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Abstract:  
 
Adequate brain iron levels are essential for enzyme activities, myelination, and neurotransmitter 
synthesis in the brain. Although systemic iron deficiency has been found 
in genetically or dietary-induced obese subjects, the effects of obesity-associated iron 
dysregulation in brain regions have not been examined. The objective of this study was 
to examine the effect of dietary fat and iron interaction on brain regional iron contents and 
regional-associated behavior patterns in a mouse model. Thirty C57BL/6J male weanling 
mice were randomly assigned to six dietary treatment groups (n = 5) with varying 
fat (control/high) and iron (control/high/low) contents. The stereotypical behaviors were 
measured during the 24th week. Blood, liver, and brain tissues were collected at the end 
of the 24th week. Brains were dissected into the hippocampus, midbrain, striatum, and 
thalamus regions. Iron contents and ferritin heavy chain (FtH) protein and mRNA expressions 
in these regions were measured. Correlations between stereotypical behaviors and 
brain regional iron contents were analyzed at the 5% significance level. Results showed 
that high-fat diet altered the stereotypical behaviors such as inactivity and total distance 
traveled (P < 0.05). The high-fat diet altered brain iron contents and FtH protein and 
mRNA expressions in a regional-specific manner: (1) high-fat diet significantly decreased 
the brain iron content in the striatum (P < 0.05), but not other regions, and (2) thalamus 
has a more distinct change in FtH mRNA expression compared with other regions. 
Furthermore, high-fat diet resulted in a significant decreased total distance traveled and 
a significant correlation between iron content and sleeping in midbrain (P < 0.05). Dietary 
iron also decreased brain iron content and FtH protein expression in a regionally specific 
manner. The effect of interaction between dietary fat and iron was observed in brain iron 
content and behaviors. All these findings will lay foundations to further explore the links 
among obesity, behaviors, and brain iron alteration. 
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Adequate brain iron levels are essential for enzyme activities, myelination, and neu-
rotransmitter synthesis in the brain. Although systemic iron deficiency has been found 
in genetically or dietary-induced obese subjects, the effects of obesity-associated iron 
dysregulation in brain regions have not been examined. The objective of this study was 
to examine the effect of dietary fat and iron interaction on brain regional iron contents and 
regional-associated behavior patterns in a mouse model. Thirty C57BL/6J male wean-
ling mice were randomly assigned to six dietary treatment groups (n = 5) with varying 
fat (control/high) and iron (control/high/low) contents. The stereotypical behaviors were 
measured during the 24th week. Blood, liver, and brain tissues were collected at the end 
of the 24th week. Brains were dissected into the hippocampus, midbrain, striatum, and 
thalamus regions. Iron contents and ferritin heavy chain (FtH) protein and mRNA expres-
sions in these regions were measured. Correlations between stereotypical behaviors and 
brain regional iron contents were analyzed at the 5% significance level. Results showed 
that high-fat diet altered the stereotypical behaviors such as inactivity and total distance 
traveled (P < 0.05). The high-fat diet altered brain iron contents and FtH protein and 
mRNA expressions in a regional-specific manner: (1) high-fat diet significantly decreased 
the brain iron content in the striatum (P < 0.05), but not other regions, and (2) thalamus 
has a more distinct change in FtH mRNA expression compared with other regions. 
Furthermore, high-fat diet resulted in a significant decreased total distance traveled and 
a significant correlation between iron content and sleeping in midbrain (P < 0.05). Dietary 
iron also decreased brain iron content and FtH protein expression in a regionally specific 
manner. The effect of interaction between dietary fat and iron was observed in brain iron 
content and behaviors. All these findings will lay foundations to further explore the links 
among obesity, behaviors, and brain iron alteration.
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inTrODUcTiOn

Two-thirds of the population in the US are considered overweight or obese, and this number continues 
to rise. Obesity-associated diseases, including neurological disorders, diabetes, and cardiovascular 
illness, impose an enormous burden ($150 billion annually) on the US public health system. One of 
the most recently studied obesity-associated disorders, systemic iron deficiency (ID), has sparked 
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attention. National and international epidemiological data have 
shown ID to be two times more likely in overweight and obese 
children than in the children of normal weight (1–5).

