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 Slimy sculpin (Cottus cognatus) are known as a bottom-dwelling fish that feed 

primarily on benthic invertebrates.  However, in arctic lakes, sculpin may also be 

somewhat planktivorous.  Previous studies have shown that the habitat distribution of 

sculpin is modified by lake trout (Salvelinus namaycush), a piscivore.  Here, I 

hypothesized that lake trout and another piscivore, arctic char (Salvelinus alpinus), alter 

sculpin behavior to restrict planktivory and reduce growth.  Sculpin were sampled from 

three different lake types: lakes with lake trout, lakes with arctic char and lakes with no 

piscivore.  Results showed that sculpin were significantly larger in lakes lacking 

piscivores, consistent with my hypothesis.  Piscivores did not affect prey mass or prey 

types based on sculpin stomach content analyses.  However, in all lakes, zooplankton 

were a substantial prey item of sculpin.  Stable isotope analyses showed enrichment in 

13C and depletion in 15N in sculpin from arctic char lakes in comparison to both of the 

other lake types.  These results are indicative that the effects of piscivores on sculpin 

populations are generally indirect, altering body size but not habitat distribution or prey 

selection.  However, differences in stable isotope ratios suggest a trophic segregation may 

be present in sculpin in arctic char lakes compared to sculpin only lakes.  
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CHAPTER I 
 

INTRODUCTION 
 

Interactions between predators and prey have been well defined (Brooks and 

Dodson 1965, O’Brien 1979, Northcote 1988, O’Brien et al. 1990; 2004, Molles 2002, 

Broom and Ruxton 2005, Miller et al. 2006).  For example, a study by Lamberti and Resh 

(1983) observed that caddisflies (Helicopsyche borealis) could significantly reduce the 

abundance of algae and bacteria.  The predator-prey interaction is also dynamic.  The 

ratio of predators to prey can fluctuate over various lengths of time (Molles 2002).  In 

1963, Keith proposed a hypothesis to better understand this pattern.  According to Keith, 

predators will increase in numbers in response to increasing prey numbers, which will 

then result in a reduced prey population.  At this point, the predator population will begin 

to decrease due to disease, parasitism and starvation.  The decrease of predators will 

allow the prey community to rebound, therefore completing the cycle (Molles 2002).  

Such interactions are common across different habitats and species. 

 Many fishes are simultaneously predator and prey (Moyle and Cech 2004).   

Consequently, fishes have evolved mechanisms for both hunting and predator evasion.  

Predators often control the populations of prey fish (Moyle and Cech 2004).  For 

example, Möller (1984) observed the regulation of herring (Clupea harengus) in a fjord 

off the Baltic Sea, by jellyfish (Aurelia aurita).  The jellyfish in the fjord were preying 
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upon the herring larvae, which, consequently, controlled the population of herring.  In 

another example, Christensen (1996) observed that predation by adult Eurasian perch 

(Perca fluviatilis) was the most important factor determining the maximum size of their 

roach (Rutilus rutilus) prey.  Fish may occupy several trophic levels and must be efficient 

at both feeding and predator evasion. 

It is also well established that fish predation can structure freshwater zooplankton 

communities (Brooks and Dodson 1965, O’Brien 1979, Northcote 1988, O’Brien et al. 

1990; 2004).  O’Brien et al. (2004) observed that the abundance of all but one species of 

zooplankter (Diaptomus priblofensis) was significantly correlated with the presence of at 

least one of four species of fish which inhabit the Arctic Foothills region of Alaska.  

Patterns observed by O’Brien et al. (2004) are consistent with those associated with 

known planktivores.  Lakes that contain slimy sculpin (Cottus cognatus) demonstrated 

the most variation in zooplankton presence and density compared with other fishes.  

Sculpin presence was significantly correlated with the presence or absence of six of nine 

zooplankton species.  O’Brien et al. (2004) considered that juvenile sculpin might be 

more planktivorous than adults.  However, adult sculpin were observed in insect 

emergence traps that were placed several meters off the bottom of the lakes (Holland 

2006).  Therefore, adults were also present in the areas inhabited by zooplankton.  The 

presence of sculpin may be affecting the zooplankton communities in these lakes. 

