base. Control animals received
injections of 0.9% saline in a volume of 0.01 mL/g. Each mouse was
tested twice in the TST: once with saline and once with citalopram, 1 week
apart. A counterbalanced design was used, where half of the animals received
saline followed by citalopram and the other half received citalopram followed
by saline. Mice were injected with drug or saline 30 min before a 6-min tail
suspension test. An automated TST device (Med Associates, St. Albans, Ver-
mont) was used to measure the duration of behavioral immobilization. Mice were
suspected by the tail with tape to a vertical aluminum bar connected to a
strain gauge. The following settings were used in all experiments: threshold 1,
17, gain, 8; time constant, 0.25; and resolution, 200 ms.

Open Field Activity Test. Exploratory locomotor activity was evaluated using
commercially available 27.9 × 27.9 cm activity monitors (MED Associates,
Georgia, Vermont) in standard fluorescent light. Mice were placed in the
monitors 90 min and allowed to explore freely. Data were reported in 10-min
time bins over 90 min and 1-min time bins during the first 10 min. For analysis,
unpaired Student’s t tests were used, comparing the cumulative data obtained
in the first 10 min of activity. BXD lines with the GK haplotype were nos. 11,
31, 39, 40, 45, 50, 53, 66, and 67; ER BXD lines with the ER haplotype were
nos. 43, 48, 51, 67, 69, 73, 89, 90, 92, 97 (n = 86).

In Silico Analysis of BXD Phenotypes. Eight hundred forty-three BXD recom-
binant inbred phenotypes were downloaded from Genenetwork.org (August
2007) and tested for association with the functional GK/ER SLC6A4 haplotype and
the Ang474Pro Tph2 SNP. The genotype for the gene Tph2 was inferred
from the marker rs4228477. Both an epistatic linear model (ANOVA) and an
additive linear model for genotypes at rs13481111 and rs4228477 were ex-
amined for phenotypes with 12 or more strains measured (average 24 strains
total, average 6 per genotype combination). We set the cutoff for interest at
an alpha of 0.05 for model omnibus tests, because of the exploratory nature
of this aspect of the study (data shown in Fig. S3 and Tables S2 and S3). The
phenotypes that were significantly altered by mSERT haplotype were then
tested in unpaired t tests, as shown in Fig. S3.

Brain Region Iron Analysis. Tissue iron concentrations were measured with
graphite furnace atomic absorption spectroscopy (Varian AA240, Varian). Brain
regions were digested in ultrapure nitric acid (1:10 wt/vol dilution) for
48–72 h in a sand bath (60°C). An aliquot of 50 μL of digested tissue was
brought to 1 mL of total volume with 2% nitric acid and analyzed for Fe.
Bovine liver (National Bureau of Standards, U.S. Department of Commerce,
Washington, DC) (10 μg of Mn/g; 184 μg of Fe/g) was digested in ultrapure
nitric acid and used as an internal standard for analysis (final concentration
92 μg of Fe/g) to ensure consistency between runs.

ACKNOWLEDGMENTS. We are grateful to Rob Williams (University of Ten-
nessee Health Science Center) for provision of RI lines. We thank Michael
Aschner for helpful discussion during the development of the project.
We gratefully acknowledge Jane Wright for animal husbandry and support in
the behavior tasks and Qiao Han for tissue culture support. We also thank Ray
Johnson and Denise Malone from the Center for Molecular Neuroscience,
Neurochemistry and Neurogenomics cores, for neurochemistry and DNA se-
quencing support. We acknowledge support from MH65215, MH65782
(A.M.D.C.), 2005 NARSAD Young Investigator Award (C.B.Z.), U01AA14425
(L.L.), NINDS 1R15NS061309-01 (K.M.E.), and DA07390 and MH07822
(R.D.B.). D.C.A. acknowledges support from Alfred L. George Jr. and the
Vanderbilt Institute for Integrative Genomics. B.T. was supported by Institutional Re-
search and Academic Career Development Award GM068543 to R.C. and
by National Institutes of Health Award DA00390 (to R.D.B.). E.C. acknowledges
funding from National Institute on Alcohol Abuse and Alcoholism
(U01AA13499 and U24AA12315), National Institute on Drug Abuse
R01DA020677, and Department of Energy Office of Biological and Environ-
mental Research under contract DE-AC05-00OR22725 with University of Tennessee-Battelle, LLC.