The effect of obesity on iron metabolism has been studied 
in both human and animal models. An inverse relationship 
between body mass index (BMI) and plasma iron concentrations 
was observed in obese children (1). Genetic obese adult mice (ob/
ob) showed lower iron concentrations in liver, muscle, femur, 
bone, and plasma than lean mice (6, 7). Dietary-induced obese 
mice showed a significant decrease of hepatic non-heme iron 
contents after 16 weeks of high-fat treatment (8). Furthermore, 
a decreased liver iron content and increased inflammation 
(hepcidin and IL-6) in adipose tissue was observed in a 24-week 
dietary-induced Swiss mice model (9). All above studies focused 
on body iron stores or status affected by obesity. However, the 
brain regional iron content affected by high-fat diet has not yet 
been explored.

Brain iron is essential for biological processes such as oxygen 
delivery, myelination, and neurotransmitters synthesis (10, 11). 
Brain iron disturbance leads to molecular, metabolic, structural, 
and synaptic changes that resulted directly in behavioral out-
comes as demonstrated in human and rodent studies (12–14). In 
humans, early childhood ID results in poor inhibitory control, 
learning obstacles, poor cognition, and motor performance 
(15–18). ID during infancy leads to negative impact on executive 
function and memory (19). In rodents, brain iron disturbance 
was associated with increased anxiety and poor performance 
on memory tasks (20–24). Therefore, investigation of brain iron 
dysregulation under obesity or other disease conditions are very 
important.

The brain regions known to be sensitive to iron status changes 
are the hippocampus, striatum, midbrain, and thalamus (25–30). 
These iron-rich regions control various behaviors. For examples, 
the hippocampus handles spatial memory, navigation, and olfac-
tion (31). The striatum plans and modulates movement pathways 
(32) and facilitates and balances stimuli (33). The midbrain 
controls multiple functions including circadian system, vision, 
hearing, motor control, arousal (alertness), and temperature 
regulation (34, 35). The substantia nigra (SN) is the major 
component of the midbrain. SN controls eye movement, motor 
planning, reward seeking, and learning. The death of dopamin-
ergic neurons in the midbrain results in Parkinson’s disease and 
associated abnormal behaviors including tremor, bradykinesia, 
stiffness, disturbances to posture, fatigue, sleep abnormalities, 
and depressed mood (36,  37). The thalamus is the subcortical 
center of the motor control network (38). It regulates relaying 
sensory and motor signals to the cerebral cortex, regulating 
consciousness, sleep, wakefulness, and alertness (39, 40).

The changes in iron contents in the hippocampus, midbrain, 
striatum, and thalamus have been widely studied under the 
conditions of ID. However, under the fast growing epidemics 
of obesity, the effect of obesity on regional iron changes has not 
been examined. The objective of this study was to investigate 
the impacts of dietary fat and iron interaction on brain regional 
iron contents and associated behavior patterns. The results will 
provide novel information to obesity research and its relation to 
nutrition and brain neurology.

MaTerials anD MeThODs

animal subjects
Thirty four-week-old C57BL/6J male mice (Jackson Laboratories, 
Bar Harbor, ME, USA) were randomly assigned to six dietary 
treatment groups (n  =  5). These diets were 10% kcal derived 
from fat + 36.9 mg Fe/kg diet (control fat control iron, CF/CI, 
Cat# D13010403), 10% kcal derived from fat  +  529  mg  Fe/kg 
diet (control fat high iron, CF/HI, Cat# D13010405), 10% kcal 
derived from fat + 3.6 mg Fe/kg diet (control fat low iron, CF/
LI, Cat# D13010401), 45% kcal derived from fat + 36.9 mg Fe/
kg diet (high fat control iron, HF/CI, Cat# D13010404), 45% kcal 
derived from fat + 529 mg Fe/kg diet (high fat high iron, HF/HI, 
Cat# D13010406), and 45% kcal derived from fat + 3.6 mg Fe/
kg diet (high fat low iron, HF/LI, Cat# D05101905) (Research 
Diets Inc., New Brunswick, NJ, USA). Other major ingredients 
in the experimental diets, expressed as grams per kilogram diet, 
include casein (200 g/kg), l-Cystine (3 g/kg), cornstarch (high 
fat: 452.2 g/kg, low fat: 72.8 g/kg), sucrose (172.8 g/kg), cellulose 
(50 g/kg), soybean oil (25 g/kg), mineral mix S18708 (10 g/kg), 
and vitamin mix V10001 (10 g/kg). Diets and de-ionized water 
were given to mice ad  libitum. Mice were housed individually 
in a temperature-controlled room. The room temperature was 
maintained at 25 ± 1°C, with each dark cycle occurring between 
7 p.m. and 7 a.m. daily.