The slimy sculpin is a small, bottom-dwelling fish that maintains a cryptic 

lifestyle (Gray et al. 2004, Yokoyama and Goto 2005, Spencer et al. 2008).  Sculpin are 

known to be a predatory species that mainly prey upon benthic invertebrates (Hershey 



 3 

1985, Brandt 1986).  Previous studies have shown that in addition to the sculpin’s diet of 

benthic invertebrates, microcrustaceans accounted for up to 23% of their diet (Hershey 

and McDonald 1985, Cuker et al. 1992).  Size-selective predation by sculpin on 

chironomids has not been observed (Hershey 1985).   Sculpin are considered to be a 

sentinel species.  Sculpin are amenable to ecological studies due to their limited mobility 

and small home ranges (Spencer et al. 2008).  The sculpin’s habitat in arctic lakes 

includes both soft-sediment littoral zones (Hershey 1985) and areas with cobble and other 

cover (McDonald et al. 1982, Cuker et al. 1992, Gray et al. 2004).  The multiple species 

in the genus Cottus include species that are amphidromous, lacustrine and fluvial 

(Yokoyama and Goto 2005); the species discussed in this paper, Cottus cognatus, is 

lacustrine and fluvial. 

Lake trout (Salvelinus namaycush) are an apex predator in lakes in the Arctic 

Foothills region of Alaska. As predators mature in size, their diet expands to include 

larger prey items (Christensen 1996).   Lake trout generally feed on benthic insects and 

mollusks but as lake trout mature, they have piscivorous habits (Keyse et al. 2007).  

Merrick et al. (1992) observed that approximately 12% of adult lake trout had sculpin in 

their stomach contents.  Due to a diet of mainly benthic invertebrates, lake trout in the 

Arctic Foothills region tend to have stunted growth (O’Brien et al. 1997).   

It is known that fish can control the size and distribution of their prey (Dodson 

1970).  Lake trout have been observed controlling the size and distribution of their main 

prey, the snail Lymnaea elodes (Hershey 1990, Merrick et al. 1991).  Trap sampling using 

the catch per unit effort (CPUE) method (e.g., McDonald et al. 1982) for sculpin 
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increased 15% in Toolik Lake over the same time period that lake trout size declined 

(McDonald and Hershey 1992).  This increase in CPUE of sculpin suggests that lake 

trout were potentially controlling the distribution of sculpin.     

Arctic char (Salvelinus alpinus) also have been recognized as apex predators in 

Arctic Foothills lakes which lack lake trout (Hershey et al. 1999).  Similar to the lake 

trout, arctic char mainly subsist on mollusks and other benthic invertebrates.  Arctic char 

also include smaller fish as a part of their diet (Power 1978).  Like lake trout, arctic char 

are also a potential predator of sculpin. 

Predation by lake trout and arctic char on sculpin has the potential to alter sculpin 

behavior.  The threat of predation has implications for sculpin prey selection, habitat 

selection and growth.  Previous studies in Arctic Foothills lakes found that sculpin were 

most abundant at the interface of rocky littoral habitats, where there is refuge from trout 

predation but less food, compared to soft sediment habitats, where there is more food but 

a greater risk of predation (McDonald et al. 1982, Hanson et al. 1992).  This pattern 

suggests that sculpin are choosing to reduce foraging efficiency in order to avoid 

predation (Werner and Anhold 1996, Anholt et al. 2000, Skalski & Gilliam 2002). 

