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JOHNSON, ROBERT LEWIS, Ph.D. A Theoretical and Empirical 
Investigation of Factor Analytically-Based Matching Criteria in Differential 
Item Functioning. (1995) Directed by Dr. Lloyd Bond. 145 pp. 

Modern investigative procedures to detect differential item 

functioning (DIF) match examinee groups on ability before comparison. The 

validity of DIF procedures depends, in part, on the unidimensionality of the 

matching criterion; however, the most popular proxy for ability, examinees' 

raw scores on the test, consists of items with varying levels of 

multidimensionality. This study explored the efficacy of two matching 

criteria—total score and factor score—as tests become increasingly 

multidimensional. The investigation used empirical data to determine the 

consistency of flagging items as displaying DIF when matching with total and 

factor scores in tests that varied in factorial complexity. In addition, in a series 

of simulations, increasingly complex factor structures were created. In one 

variation referred to as Factor Structure 1, items loaded either on a first factor 

(the target factor) or a second factor (the nuisance factor)—but not both. Factor 

Structure 2 was composed of items that loaded primarily on a first factor and 

secondarily on a second (or nuisance) factor. Bias was simulated in items 

associated with the nuisance factor. 

The analysis of empirical data revealed less consistency in the flagging 

designations for the total-score and factor-score matching criteria as the test 

became more factorially complex. The simulations revealed that the total 

score matching criterion performed adequately when a test was relatively 

unidimensional. As a test departed from unidimensionality, the total-score 

matching criterion was associated with more spuriously flagged items for 

Factor Structure 1 and Factor Structure 2. In a preliminary study, the rotated, 



factor-score matching criterion was associated with fewer spuriously flagged 

items for Factor Structure 1; however, the rotated factor score was associated 

with more spuriously flagged items for Factor Structure 2. In subsequent 

analyses, items displaying DIF were removed to create an unrotated, 

"purified" factor score and a factor-based score. The purified matching criteria 

correctly identified items with DIF. To simulate the test development 

process, items associated with the second factor in an empirical data set were 

removed from the factor-score and factor-based matching criteria. The 

resulting matching criteria increased the consistency with which items were 

flagged. 
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CHAPTER I 

INTRODUCTION 

Test critics point to the differences in the distributions of test scores for 

ethnic and gender groups as an indicator of test bias. It is possible that the 

differences in the distributions for African American and White examinees, 

or male and female examinees, are due to test bias; it is also possible the 

differences are due to differing ability or achievement levels (whatever their 

source) for the groups. The challenge for the testing community is to 

discover strategies that will improve the identification of biased items. 

In bias studies the performance of minority groups (referred to as focal 

groups) is compared to members of a majority group (referred to as the 

referent group). Historically, the term bias was used to describe test items that 

were judged to disfavor one group over another. In lieu of the term bias, 

current practitioners in the measurement field use the more neutral term, 

differential item functioning (DIF). An item displays differential functioning 

if, when controlling for the ability being measured, a member of a group has a 

greater chance of answering an item correctly when compared to a member in 

another group of similar ability. Whether an item that displays DIF is biased 

is left to the judgment of test reviewers. In other words, DIF provides 

information about the level of the differential performance of the groups. It 

is left to the judgment of qualified experts to decide whether the differential 

performance results from psychometrically flawed items that result in an 

underestimation of the ability or achievement level of particular groups of 
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test takers, or whether the item represents genuine differences in the ability 

or achievement. 

For expository purposes the two terms-bias and DIF—will be used 

interchangeably in this investigation with the understanding that DIF is not 

sufficient evidence to determine that an item is biased. Throughout the 

discourse, the meaning of the terms DIF and bias will be the same: an item 

functions differently for comparable members of two groups. 

The manner in which an item functions differently for two groups 

may be uniform or nonuniform. An item is considered to display uniform 

DIF when the probability of answering the item correctly is consistently 

different across the ability continuum for comparable members of two groups. 

An example of uniform DIF is when a member of the referent group at each 

ability level has a greater chance of answering an item correctly than a 

comparable member of the focal group. An item is considered to display 

nonuniform DIF when the item functions differently for two groups, and the 

group that is advantaged in correctly answering the item varies along the 

ability continuum. An example of nonuniform DIF occurs when a member 

of the focal group in the low ability range has a greater chance of answering 

an item correctly than a comparable member of the referent group; and when 

in the upper ability range, a member of the focal group has a lower chance of 

selecting the correct answer than a comparable member of the referent group. 

Modern techniques of DIF detection are based on the practice of 

comparing examinees with similar ability. The procedure of matching 

examinees with similar ability prior to examining differences reduces the 

confounding of true differences with artifactual differences. For the majority 
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of bias investigations, examinees are considered to be of equal ability if they 

have the same total observed score on the test being investigated. A major 

assumption in the use of the matching criterion is the unidimensionality of 

the criterion used in matching examinees. In other words, bias investigation 

procedures assume that one dominant underlying ability is contributing to an 

examinee's probability of correctly answering the test question. The degree to 

which this assumption is violated will determine the validity of any 

judgments made about whether an item displays DIF. 

This investigation seeks to compare the degree to which DIF 

procedures are robust against the violation of unidimensionality in the 

matching criterion and to compare total raw scores with factor analytically-

based matching criteria. To gain an appreciation of the problem, consider two 

simple scenarios. In the first scenario, from Bond (1981), a teacher wishes to 

assess the ability of her eighth grade students to "reason analogically" and 

develops a verbal analogy test for this purpose. A subset of the items, 

however, are vocabulary specific in that they contain words in the analogy 

that are more familiar to examinees raised on a farm than they are to urban 

students. Because rural students are more familiar with the very words that 

make up the analogy, the overall test is a "purer" measure of verbal 

analogical reasoning for them than it is for urban students. Urban students 

are penalized because of lack of knowledge of rural terms. For the urban 

examinees the total test score would not be unidimensional in regard to 

reasoning ability. While the total score for the rural examinees would reflect 

their underlying ability to reason analogically, the observed score for the 
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urban examinees would be composed of analogical reasoning and lack of 

knowledge of rural terms. 

In a second scenario, imagine a mathematics test composed entirely of 

"word problems." Clearly, the test is a measure of mathematical as well as 

verbal ability, and an examinee's total test score reflects his or her ability in 

both areas. If the verbal demands of the test are sufficiently high, and if 

subgroups of examinees differ in verbal ability, then group differences on test 

may result from a combination of differences in mathematical ability (the 

intended construct) as well as verbal ability (an extraneous construct). Several 

researchers (Camilli & Smith, 1990; Ryan, 1991; Shepard, Camilli, & Williams, 

1985) have observed that mathematics items that require reading often 

function differentially for African American and White examinees. The 

verbally-loaded math items are often more difficult for African American 

students than for (mathematically) comparable members of the referent 

group. In this scenario, the total test score would not be unidimensional in 

regard to mathematics ability. If the two groups of examinees are equally able 

in the two abilities, the observed total score can be a valid matching criterion. 

To place the development of item bias techniques in context, first the 

history of public concern over test fairness will be reviewed, and then a 

review of the literature on methods used to investigate item bias or DIF will 

follow. The specific focus and research questions of the current investigation 

will then be described. To wit, using both simulated and real data sets, the 

sensitivity of total score and a factor analytically-derived score as the 

matching criteria in DIF studies were investigated under various violations 

of the assumption of unidimensionality. 
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CHAPTER II 

LITERATURE REVIEW 

A Brief History of the Development of Testing and Its Controversies 

Controversy has accompanied the testing industry in each stage of its 

development. The rise of routine and mass testing of American school 

children originated in the educational establishment's response in the 

mid-1800s to the growing numbers of students in American public schools 

(Resnick, 1982). Popular use of the more than 200 achievement tests for 

elementary and secondary schools prior to World War I attests to this 

situation. Another early use of achievement tests, and one that continues 

today unabated, was to compare the "quality" of different schools and school 

systems. The use of standardized testing to compare schools goes back at least 

to the end of the 19th century with the spelling surveys of Joseph Rice 

(Haney, 1981; Resnick, 1982). The most vocal early critic of the use of 

standardized tests in public schools was (and is) the National Education 

Association, who in the 1980s called for a ban on all standardized testing in 

the public schools. 

The use of tests for individual diagnosis of "school readiness" and, 

eventually, for placement in classes for the "educable mentally retarded" 

began shortly after the turn of the century, when French psychologists Alfred 

Binet and Theodore Simon developed the famous Binet-Simon scale, a 30-

item test designed to identify Parisian students who were unable to benefit 

from the normal school curriculum (Cunningham, 1986). Lewis Terman of 

Stanford University adapted a later version of the scale for English-speaking 
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students, the Stanford-Binet; and it quickly became the most widely-used test 

of "intelligence" in America. The modern era of multiple-choice testing 

began with two multiple-choice, paper-and-pencil forms of the Stanford-Binet 

developed by Arthur Otis, known as Army Alpha, and its non-verbal 

counterpart, Army Beta. These tests were administered to some 1.7 million 

recruits during World War I to aid the military in placing soldiers in various 

military jobs (Haney, 1981; Resnick, 1982). The creation and wide-spread use 

of the army tests increased public debate and promoted skepticism about 

testing. In the print media of the era, the debate of two individuals, Walter 

Lippman and Lewis Terman, planted seeds of doubt about the use of tests 

(Block & Dworkin, 1976). In the 1920s Terman introduced the National 

Intelligence Test, a group aptitude test, to the public schools; the primary use 

of the instruments was to create homogenous groups for instruction 

(Resnick, 1982). 

Controversy notwithstanding, the use of standardized tests grew 

considerably during the 1930s, a decade that witnessed the first publication of 

Oscar Buros's Mental Measurement Yearbook. Numerous tests were 

developed for use in industry for selection and placement. It was during this 

era that the College Board introduced the Scholastic Aptitude Test. The 

development of the optical test scoring system in the mid-1950s by Lindquist 

provided a technological boost to the popularity of tests. In response to the 

launching of Sputnik, testing came to the fore in the 1960s with the National 

Defense Act and the identification of academically talented students. 

As was true 25 years earlier, the large-scale use of tests created 

controversy. Articles in the early 60s questioned the need for so much testing 
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and criticized the level of thinking skills measured by multiple-choice tests 

(Haney, 1989). The biggest controversy to rock the measurement community 

was Jensen's (1969) article How Much Can We Boost IQ and Scholastic 

Achievement? in which he argued that score differences between races on 

intelligence tests might have a genetic basis. 

With the advent of the Civil Rights movement, increased attention 

was paid to the use of tests to select job and school applicants and the 

resulting implications for minority groups. Typically these concerns centered 

around whether the selection process was fair. There are a number of 

competing models of fair selection, all based to some extent upon the 

regression of criterion performance on test scores. The model of fair selection 

generally accepted by the measurement community (and in fact endorsed by 

the 1985 Standards for Educational and Psychological Testing) is the classical 

or regression model (Cleary, 1968), which specifies that a test is fair if the 

predictive relationship between test and criterion can be described by a 

common algorithm (e.g., regression line). 

Several alternative models of fair selection have been proposed, 

among which are Thorndike's Constant Ratio (Thorndike, 1971), Cole's 

Conditional Probability (Cole, 1973), Linn's Equal Probability (Linn, 1973), the 

Equal Probability Model of Einhorn and Bass (1971), the culture-modified 

criterion model of Darlington (1971), and the utility model of Gross and Su 

(1975). A review and evaluation of these models is beyond the scope of the 

present investigation. A critical review and critique of the models can be 

found in Petersen and Novick (1976). 
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Public skepticism about testing resulted in the enactment of truth-in-

testing legislation in 1979; the legislation requires test companies to provide 

to an examinee the test questions, the examinee's responses, and answer keys. 

In The Mismeasure of Man (Gould, 1981), a doubting public read an historical 

account of the questionable practices in the research on human intelligence. 

The growing concern about testing contributed to the formation of the 

National Center for Fair and Open Testing (FairTest), an organization which 

functions as a consumer awareness group and challenges current test 

practices. 

During the 1970s and early 1980s, the controversy surrounding the use 

of tests and their potential for bias and adverse impact on minorities, 

especially African Americans, was joined in the courts in several celebrated 

cases, most notably Griggs v. Duke Power Company in the employment 

arena; Debra P. v. Turlington, Larry P. v. Riles, PASE v. Hannon in education; 

and the Golden Rule case in professional certification. Griggs v. Duke Power 

company, a landmark decision in the history of employment testing, 

established the rule that "the plaintiff carries the burden of establishing a 

prima facie case of discrimination, which, once established, places upon the 

defendant-employer the burden of demonstrating that test is a 'reasonable 

measure of job performance' " (Wigdor, 1982). 

In Debra P. v. the State of Florida, the Florida state legislature passed a 

bill that required all students to obtain a minimum passing score on a state-

mandated test in order to graduate from high school. Students who could not 

pass the test were given a Certificate of Attendance, rather than a diploma. If 

the policy had been implemented, 20% of black students and 2% of white 
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students would have been denied diplomas. The plaintiffs prevailed; the 

court ruled that the practice could not be instituted immediately, and that the 

state must show that all students had a reasonable opportunity to acquire the 

skills and knowledge tested. 