Dietary intake and mice body weight were measured weekly. 
During the 24th week, mice from each treatment group (n = 5), 
except mice fed with HF/CI diet, were recorded for stereotypical 
behaviors. Mice fed with HF/LI diet developed ulcerative dermati-
tis and were euthanized at the end of 16th week after stereotypical 
behaviors were recorded. The rest of the treatment groups were 
euthanized at the end of the 24th week. Blood, liver, and brain 
tissues were collected. Brains were dissected into the hippocam-
pus, midbrain, striatum, and thalamus. Tissues were snap frozen 
in liquid nitrogen and stored at −80°C. Hematocrit levels were 
measured using a micro-capillary centrifuge (Model MB, IEC, 
Needham Heights, MA, USA) by spinning samples at 10,000 rpm 
for 10 min. Hemoglobin concentrations were measured at 540 nm 
following the manufacture’s protocol (Sigma #9008-020).

All studies were conducted in an American Association for 
Laboratory Animal Care-accredited facility following protocols 
approved by the Institution of Animal Care and Use Committee 
(IACUC) at the University of North Carolina at Greensboro 
(UNCG). The procedures were performed by the principles and 
guidelines established by the National Institutes of Health for the 
care and use of laboratory animals.

liver Triglyceride extraction and 
Measurement
Liver triglyceride (TG) concentrations were determined by a 
colorimetric assay (41). Briefly, liver tissues (100–300 mg) were 
weighed and placed into ethanolic potassium hydroxide solution 
(1 part of 100% ethanol:2 parts of 30% KOH). The mixture was 
incubated at 55°C overnight and then centrifuged at 14,000 rpm 
at 4°C for 5 min. The supernatant was mixed with 1M magnesium 
chloride (MgCl2) and incubated on ice for 10 min. The mixture 
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was centrifuged at 14,000 rpm at 4°C for 5 min. The supernatant 
was taken to measure TG content using free glycerol reagent 
(Cat#F6428, Sigma-Aldrich, St Louis, MO, USA) and glycerol 
standards (Cat#G7793, Sigma-Aldrich, St Louis, MO, USA) fol-
lowing the manufacturer’s protocol.

Brain iron content Measurement
Brain samples were sonicated in the cold radioimmunopre-
cipitation assay buffer (1% non-idet-P40, 0.1% sodium dodecyl 
sulfate, 0.5% sodium deoxycholate in the phosphate saline buffer, 
pH  =  7.5) containing protease inhibitors. Separate aliquots of 
each sonicated sample were assayed for protein concentration 
[Pierce Bicinchoninic Acid (BCA) Protein Assay Thermo Fisher 
Scientific Inc., Rockford, IL, USA] and iron content. Samples 
used for the iron assay were digested in ultrapure nitric acid (1:10 
ratio) for 48 h in a sand bath (60°C). Aliquots (20 μl) of digested 
homogenate were further diluted with 2% nitric acid for analy-
sis. Iron concentrations were measured using graphite furnace 
atomic absorption spectrometry (Varian AA240, Varian, Inc., 
USA). Bovine liver (NBS Standard Reference Material, USDC, 
Washington, DC, USA) containing 184 μg Fe/g was digested in 
ultrapure nitric acid and used as an internal standard for analysis. 
All samples and controls were run in triplicates. Iron contents 
were expressed as micrograms of iron per milligram of protein.

