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Abstract: 

Juvenile (20–24-month-old) rhesus monkeys were exposed to airborne-manganese sulfate (MnSO4) 1.5 mg 

Mn/m
3
 (6 h/day, 5 days/week) for 15 or 33 days, or for 65 days followed by a 45 or 90 days post-exposure 

recovery period, or air. We assessed biochemical endpoints indicative of oxidative stress and excitotoxicity in 

the cerebellum, frontal cortex, caudate, globus pallidus, olfactory cortex, and putamen. Glutamine synthetase 

(GS), glutamate transporters (GLT- 1 and GLAST) and tyrosine hydroxylase (TH) protein levels, 

metallothionein (MT), GLT-1, GLAST, TH and GS mRNA levels, and total glutathione (GSH) levels were 

determined for all brain regions. Exposure to Mn significantly decreased MT mRNA in the caudate (vs. air-

exposed controls). This depression persisted at least 90 days post-exposure. In contrast, putamen MT mRNA 

levels were unaffected by Mn exposure. GLT-1 and GLAST were relatively unaffected by short term Mn 

exposure, except in the globus pallidus where exposure for 33 days led to decreased protein levels, which 

persisted after 45 days of recovery for both proteins and 90 days of recovery in the case of GLAST. Exposure to 

1.5 mg Mn/m
3
 caused a significant decrease in GSH levels in the caudate and increased GSH levels in the 

putamen of monkey exposed for 15 and 33 days with both effects persisting at least 90 days post-exposure. 

Finally, TH protein levels were significantly lowered in the globus pallidus of the monkeys exposed for 33 days 

but mRNA levels were significantly increased in this same region. Overall, the nonhuman primate brain 

responds to airborne Mn in a heterogeneous manner and most alterations in these biomarkers of neurotoxicity 

are reversible upon cessation of Mn exposure. 
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Article: 

1. Introduction 

Excessive manganese (Mn) accumulation in the nervous system can lead to detrimental functions that clinically 

resemble Parkinson’s disease (PD). Mn toxicity is most commonly associated with occupational exposure to 

aerosols or dusts that contain extremely high levels (> 1–5 mg Mn/m
3
) of Mn, consumption of contaminated 

well water, or parenteral nutrition therapy in patients with liver disease. (Aschner et al., 2005; ATSDR, 2000; 

Mergler et al., 1994; Pal et al., 1999). Over the last five years, our group has reported brain Mn concentrations 

and responses of several markers of neurotoxicity following high dose Mn inhalation by pregnant rats and their 

offspring, young adult rats, and senescent rats (Dobson et al., 2003; Erikson et al., 2004, 2005, 2006; Weber et 

al., 2002). More recently our group explored the effects of 0.06, 0.3 and 1.5 mg Mn/mm
3
 on markers of 

neurotoxicity in juvenile rhesus monkeys (Erikson et al., 2007). This current study examines how exposure 

duration influences these markers of neurotoxicity in monkey brain regions with differing susceptibilities to Mn 

neurotoxicity. 

 

Oxidative stress has been implicated as a contributing mechanism by which Mn mediates its cytotoxicity 

(Aschner, 1997; Taylor et al., 2006). It has been proposed that Mn, through its sequestration in mitochondria 

(Galvani et al., 1995), interferes with proper respiration, thereby leading to excessive production of reactive 

oxygen species (ROS). Increased ROS production can interfere with glutamate removal by inhibiting the high 

affinity glutamate transporters (Trotti et al., 1998). Increased extracellular glutamate levels are excitotoxic to 
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neurons and may represent a likely mode of action for Mn neurotoxicity. The glutamate/aspartate transporter 

(GLAST) and glutamate transporter (GLT-1) are the most prominent astrocytic glutamate transporters (Danbolt, 

2001). It has been shown that glutamate uptake is attenuated in astrocytes exposed to Mn (Hazell and 

Norenberg, 1997; Erikson et al., 2002b) while GLAST gene expression is significantly decreased following Mn 

exposure (Erikson et al., 2002b). However, little data exist on the in vivo effects of Mn inhalation on glutamate 

transporter gene expression and protein levels, information that is critical for more fully evaluating the 

neurotoxicity of inhaled Mn. 