 While stomach content analyses provide a snapshot of the diet composition of 

sculpin, they can be misleading.  Stomach content analyses reflect what a sculpin has 

eaten within approximately the last twenty-four hours (Hershey and McDonald 1985).  In 

order to look at longer-term diet, stable isotope tracers of carbon and nitrogen can be 

analyzed.  Isotopic fractionation is caused by the many physical and chemical reactions 

which change the ratio of heavy to light isotopes between food source and consumer 
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(Peterson and Fry 1987).  Changes in δ13C (~ 1 ‰) are used as the primary determinant 

of an animal’s diet.  Changes in δ15N (~ 3.4 ‰) are used to determine trophic links within 

a food web.  These changes in carbon and nitrogen isotope ratios can be expressed as 

follows: δX = [(Rsample / Rstandard) – 1] X 1000, where X is 13C or 15N and R is the ratio of 

13C/12C or 15N/14N, respectively (Peterson and Fry 1987).  The standard for carbon is 

PeeDee limestone and the standard for nitrogen is N2 from the atmosphere (Peterson and 

Fry 1987).  Stable isotope analyses are a useful tool in ecology, especially when paired 

with stomach content analyses, for studying diet composition because predator stable 

isotope ratios reflect long-term assimilation, whereas stomach composition reflects short-

term diet choices.  

 

This research has three main objectives: 

•Objective 1: To determine if the presence of lake trout or arctic char affects the 

average length of sculpin in nearshore (1 m) and offshore (5 m) zones. 

—Ho:  There is no difference in sculpin size between lakes that have lake 

trout or arctic char and lakes that do not, regardless of habitat. 

—Ha: Lake trout and arctic char affect sculpin size differently in nearshore 

and offshore habitats. 

Prediction:  Sculpin will have smaller mean length in lakes with lake trout 

or arctic char, but the effect will be more pronounced in offshore areas. 

•Objective 2: To determine if the presence of lake trout or arctic char alters the 

relative abundance of sculpin in nearshore and offshore zones. 
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—Ho:  There is no relationship between the relative abundance of sculpin 

and the presence of predators, regardless of habitat. 

—Ha: Lake trout and arctic char alter the spatial distribution of sculpin 

between nearshore and offshore habitats in arctic lakes. 

Prediction:  The presence of lake trout or arctic char will result in a higher 

CPUE of sculpin in nearshore zones compared to offshore zones. 

•Objective 3: To determine if the presence of lake trout or arctic char alters the 

diet composition of sculpin.  

—Ho: The presence of lake trout or arctic char will not alter sculpin diet 

composition. 

—Ha:  Diet composition of sculpin in lakes with no predator will differ 

from diet composition of sculpin in lakes with lake trout or arctic char. 

Prediction 1:  Sculpin will be more planktivorous in the absence of lake 

trout or arctic char. 

Prediction 2:  Sculpin δ13C and δ15N signatures will differ among lake 

types, consistent with differences in planktivory. 
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CHAPTER II 
 

METHODS 
 
 

I collected sculpin from 13 lakes in the Arctic Foothills region of the Brooks 

Mountains in the vicinity of the Toolik Lake Field Station (TLFS) (68º38’00”N, 

148º36’15”W), 248 km south of Prudhoe Bay, Alaska (Table 1).  I categorized lakes by 

the presence or absence of lake trout or arctic char, the two main piscivorous predators in 

the region.  Knowledge of the distribution of burbot (Lota lota), the other piscivorous 

predator in the region, is limited, but they have been observed co-occurring with lake 

trout (Hanson et al. 1992).  Due to the limited knowledge of the distribution of burbot, I 

did not consider them in my study.  I sampled lakes N1, N2, E1 and Toolik between June 

and August 2008. Lakes N1 and Toolik support lake trout, and Lakes N2 and E1 do not 

(Table 1).   I sampled lakes Fog 1, Fog 2, GTH 65, GTH 91, GTH 100, S-6, I-6, I-8 and 

N-3 between June and August 2009 (Table 1).  Three lakes (GTH 100, I-6, I-8) were 

lakes known to have lake trout present (lake trout lakes), three lakes (Fog 1, Fog 2, GTH 

65) were known to have arctic char present (arctic char lakes) and three lakes (GTH 91, 

S-6 and N-3) were known to not have a piscivorous fish present (sculpin only lakes) 

(Table 1).   