Western Blot to Detect the Protein 
expression of iron-related Proteins
Brain and liver samples from each treatment were homogenized 
in RIPA buffer with protease inhibitor in a 1:10 weight:volume 
ratio. Samples were spun at 15,000 and 14,000 rpm, respectively. 
Aliquots of the homogenates were used to determine protein con-
centration using the BCA Protein Assay. Equal amounts of lysate 
proteins were separated by sodium dodecyl sulfate polyacryla-
mide gel electrophoresis (SDS-PAGE), transferred onto nitrocel-
lulose membranes, and immunoblotted with primary antibodies. 
Ferritin heavy chain (FtH) and light chain (FtL) primary antibod-
ies (abcam) were diluted in 1:500 to determine the brain or liver 
protein expression. Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) (Novus Biological) and β-Actin (abcam) were all 
diluted in 1:1000. Mouse monoclonal or polyclonal secondary 
antibodies (Bio-Rad laboratories) were used in 1:3000 dilutions. 
The protein bands were visualized using SuperSignal West Pico 
chemiluminescent substrate Western blotting detection reagents 
(thermo scientific) and X-ray film (GeneMate).

real-time Pcr to Detect the  
Fth mrna expression
Real-time PCR gene expression assay was conducted for FtH 
gene (Mm00850707_g1). Twenty nanograms of FtH cDNA were 
used in the TaqMan® Universal Master Mix II (Cat#4440040, Life 
Technologies, Carlsbad, CA, USA), and the assay was performed 
according to the manufacturer’s protocol. Control and target 
assays were validated on excess sample tissue (n =  5). The 18s 
gene assay (Hs99999901_s1) was selected as the appropriate 
endogenous control. Relative gene expression was quantified 
using the delta delta Ct method.

Behavioral analysis
Behavioral analysis was conducted using the Clever Home Cage 
Scan (HCS) system (Clever Systems Inc., Reston, VA, USA) 
(42, 43). The HCS system utilized video images from the home 
cage acquired at 30  frames/s. Based on the sequential postures 
of the mice and position of body parts in space, behaviors were 
assigned using pre-trained data sets as a reference. The computer 
software categorized these behaviors into different categories 
(44). The agreement between behaviors identified by the HCS 
and mice actual behavior was ≥90% (42). During 24  weeks of 
the dietary treatments, each mouse was placed in an individual 
shoebox cage with food, water, and minimal bedding. Before 
recording, mice were acclimated for 24 h in the recording room 
to ensure that any behavior alterations captured were treatment 
effects. After acclimation, mouse activities, such as total distance 
traveled (TDT), inactivity, sleeping, grooming, sniffing, foraging, 
feeding, and twitching, were recorded by video surveillance for 
24 h. These data were exported to Microsoft Excel 2007, Prism 5, 
and SPSS for graphs and statistical analysis.

statistical analyses
Multivariate analysis (two-way ANOVA) was used to analyze the 
effect of dietary fat and iron, respectively, as well as the interac-
tion effect of dietary iron and fat, on all data outcomes (P < 0.05). 
When there is no interaction effect of dietary iron and fat, one-
way ANOVA was used to test the significant effect of high-fat 
diet at all iron levels of all data outcomes (P < 0.05). The Post Hoc 
analysis was used to test the effect of dietary iron at both fat levels 
on all data outcomes (P <  0.05). When there is an interaction 
effect of dietary iron and fat, an independent t-test was used to 
compare the differences between control fat group and high-fat 
group at the same iron level of all data outcome (P < 0.05). All 
statistical analyses were done in SPSS.

resUlTs

Physiological Data
The average dietary intake per mice per week was converted to 
energy intake shown in Figure 1. Dietary fat and iron, respectively, 
had a significant effect on the energy intake (P < 0.05). Mice fed 
with high fat diet had significantly higher energy intake than mice 
fed with the control fat diet at all iron levels (HF vs. CF, P < 0.05).

The effects of dietary fat and iron on body weight were shown 
in Figure 2. Dietary fat and iron, respectively, had a significant 
effect on body weight (P  <  0.05). There was an interaction 
between dietary fat and iron on body weight (P <  0.05). Mice 
fed with high fat diets, at both control and high iron levels, had 
a significant higher body weight compared with their control fat 
fed pairs (HF/CI vs. CF/CI, HF/HI vs. CF/HI, P < 0.05). Mice 
fed with low iron diet, at both control and high fat levels, had a 
decreased body weight compared with control iron pairs (CF/CI 
vs. CF/LI, HF/CI vs. HF/LI, P < 0.05).