 

In our previous studies we assessed oxidative stress by measuring levels of two antioxidants, namely 

glutathione (GSH) and metallothionein (MT), as well as glutamine synthetase (GS), a protein that is exquisitely 

sensitive to oxidative stress (Dobson et al., 2003; Erikson et al., 2004, 2005, 2006, 2007). In this study we 

evaluated exposure time-dependent changes and recovery after a subchronic Mn inhalation in MT, GLT-1, and 

GLAST, tyrosine hydroxylase (TH), and GS in select brain regions of rhesus monkeys following high-dose Mn 

inhalation. We hypothesize that alterations in these markers of neurotoxicity will persist after cessation of Mn 

exposure, based on our previous study (Erikson et al., 2005). 

 

2. Materials and methods  

2. 1. Chemicals 

All chemicals were purchased from Sigma Chemical (St. Louis, MO), unless otherwise noted, and were of the 

highest possible quality. 

 

2.2. Animals and their husbandry 

This study was conducted under federal guidelines for the care and use of laboratory animals and was approved 

by the Chemical Industry Institute of Toxicology Centers for Health Research (CIIT) Institutional Animal Care 

and Use Committee. Twenty-two male rhesus monkeys purchased from Covance Research Products, Inc. 

(Alice, TX) were used. Animals were between 20 and 24 months of age at the start of the inhalation exposure. 

 

All animals were housed in animal rooms or exposure chambers within CIIT’s animal facility. This facility is 

accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, International. A 

certified primate chow (#5048) diet from Purina Mills (St. Louis, MO) was fed twice a day (total daily amount 

fed was approximately 4% of the animal’s body weight). During non-exposure periods, domiciliary stainless 

steel cages (0.4 m
2
 x 0.8 m tall) suitable for housing macaque monkeys (Lab Products, Inc., Seaford, 

DE) were used to individually house monkeys. On each exposure day, animals were transferred to 0.2 m
2 
x 0.6 

m tall stainless steel cages (Lab Products, Inc., Seaford, DE) that were designed to fit within the 8-m
3
 inhalation 

chambers. Animals were moved back to their domiciliary cages after the end of each 6-h exposure. Additional 

details concerning the husbandry and health status of these animals have been published (Dorman et al., 2005). 

 

2.3. Experimental design 

The in-life portion of this study was performed in accordance with the U.S. Environmental Protection Agency’s 

Good Laboratory Practice (GLP) Standards for Inhalation Exposure Health Effects Testing (40 CFR Part 

79.60). A MnSO4 aerosol concentration of 4.62 mg MnSO4/m
3
, corresponding to 1.5 mg Mn/m

3
, was generated 

for this study. Control animals were exposed to filtered air. Exposures were conducted for 6 h/day, 5 days/week. 

Monkeys were exposed to MnSO4 at 1.5 mg Mn/m
3
 for 15 (n = 4) or 33 (n = 4 exposure days; or to 1.5 mg 

Mn/m
3
 for 65 exposure days and held for either 45 days (n = 4) or 90 days (n = 4) before evaluation (recovery 

groups). Control monkeys were exposed to filtered air for 65 exposure days (n = 6). The air-exposed control 

monkeys were utilized in another study which included magnetic resonance imaging of the brain (Dorman et al., 

2006a,b) and involved the short-term (~90 min) use of the injectable anesthetic propofol. The mode of action by 

which propofol induces anesthesia is not fully understood, although several studies suggest that the compound 

acts via potentiation of brain gamma-aminobutyric acid (GABAA) receptors (Schwieler et al., 2003). Propofol is 

a highly lipophilic agent with an extremely fast onset and short duration of action. A mean blood–brain 

equilibration half-life of less than 3 min has been reported (Kanto and Gepts, 1989). Propofol undergoes rapid 

redistribution to muscle and fat and other inactive tissue depots with a t1/2 of elimination of approximately 30 



min in healthy children (Jones et al., 1990). The time interval (~72 h) between propofol administration and 

euthanasia of the control monkeys was adequate for complete elimination to occur thus minimizing propofol-

induced effects on the biomarkers measured in this study. It remains unknown however, whether certain 

responses seen may indeed be attributed to the anesthetic regimen used; however, finding of similar responses 

in manganese-exposed rodents (Erikson et al., 2004) without prior propofol anesthesia suggest that the effects 

seen in this study were induced by the manganese exposure. 