I collected sculpin at depths of 1m and 5m using collapsible mesh fish traps set on 

the bottom of the lake.  I baited traps for Lake GTH 65 due to limited time for collecting 
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samples at that site.  I used deli ham as bait because it was easy to distinguish from 

natural prey items when analyzing the stomach contents.  Traps were set and then 

checked at intervals throughout the day.  In lakes where lake trout or arctic char were 

present, traps were sometimes left out for as long as 24 hours.  I removed the sculpin 

from the trap as soon as possible to maximize the likelihood that stomach contents were 

reflective of regular diet composition, not just food available in the traps.  10 fish were 

collected at each depth, for a total of 20 fish per lake.  I placed the sculpin in a small 

concentration of clove oil for mild sedation to reduce the stress on the fish.   

Once sedated, I measured the sculpin from the mouth to the tip of the caudal fin.  

I analyzed data for the mean fish lengths, in regards to depth distribution and predator 

presence, using a two-way analysis of variance (ANOVA) and a Tukey’s post hoc test 

using SPSS analysis software.   

Once the sculpin was sedated and measured, I filled a 10 mL syringe, fitted with 

an 18-gauge gavage needle, with water that had been filtered through a 256 µm mesh net.  

I injected the needle through the mouth into the stomach of the sculpin.  I flushed the 

stomach content into a clean weigh boat and then transferred the material into a labeled 

scintillation vial.  I added ethanol to the vials to preserve the stomach content.  

I removed a small tissue sample from the pectoral fin of the sculpin by scissor 

snip.  I sent the pectoral fin sample to UC Davis for δ13C and δ15N stable isotope analysis.  

I placed the sculpin in a recovery bucket after sampling.  After the sculpin was actively 

swimming, I returned the fish to the lake where it was caught.  Using SPSS, I analyzed 

these data with a one-way ANOVA and a Tukey’s post hoc test. 
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I shipped stomach content samples back to the lab at UNC-Greensboro.  In the 

lab, I identified the stomach contents under a dissecting microscope.  I counted 

zooplankton and considered them as one group.  I identified chironimid larvae to sub-

family, except the genus Procladius, which I counted separately.  The rest of the prey 

items I classified as “other,” with many of them being mutilated beyond identification.  I 

ran a multivariate analysis of variance (MANOVA) to analyze the stomach content, using 

the Pillai’s Trace statistic since it is the most powerful and robust test in the MANOVA.  

I vacuum-filtered each sample onto 100-µm mesh Nitex netting.  Then, I weighed the 

samples to obtain a wet-weight of the stomach contents of each fish.  I analyzed total wet 

weight means using a one-way ANOVA and a Tukey’s post hoc test. 

I measured CPUE in fish caught per trap day; a trap day is defined as one trap set 

in a lake for one day.  I averaged CPUE for each depth in each lake.  I analyzed CPUE 

averages using a one-way ANOVA and a Tukey’s post-hoc test using SPSS data analysis 

software.  

 I used sculpin length measurements in lakes with and without predators at depths 

of 1 and 5 meters to evaluate Objective 1.  To evaluate Objective 2, I used CPUE of 

sculpin, measured in trap days.  To evaluate Objective 3, I identified stomach contents in 

the lab, examined the mass of stomach contents and examined stable isotope data 

obtained from pectoral fin samples.   The results obtained in this study were used to 

evaluate the importance of planktonic food resources in the presence or absence of a 

piscivore, and the impact of predators on sculpin size and habitat distribution. 
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CHAPTER III 
 

RESULTS 
 
 

Sculpin Length 

 The overall mean length of sculpin was significantly different between lake types 

(df = 2; p = 0.001, Figure 1).  Sculpin were significantly longer in sculpin only lakes than 

in lakes with lake trout present (p = 0.004, Figure 1), or in lakes where arctic char also 

occurred (p = 0.002, Figure 1).  Sculpin in sculpin only lakes were an average of 13.9 

mm longer than sculpin from lake trout lakes and 17.6 mm longer than sculpin from 

arctic char lakes.  There was no difference in sculpin lengths between depths (df = 1; p = 

0.203, Figure 2).  There was no significant interaction between lake type and depth (df = 

2; p = 0.867, Figure 2).  