Liver TG concentration was measured to evaluate the effect 
of high-fat diet (Figure 3). High-fat diet significantly increased 
the liver TG concentration at the control iron diet level (CF/CI vs 
HF/CI, P < 0.05). There was an interaction between dietary iron 

http://www.frontiersin.org/Nutrition
http://www.frontiersin.org
http://www.frontiersin.org/Nutrition/archive


FigUre 2 | Mice average body weight per treatment group from the initial week to terminal week. * represents a significant difference in average dietary 
intake between control and high fat-treated groups (one-way ANOVA, P < 0.05). Abbreviations: CF, control fat; HF, high fat; CI, control iron; HI, high iron; LI, low iron.

FigUre 1 | Weekly energy intake per mouse from initial week to terminal week. Abbreviations: CF, control fat; HF, high fat; CI, control iron; HI, high iron; 
LI, low iron.
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and fat on TG content (P <  0.05). Low iron diets significantly 
decreased TG concentrations at both control and high fat diet 
levels (CF/CI vs. CF/LI, HF/CI vs. HF/LI, P < 0.05).

The impacts of dietary iron were measured through hemo-
globin, hematocrit, dietary iron intake, and liver FtL expression 

(Figure  4). Dietary iron had a significant effect on hematocrit 
and hemoglobin contents (Figures 4A,B). At both control and 
high-fat diet levels, mice fed with low iron diets exhibited a sig-
nificantly lower hematocrit and hemoglobin contents compared 
with control iron groups (CF/CI vs. CF/LI, HF/CI, vs. HF/LI, 
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FigUre 3 | Mice average liver triglyceride (Tg) concentration per 
treatment group from the initial week to terminal week. * represents a 
significant difference in liver TG contents between the control and high 
fat-treated groups (independent t-test, P < 0.05). Δ represents a significant 
difference between the low iron and the control iron-treated groups at the 
control fat level (independent t-test, P < 0.05). □ represents a significant 
difference between the low iron and the control iron-treated groups at the 
high-fat level (independent t-test, P < 0.05). Abbreviations: CF, control fat; 
HF, high fat; CI, control iron; HI, high iron; LI, low iron.

FigUre 4 | hematocrits (a), hemoglobin (B), dietary iron intake (c), and liver ferritin l (D) levels in male c57Bl/6J mice in terminal weeks of dietary 
treatments. * represents a significant difference between the control and high fat-treated groups (independent t-test, P < 0.05). Δ represents a significant difference 
between the low iron and control iron-treated groups at the control fat level (independent t-test, P < 0.05). □ represents a significant difference between the low iron 
and control iron-treated groups at high-fat level (independent t-test, P < 0.05). Abbreviations: CF, control fat; HF, high fat; CI, control iron; HI, high iron; LI, low iron; 
FtL, ferritin L.
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P < 0.05, Figures 4A,B). The average iron intake per mouse per 
week wash shown in Figure 4C. At both fat levels, the high iron 
intake was approximately 10 times higher than that in mice fed 
with the control iron diet, and the low iron intake was about 
10 times lower than that in mice fed with the control iron diet 
(P < 0.05). The impact of dietary iron was further confirmed by 
liver FtL expression in Figure 4D, which showed that low iron 
diets significantly decreased the FtL expression at both control 
and high-fat levels.

Brain iron content
The effects of dietary fat and iron on brain regional iron content 
were shown in Figure 5. Both dietary fat and iron had significant 
effects on brain iron contents, but in a regionally specific manner. 
For example, the striatal iron content was decreased by the high-
fat and low iron diets, respectively, and there was no interaction 
between dietary iron and fat in this region (HF/CI vs. CF/CI, 
P < 0.05, Figure 5). An interaction of dietary fat and iron was 
found in the hippocampus, midbrain, and thalamus (P < 0.05). 
The HF/HI diet significantly increased brain iron content in the 
hippocampus compared with control fat fed mice (CF/HI vs. HF/
HI, P < 0.05). The CF/LI diet significantly decreased the brain 
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FigUre 6 | Ferritin-h (Fth) protein expression in hippocampus (a), midbrain (B), thalamus (c), and striatum (D) tested by Western Blot.