 

2.4. Mn exposures and tissue collection 

Manganese (II) sulfate monohydrate (MnSO4
.
H2O) (CAS Registry Number 10034-96-5) was obtained from 

Sigma– Aldrich Chemical Company, Inc. (Milwaukee, WI). This relatively water-soluble material is a white to 

pale pink crystalline powder that contains 32.6% Mn. Four 8-m
3
 stainless steel and glass inhalation exposure 

chambers were used. Methods describing chamber monitoring as well as generation and characterization of the 

MnSO4 aerosol and tissue collection have been previously described (Dorman et al., 2004, 2005; Erikson et al., 

2007). 

 

Necropsies were performed the day following the last inhalation exposure (i.e., 12–18 h after termination of the 

final inhalation exposure). Food was withheld overnight prior to necropsy. Monkeys were anesthetized with 

ketamine (20 mg/ kg, IM, Fort Dodge Animal Health, Fort Dodge, IA) and euthanized with pentobarbital (80–

150 mg/kg, i.v., Henry Schein, Inc., Port Washington, NY) followed by exsanguinations. Following euthanasia, 

the brains were removed and divided on the mid-sagittal plane with anatomical structures identified using a 

published atlas (Martin and Bowden, 2000). The following brain structures were used for this study: caudate, 

putamen, globus pallidus, olfactory cortex, cerebellum, and frontal cortex. All samples were stored in individual 

plastic vials or bags, frozen in liquid nitrogen, and stored at approximately —80 °C until chemical analyses 

were per-formed. The brain regions were selected because they are known to be target regions for Mn toxicity 

based on numerous studies published over the last 7 years. 

 

2.5. RNA and protein extraction from brain tissues 

Each brain region was treated to allow RNA and protein extraction. Briefly, the tissue samples had a 

monophase phenol and guanidine isothiocyanate solution (RNA STAT-60, Tel-Test, Inc., Friendswood, TX) 

added (1:10, w/v, dilution) and were homogenized, centrifuged at 12,000 x g for 30 min. The clear layer was 

removed and RNA was isolated from it. The white layer (DNA) was removed from the remaining sample and 

was centrifuged at 12,000 x g for 10 min. The supernatant was removed and the remaining pellet was 

resuspended in WANG buffer (25 mM HEPES, pH 7.0, 250 mM sucrose, 100 uM EDTA, 1 μg/ml leupeptin, 

0.5 μg/ml pepstatin A, 1 mM dithiothreitol (DTT), 0.2% Triton-X 100). Following sonication of the samples, 

protein content was determined using the bicinchoninic acid (BCA) method (Pierce, IL). 

 

2.6. Northern blot analysis 

For Northern blot analysis, 10 μg of RNA were electrophoresed on a 1.2% denaturing agarose gel and 

transferred onto a positively charged nylon membrane (Nytran SuPerCharge, Schleicher & Schuell, Keene, NH) 

overnight by capillary transfer in 10x SSC (1x SSC = 0.15M sodium chloride, 0.015 M sodium citrate) buffer. 

The RNA was immobilized with a UV crosslinker. 