In Larry P. v. Riles, the routine use of IQ tests in the selection and 

placement of students in the state of California into classes for the educable 

mentally retarded resulted in a disproportionate number of minority children 

being so placed. The class action suit successfully argued that IQ tests 

(specifically, the Stanford-Binet and the Wechsler) were not valid for 

identifying the educational deficits of minority youngsters and the 

administration of IQ tests to minority students in California was banned. 

In a similar suit, PASE v. Hannon, the plaintiff charged that the 

Wechsler Intelligence Scale for Children, Revised (WISC-R), used in the 

placement of children into remedial classes, was biased against black children. 

This case is noteworthy in that the judge, frustrated by the contradictory 

testimony of opposing expert witnesses, reviewed each item on the test 

himself, and ruled whether or not it was biased. This case occurred at 

approximately the same time that measurement specialists began to 

concentrate their efforts on identifying individual test items that might be 

biased against minority individuals. 

Item Bias and Differential Item Performance 

In their book, Methods for Identifying Biased Test Items, Camilli and 

Shepard (1994) traced the origin of the modern investigation of item bias to 

Eells, Davis, Havighurst, Herrick, and Tyler (1951) study, Intelligence and 

Cultural Differences. Research prior to Eells et al. primarily investigated 
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whether the differences in ability were due to environment or genetics. Eells 

et al. were the first to investigate systematically the possibility that group 

differences in performance on tests might be attributed to item content and 

format rather than the examinee's ability alone. 

The investigation of item bias has included groups based on ethnicity, 

gender, age, disabilities, and geographic areas, but by far the most often 

compared groups are African American and White examinees (Baghi & 

Ferrara, 1989, 1990; Ironson & Subkoviak, 1979; Scheuneman & Gerritz, 1990; 

Spray & Miller, 1992; Zwick & Ercikan, 1989). Investigations of item bias also 

have included Asian Americans (Schmitt & Dorans, 1990) and Hispanic 

Americans (Schmitt & Dorans, 1990; Zwick & Ercikan, 1989). More recently, 

Lai and Saka (1993) investigated the performance of Hawaiian students 

compared to mainland United States students. Investigation of DIF for 

groups based on gender have also been numerous (Baghi & Ferrara, 1989; 

Scheuneman & Gerritz, 1990; Zwick & Ercikan, 1989). Rudner (1978) 

investigated item bias with hearing-disabled examinees. Ironson and 

Subkoviak (1979) also investigated differences on item performance for rural 

examinees versus urban examinees. 

The statistical techniques developed for the investigation of DIF have 

been applied to the Scholastic Aptitude Test (SAT) (Scheuneman & Gerritz, 

1990; Schmitt & Dorans, 1990), the American College Testing Mathematics 

Usage Test (Spray & Miller, 1992), the Graduate Record Examination 

(Scheuneman & Gerritz, 1990), and the National Assessment of Educational 

Progress (NAEP) assessments (Zwick & Ercikan, 1989), among others. Recent 
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applications of the various methods have been in the investigation of DIF in 

performance assessments (Zwick, Donoghue, & Grima, 1993). 

The investigation of DIF in the aforementioned groups and 

instruments has involved sundry techniques for identification of biased 

items. The techniques can be grouped according to their use of qualitative 

methods (i.e., judgmental methods) or statistical methods. The two forms of 

investigation developed in tandem and offer complementary information 

about item bias. A review of the development of the two methodologies for 

investigation of item bias will inform the latter discussion. 

Development of Judgmental Methods 

Early investigations of item bias focused on the role of experts in the 

identification of biased items. In a comprehensive review of judgmental 

methods used prior to the 1980s, Tittle (1982) reported the role that 

judgmental methods had in the stages of the development of a test: test 

content specification, item writing, and item review; item tryout; item 

selection; and development of norms and scales. Tittle reported the 

guidelines developed by the testing industry to train judges and guide their 

review in an effort to eliminate bias. Early judgmental methods emphasized 

a review of test items to eliminate stereotypes, increase minority 

representation in reading passages, and equalize examinee familiarity with 

the items. To improve expert consistency, guidelines were developed and 

operationalized by the creation of tally sheets. The tallies served several 

purposes. They served to determine if various groups (e.g. gender, ethnic) 

were represented in verbal passages of tests and in reasonable proportions. 

They also focused the review on the representation of the characters to 
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eliminate stereotypes. Character representation was reviewed in terms of 

physical attributes, setting of the passage, socioeconomic status, behavior, and 

consequences of actions. 

Early judgmental methods also emphasized a review of test items for 

the opportunity to learn (Tittle, 1982). In this approach, one source of test bias 

occurs when tests do not measure what is taught in the classroom. If policy 

decisions are based on the test results, and that information does not reflect 

curricular emphases, conclusions drawn from the results may be faulty. The 

judgmental methods attempted to determine the overlap between test 

content and curriculum content. The process has been operationalized by 

surveying teachers to determine the percentage who teach a particular 

objective or by examining the percentage of objectives of a curriculum 

represented in a test. In addition to the match between objectives and items, 

methods were developed to use taxonomies to classify items (e.g. Bloom's), 

curricular format, content, and skills/processes required. 

The importance of the congruence between curriculum and test was 

highlighted by Bianchini (cited in Tittle, 1982). Bianchini reported that from 

1966 to 1970 for the California Miller-Unruh Statewide Testing Program the 

reading scores of 65% of first grade students on the Stanford Achievement 

Test were in the bottom quartile and the statewide median was at the 38th 

percentile rank. In 1981, however, the statewide median on the Cooperative 

Primary Reading Test was equal to the national median. Bianchini noted that 

the vocabulary in the Cooperative Primary Reading Test overlapped 55% 

with the vocabulary in the first grade basals while the vocabulary in Stanford 

Achievement Test only overlapped 19% with the vocabulary in the first grade 
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basals. He argued that the change in the median was not due to easier norms 

but due to greater overlap between the curriculum and test. 

In contrast to judgmental methods, statistical methods for the 

investigation of item bias are methodologically complex. Plake (1980) 

compared the agreement between items identified as biased by expert judges 

with items identified by use of a statistical procedure. The author examined 

the differential functioning of items when defining group membership by 

grade level (fifth grade student versus students in other grade levels). Plake 

used an ANOVA procedure to identify an item by group interaction; items 

displaying an interaction were considered biased. The judges were asked to 

select items that would be easier or more difficult for each non-fifth grade 

group. Plake found that expert judges identified twice as many items as being 

biased as the statistical method, and the judges frequently predicted bias to be 

in the opposite direction than it appeared to occur. Englehard (1990), in a 

study of a teacher certification test, asked 42 teachers to judge which items 

would function differently for black and white examinees. As proved true for 

Plake, the judges were unable to indicate the items that would be flagged 

through use of the Mantel-Haenszel statistical procedure, a chi-square 

procedure for detection of differential item functioning advanced by Holland 

and Thayer (1988). 

In a study by Hambleton and Jones (1993), the authors sought to 

improve agreement of identification of biased items using statistical and 

judgmental methods. To address this concern the authors refined an earlier 

judgmental review form (Hambleton & Rogers, 1988); in the earlier form the 

guidelines were divided into two categories: Stereotyping and Inadequate 



14 

Representation and Sex, Ethnic, Cultural, Religious, and Class Bias. In the 

first category the emphasis was on the traditional sensitivity review criteria. 

Typical questions addressed issues about whether the test contained material 

controversial to members of the focal group or depicted minorities in 

stereotyped occupations. In the second category the criterion emphasized 

content that would tend to favor the referent group or disfavor the focal 

group. In this case questions addressed issues about whether the test 

contained material unfamiliar to members of the focal group or had language 

specific to a particular group. In the 1993 study Hambleton and Jones refined 

the criteria for identifying bias in the second category. The authors reported 

that 5 of the 11 items identified as biased by the judges were identified as 

displaying DIF by empirical methods. The authors recommended the 

inclusion of new bias criteria (e.g., avoid negatively worded items) on review 

forms as features specific to biased items are noted in the literature. 

Judgmental procedures may have proven ineffective in identifying 

items that differentially function for two groups; however, the judgmental 

methods functioned to make the test content more representative of the 

examinee population. The review of items in terms of fairness to various 

groups has become two-pronged reviews: a sensitivity review and a DIF 

review. A case study by Ramsey (1993) reviewed current judgmental 

methods—now referred to as sensitivity reviews—as used by the Educational 

Testing Service (ETS). The goals of ETS sensitivity reviews are to insure that 

test specifications require material that is representative of minorities and 

that tests are free of offensive language and stereotypical representation. 

Stated explicitly by ETS is "the importance attached to sensitivity review does 
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not imply a measurable relationship between material considered offensive 

by some test takers and the scores of the test takers" (cited in Ramsey, 1993, 

p. 384). The purpose of the review has become "to create tests that 

acknowledge and respect diversity through the inclusion of some materials 

and exclusion of other" (Ramsey, 1993, p. 384). 

A sensitivity-review procedure has been formalized by ETS for the 

review of potential tests prior to being pilot tested. In the review process a 

test developer submits the instrument to a second party who, in turn, will 

assign the instrument to a reviewer; test developers are not allowed either to 

review their tests or to select the reviewer. The reviewer must approve a test 

before it is allowed into production. Appeal processes have been established 

for the instances where a general agreement is not reached between the 

developer and the reviewer. 

Before serving as a reviewer, test developers receive one and one-half 

days of training; every fifth year the reviewer must take a refresher course. 

During training, reviewers are presented with examples of items ranging 

from blatantly inappropriate, to questionably inappropriate, to acceptable. 

Sharing much in common with the criteria used in judgmental methods 

outlined by Tittle (1982), ETS has outlined six criteria that test materials must 

meet: 

(a) should be balanced, (b) should not foster stereotypes, (c) should not 
contain ethnocentric or gender-based underlying assumptions ... (d) 
should not be offensive when viewed from an examinee's perspective, 
(e) should not contain material that the subject matter does not 
demand, and (f) should not be elitist or ethnocentric. (Ramsey, 1992, p. 
375) 
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The modern sensitivity review shares much in common with the earlier 

judgmental methods. Commonalities include a reliance on experts, a need 

for training, and identification of relevant criteria. 

Informed by the research, the judgmental process no longer claims to 

identify items that would be more or less difficult for examinees. The 

identification of items that may be biased in terms of difficulty is the province 

of statistical techniques. A review of early techniques of identifying 

differentially functioning items will build a basis for the discussion of 

modern techniques. 

Historical Statistical Techniques Used in the Investigation of DIF 

In the late 1960s, statistical indices for the examination of item bias 

began to focus on the instruments used in selection. Some of the earliest 

methodologies were the transformed item difficulty index, correlational 

techniques, and analysis of variance (ANOVA). 

Transformed Item Difficulty Index 

Early bias studies focused on the differential difficulty of an item as an 

indicator of bias. In these investigations the classical difficulty index (p, the 

proportion of examinees who answer an item correctly) was used to examine 

the different characteristics of items. Items with similar p-values were 

considered to be free of bias while items with highly discrepant p-values for 

the groups under investigation were suspect (Eells, 1951 cited in Camilli & 

Shepard, 1994). Angoff (1972) improved the methodology of differential 

difficulty and introduced the transformed item difficulty index. This index, 

also referred to as the delta plot method, converts item proportions correct for 

each group to normalized z-scores. This is accomplished by first obtaining the 
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percentile corresponding to 1 - p. Unlike its derivative p-value, this 

converted score reflects the difficulty of the item. The difficulties for the two 

groups are graphed in a scatterplot. A 45 degree line, going from the lower 

left of the plot to the upper right, displays the difference in percentage correct 

for the two groups. Items that are outliers (i.e., items that deviate from the 45 

degree line) are relatively more difficult for one group. An index of bias 

determines the perpendicular distance of an item from the major axis line of 

best fit. The technique was found unsatisfactory since when groups differ in 

mean ability, items that validly discriminate on the basis of the ability or 

achievement were indicated as biased. 

An alternative method—residualized Angoff—was also investigated by 

Shepard, Camilli, and Williams (1985). In this method the point-biserial 

correlation of an item is partialled out of the delta index by regressing the 

original Angoff indices on the combined-group point biserial for the items. 

The residual delta indices were calculated as the difference between the 

observed index and the expected delta value based on the item's point-

biserial. Shepard et al. reported the modified Angoff index correlated from .59 

to .61 with a signed IRT index. In a simulated study the authors found the 

residualized Angoff index identified 84% of the known bias in the data while 

chi-square techniques identified 87% of the known bias. 

Correlational Techniques 

Early studies of item bias used the item discrimination index to gauge if 

an item was functioning differently for two groups (Green & Draper, 1972). In 

the Green and Draper study, an item was considered biased if it was in the top 

half of discriminating items for one group and in the bottom half for the 
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other group. Ironson & Subkoviak (1979) created an unsigned index of item 

bias by using the absolute value of the difference between the discrimination 

index for the focal and referent groups. Ironson and Subkoviak found that 

the item discrimination index correlated poorly with transformed difficulty, 

chi-square, and item characteristic curve (ICC) indices of bias. They 

considered the item discrimination technique to be inadequate for the 

detection of bias. 