FigUre 5 | Brain iron contents in male c57Bl/6J mice at the terminal weeks of dietary treatments. * represents a significant difference between control 
and high fat-treated groups (independent t-test, P < 0.05). Δ represents a significant difference between the high or low iron and control iron-treated groups at the 
control fat level (independent t-test, P < 0.05). □ represents a significant difference between the high or low iron and control iron-treated groups at the high-fat level 
(independent t-test, P < 0.05). Abbreviations: CF, control fat; HF, high fat; CI, control iron; HI, high iron; LI, low iron.
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iron contents in the midbrain, striatum, and thalamus compared 
with its control (CF/LI vs. CF/CI, P < 0.05).

Brain Protein and mrna  
expression of Ferritin-h
Ferritin heavy chain is an iron-storage protein functioning as 
an indicator of the cellular iron status. The protein and mRNA 
expressions of FtH in the hippocampus, midbrain, striatum, and 
thalamus were studied (Figures 6 and 7). In Figure 6, low iron diet 
decreased the FtH protein expression at either control or high-fat 
level in all regions studied. In Figure  7, no dietary interaction 
between fat and iron was found on the FtH mRNA expression in 

all regions studied. Dietary fat did not alter FtHmRNA expression 
level. Only the dietary iron status significantly decreased the FtH 
mRNA expression in thalamus.

Behavior analysis
The overall mouse behavior profile was shown in Figure 8. The 
stereotypical behaviors, such as inactivity, grooming, locomotion, 
and feeding, were included in the profile. Inactivity took the larg-
est portion of the profile in all treatment groups. There was an 
interaction between fat and iron on inactivity (Figure 9, P < 0.05). 
The high-fat diet significantly increased the percentage of inactiv-
ity at the control iron level (CF/CI vs. HF/CI, independent t-test, 
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FigUre 7 | The mrna expression of Fth in hippocampus (a), midbrain (B), thalamus (c), and striatum (D) tested by real-time Pcr. Data represented 
are mean ± SD (n = 5). * represents a significant difference between control and high fat-treated groups (independent t-test, P < 0.05). Δ represents a significant 
difference between the high or low iron and control iron-treated groups at the control fat level (independent t-test, P < 0.05). □ represents a significant difference 
between the high or low iron and control iron-treated groups at the high-fat level (independent t-test, P < 0.05). Abbreviations: CF, control fat; HF, high fat; 
CI, control iron; HI, high iron; LI, low iron.
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P < 0.05). Both high and low iron diet increased the percentage of 
inactivity at control fat level (CF/CI vs. CF/HI, CF/CI vs. CF/LI, 
P < 0.05). Total distance traveled was analyzed in accordance with 
the results of inactivity. There was also an interaction between 
iron and fat on the total distance traveled (Figure 10, P < 0.05). 
High-fat diet decreased the total distance traveled at high iron 
level (CF/HI vs. HF/HI, P < 0.05). Low iron diet decreased the 
total distance traveled at the control fat level (CF/CI vs. CF/LI, 
P < 0.05).

The correlations between brain iron contents and the stereo-
typical behaviors were examined in all regions studied. A positive 
correlation between midbrain iron content and the sleeping time 
fraction was found at the high-fat diet level (r = −0.6, P < 0.05, 
Figure 11). No other significant correlations were found between 
brain regional iron contents and stereotypical behaviors.

DiscUssiOn

This is a preliminary study investigating obesity-induced brain 
regional iron changes. The results showed a heterogeneous iron 
distribution and regional-specific response to dietary-induced 
obesity. For example, high-fat diet significantly decreased the 
brain iron content in the striatum (P  <  0.05), but not other 
regions. The high-fat diet altered the brain iron contents and FtH 
protein and mRNA expressions in a regional-specific manner. 
Thalamus has a more distinct change in FtH mRNA content 
compared with other regions. An interaction between dietary 
iron and fat was found to have a significant impact on brain iron 
content and stereotypical behaviors. The high-fat diet altered the 
stereotypical behaviors such as inactivity, locomotion, and total 
distance traveled (P < 0.05). The high-fat diet also led a significant 
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correlation between iron content and sleeping in the midbrain 
(P  <  0.05). All these findings contribute toward the research 
blank of obesity-induced brain iron metabolism.