 

For GS, MT, TH, GLT- 1 or GLAST, the blot was prehybridized in 50% deionized formamide, 5x Denhardt’s 

solution, 10% dextran sulfate, 0.1% sodium dodecyl sulfate (SDS), 4x SSC 100g/ml denatured salmon sperm 

DNA, 20 mM Tris pH 8.0 for 1 h at 45 °C. To probe for GS, MT, TH, GLT- 1 or GLAST, the blot was 

prehybridized in Ultrasensitive Hybridization Buffer (Ambion, Inc., Austin, TX) at 45 °C. The RNA blots were 

then hybridized as previously published (see Erikson et al., 2007). 

 

Membranes were washed two to three times in 2 x SSC/0.1% SDS at 45 °C for 20 min, and then exposed to 

Kodak Biomax MR Film, at —80 °C with intensifying screens for 24–36 h. The autoradiograms were 

quantified by densitometry scanning in conjunction with the TINA v2.09e computer program (Raytest USA, 



Inc., Wilmington, NC). To correct for total loaded RNA level, the blots were stripped in 0. 1 x SSC/0.1% 

SDS/40 mM Tris buffer and probed for 28S rRNA (Barbu and Dautry, 1989). 

 

2.7. Western blot analysis 

Aliquots of protein (100 μg) were mixed with 5 x sample buffer (0.25 M Tris, pH 6.8, 10% SDS, 50% glycerol) 

and 1 M DTT, and separated by denaturing SDS-PAGE using 5% stacking, and 8% resolving acrylamide gels. 

Following fractionation, proteins were electrophoretically transferred to a nitrocellulose membrane (Protran 

BA83, Schleicher and Schuell, Keene, NH) in 20% methanol, 0. 1% SDS, 25 mM Tris, and 192 mM glycine for 

3 h at 60 V. Membranes were then blocked with 5% non-fat powdered milk in TBST (Tris-buffered saline with 

0. 1% Tween 20, 150 mM NaCl; 20 mM Tris) for 1 h. Glutamate transporter (GLT-1) protein expression was 

detected with a rabbit monoclonal antibody (Alpha Diagnostic International, San Antonio, TX) diluted 1:2500 

in TBST and 5% milk overnight, followed by a 1 h incubation with an HRP-conjugated anti-rabbit secondary 

antibody (1:5000). Glutamate transporter (GLAST) protein expression was detected with a rat monoclonal 

antibody (Alpha Diagnostic International, San Antonio, TX) diluted 1:2000 in TBST and 5% milk overnight, 

followed by a 1 h incubation with an HRP-conjugated anti-rat secondary antibody (1:3500). GS proteins were 

detected with a monoclonal antibody, while TH protein was probed with a polyclonal antibody (both from 

Chemicon, Temecula, CA). Both antibodies were diluted to 1:2000 followed by incubation with horseradish 

peroxidase conjugated goat anti-mouse (GS protein) or horseradish peroxidase conjugated goat anti-rabbit (TH 

protein) secondary antibodies diluted 1:2000 (Kirkegaard and Perry Laboratories, Gaithers-burg, MD) in TBST 

and 5% milk for 1 h. Protein bands were visualized with the Enhanced Chemiluminescence System (New 

England Nuclear, Boston, MA) followed by exposure to X-ray film. Western blot reactions were controlled for 

saturation to assure that differences in protein expression were detectable. This was accomplished by serial 

dilutions of the samples and by varying the exposure times of the films. Films were digitized and band density 

was determined using the TINA v2.09e program. 

 

2.8. Total GSH 

The GSH assay that we used is described in detail elsewhere (Erikson et al., 2004, 2005, 2006). Briefly, tissue 

samples (50– 100 mg) were homogenized in 1 ml of 10% (v/v) perchloric acid containing 1 mM 

bathophenanthroline disulfonic acid (BPDS) and L-γ-glutamyl-L-glutamate. The mixture was vortexed and 

centrifuged, an aliquot was then removed for HPLC analysis (Fariss and Reed, 1987) on a Waters model 600E 

multisolvent delivery system using an ion-exchange method with a methanol–acetate mobile phase and gradient 

elution. The limit of GSH detection was approximately 50 pmol, which equated to approximately 0.4 nmol/mg 

protein (Lash and Tokarz, 1990; Lash and Woods, 1991). 