Analysis of Variance Techniques (ANOVA) 

The earliest attempts to identify items that had a differential impact on 

groups used analysis of variance to test for interactions. In this two-factor 

ANOVA, examinee group and items served as two factors. Group differences 

were accounted for in the main effect; while differential difficulty on the 

items for the focal and referent groups was evidenced in the item by group 

interaction (Cleary & Hilton, 1968). The ANOVA technique was shown to be 

ineffective for detection of bias when Camilli and Shepard (1987) in a 

simulation study demonstrated that even with a large amount of bias built 

into the items the interaction effect only accounted for single-digit amounts 

of the variance. The variance due to bias is confounded with the group effect. 

As a variation of the popular ANOVA method, Angoff and Ford (1973) 

matched groups on ability and investigated the effect on the item-group 

interaction. Their finding, that matched groups reduced the interaction, 

pointed to the necessity of matching on relevant criteria to create comparable 

groups. 
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Modern Statistical Techniques Used in the Investigation of DIF 

The previous indices of bias share a common problem: each method 

confounds real differences in ability (mean group differences) with bias. 

Modern approaches of DIF require that only examinees of similar ability 

should be compared to determine if group membership has a differential 

impact on an examinee getting an item correct. Holland and Thayer (1988) 

wrote: "Basic to all modern approaches to the study of dif is the notion of 

comparing only comparable members of F and R in attempting to identify 

items that exhibit dif (p. 130). Scheuneman (1975) expressed the concept of 

comparability thus: "An item is unbiased if, for all individuals having the 

same score on a homogenous subtest containing the item, the proportion of 

individuals getting the item correct is the same for each population group 

being considered" (p.2). The current techniques used in the investigation of 

DIF comprise two categories: item response theory (IRT) and chi-square 

techniques. 

Item Response Theory 

In a summary of IRT, Hambleton, Swaminathan, and Rogers (1991) 

stated: 

Item response theory (IRT) rests on two basic postulates: (a) The 
performance of an examinee on a test item can be predicted (or 
explained) by a set of factors called traits, latent traits, or abilities; and (b) 
the relationship between examinees' item performance can be 
described by a monotonically increasing function called an item 
characteristic function or item characteristic curve (ICC). This function 
specifies that as the level of the trait increases, the probability of a 
correct response to an item increases, (p. 7) 

The function, or the item characteristic curve (ICC), is formed by a logistic 

model. As stated earlier the function relates the probability of a correct 
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answer with level of ability. The function is plotted on a Cartesian axis with 

the x-axis indicating levels of ability, theta (0), and expressed on a scale similar 

to z-scores with values ranging between -4.0 to 4.0. The y-axis indicates the 

probability of getting an item correct, P(0). 

The one-parameter model or Rasch model forms a logistic curve based 

on an estimate of ability, theta (0), and a difficulty parameter (b). The 

difficulty parameter is defined as the point on the ability scale associated with 

a .50 probability of getting the item correct. The formula for the model is 

P;(0) = e(l)'b" i = 1,2,3 n (1) 
1 + e(0"b') 

where 

P,(0) is the probability that a randomly chosen examinee with ability 0 

answers item i correctly, 

b; is the item i difficulty parameter, 

n is the number of items in the test, 

e is the base of the natural logarithms. 

The function of the difficulty parameter in the logistic model is to place 

the ICC along the ability continuum. More specifically, the ICC of an item 

with a low value for b; would be close to the origin on the ability scale (the 

abscissa); whereas, the ICC of an item with a high value for b,- would be 

shifted to the right on the ability scale. Possible values of b,- are the same as 

delineated by theta; however, the value of b,- is generally between -1.5 to 1.5. 

The one parameter model assumes guessing does not account for variance in 

the data. The model also carries the assumption that all items are equally 

discriminating. 
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The logistic curve formed in the two-parameter model contains the 

ability (0) and difficulty parameter (b) of the one-parameter model and 

incorporates an item discrimination parameter (a) into the calculations. The 

item discrimination parameter is defined as the slope of the item 

characteristic curve at the point associated with b, on the ability scale. The 

formula for the two-parameter model is given by 

P,-(9)= i = 1,2,3 n (2) 
1 +  eDa,(0-b,)  

where 

D is a correction factor to adjust the logistic function to closely 

approximate the normal ogive function, 

a,- is the item i discrimination parameter. 

The item discrimination parameter (a,) in the logistic model is 

analogous to the item-total correlation (i.e., the point-biserial) in classical test 

theory. That is, it is an index of the extent to which the item discriminates 

between high and low ability examinees. Formally, it is the slope of the ICC at 

b; on the theta scale. In the case of an item with a low value for ar, the slope of 

the ICC would be nearly flat, or parallel to the abscissa. In contrast, for an 

item with a high value for athe slope of the ICC would fall rapidly on the 

left side of the point of inflection (b;) and rise sharply on the right side of the 

point of inflection. As was true of the one parameter model, the two-

parameter logistic model assumes examinee guessing does not account for 

variance in the data. This assumption is considered questionable when the 

items are in a multiple-choice format, thus giving rise to the third logistic 

model—the three-parameter logistic model. 



22 

The three-parameter model incorporates the parameters contained in 

the previous two models—ability (0), difficulty parameter (b), item 

discrimination parameter (a)—and adds a pseudo-chance-level parameter (c). 

The c parameter is defined as the non-zero lower asymptote for the ICC curve. 

The three-parameter model is given by 

Pj(0) = C; + (1 - Ci) e08"0-"" 1 = 1,2,3 n (3) 
1 + eDai(0-bO 

The pseudo-chance-level parameter in the logistic model represents 

the probability of examinees with low ability answering an item correctly (that 

is, the probability of getting the item right by guessing). In multiple-choice 

tests, the greater the number of alternatives (distractors), the lower the value 

of c. By contrast, items with very few alternatives (e.g., true-false items) have 

a correspondingly high value of c. 

When ICCs are plotted separately for the focal and referent groups, the 

probability of an examinee with a given ability answering an item correctly 

should be the same regardless of group membership. In other words, the two 

ICCs should, within measurement error, coincide. The more two ICCs differ 

for two groups, the greater the amount of DIF. Each parameter—the difficulty 

parameter, the discrimination parameter, and the pseudo-chance-level 

parameter—must be the same or the ICCs for the referent and focal groups will 

not be the same. The greater the amount of area between the two curves, the 

greater the amount of DIF. 

Hambleton, Swaminathan, and Rogers (1991) summarized two 

approaches to quantifying DIF in IRT: comparison of item parameters and 

area between ICC curves. The first approach is Lord's chi-square significance 
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test, which compares simultaneously the differences of the groups a and b 

parameters (Lord, 1980). The second approach involves calculating the areas 

between the two curves. 

While the use of IRT models for detection of DIF is considered the best 

procedurally, IRT is too expensive for many testing programs (Camilli & 

Shepard, 1994; Hambleton & Rogers, 1989). In addition, the sample sizes 

needed to obtain stable parameter estimates in IRT investigations of bias have 

been reported at 1,000 for each group—1000 members of the focal group and 

1000 members of the referent group (Hills, 1989; Ironson & Subkoviak, 1979). 

Sample sizes of this magnitude are impossible for small testing programs. 

Shepard, Camilli, and Williams (1985) also recommended sample sizes of 

1,000 per group and reported that a and b parameters could not be estimated 

for a sample that contained only 300 focal group members. In less complex 

IRT models it is possible to obtain stable estimates with fewer examinees; 

however, even with large samples the c parameter is poorly estimated (Baker, 

1987; Shepard et al., 1985). Other promising statistical procedures for the 

investigation of DIF are based on chi-square procedures. 

Chi-square Techniques 

The practice of comparing examinees of similar ability is an integral 

part of the chi-square techniques for investigating DIF. Scheuneman (1979) 

proposed the use of a chi-square procedure as a nonparametric analog of the 

parameter-based IRT models. Whereas in IRT the ability of examinees is 

estimated, the chi-square procedure uses the observed total score of 

examinees to control for ability. By controlling for ability, Scheuneman's 



24 

model provided the transition from the historical techniques for 

investigating DIF which confounded group differences with differences in 

ability. In Scheuneman's approach, the probability of a correct response is 

examined for each ability level for the focal and referent groups. The author 

recommended collapsing score intervals such that each cell contains 10 to 20 

correct responses. This generally results in three to five ability groups. 

Scheuneman's procedure was criticized for not using the information 

contained in the incorrect responses (Baker, 1981); since the distribution using 

only correct responses is not a true chi-square distribution, Baker correctly 

suggested that the "full information" chi-square be used. 

Two currently used chi-square techniques are the standardization 

approach (Dorans & Kulick, 1986) and the Mantel-Haenszel approach 

(Holland and Thayer, 1988). In comparing the performances of two groups on 

an item, the two methods use 2 X 2 X J contingency tables, where the first 2 

indicates the number of groups, the second 2 indicates the number of score 

levels for the items (1 or 0), and the J indicates the number of score intervals 

for the test. The format that each table assumes at each level of performance 

(J) is shown in Table 1. 

Table 1 

Contingency Table for Comparison of Group Responses at Jth Level of Ability 

Score on Studied Item 

Group 

1 0 Total 

Referent RRi wR i  NRi 

Focal Rpj wF i  NFj  

Total R i i  W0i N t j  
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RRj represents the number of people in the referent group at the ;'th 

score level who got the item correct, and WRj represents the number of people 

in the referent group at the y'th score level who got the item incorrect. Parallel 

to the referent groups, RFj and WFj represent the number of focal group 

members with correct and incorrect responses at the ;'th score level, 

respectively. The total number of correct and incorrect responses at the /th 

level are indicated by Rjj and W0j, respectively; and the total number of 

referent and focal group members at the /th level are indicated by NRj and NFj, 

respectively. Finally, the total number of examinees at the jth score level is 

indicated by Ntj. 

Standardization Approach 

The standardization approach (Dorans, 1989) compares performance for 

the referent and focal groups by examining the difference in proportion or 

percent correct at each level of j. 

Dj = PFj-PRj (4) 

where 

PFj = Rpj/Npj and PRj = RRj/NRj 

For a visual representation of group differences on item performance, the 

standardization approach utilizes a plot similar to that used in the delta plot 

method of Angoff. The graph uses conditional percent correct for the referent 

and focal groups to examine performance of the studied item. The j levels for 

the test form the abscissa, and the conditional percent correct form the 
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ordinate. In the standardization approach, the expected performance on the 

studied item at each score level is determined by the referent group. 

The standardization procedure uses two indices for flagging items: the 

standardized p-difference (Dstd) and the root-mean-weighted-square 

difference, RMWSD (Dorans, 1989). At each score level, both indices are 

weighted by the number of members in a standardization group, typically the 

focal group. The weights are cumulated over the score levels to provide a 

summary index. The advantage of the use of weights is to concentrate the 

contribution to the summary score in the score intervals where the greatest 

number of focal group members occur. 

The index Dstd ranges from -1.0 to 1.0. The formula for the 

standardized /^-difference is: 

2 Wr, - Prj) 
DSTD='-^—, (5) 

2KJ 
j= 1 

where (Kj/EKj) is the weight supplied by the standardization group at each 

level of j to weight differences in performance between the referent and focal 

groups. The value of K is at the discretion of the researcher; however, it most 

frequently is specified as the number of people in the focal group at each level 

of j, or NFj. By use of NFj, greater weight is given to differences of PFj and PRj 

in the score intervals where the majority of members of focal groups are 

located. With this weighting, Dstd becomes: 

P f -  P f  (6) 
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where Pp is the observed performance of the focal group on the item and Pf 

is the expected performance of the focal group predicted from the referent-

group item-test regression curve (Dorans, 1989). 

The second index, the root-mean-weighted-square difference 

(RMWSD), provides the additional benefit of accounting for items where 

crossover of the slopes would cancel any differences in performance as can 

occur with the standardized p difference. As evidenced in Equation 7, the 

square of each interval is calculated creating an unsigned index (Dorans, 

1989): 

RMWSD = 

I % - Prfi2 

j=  1 

j= i 

.5 

(7) 

Current test developers use the standardized p difference as a flag since the 

RMWSD flagging criterion was found to be sample-size specific. For flagging 

items in test-construction practices, ETS has adopted I Dstd I > .10; and for 

research purposes, ETS has specified a flagging criterion of i Dstd I > .05. 

Another variation of Dstd used to measure DIF is based on an item 

difficulty metric, the delta (A) metric, used at the Educational Testing Service 

(ETS). The delta metric is calculated as follows: 

A proportion correct is converted to a z-score via a p-to-z 

transformation using the inverse normal cumulative function, 

followed by a linear transformation to a metric with a mean of 13 and 

standard deviation of 4 via: 
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A = 13 - 4[ <> -Hp))  (8) 

such that large values of A correspond to difficult items, whereas easy 

items have small A values (Dorans, 1989, p. 227). 

Dstd is converted to a delta metric by the following formula: 

/s 

Pf 

Mantel-Haenszel Approach 

Another commonly used indicator of DIF, the Mantel-Haenszel 

approach, uses an odds ratio, which represents the likelihood that referent 

group members get an item correct exceeds the likelihood for comparable 

focal group members. As seen in Equation 10, the odds ratio is summed 

across the test score intervals to provide a summary index of DIF (Dorans, 

1989). 