Relative Abundance 

 There was no significant difference in CPUE across lake types (df = 2; p = 0.120, 

Figure 3) or depths (df = 1; p =0 .901, Figure 3). There was no significant interaction of 

lake type and depth on CPUE of sculpin (df = 2; p = 0.609, Figure 3).   

Diet Composition  

 Sculpin in lakes with arctic char present were an average of 2.7‰ more enriched 

in 13C than sculpin in sculpin only lakes (p = 0.033, Figure 4).  There was no significant 

difference in δ13C in sculpin from lakes with lake trout present than from lakes with arctic 
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char present (p = 0.685, Figure 4).  Sculpin from sculpin only lakes were not significantly 

different in δ13C than sculpin from lakes with lake trout present.  There was no significant 

difference in δ13C between depths (df = 1; p = 0.217).  Lake type and depth did not 

interact significantly to affect δ13C (df = 2; p = 0.526). 

 Sculpin in lakes with arctic char present were 1.97‰ more depleted in 15N than 

sculpin from lakes with lake trout present (p = 0.005, Figure 5) and 1.31‰ more depleted 

than sculpin from sculpin only lakes (p = 0.048, Figure 5).  There was no effect of depth 

on δ15N (df = 1; p =0.086), and no significant interaction of lake type and depth on δ15N 

(df = 2; p = 0.833). 

 There was no significant effect of lake type on the four different prey categories 

(p = .734, Table 2).  There was no significant difference between prey categories between 

depths (p = 0.248, Table 2).  There was no significant interaction of lake type and depth 

on the different prey categories (p = 0.959, Table 2). 

 Stomach contents from sculpin caught in offshore zones weighed an average of 

16.3 mg more than stomach contents from sculpin caught in nearshore zones (df = 1; p = 

0.040, Figure 6).  There was no effect of lake type on the weight of sculpin stomach 

contents (df = 2; p =0.207, Figure 7) and no significant interaction of lake type and depth 

on the weight of sculpin stomach contents (df = 2; p = 0.401, Figure 7). 
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CHAPTER IV 
 

DISCUSSION 
 
 

My data suggest that the presence of an apex predator affects sculpin on multiple 

levels, including size, aspects of diet and trophic position.  In arctic lakes that support 

lake trout or arctic char, these fishes function as top predators and sculpin are secondary 

consumers, as are arctic grayling (Thymallus arcticus), round whitefish (Prosopium 

cylindraceum), young-of-year and juvenile fish of all the species of this region (Hershey 

et al. 1999).  Dominant primary consumers include zooplankton, snails, chironomids and 

caddisfly larvae.  Abundance and size distribution of secondary consumers differs 

between lakes that support piscivores and those that do not, or where piscivore 

distribution is experimentally altered (Carpenter et al. 1985, Bronmark et al. 1992, 

Hershey et al. 1999).  In this study, I found that when sculpin exist without the presence 

of lake trout or arctic char, they grew significantly larger (Figure 1).  However, there was 

no difference in sculpin length or CPUE of sculpin between depths, suggesting that 

piscivores do not alter sculpin habitat distribution (Figure 2). 

Although limitations on sculpin growth in arctic regions has been observed 

previously (Craig and Wells 1976, Johnson 1976, Power 1978), sculpin were caught 

between 40 mm and 115 mm total length, which ranges close to the maximum size of 

Cottus cognatus, which is generally reported to be approximately 120 mm total length 
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(Scott and Crossman 1973).   As is typical of most fish species, a minimum size threshold 

for sculpin must be achieved for sexual maturity (Hanson et al. 1992).  As growth rates of 

sculpin increase, time from juvenile to sexual maturity will decrease.  Hanson et al. 

(1992) found that sculpin had faster growth rates in lakes with no lake trout present, 

suggesting that sculpin were reaching sexual maturity faster.  Since fish were not aged in 

this study, I cannot assess growth rates.  Further study, including aging and growth rates 

of sculpin in all three lake types, could determine whether the absence of an apex 

predator allows sculpin to grow faster, thereby reaching sexual maturity faster.  