 

 

 

2.9. Statistical analysis 

The data were analyzed using the SPSS system v14.0 (SPSS, Inc., Chicago, IL). Analysis of variance 

(ANOVA) with repeated-measures factors (brain regions) and between-groups factors was used to test for 

interactions between Mn exposure or time and regions. Mauchly’s Test of Sphericity was used to test for 



violations of sphericity. If violations were found than a Greenhouse-Geisser correction was used. For each 

parameter tested, there were no significant interactions between Mn exposure time and brain regions, therefore 

all of our reported results were univariate analysis of variance within each brain region. When the overall 

significance resulted in rejection of the null hypothesis (p < 0.05), Dunnet’s procedure was used to evaluate 

treatment means compared to control means.  

 

3. Results 

3.1. Mn concentrations 

Brain regional Mn concentrations were reported in Dorman et al. (2006a). Exposure to MnSO4 at 1.5 mg Mn/m
3
 

for ≥ 15 exposure days led to increased Mn concentrations in all examined brain regions. In the monkeys that 

were allowed to recover, globus pallidus, putamen, olfactory cortex and blood Mn levels remained elevated 

after 45 days but returned to control levels by 90 days post-exposure. To aid in evaluating our data, we 

summarized the tissue Mn levels in Table 1. 

 

3.2. GS protein and mRNA 

The gene expression of GS was only altered in the caudate of monkeys exposed to 1.5 mg Mn/m
3
 for 33 days 

(vs. air-exposed controls). The protein levels of GS were altered in the cerebellum, globus pallidus, putamen of 

monkeys allowed to recover for 45 and 90 days post-exposure, and frontal cortex 90 days post exposure (Table 

2). 

 

 



3.3. MT mRNA 

The caudate from monkeys exposed to 1.5 mg Mn/m
3
 for 33 days as well as those allowed 45 and 90 days 

recovery (Table 3) showed reduced MT mRNA. The cerebellum showed reduced MT mRNA in monkeys 

exposed to 1.5 mg Mn/m
3
 after 45 and 90 days of recovery while the olfactory cortex showed increased MT 

mRNA after 33 days of exposure. 

 

3.4. GLT-1 protein and mRNA 

GLT- 1 mRNA was significantly altered in the caudate of monkeys exposed to 1.5 mg Mn/m
3
 for 15 and 33 

days (Table 4). Monkeys recovering from exposure for 45 and 90 days showed altered mRNA levels in the 

cerebellum, globus pallidus (45 days only) and frontal cortex (90 days only). Alerted GLT- 1 protein levels 

were found in the globus pallidus at 33 exposure days and 45 days after exposure and in the olfactory cortex 90 

days after exposure (Table 4).  

 
3.5. GLAST protein and mRNA 

The cerebellum had significantly decreased GLAST mRNA levels in monkeys exposed to 1.5 mg Mn/m
3
 and 

then allowed to recover for 90 days (Table 5). Levels were increased in globus pallidus of monkeys exposed for 

33 days and in the olfactory cortex of monkeys recovered for 45 days (Table 5). GLAST protein levels were 

unaffected by Mn exposure in all brain regions except the globus pallidus where protein was significantly lower 

in the monkeys exposed for 33 days and those recovered for 45 and 90 days (Table 5). 

 

3.6. Total GSH 

The monkeys exposed to the high dose of Mn had lowered GSH levels in the caudate after 15 and 33 days 

exposure and this effect persisted despite 45 and 90 days recovery (Table 6). In the frontal cortex and putamen, 

33 days exposure to Mn led to significantly increased GSH levels and this higher level persisted in the frontal 

cortex after 45 days of recovery and in the putamen after 45 and 90 days of recovery. 