ASTD = -2.35 In 
Pf 

(9) 

L(i - P f ) }  

j 

&MH 
J (10) J 

1 Mj 

where 

thus 
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A common odds ratio of 1 means that after controlling for ability there is no 

differential performance between the two groups. A common odds ratio of 

1.5 would indicate that members of the referent group are one and one-half 

times more likely to answer an item correctly as comparable members of the 

referent group. Finally, a common odds ratio of .5 would indicate that 

members of the referent group are half as likely to answer an item correctly as 

comparable members of the referent group 

Holland (1985) proposed a chi-square test with one degree of freedom 

for the null hypothesis H0: a = 1. The hypothesis associated with the test is 

that there is no relationship between group membership and item response 

after controlling for ability level. When the Mantel-Haenszel statistic exceeds 

the table value of chi-square at a specified level of a, it indicates that item 

performance for the two groups is consistently different. The formula is 

shown in Equation 11, below (Dorans, 1989). 

j j 2 

J (11) 

s ̂  
j=  1 

where 

HP E ( R „ l a = l )  =  ̂ i  
N t j  

and 

of = VAR(Rrj  I a= 1) = Nrj N f j  Rtj Wtj  
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The delta metric is also used to create a variation of the Mantel-Haenszel 

procedure; the conversion to a Mantel-Haenszel delta metric (DMH) is 

achieved by the following formula: 

MH D-DIF = -2.35 ln(aMH) (12) 

For flagging items, Dorans suggested that a value of DMH > 1. 

The Mantel-Haenszel procedure is analogous to comparing the area 

between one-parameter ICC curves for focal and referent group members 

(Hambleton & Rogers, 1989). The matching total score serves the same 

function as the latent trait in IRT. 

Hills (1989) wrote of the Mantel-Haenszel procedure: 

MH appears to be easily used, easily programmed, has a significance test 
for use with these small samples, is designed for such small samples, 
may not require matched samples, and seems more stable than other 
methods across samples. The statistical test is considered to be very 
powerful, hence important effects have the most chance of being 
detected in small samples with this method, (p. 7) 

Indeed, the procedure is simple to use and has been incorporated into at least 

one statistical package (SAS, 1988). 

Disadvantages of the chi-square procedures include that they have 

proven insensitive to nonuniform DIF (Hambleton & Rogers, 1989) and for 

very large sample sizes the test of significance may not reflect the practical 

significance of DIF (Hills, 1989). 

From DIF Detection to Test Construction 

The previous procedures identify items that are differentially 

functioning for the focal and referent groups; however, the presence of DIF is 

not conclusive in determining whether an item is biased. In test-
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development procedures at the Educational Testing Service, once an item is 

designated as exhibiting DIF, it is classified in the following manner: 

Category A: Negligible DIF MH D-DIF not significantly different from 
zero or absolute value less than 1.0 

Category B: Intermediate DIF MH D-DIF significantly different from zero 
and absolute value less than 1.0 and either 
1) less than 1.5 or 2) not significantly greater 
then 1.0. 

Category C: Large DIF MH D-DIF significantly greater than 1.0 and 
absolute value of 1.5 or more (Zieky, 1993, 
p. 342). 

where statistical significance is at the 5% level for a single item. 

Items in Category A are considered to display negligible DIF; items in 

Category B are considered to display intermediate DIF; and items in Category 

C are considered to display large DIF (Dorans & Holland, 1993). 

This information is incorporated into a set of procedures to guide the 

selection of items for inclusion in tests. ETS procedures are as follow: 

• The content and statistical specifications for the test must be met. 
• Large form-to-form variations in DIF in tests made from the same 

pool of items must be avoided. Test assemblers making more than 
one test from a pool of items should not use up all of the questions 
in Category A or the items in Category B with the lowest DIF values 
in the first tests to be assembled, thereby forcing later tests to have 
progressively larger DIF values. 

• Within the previously mentioned constraints, items from Category 
A should be selected in preference to items from Categories B or C. 

• For items in Category B, when there is a choice among otherwise 
equally appropriate questions and the equivalence of tests made 
from the pool can be maintained, items with smaller absolute DIF 
values should be selected in preference to items with larger values. 
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• Items from Category C will not be used unless they are judged to be 
fair and essential to meet test specifications. 

• If Category C items must be used, the test assembler will document 
the reason and will explain why the items are not unfairly related to 
group membership. A reviewer will check to make sure that the 
use of Category C items was indeed necessary and that the terms are 
fair. (Zieky, 1993, p. 344) 

Comparison of DIF Results Across Methods 

Availability of programs, complexity of models, costs, and large sample 

sizes, have prompted the comparison of bias techniques to determine if less 

complex models might as efficiently identify differential item functioning. In 

an empirical study based on data from African American and White 

examinees, Ironson and Subkoviak (1979) compared the identification of 

biased items across four methods. The bias investigation techniques that 

were compared were three relatively simple bias identification models-

transformed difficulty, item discrimination, chi-square method—and the 

more complex bias identification technique-IRT. The authors reported 

highest correlations between the transformed difficulty, chi-square, and IRT 

techniques. Ironson and Subkoviak attributed the high level of agreement 

for IRT, chi-square, and transformed difficulty to the fact that the three 

methods control for ability level prior to examining differences. In a study of 

item bias in which the focal group was hearing-impaired examinees, Rudner 

(1977) found a similar level of agreement for the three methods: transformed 

difficulty, chi-square, and IRT. 

Shepard, Camilli, and Williams (1985) studied the congruence of bias 

indices for several bias techniques. The procedures compared were the chi-

square, the Angoff delta plot, residualized delta plot, pseudo-IRT, and one and 
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three parameter IRT. The unsigned and signed bias indices generated by the 

three-parameter IRT model were selected as the criteria to evaluate the 

alternative bias procedures. The agreement between the techniques was 

measured by calculating Spearman rank-order correlations. The chi-square 

procedure correlated with the IRT criterion from .50 to .53 for unsigned 

indices and .57 to .67 for signed indices. These results led the authors to the 

conclusion that chi-square techniques could be a substitute for IRT models for 

small samples. 

Factors in the Application of Chi-square Techniques 

When selecting a method for the investigation of bias, test practitioners 

must determine which conditions will provide information about the 

performance of items with fewest Type I or Type II errors. The accuracy of DIF 

chi-square techniques have been investigated with variations of sample sizes, 

number of items, and matching variables. 

Sample Size 

In an earlier section of the Literature Review it was reported that large 

sample sizes are required for IRT estimation procedures. While sample sizes 

of 1,000 examinees per group are not needed in chi-square procedures, 

researchers have found certain minimum requirements for sample sizes. 

When Mantel-Haenszel methods are used, Kubiak and Colwell (1990) 

suggested a minimum 100 focal group members and a combined sample of 

500; however, Hills (1989) suggested as few as 100 focal members with a 

combined group of 200. Ryan (1991) found MH estimates to be unstable for 

samples with as few as 141 to 167 focal members. Hoover and Kolen (1984) 
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also reported DIF indices to be unstable with a sample size of 100. When the 

score distribution reflects the difference of one standard deviation generally 

found between black and white examinees on cognitive ability measures, 

Camilli and Smith (1990) found the MH chi-square statistic to be robust with 

300 members in the focal group. Others (Engelhard, Anderson, and 

Gabrielson, 1990; McPeek & Wild, 1986) have found samples of 600 to be 

inadequate to obtain stable DIF indices. Mazor, Clauser, and Hambleton 

(1991) examined the ability of MH to detect DIF in samples of 100, 200, 500, 

1000, and 2000 examinees for each of the focal and referent groups. As the 

sample size decreased, the efficiency of the MH decreased from 69% correct 

identification to 13% correct identification. 

Number of Items 

In an early study relevant to the current chi-square techniques, the 

influence of test length on the stability of DIF indices was investigated by 

Rudner, Getson, and Knight (1980). Two chi-square variations were 

investigated using five intervals and total possible score intervals (with the 

restriction that expected cell sizes equal at least 5). The authors found the 

length of the test did not substantially affect the identification of items as 

displaying DIF when the number of items on the test was greater than 20. 

In a study that primarily investigated the effects of matching criterion 

on the identification of DIF, Clauser, Mazor, and Hambleton (1991) studied 

the effect of test length and identification of DIF. The authors used the New 

Mexico High School Proficiency Exam, a 75 item high school proficiency test 

that measures five life skills areas: knowledge of community resources; 

consumer economics; government and law; mental and physical health; and 



35 

occupational knowledge. The items were analyzed for DIF using total test 

score as the matching criterion and were reanalyzed using as the matching 

criterion a subtest score composed of 30 to 31 items from the 75 item test. The 

results of the 75 item test were compared to the results of four subtests of 30 to 

31 items. The authors reported that as test length decreased the number of 

additional items identified as displaying DIF increased. 

Matching Variables 

To determine whether two groups are of equivalent ability, it is 

necessary to have a criterion for creating comparable groups. Holland and 

Thayer (1988) identified three important criteria for measuring comparability: 

"... (a) measures of the ability for which the item is designed, (b) schooling or 

other measures of relevant experience, and (c) membership in other groups" 

(p. 130). The criterion may be external to the test being examined, or the 

criterion may be internal to the test. Holland and Thayer reported that the 

predominant matching criterion is the internal criterion of test score. 

External Criterion 

The use of external criterion as a matching variable was investigated by 

Hambleton, Bollwark, & Rogers (cited in Hambleton, Clauser, Mazor, & 

Jones, 1993). In an investigation of DIF in a high school scholarship test, the 

authors compared the results of using an external criterion—scores on a high 

school achievement test—with the results using an internal criterion. The 

study was replicated in three additional subject areas. The finding was that 

internal and external matching criterion resulted in similar DIF results for 

the Mantel Haenszel procedure. The authors postulated that the moderate 

correlations between the criterion measures (ranging from .38 to .52) resulted 
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in similar patterns of identification of DIF. Their research supported the 

continued use of internal criterion for matching. 

Score Intervals 

Another variable of consequence when matching examinees on a 

criterion is the size of the interval which contains "comparable" examinees. 

Matching can occur for each possible score or a limited number of test score 

intervals can be created by pooling scores. Scheuneman (1979), in her seminal 

investigation of the chi-square technique to study DIF, used the total test score 

as the internal criterion. She proposed the total test score to be appropriate as 

the matching criterion on a homogenous test; in the case of a more diverse 

test a subgroup of items containing the item of interest was used. Generally, 

total test score is used for matching focal and referent examinees in the 

Mantel-Haenszel procedure. 

Pooling score intervals allows an investigator with a small sample to 

avoid empty cells. Studies have focused on the effect of a limited number of 

test score intervals on the identification of items displaying DIF. Wright 

(1986) found that 61 levels for matching were better than six levels. Raju, 

Bode, and Larsen (1989) recommended a minimum of four levels for 

matching with the Mantel-Haenszel procedure. 

In a Monte Carlo study, Donoghue and Allen (1993) investigated the 

use of the total test score as the matching variable (thin matching) versus 

using pooled levels of total test score (thick matching). Nine variations of 

grouping score intervals, termed thick matching by the authors, were 

examined. In one variation-equal interval-pairs of total test scores were 

combined to create the levels on the table. In two variations, percent total 
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and percent focal, score intervals were combined to approximate the quintiles 

for the total group and focal group, respectively. In three variations, termed 

Censor (1), Censor (5), and Censor (20), extreme score intervals were collapsed 

until the minimum number of observations in the collapsed cells were at 

least one, five, and 20, respectively. Three additional variations of thick 

matching—Minimum Frequency (1), Minimum Frequency (5), and Minimum 

Frequency (20)~followed a similar strategy. In contrast to the Censor 

methods, which pooled only extreme score intervals, the Minimum 

Frequency methods pooled any score intervals until the interval contained 

the minimum number of observations as specified in the title of the 

variation (1, 5, and 20, respectively). In their study the authors compared 

mean AMH and X2MH FOR 20 replications of the matching methods when no 

DIF was introduced into the data; in this case the expected mean value of Amh 

is zero and the expected mean value of X2MH is one. The authors also 

calculated the mean AMH and X2MH FOR the replicated administrations when 

DIF was simulated for given items. They found the use of thin matching to 

be superior for long tests (40 items) and large sample sizes (1600). Thick 

matching techniques were found superior for short tests. 

Clauser, Mazor, and Hambleton (1994) also investigated the effects of 

reducing the number of score intervals. In a Monte Carlo study the authors 

found that when the number of score intervals is small and the ability 

distributions of the focal and referent groups are unequal, the number of 

Type I errors was inflated. As a result of their findings the authors 

recommend that pooling of score interval not be used when the ability 

distributions are unequal. The authors theorized that as the score interval 
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increases, the assumption of matching on equal ability is no longer met. The 

introduction of impact into the matched groups contaminates the matching 

criterion and results in items being incorrectly identified as displaying DIF. 

The effect of creating a more homogenous sample by stratifying using 

variables based on educational background met with mixed results in a study 

by Kubiak (1992). In many cases the number of items with DIF remained the 

same and in some instances more items were identified with DIF. 