Large predators have the ability to control the size distribution of smaller 

organisms within an ecosystem (Brooks and Dodson 1965).  Townsend (1996) saw that a 

species of endemic grayling (Prototroctes oxyrhynchus) in New Zealand became extinct 

after the introduction of brown trout (Salmo trutta) to their habitat.  Brown trout 

introduction resulted in large changes in abundance and distribution of other fish species 

in New Zealand.  While Hanson et al. (1992) saw that sculpin presence was higher over 

sediment in lakes with no lake trout than over rocky or rock-mud interface zones, my 

study found no difference in sculpin habitat distribution, regardless of lake type (Figure 

3).  One explanation for this discrepancy could be a difference in size between piscivores 

in the two studies.  A study by Doupe et al. (2008) found that larger predators kill more 

prey and, therefore, have a larger effect on the prey community.  Previous studies in 

arctic Alaska have seen that the lake trout are relatively small and slow growing, due to a 

diet of mostly snails, which are a low quality food from a bioenergetic perspective 

(McDonald and Hershey 1989).  In addition to the poor diet, increased fishing pressure in 



 14 

the region caused a shift toward smaller trout (McDonald and Hershey 1989).  If the trend 

toward smaller size of piscivores has continued since that report, it would provide a 

mechanism for sculpin to occur at similar size and abundance at all depths. 

Several approaches were taken to address the question of predator impact on 

sculpin diet composition.  One response variable considered was a direct count of 

stomach contents. Using direct counts of stomach contents, no significant differences 

were found in ingestion of prey groups between lake types. Sculpin in arctic Alaska can 

fully digest food in approximately one day (Hershey and McDonald 1985) and prey 

availability may vary seasonally.  Stomach contents in fish can be variable, due to 

individual foraging habits, dietary habits and foraging success (Keyse et al. 2007).  While 

no statistical differences in stomach contents were observed between lake types in my 

study, zooplankton were a large part of sculpin diet, ranging from 20% - 60% by direct 

count, of diet items (Table 2).  Sculpin are a predator that mainly feed upon benthic 

invertebrates (Hershey 1985, Brandt 1986).  However, zooplankton were found in the 

stomachs of sculpin in all lake types at all depths, which suggests that zooplankton are a 

regular dietary component for sculpin in this region.   

My study suggests that zooplankton form a larger portion of sculpin diet than 

previously reported (Hershey 1985, Cuker et al. 1992).  However, Hershey (1985) 

counted prey from the entire gut, while in my study, prey were only counted from the 

stomach, which could account for the lower numbers of food items per fish seen here.  It 

is also possible that with my technique of flushing the stomach with water, zooplankton 

were more easily dislodged than other prey items.  Furthermore, sculpin were collected in 
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traps.  Thus, to some extent, stomach contents might reflect food that was available to 

them while they were in the traps.  Zooplankton were more likely to be available in the 

mesh fish traps, while benthic invertebrates were less available.  While zooplankton 

appear to be a regular dietary component for sculpin, there are several confounding 

factors relevant to such a conclusion. 

Another response variable studied was the weight of stomach contents of each 

individual fish.  Fish caught in offshore zones had significantly heavier stomach contents 

than fish caught in nearshore zones.  These findings are consistent with Hanson et al. 

(1992) who found greater food availability in offshore zones.  However, zooplankton 

were not considered by Hanson et al. (1992).  Goyke and Hershey (1992) found lower 

biomass of chironomid larvae in the sediment in lakes lacking piscivores.  These 

observations are consistent with my observation of larger sculpin in lakes lacking 

piscivores (Figure 1), suggesting that the sculpin are feeding more and therefore growing 

larger. 