 



 

 

3. 7. TH protein and mRNA 

TH protein levels were significantly decreased in the globus pallidus of monkeys exposed to Mn for 33 days as 

well as those undergoing 45 and 90 days recovery (Table 7). The group that recovered for 45 days also 

displayed decreased TH protein in the olfactory cortex, whereas the 90 days recovery group had decreased TH 

protein in the putamen (Table 7). Mn had very little effect on mRNA levels except in the globus pallidus of 
monkeys exposed for 33 days and recovered for 45 days. (Table 7) 

 
 



4. Discussion 

Most human exposures remain below the current (RfC) inhalation reference concentration (0.05 μg Mn/m
3
) for 

inhalable manganese set by the U.S. Environmental Protection Agency (Clayton et al., 1999; Loranger and 

Zayed, 1997; Pellizzari et al., 1999; Zayed et al., 1999). Average levels of manganese in ambient air are 

approximately 5 and 33 ng Mn/m
3
 in nonurban and urban air, respectively (ATSDR, 2000) although air 

concentrations may be higher near ferromanganese or silicomanganese industries. The daily intake of 

manganese from the ambient air is estimated to be <2 μg Mn/day in the general population (Lynam et al., 1999; 

Zayed et al., 1999). The monkeys in this study were part of a larger study reported in Dorman et al. (2006a) in 

which they were exposed to a range of Mn exposure concentrations, the highest exceeding the RfC 30,000. This 

highest dose, 1.5 mg Mn/m
3
 was used in this study in order to keep the number of monkeys used to a minimum, 

yet allowing us to effectively evaluate the duration of exposure on the markers of neurotoxicity. It should be 

noted that we did not select this dose to mimic a human exposure paradigm, but to ensure Mn accumulation in 

the brain regions at shorter duration periods. 

 

Dorman et al. (2006a,b) observed increased brain Mn concentrations in these monkeys and reported it 

elsewhere. In the six brain regions studied herein, all showed significant accumulation of Mn following 15 and 

33 days of exposure (Dorman et al., 2006a). In monkeys allowed to recover from Mn exposure for 45 and 90 

days, all of these brain regions (except frontal cortex) had elevated Mn levels (40–120% above control values) 

(Table 1). It should be noted though that increased brain Mn concentrations in half of the brain regions of the 

group allowed to recover for 45 days and all of the brain regions of the 90 days recovery group were not 

statistically different from the control group; but, the elevated Mn may be biologically relevant for several 

biomarkers remained altered even after 45 and 90 days of recovery (e.g., GS protein). 

 

Within the brain, GS is exclusively expressed in astrocytes (Martinez-Hernandez et al., 1977). A Mn-dependent 

enzyme, GS catalyzes the formation of glutamine from glutamate. Glutamine is taken up by local glutamatergic 

or γ-aminobutyric acid-containing (GABAergic) neurons where deamination to glutamate occurs. This process 

is considered the primary glutamate-recycling pathway in the brain (Van den Berg and Garfinkel, 1971; 

Westergaard et al., 1995; Ottersen et al., 1992). Inhibition of GS activity can have serious consequences on 

neuronal functioning (e.g., the inability to detoxify ammonia). GS serves as an excellent marker for the presence 

of ROS in the brain, because it is highly susceptible to oxidation and subsequent rapid degradation (Stadtman, 

1992). GS protein levels were decreased in most of the brain regions of monkeys exposed to the high 

concentration of airborne Mn which persisted even after recovery (e.g., cerebellum, frontal cortex, globus 

pallidus and putamen) (Table 2). These data corroborate our other recent monkey study (Erikson et al., 2007), 

where we found that at a lower dose of airborne Mn (0.3 mg Mn/mm
3
) globus pallidus, cerebellum and frontal 

cortex all displayed decreased GS protein and unchanged GS mRNA levels. Taken together, we speculate that 

the loss of protein is likely due to increased degradation caused by increased oxidation and not by decreased 

synthesis because mRNA levels were relatively unaffected. We would like to point out that since GS is found 

exclusively in astrocytes and that we used dissected tissue containing several cell types (e.g., neurons and 

several glial cells), that some of our heterogeneous findings may be due to the cellular diversity of the tissue. 