Multiple Matching Criterion 

When examinees were matched on two criteria, Ryan (1991) found no 

significant improvement in the stability of the MH statistics; she did find that 

more items were shifted into the A classification (negligible DIF) as used by 

ETS. Unlike Ryan, McPeek and Wild (1990) found that matching on multiple 

criteria—analytical and verbal test scores-reduced DIF in logical and analytical 

reasoning items on the GRE. 

Unidimensionalitv of Matching Criterion 

The validity of matching on total score in the investigation of DIF 

depends on the ability of the total score to represent the underlying ability 

being measured by the test. If the total score is composed of items that are 

affected by extraneous factors, then the validity of the matching is 

questionable. Hambleton et. al (1993) wrote: "When individual items 

measure more than one ability, or when items measuring different abilities 

are part of one test, the adequacy of matching criterion may be compromised, 

leading to errors in the identification of DIF" (p.24). The investigation of the 

validity of the total score as a matching criterion has taken several directions. 
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True Score 

In the use of observed score an assumption is made that an examinee's 

observed score reflects the examinee's true abilities. The question arises 

whether matching on observed score is adequate for the detection of DIF 

when the true score for examinees' differs from the observed scores. Spray 

and Miller (1992) investigated the use of observed score when the true 

abilities of the examinees are incongruent and found that the detection of DIF 

was not seriously affected if tests are relatively free of DIF. 

Purified Criterion 

Drawing on a study of techniques using the Rasch model and the 

Mantel-Haenszel procedure, Holland and Thayer (1988) suggested that in the 

analysis of an item for DIF the studied item must be included in the criterion. 

Inclusion of the item in the analysis does not mask the existence of DIF; 

however, the inclusion of other items displaying DIF will mask differential 

functioning of the studied item. They offer a two-step procedure for 

identification of potentially biased items: 

Step 1: Refine the matching criteria by eliminating items based on a 
preliminary dif or impact analysis 

Step 2: Use as the matching criterion the total score on all items left in 
the refined criterion plus the studied item—even if it is then 
omitted from the criterion of all other items when they are 
studied in turned [sic] (p. 141). 

The effect of inclusion of the studied item on the identification of DIF 

was investigated by Clauser, Mazor, and Hambleton (1993). The authors used 

a three-parameter IRT model to simulate 2,000 examinee responses: 1,000 

focal and 1,000 referent. Two types of ability distributions were studied: equal 
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distributions and unequal distributions. In the former, the distribution of test 

scores for the referent and focal group were standardized to a mean of 0.0 and 

a standard deviation of 1.0. To create an unequal distribution of total scores 

for the focal group similar to those seen in testing situations, the mean was 

-1.0 and the standard deviation was maintained at 1.0. Also manipulated in 

the investigation were test length-lengths studied were 20, 40, and 80 items--

and percent of items displaying DIF~percent of items displaying DIF were 0, 3, 

8, and 20. DIF was simulated by increasing the b parameter for the focal group 

by 0.6. 

Clauser, Mazor, and Hambleton (1993) found the two-step procedure 

recommended by Holland and Thayer (1988) to be superior or equal to the 

single-step procedure in identifying items with simulated DIF. The two-step 

process lowered Type I error. In addition, they reported that with unequal 

distributions, as the number of score levels were reduced, thus contaminating 

the matching variable, more items were incorrectly identified as displaying 

DIF—higher Type I error. 

Zwick, Donoghue, and Grima (1993) also studied the impact of 

removing the studied item when investigating differential item functioning 

in performance assessments. The authors found that for two variations of 

the Mantel-Haenszel technique—Mantel and the generalized Mantel-Haenszel 

procedure—were useful in examining DIF for polytomously scored items. 

They also reported increased Type I errors increased when the studied item 

was omitted. 
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Multidimensionalitv 

In an article that addressed multidimensional IRT issues, Ackerman 

(1992) demonstrated that matching focal and referent group members on total 

test scores proved to be inadequate when the test items measure both a valid 

latent ability and a nuisance variable. He noted that measurement 

practitioners need examine the conditional distribution of the nuisance 

ability at each level of the valid ability. If the distribution of the nuisance 

ability differs for the two groups, then there exists a potential for bias. He 

cited Pine (1977) to define an item as being unbiased if all examinees with the 

same "intended-to-be-measured" ability have an equal probability of getting 

the item correct. By contrast, item impact, according to Ackerman, occurs 

when two groups differ on abilities that are considered to be a valid part of the 

test construct. 

Other authors have noted "nuisance" factors. Dorans, Schmitt, and 

Bleistein (1992) noted that matching on a total score that is contaminated by 

speededness would affect STD P-DIF. The authors recommended that to 

avoid the spurious detection of DIF it may be necessary to remove the speed 

component from the matching criterion. Bleistein and Schmitt (1987) found 

that number of items flagged as exhibiting DIF is related to the 

unidimensionality of the matching criterion; that is, the more nearly 

unidimensional the matching criterion, the fewer the number of items 

flagged. Camilli and Smith (1990), Ryan (1991), and Shepard et al. (1985) have 

observed DIF being displayed in verbally-loaded mathematics items that 

required a the "nuisance" ability of reading. Ryan noted that a study of DIF in 

mathematics items while controlling for reading would be of interest. 
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Ackerman proposed the use of a "validity sector" that has a specified 

measurement direction as described by Shealy and Stout (1989). Items that lie 

outside the validity sector and that are closer to a nuisance factor in the factor 

space would not be used for creating homogenous groupings. The validity 

sector contains items that load heavily on the target ability (factor) intended to 

be measured by the test developer; thus, the test developer must identify the 

items that closely align with the intended construct. Matching on ability 

would use the number correct from items identified as associated with the 

intended ability. Ackerman emphasized that matching for ability on two-

dimensional data would create groups that are not homogenous and would 

give spurious results in a DIF analysis. If the data were unidimensional, then 

the matching on raw scores would not be problematical. 

Clauser, Mazor, and Hambleton (1991) recommended that the 

matching criterion used in the Mantel-Haenszel procedure be approximately 

unidimensional. In their aforementioned study the authors used items from 

a high school proficiency test, the New Mexico High School Proficiency Exam. 

From the five life skills areas measured by the test—knowledge of community 

resources; consumer economics; government and law; mental and physical 

health; and occupational knowledge—the authors selected items that required 

differing abilities for solution. The abilities required by the items included 

reading; mathematical calculation; interpretation of tables, charts, or maps; 

and prior knowledge. The items were analyzed for DIF using total test score. 

Items were reanalyzed by matching on the test score created by pooling items 

from the same category (e.g. reading, prior knowledge). In essence, the 
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authors created a subtest score for the matching criterion using items that 

Ackerman would argue fit in the validity sector for the intended measure. 

Clauser, Mazor, & Hambleton (1991) found that the choice of criterion--

subtest or total test score—had an influence on the classification of items as 

displaying DIF with the MH method. When the items that displayed DIF in 

the original analysis were analyzed in the context of similar items, nearly a 

third (32%) were no longer identified as displaying DIF. Clauser et. al 

recommended that to avoid Type I errors, test developers should screen items 

with similar items. The authors hypothesized that the results may be due to 

changes in dimensionality of the regrouped tests. 

In a review of the research conducted at the Laboratory of Psychometric 

and Evaluative Research, Hambleton, Clauser, Mazor, and Jones, (1993) 

formulated guidelines for the review of items for DIF. The authors found the 

Mantel-Haenszel procedure to be effective in the identification of DIF under 

certain conditions: 

The criterion used for matching examinees must be approximately 
unidimensional. Both Ackerman (1982) and Clauser, Mazor, and 
Hambleton (1991a) have shown that substantial Type I error may result 
from violations of this assumption. If this assumption is in question 
for the test as a whole, the test may be broken down based on item 
content. MH analysis may then be carried out on approximately 
unidimensional subtests, (p. 31) 

The results of Clauser et. al are similar to those of Bleisten and Schmitt (1987), 

who found that with a unidimensional matching criterion fewer items are 

flagged for DIF. 

If an item is multidimensional in regard to the abilities that it 

measures, the previous studies indicate that the item should be eliminated 

when forming the matching criterion. A judgmental process can be used to 
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determine which items align with the validity sector as Ackerman proposes 

or to determine which items form the content appropriate subtest, as 

Clauser et. al proposed. In a similar vein, it would appear promising to use 

factor scores formed from the dominant first factor in a factor analysis of the 

items as a matching criterion. Instead of creating a subtest, factor scores have 

the advantage that the factor loadings associated with each item give 

appropriate weight to each item according to its contribution to the construct. 

In this fashion, subjects with similar factor scores would be more 

homogenous for the underlying construct than those with the same raw 

score. 

In the aforementioned study of Shepard et al. (1985), the authors 

examined the utility of factor scores as a matching criterion for the chi-square 

procedure. The investigation used the responses of 1,000 White examinees 

and 300 African American examinees on the mathematics test from the High 

School and Beyond data base. The test is a 32 item, basic skills measure. The 

authors reported the test contained items that involved "... simple operations, 

reading graphs, calculating per unit costs, or comparing rates. A few items 

require basic algebra ..." (p.85). Shepard et al. noted that the verbally-loaded 

items were most consistently identified as displaying DIF for African 

American examinees. 

In addition to the chi-square DIF procedures, Shepard et. al compared 

results for the Angoff delta plot, residualized delta plot, pseudo-IRT, and one-

and three- parameter IRT. The evaluative criteria for the preceding bias 

procedures were the unsigned and signed bias indices generated by the three-
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parameter IRT model. The agreement between the techniques and the IRT 

models was measured by calculating Spearman rank-order correlations. 

To improve on the results of the chi-square procedure, Shepard et al. 

(1985) investigated the possibility of creating a more unidimensional 

matching criterion by use of factor scores. The authors factor-analyzed 

student responses on the mathematics test and used the first-factor score of a 

principal component solution as the matching criterion for the chi-square 

method. The authors reported that the correlations with the criterion—the 

unsigned and signed bias indices generated by the three-parameter IRT 

model—"... were substantially worse" (p. 92). Shepard et al. did not report 

correlations between the IRT criteria and the factor-based chi-square 

procedures, nor did they speculate about the evident inconsistency of the 

need for unidimensional matching criterion and the poor agreement between 

the bias indices. The demand in the current literature for a more 

unidimensional matching criterion, and the incongruent results of the 

Shepard findings led to the current study. 

Research Questions 

The validity of all DIF procedures depends critically on the fidelity with 

which the focal and referent groups are "matched," that is, on the extent to 

which the groups are "equal" on the ability being measured by the test items 

under investigation. The validity of the matching criterion comes into 

question as the data on which the criterion is based depart from 

unidimensionality. For this reason, the current investigation examined three 

questions related to the multidimensionality of the matching criterion: 
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1) When using total scores and factor scores as matching criteria for 

empirical data, are the same test items flagged as displaying DIF? 

2) Do chi-square procedures correctly identify items containing DIF 

when the total-score matching criterion is composed of item-

correct scores from a test in which all items load on the target 

factor for referent group members and in which a subset of items 

load on the nuisance factor for focal group members? Is the 

identification of biased items in such tests improved by the use of 

factor scores as the matching criterion? 

3) Do chi-square procedures correctly identify items containing DIF 

when the total-score matching criterion is composed of item-

correct scores from a test in which—for referent and focal group 

members—a majority of items load on the target factor and in 

which a subset of items load on the target and nuisance factor? Is 

the identification of biased items in such tests improved by the use 

of factor scores as the matching criterion? 
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CHAPTER III 

METHODOLOGY 

The robustness of total observed scores and the efficacy of factor scores 

as matching criteria were investigated in three studies. The first study 

involved analysis of empirical data from the administration of two 

nationally-administered, standardized tests: the Graduate Management 

Admission Test (GMAT) and a high-stakes mathematics achievement test for 

adults—hereafter referred to as the HSMAT (see Footnote 1). The empirical 

studies were completed to investigate the first research question: When 

using total scores and factor scores as matching criteria for empirical data, are 

the same test items flagged as displaying DIF? For the empirical analysis, 

examinee responses were sampled from a retired form of the Graduate 

Management Admission Test and a retired form of the high-stakes 

mathematics achievement test. The GMAT analysis was completed on the 

1986-1987 (Form 71) administration of the verbal and quantitative subtests. 

The HSMAT analyses was completed on a 1992 administration of a 

mathematics subtest. An overview of the two tests and the general 

procedures for the empirical analyses are described below. 

The latter two studies involved the completion of a series of 

simulations. The first series of simulations were conducted to investigate the 

second research question: Do chi-square procedures correctly identify items 

1 Permission to use the HSMAT data set was granted on the condition that 
the test be labeled with a generic descriptor. 
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containing DIF when the total-score matching criterion is composed of item-

correct scores from a test in which all items load on the target factor for 

referent group members and in which a subset of items load on the nuisance, 

factor for focal group members? Is the identification of biased items in such 

tests improved by the use of factor scores as the matching criterion? For 

expository purposes, in subsequent discourse this rather lengthy, but 

necessary, description of the factor structure will be used interchangeably with 

the label Factor Structure 1. 