Since direct stomach content counts only represent a very recent snapshot of 

dietary habits, stable isotopes of carbon and nitrogen were used to examine longer-term 

assimilation (Peterson and Fry 1987, Vander Zanden and Rasumssen 1999, Vander 

Zanden and Vadeboncoeur 2002, Keyse et al. 2007).  The observed 13C enrichment in 

sculpin from lakes where arctic char were present compared to lakes where piscivores 

were absent suggests that the sculpin were feeding, at least partially, on different 

organisms or from different basal resources (Peterson and Fry 1987, Vander Zanden and 

Rasmussen 1999).  Furthermore, 15N depletion in sculpin from arctic char lakes compared 
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to both other lake types suggests that sculpin in arctic char lakes occupy a different 

trophic level within the food webs of these lakes than sculpin from lake trout or sculpin 

only lakes.  This latter result is not inconsistent with the observed differences in δ13C 

between lake types.  However, the mechanism contributing to these stable isotope 

signatures is not clear. 

The differences in δ13C and δ15N values seen between lake types are interesting 

because of the similarity of prey items identified in stomach contents.  Even though 

stomach content analyses only provide a recent snapshot of diet composition, there are 

few alternative prey types in any of the lakes of this region that would have been 

available to sculpin.  Thus, different isotope signatures for the same prey types in 

different lakes is the most plausible explanation for the observed differences in sculpin 

δ13C and δ15N among lake types.  A study by Keyse (2006) compared δ13C and δ15N 

values of benthic invertebrates in lakes where arctic char were present and lakes where 

lake trout were present.  Prey items from lakes with lake trout and no arctic char were 

more enriched in both 13C and 15N than prey items from lakes with arctic char and no lake 

trout by a range of 1‰ to 6‰.  However, the study by Keyse (2006) did not include 

sculpin only lakes.  The difference in δ13C and δ15N values of prey items of sculpin in 

lakes with arctic char seen by Keyse (2006) could explain the δ13C and δ15N values seen 

in this study.  A shift in the isotope values in the prey will be reflected in the predator.  

Therefore, the shift in δ13C and δ15N values could potentially be attributed to a shift in 

δ13C and δ15N values of the prey. Further study of the stable isotope values of sculpin 
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prey items in sculpin only lakes would be needed to evaluate the patterns observed in this 

study.   

Yoshii et al. (1999) studied food webs in Lake Baikal and observed that as sculpin 

increased in body length, they increased in δ15N.  A similar study in Canada on shorthorn 

sculpin (Myoxocephalus scorpius) observed similar increases in δ15N correlating with 

increasing body size of sculpin (Dick et al. 2009).  Since body length is a cue for 

reaching sexual maturity, it is possible that the diet of sculpin could shift upon maturing.  

However, since fish were not aged in this study, I cannot compare dietary habits of 

juveniles to sexually mature sculpin.  This aspect of my research warrants future study.   

Another interesting pattern observed in my study was the lack of Procladius in 

the stomach of sculpin from arctic char lakes.  Procladius could potentially be the prey 

item causing shifts in both δ13C and δ15N values in sculpin from arctic char lakes. 

Procladius is common in lakes throughout this region.  However, a more extensive study 

of sculpin from arctic char lakes would determine whether sculpin are feeding on 

Procladius in these lakes.  
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CHAPTER V 
 

CONCLUSIONS 
 
 

In arctic Alaskan lakes, the presence of an apex predator affects sculpin on 

multiple levels.  For my first objective, I predicted that sculpin would have smaller mean 

length in lakes with a piscivore present.  My results supported this prediction.  Sculpin 

did grow larger when there is no piscivore present.  This has potential implications for 

reproduction because sexual maturity and fecundity are both positively related to body 

size.  However, I also predicted that the effect of piscivores on sculpin size would be 

habitat specific, which was not found to be the case. 

 In objective two, I predicted that the presence of a piscivore would result in a 

higher CPUE of sculpin in nearshore zones.  However, I saw no difference in CPUE of 

sculpin between lake types or depth zones.  I was just as likely to catch a sculpin in any 

lake, at any depth, at any given time.  A potential shift toward smaller piscivores 

(McDonald and Hershey 1989) could explain these results. 