 

The MTs, a class of cysteine-containing intracellular metal-binding proteins, are highly conserved and widely 

distributed throughout all cells in an organism. The MT act as antioxidants by neutralizing ROS both 

systemically and in the brain. In situ hybridization studies demonstrate that bacterial endotoxin induces MT 

gene expression (Itano et al., 1991). Oxidative stress, kainic acid, and 6-hydroxydopamine, a known 

dopaminergic toxin and ROS generator, induced MT-I gene expression in the brain (Shiraga et al., 1993).  

Likewise, compounds that generate free oxygen species via redox cycling (e.g., diquat), along with compounds 

that cause lipid peroxidation (e.g., 3- methylindole) or that deplete cellular defense mechanisms (e.g., diamide 

and dimethyl maleate) increase tissue MT expression (Bauman et al., 1991). The effect of inhaled Mn on rat 

brain MT gene expression have been quite varied, that is brain regions that avidly acquire Mn during airborne 

exposure showed decreased as well as increased MT gene expression (Dobson et al., 2003; Erikson et al., 2005). 

In primary astrocyte cultures, overnight exposure to 250 and 500 μM MnCl2 led to a significant decrease in MT 

mRNA levels. Interestingly, the caudate of monkeys exposed for 33 days to 1.5 mg Mn/m
3
 had a significant 



decrease in MT mRNA levels which remained after the monkeys recovered from Mn exposure for 45 and 90 

days of Mn-exposed monkeys compared to controls. In the globus pallidus and olfactory cortex, Mn exposure 

caused increased MT expression albeit not statistically significant due to small sample size and large error 

(note: olfactory cortex of 33 days exposure group was significant). Finally, in the putamen of the exposed 

monkeys, there was no significant alteration in MT gene expression due to Mn inhalation, corroborating our 

previous findings (Erikson et al., 2007) that even though brain regions accumulate Mn to a similar degree, the 

effects on biomarkers of neurotoxicity vary greatly. 

 

Glutamate excitotoxicity has been implicated as a triggering event for manganism. Glutamate levels have been 

shown to be elevated in the basal ganglia of Mn-exposed rats (Garcia et al., 2006; Erikson et al., 2002a). 

Astrocytes are the primary cells in the brain which dictate glutamate metabolism. In fact, the mechanism by 

which the brain handles ammonia is related to this role. Specifically, astrocytes clear glutamate from the 

extracellular space with GLT- 1 and/or GLAST. Upon intra-cellular transport, glutamate is aminated to 

glutamine via GS (see Danbolt, 2001 for comprehensive review). Glutamine can then be transported to neurons 

where it can undergo deamination forming glutamate for use as a neurotransmitter or protein synthesis. This 

glutamate-recycling pathway is critically dependent upon normally functioning astrocytic GLT-1 and GLAST 

proteins. 

 

Attenuated glutamate uptake in Mn-exposed astrocytes has been reported by several groups (Hazell and 

Norenberg, 1997; Erikson et al., 2002b). Altered glutamate uptake has been linked to Mn dose-dependent 

decreases in GLAST expression (Erikson et al., 2002a). GLT-1 has also been shown to be affected by Mn 

exposure as well, (Mutkus et al., 2005) indicating another possible mechanism for Mn-induced alterations in 

glutamate uptake. Overall, GLAST protein and gene expression were relatively unaffected in the six brain 

regions that we analyzed, with the exception of globus pallidus which had significantly increased mRNA and 

decreased protein levels in the monkeys exposed for 33 days and decreased protein in those allowed to recover 

for 45 and 90 days (Table 4). In contrast, GLT- 1 was more broadly (i.e., more brain regions) affected by high 

dose Mn exposure. This regional effect on mRNA expression levels was observed in the monkeys that were 

repeatedly exposed (15 and 33 exposure days) to Mn, returning to normal levels after Mn exposure ended and 

the monkeys were allowed to recover. It is worth mentioning that while glutamate levels were not measured in 

these animals, similarly treated monkeys were found to have unaltered brain regional glutamate concentrations 

due to Mn exposure (Struve et al., 2007), suggesting that altered transporter levels is not affecting glutamate 

concentrations. 