The second series of simulations addressed the third research question: 

Do chi-square procedures correctly identify items containing DIF when the 

total-score matching criterion is composed of item-correct scores from a test in 

which—for referent and focal group members—a majority of items load on the 

target factor and in which a subset of items load on the target and nuisance 

factor? Is the identification of biased items in such tests improved by the use 

of factor scores as the matching criterion? In the case of this factor structure, 

in subsequent discourse the label Factor Structure 2 will be used 

interchangeably with the lengthier description. 

The programs for use in the analyses are included in Appendix A. Data 

sets for the simulations study were created using a SAS code developed by 

Penny (1994); a description of the code is presented below. 

Empirical Data Base and Methodology 

Examinee responses to forms of the Graduate Management Admission 

Test (GMAT) and a high-stakes mathematics achievement test provided the 

empirical data for this investigation. The purpose of the Graduate 

Management Admission Test is to assist in the prediction of an examinee's 
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performance in graduate school by measuring the ability of an examinee to 

"... reason with words, to use mathematical principles, and to work with 

concepts or abstractions in arriving at solutions to problems" (Graduate 

Management Admission Council, 1987, p. 4). The complete battery is 

composed of four verbal sections and four quantitative sections. Two of the 

sections—one verbal and one quantitative—serve to pilot new items or equate 

scores; items from these sections do not contribute to an examinee's overall 

score. In the remaining six operational sections, the 140 items that constitute 

an examinee's total raw score are presented in a five-option, multiple-choice 

format. The sections are timed and examinees are penalized for incorrect 

responses. 

The verbal subtest of the GMAT is composed of 75 questions; 50 of the 

items focus on reading comprehension and 25 items address written 

expression. The quantitative subtest of the GMAT is composed of 65 

questions; the items measure "... basic mathematical skills and understanding 

of elementary mathematical concepts as well as the ability to reason 

quantitatively, to solve quantitative problems, and to interpret data given in 

graphs, charts, or tables" (Graduate Management Admission Council, p. 5). 

The content of the GMAT quantitative subtest is divided among three areas: 

arithmetic, algebra, and geometry. 

A data set was obtained for a high-stakes mathematics achievement test 

when preliminary factor analyses of the GMAT verbal and quantitative data 

revealed the two GMAT subtests to be unidimensional. Plake (personal 

communication, April 1994) suggested data from the administration of the 

mathematics test would allow investigation of a test when the first factor 
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accounts for much less of the variance as compared to the GMAT. The 

HSMAT data set contains examinee classification variables, item responses, 

and item scores for 7242 examinees. The mathematics subtest contains 50 

items which measure five content areas—measurement, algebra, geometry, 

number relations, and data analysis—at two cognitive levels-set-up answer 

and solution answer. 

For the GMAT and HSMAT, the first step for the data analysis was to 

sample equal numbers of focal and referent examinees from the complete 

data sets. Since the number of African American examinees was fewer than 

white examinees, the number of minority examinees in the data determined 

the ceiling for the number of examinees sampled. The sample was selected 

from examinees who indicated their ethnic background as African American 

or White and had a complete vector of item responses. In the case of the 

GMAT, a sample of 4,944 examinees was selected from the pool of examinee 

responses; all 2,444 of the African American examinees were selected and 

2,500 white examinees were sampled. For the analysis of the HSMAT data, a 

sample of 1526 examinees was drawn from the pool of examinee responses. 

The total population of 763 African American examinees was selected, and 

763 of the white examinees were sampled. 

Examinee responses for the GMAT verbal and quantitative subtests 

were scored with a SAS code developed by Harman (1994). The code 

compared the answer provided by the Educational Testing Service with the 

response of the examinee and output a vector of correct (1) and incorrect (0) 

responses for each examinee. The database for the HSMAT contained a 
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vector of correct and incorrect responses for each examinee and no scoring 

routine was necessary. 

The data sets thus created were analyzed using the factor analysis 

procedure in SAS. The SAS procedure output factor scores which were used 

as a matching criterion. Factor scores for the empirical study were generated 

using an orthogonal, unrotated factor solution. The factor scores were 

standardized to have the same mean and standard deviation as the total 

score. The scores were then truncated to be integer-level for the Mantel-

Haenszel procedure and appended to each examinee's record. 

At the culmination of the data manipulation, the GMAT verbal and 

quantitative and the HSMAT data sets contained a vector of Is and Os for each 

examinee, a total correct score, an unrotated factor score, and a classification 

variable for ethnicity. The three data sets were submitted to a series of item 

bias analyses to compare the results achieved when matching on total raw 

scores and factor scores. Throughout the analyses matching occurred at each 

observed total score and factor score for the test. More specifically, matching 

did not involve collapsing of score intervals in this investigation. 

Initially, a SAS Macro program written by Harnisch (1991) and a SAS 

procedure outlined by Camilli and Shepard (1994) were used to complete the 

DIF analyses. The Mantel-Haenszel alpha was the same for each item in the 

two printouts, and the Harnisch program was selected for subsequent analyses 

due to the utility of the printout. In the Harnisch program the summary 

statistics include CKMH (ALPHAMH); OCMH transformed to the delta metric 

(DELTAMH); standardized p-difference (DSTD ); the chi-square statistic 

associated with the null hypothesis for Mantel-Haenszel (CHISQMH); the 
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associated probability for the chi-square statistic (PCHIMH); and standardized 

p-difference transformed to the delta metric(DELSTD). In addition, the 

Harnisch program uses Dstd as a flagging criteria. The flagging criteria in the 

Harnisch program are as follow: 

DSTD Flag 

>.10 M++ 

>.05 M + 

< -.05 M-

<-.10 M~ 

The flagging increases the utility of the DIF information by allowing test 

practitioners to readily identify potentially biased items for further review 

while exempting items that do not display DIF from future reviews (Dorans 

& Holland, 1993). 

Harnisch's flagging procedure as described above was used to examine 

the consistency of an item's DIF status when using total scores and factor 

scores as matching criteria in the chi-square procedures. Agreement for the 

two matching criteria was calculated by examining the combined percentage 

of items consistently flagged as displaying DIF and items consistently not 

flagged as displaying DIF. Patterns in the shifts of flagging are reported for the 

HSMAT subtest and the GMAT verbal and quantitative subtests. 

Simulation Methodology 

In addition to the empirical analysis, two simulation studies were conducted. 

In the first study the researcher simulated a data structure in which all items 

loaded on the target factor for referent group members and in which a subset 

of items loaded on the nuisance factor for focal group members (Factor 
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Structure 1). This type of factor structure was presented as the first scenario in 

the Introduction where, in the case of rural and urban examinees, the rural 

examinees (referent group members) had a knowledge base that was absent 

for urban examinees (focal group members ). In essence, the items with 

vocabulary that was unfamiliar to urban examinees served to create a 

nuisance factor for this group— in this case a vocabulary factor. 

In the second simulation study the researcher created a data structure 

in which—for focal and referent group members—a majority of items loaded 

on the target factor and a subset of items loaded on the target and nuisance 

factor (Factor Structure 2). In this study the researcher simulated the type of 

factor structure reflected in the Literature Review where several researchers 

(Camilli & Smith, 1990; Ryan, 1991; Shepard et al., 1985) have reported that 

math items with a verbal component often display DIF for African American 

examinees. In the following sections, a description of the general 

methodology for the creation of the simulated data is followed by a 

description of the specific methodology associated with the second and third 

research questions. 

Methodology for Simulation of Factor Structures 

A SAS program developed by Penny (1994) created the desired factor 

structures; an example of the program can be found in Appendix A. The 

general procedure involved the creation of observed scores for the focal and 

referent examinees. Observed scores were generated for 1,000 focal group 

members and 1,000 referent group members on 100 items for all the 

simulations; thus, any effect in the identification of DIF due to sample size or 

test length were held constant throughout the analyses. 
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The observed scores were formed by creation of three components: a 

true score, an error score, and a DIF score. To create the true score for 

members of each group, a set of item response vectors were generated which 

correlated with a first factor; in the preliminary steps, the data were 

continuous. With the exception of the unidimensional data set for the 

referent group in Factor Structure 1, the process was repeated for each group 

to create a set of response vectors that correlated with a second factor. 

An error component was added to each examinee's true score to reflect 

a reliability coefficient of .90 for the simulated test. The level of reliability 

approximated the reliability found in the GMAT and HSMAT in preliminary 

analyses. 

DIF was simulated in items by subtracting a constant from the true 

score of the focal group; DIF was not simulated for the referent group. An 

observed score was created by summing the true score, the error score, and the 

DIF component for each "examinee." The output was standardized to create 

observed scores with a mean of zero and a standard deviation of one. The 

standardized data for the two groups were dichotomized by specifying 

observed item scores that were less than or equal to zero were wrong (0) and 

observed item scores greater than zero were correct (1). 

After the data were dichotomized, the two data sets for the focal and 

referent groups were concatenated. The simulated data were factor analyzed; 

the factor scores output; the factor scores standardized (M = 50, SD = 15) and 

truncated to integer-level; and the DIF analyses completed to determine if the 

results were similar to those found with the GMAT and HSMAT data sets. 
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As was true for the empirical analyses, matching occurred at each observed 

total score and factor score for the test. 

Description of the Data Set for the Second Research Question: 

Factor Structure 1 

In the simulations for the second study, the factor structures for the 

referent group and focal group were created separately. The correlation of an 

item with either the first factor or the second factor had a mean of .50 and a 

standard deviation of 0.1. The correlations were created between the 

continuous true scores and the factor. When error was introduced into the 

observed score and the data dichotomized, the correlation between the 

observed score and the factor loading was suppressed. The item loadings for 

the observed scores on the factor were generated from a population of items 

that had a mean loading of 0.30. The mean and standard deviation of the 

factor loadings were based on preliminary analyses of the empirical data and 

approximated the loadings found in the HSMAT and GMAT data. The factor 

structure for the referent group was unidimensional with all items loading 

on the first factor. A two-factor structure was created for the focal group with 

the subset of items that loaded highly on the second factor being associated 

with the nuisance variable. DIF was introduced to only those items that 

loaded on the second factor. 

Methodology for the Second Research Question 

The simulation analyses entailed the manipulation of two variables: 

factor structure and levels of DIF. The factor structure was manipulated to 

determine the robustness of the total score as a matching criterion in the chi-

square procedures as the data set departed from unidimensionality. Three 
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types of factor structures were investigated. For a two factor solution, the first 

factor accounted for 90% of the common variance, and the second factor 

accounted for 10% of the common variance (90/10). In the next data set the 

first factor accounted for 80% of the common variance, and the second factor 

accounted for 20% of the variance (80/20). In the third data set the first factor 

accounted for 70% of the common variance, and the second factor accounted 

for 30% of the variance (70/30). Again, all of the items associated with the 

second factor had DIF introduced for the focal group members. To account for 

the effect of the factor structure under various test conditions, the level of DIF 

was also investigated. Three levels of DIF were defined: -0.5 (high DIF), -0.35 

(moderate DIF), and -0.20 (low DIF). These constants were subtracted from the 

continuous true scores (M = 0, SD = 1) of focal group members prior to 

dichotomizing the data. 

The efficacy of factor scores for the varimax rotation and total scores as 

matching criteria in the chi-square procedures were compared by examining 

the percentage of spurious flags (false positives) and missed flags (false 

negatives) across the data sets. The second study involved 18 comparisons: 

three factor structures, three levels of DIF, and two matching criteria. 

Description of the Data Set for the Third Research Question: 

Factor Structure 2 

In the simulations for the third study, the factor structure was the same 

for members of the focal and referent groups. The data were composed of 

items that loaded primarily on the first factor and a subset of 

multidimensional items that loaded secondarily on the second factor. The 
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correlation of the items with the first factor had a mean of .50 and a standard 

deviation of .1. The correlation of the subset of items with the second factor 

was determined by manipulating each item's correlation with the first factor. 

The procedure for creating multidimensional items is described in the 

following section. DIF was simulated for only those multidimensional items 

associated with the second factor. 

Methodology for the Third Research Question 

The simulation analyses for the final research question involved 

manipulation of three variables: the number of multidimensional items, the 

level of multidimensionality in items associated with the nuisance factor, 

and level of DIF. The number of multidimensional items and the levels of 

multidimensionality in those items were manipulated to examine the 

robustness of the total score as a matching criterion in the chi-square 

procedures when the items constructing the data set departed from 

unidimensionality. Two levels of multidimensionality were introduced; in 

one variation the loadings of the subset of items associated with the second 

factor were high (High) as shown in Equation 13: 

ts[i] = itcor[i]*ts[102] + itcor[i]/1.5*ts[101] (13) 

+ sqrt(l- (itcor[i]*itcor[i]*(l+l/2.25)))*ts[i]; 

where 

ts[i] is the continuous true score of an item 

itcor[i] is the correlation of an item with either the primary or 

secondary factor 

ts[102] is the primary factor 

ts[101] is the secondary factor 
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If the items were equally correlated with the two factors, the divisor in the 

second correlation term (itcor[i]/1.5) would be one. As the divisor increases, 

the secondary factor will correlate less highly with the items. In another set of 

analyses the loadings of the items on the second factor were low (Low), as 

demonstrated in Equation 14: 

ts[i] = itcor[i]*ts[102] + itcor[i]/3*ts[101] (14) 

+ sqrt(l-(itcor[i]*itcor[i]*(l+l/9)))*ts[i]; 

where ts[i], itcor[i], ts[101], ts[102] have been previously defined. 