 For objective three, I predicted that sculpin would be more planktivorous in the 

absence of a piscivore.  I also predicted that this shift toward planktivory would be 

reflected in the δ13C and δ15N signatures.  Stomach content analyses showed no 

difference in prey mass or prey types between lake types.  However, in all lakes, 

zooplankton comprised a substantial component of sculpin diet at all depths.  Mass of 
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stomach contents was greater in deeper water than near shore.  This result was consistent 

with previous research, which showed greater food availability in offshore zones.  Stable 

isotope analyses showed that sculpin from lakes with arctic char are isotopically distinct 

from sculpin from other lake types.  There are many potential causes for this, but further 

study is needed to fully evaluate the mechanisms. 

 Considered collectively, these results indicate that piscivore effects on sculpin 

populations are largely indirect, altering body size, but not habitat distribution or prey 

selection.  However, stable isotope analyses suggest some trophic segregation between 

sculpin in char lakes, which requires further study to resolve. 
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APPENDIX A 
 

TABLES AND FIGURES 
 

 
Table 1.  Study area lakes.  All lakes are in the arctic foothills region of Alaska in the 
vicinity of the Toolik Lake field station. 
Lake 
Name Lake Type 

Depth 
(m) Latitude Longitude 

Area 
(ha) 

N-1 Lake Trout 14.0 68°38’38”N  -149º35’24”W 4.34 

Toolik Lake Trout 25.0 68º37’57”N  -149º36’20”W 149.41 

GTH 100 Lake Trout 15.8 68º29’47”N  -149º36’07”W 5.04 

I-6 Lake Trout 15.0 68º35’36”N  -149º39’17”W 16.87 

I-8 Lake Trout 9.5 68º36’37”N  -149º34’59”W 16.78 

Fog 1 
Arctic 
Char 15.0 68º41’18”N  -149º08’13”W 3.40 

Fog 2 
Arctic 
Char 20.0 68º41’11”N  -149º08’58”W 5.65 

GTH 65 
Arctic 
Char 16.5 68º35’17”N  -149º14’34”W 4.31 

E-1 
Sculpin 
Only 11.0 68º37’35”N   -149º33’19”W 2.57 

N-2 
Sculpin 
Only 10.7 68º38’45”N  -149º41’37”W 1.66 

N-3 
Sculpin 
Only appr. 4.5 68º38’34”N  -149º38’24”W 0.8 

S-6 
Sculpin 
Only 7.0 68º37’46”N  -149º38’31”W 2.8 

GTH 91 
Sculpin 
Only 10.5 68º37’27”N  -149º28’12”W 2.23 
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Table 2.  Average number of prey items (± SE) found in sculpin stomach contents by lake 
type in nearshore (1m) and offshore (5m) zones. 
          Lake Type: Lake Trout Arctic Char Sculpin Only 
    

Food type    
    

    Near shore - 1 meter    
    

Procladius 0.64±0.74 0 0.22±0.44 
Other Chironomids 0.12±0.13 1.00±0.72 0.46±0.27 
Zooplankton 2.64±1.9 0.80±0.44 1.28±2.26 
Other 1.18±0.71 1.63±0.32 2.04±1.66 
    
      Offshore - 5 meters    
    

Procladius 4.30±7.46 0 3.60±7.18 
Other Chironomids 2.64±2.58 1.43±1.21 2.86±1.93 
Zooplankton 3.32±3.13 0.60±0.56 1.10±1.84 
Other 1.68±1.08 2.17±0.61 2.22±1.01 
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Figure 1.  Mean sculpin length by lake type (± SE). 

40 

45 

50 

55 

60 

65 

70 

75 

80 

Lake Trout (n=5) Arctic Char (n=3) Sculpin Only (n=5) 

Sc
ul
pi
n 
Le
ng
th
 (m

m
) 



 28 

 
Figure 2.  Mean sculpin length by lake type and depth (± SE). 
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Figure 3.  Relative abundance of sculpin in catch per unit effort by lake type and depth (± 
SE). 
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Figure 4. δ13C of sculpin by lake type (± SE). 
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Figure 5.  δ15N of sculpin by lake type (± SE). 
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Figure 6.  Mean weight of sculpin stomach contents by depth (± SE). 
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Figure 7.  Mean weight of sculpin stomach content by lake type and depth (± SE). 
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