 

Glutathione (GSH) is a ubiquitous antioxidant formed from three amino acids, glutamate, cysteine and glycine, 

leading to formation of γ-glutamylcysteinylglycine. Alterations in brain GSH metabolism have been linked with 

oxidative stress and various neurodegenerative diseases including PD (Gegg et al., 2003). Sian et al. (1994) 

demonstrated decreased GSH levels in the substantia nigra of PD patients compared to presumed normal 

individuals. Correspondingly, GSH levels are significantly and age-dependently lowered in the striatum of Mn-

exposed rats (i.e., older rats have dramatically lower GSH due to Mn exposure, whereas juvenile rats are 

unaffected) (Desole et al., 1995; Erikson et al., 2004). 

 

This study showed that in two regions of the basal ganglia, similar increases in Mn concentrations led to 

opposite responses in GSH metabolism. Specifically, monkeys exposed to Mn for 15 or 33 days had 

significantly lower levels of total GSH in the caudate compared to controls (Table 5). This significant decrease 

remained even after 45 and 90 days of recovery from Mn exposure. In contrast, Mn exposure led to a significant 

increase in total GSH in the putamen where it stayed elevated even 90 days after cessation of Mn exposure. To 

our knowledge, this is the first report of regional differences in GSH levels within the basal ganglia of Mn-

exposed monkeys, for our previous study in which monkeys were exposed to lower doses of airborne Mn 

yielded no effect on GSH levels (Erikson et al., 2007). 

 

Tyrosine hydroxylase is the rate-limiting enzyme for catecholamine synthesis, and is often used as a marker for 

dopaminergic neurons. We sought to specifically examine the effects of airborne Mn on TH protein and mRNA 



levels. Manganese exposure (33 days) decreased TH protein levels and increased TH mRNA levels in the 

globus pallidus; these alterations remained after 45 and 90 days post-exposure (Table 6). Globus pallidus is not 

known as a dopamine-rich region, however dopaminergic projections exist (Porritt et al., 2000). We were 

surprised that TH levels in neither the caudate nor putamen were affected by Mn exposure given that our 

previous study found that airborne-Mn exposure led to decreased TH levels in caudate, putamen and globus 

pallidus (Erikson et al., 2007). However, our prior study utilized a longer exposure period, so it appears that 

during a shorter exposure period to airborne-Mn, the brain region that is most susceptible to Mn accumulation 

(globus pallidus) is the brain region where we observe a change in TH levels. 

 

In conclusion, non-human primates exposed to airborne Mn respond both similarly and differently in terms of 

alterations in biomarkers of neurotoxicity across brain regions when compared to rats. Both species accumulate 

Mn across brain regions in a dose-dependent manner and both species display the ability to normalize Mn levels 

after cessation of airborne-Mn exposure (Dorman et al., 2005, 2006a). Similarly, both rats and monkeys 

exposed to airborne Mn show significant alterations in GSH levels particularly in the striatum (Erikson et al., 

2004, 2005, 2006) (Table 6), an area known to exhibit heightened sensitivity to Mn. There was a heterogeneous 

response to Mn exposure and cessation, in that some of these alterations were reversible upon cessation of 

manganese exposure (GLT- 1 and TH protein levels in caudate, Tables 4 and 7, respectively) while others were 

not (MT mRNA and GSH levels in caudate, Tables 3 and 6, respectively). This varied response to Mn cessation 

displayed within the caudate may be due to the assortment of cells represented in our use of dissected brain 

regions and that we may have observed more homogeneous results if we had used isolated cell cultures or tissue 

slices. Finally, an overall finding from both of our monkey studies is that when the duration of Mn exposure is 

65 days (Erikson et al., 2007) several brain regions display alterations in biomarkers of neurotoxicity; whereas 

after 15–33 days exposure most of the outcomes we measured were altered primarily in the globus pallidus, 

putamen and caudate emphasizing the increased sensitivity to Mn inherent to these brain regions. 
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