In addition to the level of multidimensionality, the investigator also 

manipulated the number of items that were multidimensional and the level 

of DIF to account for the effect of multidimensional items under various test 

conditions. In one series of analyses the subset of items that were 

multidimensional was 10 items (90/10), and another 20 items (80/20), and in a 

final analysis 30 items (70/30). In addition, three levels of DIF were defined: 

-.5 (high DIF), -.35 (moderate DIF), and -.20 (low DIF). As stated previously, 

DIF was introduced for focal group members on all items that comprised the 

multidimensional subset. 

The simulated data were factor analyzed as described in the previous 

analyses. The efficacy of factor scores for the varimax rotation and total scores 

as matching criteria in the chi-square procedures was compared by examining 

the percentage of spurious flags (false positives) and missed flags (false 

negatives) across the data sets. The investigation involved 36 comparisons: 

two levels of multidimensionality, three levels of multidimensional items, 

three levels of DIF, and two matching criteria. 
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CHAPTER IV 

RESULTS 

In this chapter the results of the analyses will be presented in the order 

presented in the methodology section. The results of the use of total scores 

and factor scores as matching criteria for the two empirical data sets will be 

presented first, followed by the results for the simulations. 

Results for the Empirical Studies 

The first research question investigated was: When using total scores 

and factor scores as the matching criteria, are the same test items flagged as 

displaying DIF? The analysis used data from previous administrations of the 

GMAT and HSMAT. In the following sections, information is provided 

about the scores of the focal and referent groups on each test, followed by a 

description of the factor structure of the data. The consistency of the two 

matching criteria—total scores and factor scores—is presented next. 

Description of GMAT and HSMAT Data Sets 

Table 2 gives the mean and standard deviation for each group—African 

American and White examinees—and the combined groups for the GMAT 

verbal and quantitative subtests and the HSMAT test. The mean raw score 

for White examinees for the GMAT verbal subtest was 43.49 (SD = 10.60), and 

for African American examinees the mean raw score was 31.34 (SD = 10.43). 

The combined mean for the two groups was 37.48 (SD = 12.14). The reliability 

(coefficient alpha) of the GMAT verbal subtest based on a sample of 4,944 

examinees was 0.90. 
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For the quantitative subtest of the GMAT the mean raw score for 

African American examinees was 23.87 (SD = 8.66 ), and the mean raw score 

for White examinees was 35.86 (SD = 9.94). The combined mean for the two 

groups was 29.93 (SD = 11.09). The reliability of the GMAT quantitative 

subtest based on the sample of 4,944 examinees was a = .91. 

Table 2 

Mean and Standard Deviation of African American and White Examinees on 

the GMAT and HSMAT Subtests 
GMAT GMAT HSMAT 
Verbal Quantitative Mathematics 

Group Mean SD Mean SD Mean SD 
African 31.34 10.43 23.87 8.66 23.98 7.82 
American 
White 43.49 10.60 35.86 9.94 27.45 9.36 
Total 37.48 12.14 29.93 11.09 25.71 8.80 

The factor routine in SAS was used to examine the factor structure of 

the GMAT verbal subtest and the GMAT quantitative subtest; examination of 

the factor plots (see Figures 1 and 2) and the scree plots (see Appendix B) 

indicated that each subtest appeared to have a dominant first factor. The first, 

unrotated factor for the verbal subtest accounted for 83.7% of the common 

variance in the data; the second factor accounted for an additional 16.3% of 

the variance. 

In a separate factor solution for African American examinees, the first 

factor for the verbal subtest accounted for 76.7% of the common variance in 

the data prior to rotation; the second factor accounted for an additional 23.3% 

of the variance in the verbal data set. For White examinees the first factor of 

the verbal subtest accounted for 81.1% of the variance in the data prior to 



61 

rotation; the second factor accounted for an additional 18.9% of the variance. 

A visual inspection of the factor plots for the two groups (see Appendix B for 

factor plots) for the verbal subtest revealed similar data structures, a 

conclusion that was confirmed by the fact that the correlation of the verbal 

loadings on the first factor for the two groups was .90. 
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Figure 1. Plot of Factor Loadings for African American and White Examinees 

on the GMAT Verbal Test 

Prior to rotation, the first factor for the quantitative subtest of the 

GMAT accounted for 88.2% of the variance in the data, while the second 

factor accounted for an additional 11.8% of the variance in the data. A 

separate factor solution for African American examinees revealed the first 

factor of the quantitative subtest accounted for 83.4% of the variance in the 

data prior to rotation; the second factor accounted for an additional 16.6% of 
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the variance in the quantitative data set. For White examinees the first factor 

of the quantitative test accounted for 88.2% of the variance in the data prior to 

rotation; the second factor accounted for an additional 11.8% of the variance 

in the quantitative data set. Again, a visual inspection of the factor plots for 

the two groups (see Appendix B) revealed similar data structures. The 

correlation of the quantitative loadings on the first factor for the two groups 

was .67. 
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Figure 2. Plot of Factor Loadings for African American and White Examinees 

on the GMAT Quantitative Test 

Inasmuch as the factor scores for GMAT examinees correlated very 

highly with their raw scores (r = .99 for verbal and r = .995 for quantitative), 

the use of factor scores as a matching criterion appeared to offer little 
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improvement over total raw score as a matching criterion when measures are 

unidimensional. 

For the mathematics subtest of the HSMAT the mean raw score for 

White examinees was 27.45 (SD = 9.36), and for African American examinees 

the mean raw score was 23.98 (SD = 7.82). The combined mean for the two 

groups was 25.71 (SD = 8.80). The mean score of the African American 

examinees was approximately half a standard deviation below that of White 

examinees. The reliability of the HSMAT mathematics subtest based on a 

sample of 1526 examinees was a = .88. 

Analysis of the HSMAT data showed the first, unrotated factor to 

account for 65.8% of the common variance in the data; the second factor 

accounted for an additional 34.2% of the variance. Examination of the factor 

plot (Figure 3) and the scree plot (see Appendix B for scree plot) indicated a 

two-factor structure. 

In a separate factor solution for African American examinees, the first 

factor of the HSMAT accounted for 86.4% of the variance in the data prior to 

rotation; the second factor accounted for an additional 13.6% of the variance 

in the data set. The factor plot is depicted graphically in Figure 4. The 

HSMAT was clearly unidimensional for African American examinees. 
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Figure 3. Plot of Factor Loadings for African American and White Examinees 

on the HSMAT 
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Figure 4. Plot of Factor Loadings for African American Examinees on the 

High-Stakes Mathematics Test 
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Somewhat surprisingly, for White examinees the high-stakes 

mathematics test appeared to be two-dimensional (see Figure 5). The first 

factor of the mathematics test accounted for 72.8% of the variance in the data 

prior to rotation; the second factor accounted for an additional 27.2% of the 

variance. Two replications of this result indicated that the structure was 

stable across samples. In the first replication the first factor accounted for 

70.9% of the common variance, and in the second replication the first factor 

accounted for 70.5% of the variance. As proved true with the GMAT data, 

unrotated factor scores for the HSMAT data correlated highly (.95) with raw 

scores 

FACTORl 
1 

.9 
C 

8 
P 

.7 
HY S B 

N .TF VX 
K EX W 
RIR J N 

GOI QC 
.4 

.3 

. 2  

. 1  A 
F 
A 
C 

-1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .B .3F.4E.5L.J .7 .8 .9 1.0T 

-.1 
G O 

D KW U Z 
O 
R 
2 

2 Q M 
S P 

Figure 5. Plot of Factor Loadings for White Examinees on the HSMAT 
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DIF Results for the GMAT Verbal Items 

The consistency with which GMAT verbal items were flagged using 

total raw scores and unrotated factor scores as matching criteria revealed high 

levels of agreement. In the following sections the pattern of the changes will 

be presented relative to the change that occurred when moving from the 

total-score matching criterion to the factor-score criterion. As shown in Table 

3, sixty-three of the 75 items (84%) were consistently identified when using 

the two criteria. Of the 12 inconsistent items (16%), six items were associated 

with the referent group. Three of the items changed from intermediate DIF 

(M+) to no DIF for the referent group, and three items changed from no DIF 

to intermediate DIF (M+). For the focal group, four items changed from 

negligible DIF to intermediate DIF (M-), one item changed from intermediate 

DIF (M-) to negligible DIF, and one item changed from substantial DIF (M~) to 

intermediate DIF (M-). 

Table 3 

Pattern of Changes in Flagging Designations for GMAT Verbal Items with 

Total Score and Factor Score as Matching Criteria 
Total Score Factor Score Number of items 

+ + + 0 
+ No flag 3 
No flag - 4 
- 0 

- 1 
- No flag 1 
No flag + 3 
+ + + 

No change 63 
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DIF Results for the GMAT Quantitative Items 

For the GMAT quantitative subtest, the percent agreement of items 

that were flagged for the matching criteria of total score versus factor score 

resulted in even higher levels of agreement than the GMAT verbal subtest. 

In Table 4, it can be seen that 60 of the 65 items (92%) were consistently 

identified when using the two criteria. Of the five inconsistently flagged 

items, four were associated with the referent group. Three items changed 

from intermediate DIF (M+) to negligible DIF, and one item changed from 

negligible DIF to intermediate DIF (M+). For the focal group, one item shifted 

from intermediate DIF (M-) to no DIF. 

Table 4 

Pattern of Changes in Flagging Designations for GMAT Quantitative Items for 

Total Score and Factor Score as Matching Criteria 
Total Score Factor Score Number of items 

+ + + 0 
+ No flag 3 
No flag - 0 
- 0 

- 0 
- No flag 1 
No flag + 1 
+ + + 0 
No change 60 

DIF Results for the HSMAT Items 

The patterns of differential flagging for the HSMAT data are 

summarized in Table 5. Thirty-eight of the 50 items (76%) were consistently 

identified using the two criteria. Of the 12 items (24%) that changed flagging 

designation, three items changed from substantial DIF (M++) to intermediate 
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DIF (M+) for the referent groups, and four items changed from intermediate 

DIF (M+) to no DIF. In the case of focal group members, one item changed 

from substantial DIF (M~) to intermediate DIF (M-), while four items changed 

from intermediate DIF (M-) to no DIF. 

Of the five items flagged using total raw score as the matching 

criterion, three items flagged as substantially biased against the referent group 

changed to intermediate DIF. One of the two items flagged with substantial 

DIF for the focal group shifted from substantial DIF (M~) to slight DIF (M-), 

and one item was consistently flagged as displaying substantial DIF. 

Table 5 

Pattern of Changes in Flagging Designations of HSMAT Items for Total Score 

and a Factor Score as Matching Criteria 
Total Score Factor Score Number of items 

+ + + 3 
+ No flag 4 
No flag - 0 
- 0 

- 1 
- No flag 4 
No flag + 0 
+ + + 0 
No change 38 

Generally, the DIF analyses of the empirical data demonstrated that the 

two matching criteria produce consistent results. The studies also indicated a 

trend from highly consistent identification of DIF for unidimensional data 

sets such as the GMAT quantitative subtest to less consistency for the 

multifactorial HSMAT. For the few items in the GMAT subtests which 

changed flagging designations, there did not appear to be a pattern of changes 
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when moving from the total-score matching criterion to the factor-score 

matching criterion. The pattern of changes in the flagging designations for 

the HSMAT data set indicated less bias in items for referent group and focal 

group members. 

Results for the Simulations 

As noted earlier, the simulations were conducted to investigate the 

following two research questions: 

Do chi-square procedures correctly identify items containing DIF when 

the total-score matching criterion is composed of item-correct 

scores from a test in which all items load on the target factor for 

referent group members and in which a subset of items load on 

the nuisance factor for focal group members? Is the identification 

of biased items in such tests improved by the use of factor scores as 

the matching criterion? 

Do chi-square procedures correctly identify items containing DIF when 

the total-score matching criterion is composed of item-correct 

scores from a test in which—for referent and focal group 

members—a majority of items load on the target factor and in 

which a subset of items load on the target and nuisance factor? Is 

the identification of biased items in such tests improved by the use 

of factor scores as the matching criterion? 
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Description of Simulated Data Sets 

Two types of factor structures were simulated to investigate the above 

research questions. First, a "test" that was unidimensional for the reference 

group, but multifactorial for the focal group was simulated (Factor Structure 

1). The example cited at the beginning of chapter 1 exemplifies this situation. 

A verbal analogies test that contains a number of items that would be familiar 

to examinees raised on a farm but unfamiliar to examinees raised in more 

urban settings could well be unidimensional for the former examinees, but 

multifactorial for the latter. That is, the test would be a relatively "pure" 

measure of verbal analogical reasoning for rural examinees, but would reflect 

both "vocabulary" and "verbal analogical reasoning ability" for urban 

examinees. In the case of focal group members, different degrees of factorial 

complexity were introduced into the "test" by simulating data with 10, 20, and 

30 items loading on a second factor. As previously mentioned, these degrees 

of factorial complexity will be denoted as "90/10," 80/20," and "70/30," 

respectively. An example of the simulated 80/20 factor structure is included 

in Appendix B. 