FigUre 8 | Behavior patterns of male c57Bl/6J mice at the terminal weeks of dietary treatment. The 24th week was the terminal week for all groups of 
dietary treatments, except for HF/CI which had the 16th week as the terminal week. Abbreviations: CF, control fat; HF, high fat; CI, control iron; HI, high iron; 
LI, low iron.

Only dietary fat decreased the brain iron content in the 
striatum, but not other regions. The result indicates that only 
striatum endures a regional-specific ID caused by high-fat diet. 
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FigUre 11 | Positive correlation between midbrain iron content and 
sleeping at high-fat diet level (r = 0.6, P < 0.05).

FigUre 10 | Total distance traveled (TDT) time fraction of male 
c57Bl/6J mice within 24 h at the terminal weeks of dietary 
treatments. * represents a significant difference between control and high 
fat-treated groups (independent t-test, P < 0.05). Δ represents a significant 
difference between the low iron and control iron groups at the control fat level 
(independent t-test, P < 0.05). Abbreviations: CF, control fat; HF, high fat; CI, 
control iron; HI, high iron; LI, low iron.

FigUre 9 | inactivity time fractions of male c57Bl/6J mice within 
24 h at the terminal weeks of dietary treatments. * represents a 
significant difference between control and high fat-treated groups 
(independent t-test, P < 0.05). Δ represents a significant difference between 
the high or low iron and control iron-treated groups at the control fat level 
(independent t-test, P < 0.05). Abbreviations: CF, control fat; HF, high fat; CI, 
control iron; HI, high iron; LI, low iron.

The reduction of the striatal iron content has a proven associa-
tion with the reduction in dopamine D2 receptors (45–47). It has 
also been reported that brain iron is especially important to 
dopaminergic modulatory systems, and its deficit would explain 
the behavioral disturbances such as movement modulation and 
balances motivation (32, 33, 47). However, due to limited sam-
ples, we could not continue analyzing the dopamine expression 
in striatum to test our hypothesis that striatal iron is associated 
with dopamine expression. In future investigations, we intend to 

measure dopamine and its metabolites in the striatum to test the 
outcome of dietary fat-induced brain iron alteration.

In this preliminary study, we found that high-fat diet altered 
some stereotypical behaviors and our findings are consistent 
with the literature. As we expected, the high-fat diet increased 
the daily percentage of inactivity time fraction at the 24th week 
of dietary treatments at the control iron level (Figure 9). This 
result is consistent with other observations that obese subjects 
are characterized by sedentary behavior (48, 49). The finding 
that high-fat diets affected the TDT (Figure  10) is also sup-
ported by the reports of increased immobility and decreased 
locomotion activity in both diet-induced and genetically obese 
mice (50, 51).

Since evidence showed that behavioral alteration is tightly 
associated with metabolic defects (52), we hypothesized that the 
alteration of the behavior is due to the changes in brain iron con-
tent caused by high-fat diet. However, our data did not support 
this hypothesis. The correlations between brain iron contents 
and stereotypical behaviors were tested in all regions. Only one 
positive correlation between sleep time fraction and midbrain 
iron contents was found at the high-fat diet level (Figure  11, 
P  <  0.05). Since the correlation does not indicate a causation, 
it is inconclusive if the correlation between midbrain iron and 
sleeping time is due to the regional iron change.

This study included various levels of iron and fat diets to 
examine not only the effects of dietary fat and iron, respectively, 
but also their interactions on brain iron biology. The purpose of 
adding high or low iron groups was to illustrate the consequence 
of the interaction between dietary iron and fat. We found that 
mice fed with HF/LI diet experienced ulcerative dermatitis, 
which is a different disease than severe ID. To be ethical to HF/
LI fed mice, as soon as we found the disease symptoms, we 
removed this group of mice at week 16. The data from HF/LI 
mice should not be included in the figures in comparison with 
mice terminated at 24th week. However, we think that it will be 
very informative to see the outcome of HF/LI in comparison 
to control mice. Regarding the high iron diet, it was due to our 
expectation that high-fat diet might decrease brain regional iron 
contents the same as it does to the systematic tissues. We assumed 
that high iron diet might minimize the possible ID caused by 
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