In the second simulation, a "test" that contained inherently 

multidimensional items was simulated (Factor Structure 2). A quantitative 

reasoning test with some of the items posed as "word problems" is a case in 

point. Such a test, although intended to measure quantitative reasoning, 

necessarily reflects to some extent examinees' verbal ability. To effect the 

simulation, a subset of 10, 20, and 30 items on a 100 item test were simulated 

to load on the first and second factor for all examinees (i.e., focal and referent 

group members). Again, within the context of the discussion, these factor 
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structures will hereafter be denoted as "90/10," 80/20," and "70/30," 

respectively. The level of multidimensionality was also manipulated; in one 

simulation the multidimensional items were created to load heavily on both 

factors (High). Examples of the types of factor structures thus created are 

included in Appendix B. In the second simulation, the multidimensional 

items were formed to load primarily on the first factor and secondarily on the 

second factor (Low). The types of factor structures thus created are also 

included in Appendix B. 

DIF Results for Matching Criteria in Factorially Complex Tests 

The total-score and factor-score matching criteria were used with the 

DIF procedures to investigate their efficacy in the identification of biased 

items. The factor scores were formed in the preliminary simulation from 

rotated, orthogonal solutions for all the data sets. The decision to use rotated 

solutions was based on the high correlation between the total score and factor 

score seen in the empirical studies. In part, the rotated solution was used in 

an attempt to "tease" out the multidimensionality of the items. 

DIF Results for Factor Structure 1 

For data sets where the first factor accounts for approximately 90% of 

the common variance, total score and a rotated factor score performed almost 

equally well as matching criteria. As can be seen in Table 6 at the three levels 

defined for DIF (-.20, -.35, and -.50), when total score is used as the matching 

criterion in a data set that is primarily unidimensional (90/10), none of the 

items were spuriously flagged (false positives) at the lowest levels of DIF and 

only 1% were flagged at the -.50 level. The factor score from a rotated, 

orthogonal solution did not spuriously flag any items. As seen in Table 7 at 
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the lowest level of DIF (-.20), use of the total-score matching criterion resulted 

in 10% of the biased items being missed (false negatives), and the use of the 

factor-score matching criterion resulted in the identification of all biased 

items. 

When the first factor accounted for approximately 80% of the common 

variance, the number of items that were spuriously flagged increased in 

tandem with the level of DIF. The total score spuriously flagged from 1% of 

the items at low levels of DIF to 24% of the items at the highest level of DIF. 

The factor score did not spuriously flag any items. Total scores as a matching 

criterion resulted in 25% of the items being missed at low levels of DIF, while 

the factor score resulted in 10% false negatives. 

Table 6 

Percentage of Spurious Flags (False Positives) for Factor Structure 1 
10 Items 20 Items 30 Items 

Level of Total Factor Total Factor Total Factor 
DIF Score Score Score Score Score Score 
-.20 0 0 1 0 7 0 
-.35 0 0 6 0 27 0 
-.50 1 0 24 0 63 0 

Table 7 

Percentage of Missed Flags (False Negatives) for Factor Structure 1 
10 Items 20 Items 30 Items 

Level of Total Factor Total Factor Total Factor 
DIF Score Score Score Score Score Score 
-.20 10 0 25 10 53 13 
-.35 0 0 0 0 0 0 
-.50 0 0 0 0 0 0 
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The trends noted for the previous data structure became more 

pronounced when the factor structure was such that the first factor accounted 

for approximately 70% of the common variance and the second factor 

accounted for the remaining 30% of the common variance. In Table 6, the 

total score is shown to spuriously flag from 7% of the items at low levels of 

DIF to 63% of the items at the highest level of DIF. Again, the factor score 

from a rotated, orthogonal solution did not result in false positives. Total 

scores as a matching criterion resulted in 53% of the items being missed for 

low levels of DIF, while the factor score resulted in 13% of the biased items 

being missed. 

DIF Results for Factor Structure 2 

In a data set composed of inherently multidimensional items, as the 

factor structure departed from unidimensionality, the number of spuriously 

flagged items increased when using the total-score matching criterion. The 

trend towards improved identification of DIF with the use of the rotated 

factor score for Factor Structure 1 was reversed when used in Factor Structure 

2 to identify items. In Table 8 it can be seen that as the number of 

multidimensional items that loaded highly on both factors increased, the 

percentage of false positives went from 0% to 26% when using the factor-score 

matching criterion. Thus, with the exception of the 70/30 data structure, as 

compared to the total-score matching criterion the factor-score matching 

criterion resulted in even a larger number of items being spuriously flagged 

when data sets contained highly multidimensional items. 

The percentage of false negatives increased from 0 to 57% when using 

total score as the matching criterion (see Table 9). In the case of items with 
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high levels of multidimensionality, the use of factor score as a matching 

criterion resulted in all simulated biased items being correctly identified. 

The use of the factor-score matching criterion resulted in the number 

of spuriously flagged items increasing from a low of 0% to a high of 73% for 

items with low levels of multidimensionality (See Table 8). Again the 

percentage of false positives was higher for the total-score matching criterion 

than the factor-score matching criterion. Also, with the exception of the 90/10 

factor structure, for both matching criteria items with low levels of 

multidimensionality were incorrectly flagged at a higher rate than items with 

high levels of multidimensionality. As shown in Table 9, at the lowest level 

of DIF (-.20), use of the total score as the matching criterion resulted in more 

false negatives than when the matching criterion was the factor score. For the 

total-score matching criterion, as the number of multidimensional items 

increased a concurrent number of items failed to be flagged as displaying DIF. 

Table 8 

Percentage of Spurious Flags (False Positives) for Factor Structure 2 
10 Items 20 Items 30 Items 

Level of 
Multidimens 
ionality 

Level of Total Factor Total Factor Total Factor Level of 
Multidimens 
ionality DIF Score Score Score Score Score Score 

-.20 0 0 0 0 0 0 
High -.35 0 0 1 5 11 4 

-.50 0 20 4 26 56 1 

-.20 0 0 0 0 0 0 
Low -.35 0 0 0 3 19 19 

-.50 0 17 14 33 69 73 
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Table 9 

Percentage of Missed Flags (False Negatives) for Factor Structure 2 
10 Items 20 Items 30 Items 

Level of 
Multidimens 
ionality 

Level of Total Factor Total Factor Total Factor Level of 
Multidimens 
ionality DIF Score Score Score Score Score Score 

-.20 0 0 35 0 57 0 
High -.35 0 0 0 0 0 0 

-.50 0 0 0 0 0 0 

-.20 20 10 30 0 63 0 
Low -.35 0 0 0 0 3 0 

-.50 0 0 0 0 0 0 

Follow-up Simulation Analyses 

The above results suggest that for items that are inherently 

multidimensional, matching on factor scores results in an unusually large 

number of spuriously flagged items (i.e., false positives). To further 

investigate this phenomenon, a series of additional simulations were 

undertaken using two adjusted factor scores. A "purified factor score" was 

computed as any ordinary factor score, except that biased items were 

eliminated from the computation. A "factor-based score" was created by 

simply summing item scores for all unbiased items. (It should be noted that 

the factor-based score could just as accurately be called a "purified total score." 

For real data sets, items loading above some pre-specified value on the 

nuisance factor or factors would be eliminated, and examinees would be 

matched on their total score on the remaining items.) Note that since the 

resulting matching criterion is unidimensional, no factor rotation is 

necessary. 

In order to examine how these adjusted factor scores compare to total 

raw score as matching criteria, a Monte Carlo simulation with a least 100 
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replications would be desirable. However, a single replication required 

construction of 27 data sets that were each analyzed separately for DIF. From 

start to finish, one run took approximately six hours to complete. For this 

reason, a Monte Carlo was deemed impractical. To glean at least a 

preliminary notion of the efficacy of the two adjusted factor scores as 

matching criteria, five replications were conducted. Summary information of 

the results are shown in Tables 10 through Table 13. Complete results for 

each replication are included in Appendix C. 

Follow-up DIF Results for Factor Structure 1 

As previously seen in the first series of simulations, as the data set 

departed from unidimensionality the number of items that were spuriously 

flagged increased when using the total-score matching criterion. As shown in 

Table 10, as the data structure departed from unidimensionality, and as the 

level of DIF increased, the number of false positives increased. On a test 

where the first factor accounted for approximately 90% of the variance, the 

percentage of spuriously flagged items ranged from less than 1% to 2%. At 

the other extreme, when the first factor accounted for 70% of the common 

variance, the percentage of spuriously flagged items ranged from 3% for low 

levels of DIF to 59% for high levels of DIF. Factor scores and factor-based 

scores spuriously flagged items less than 1 percent of the time across factor 

structures and DIF levels. 

Using total score as the matching criterion, the percentage of false 

negatives increased as the data set contained more items with DIF (see Table 

11). At the lowest level of DIF, the percentage of biased items that failed to be 

identified with the total-score matching criterion increased from 8% in a 
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90/10 factor structure to 39% for a 70/30 factor structure. The largest 

percentage of biased items failed to be flagged at the lowest level of DIF. At a 

moderate level of DIF (-.35) the total-score matching criterion failed to 

identify between one and two percent of the biased items for the five 

replications. When using purified factor scores or factor-based scores as the 

matching criterion, the average percentage of false negatives ranged between 

one and two percent. 

Table 10 

Average Percentage of Spurious Flags (False Positives) for Factor Structure 1 
10 Items 20 Items 30 Items 

Level of 
DIF 

Total 
Score 

Purified 
Factor 
Score 

Factor-
based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor-
based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor-
based 
Score 

-.20 <1 <1 <1 1 0 0 3 <1 <1 

-.35 <1 <1 <1 7 0 0 26 <1 <1 

-.50 2 <1 < 20 0 0 59 <1 <1 

Table 11 

Average Percentage of Missed Flags (False Negatives) for Factor Structure 1 
10 Items 20 Items 30 Items 

Level of Total Purified Factor- Total Purified Factor- Total Purified Factor-
DIF Score Factor based Score Factor based Score Factor based 

Score Score Score Score Score Score 

-.20 8 2 2 28 1 2 39 1 1 
-.35 2 0 0 0 0 0 1 0 0 
-.50 0 0 0 0 0 0 0 0 0 

Follow-up DIF Results for Factor Structure 2 

Once again, as the data set departed from unidimensionality the 

number of items that were spuriously flagged increased when using total 

score as the matching criterion. As shown in Table 12, the trend for 

increasing number of spurious flags was consistent across data structure and 

the amount of DIF simulated. In a data set where only 10 of the items 
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displayed high levels of multidimensionality, no items were spuriously 

flagged for the five replications. At the other extreme, when 30 items with 

high levels of multidimensionality were included in the data, the percentage 

of false positives for the total-score matching criterion ranged from 0% for 

low levels of DIF to 64% for high levels of DIF. At high levels of 

multidimensionality, the purified factor score and factor-based score were not 

associated with any false positives. 

Similar trends occurred for low-level multidimensional items. In a 

data set where only 10 of the items displayed low levels of 

multidimensionality, no items were spuriously flagged for the five 

replications. With low-level multidimensional items composing a subset of 

30 items, the percentage of false positives using the total-score matching 

criterion ranged from 0% at low levels of DIF to 67% for high levels of DIF. 

At low levels of multidimensionality, no items were spuriously flagged when 

purified factor score and factor-based score were used as matching criteria. 

For data sets with subsets of high-level multidimensional items, the 

percentage of biased items that failed to be flagged using the total-score 

matching criterion increased as the data set contained more items with DIF 

(see Table 13). For the high-level multidimensional items, at the lowest level 

of DIF the percentage of false negatives increased from 2% in a 10 item subset 

to 59% for a 30 item subset. For the low-level multidimensional items, at the 

lowest level of DIF the percentage of biased items that failed to be identified 

increased from 6% in a 10 item subset to 55% for a 30 item subset. No false 

negatives occurred at moderate and high levels of DIF for the five replications 

when using the total-score matching criterion. Also, no biased items were 
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missed when purified factor score and factor-based score were used as 

matching criteria in data with low or high levels of multidimensionality. 

Table 12 

Average Percentage of Spurious Flags (False Positives) for Factor Structure 2 
10 Items 20 Items 30 Items 

Level of 
Multidimen­
sionality 

Level 
of 
DIF 

Total 
Score 

Purified 
Factor 
Score 

Factor-
based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor-
based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor-
based 
Score 

-.20 0 0 0 0 0 0 0 0 0 
High -.35 0 0 0 <1 0 0 13 0 0 

-.50 0 0 0 6 0 0 64 0 0 

-.20 0 0 0 0 0 0 0 0 0 

Low -.35 0 0 0 0 0 0 15 0 0 

-.50 0 0 0 8 0 0 67 0 0 

Table 13 

Average Percentage of Missed Flags (False Negatives) for Factor Structure 2 
10 Items 20 Items 30 Items 

Level of 
Multidimen­
sionality 

Level 
of 
DIF 

Total 
Score 

Purified 
Factor 
Score 

Factor-
based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor-
based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor-
based 
Score 

-.20 2 0 0 21 0 0 59 0 0 
High -.35 0 0 0 0 0 0 0 0 0 

-.50 0 0 0 0 0 0 0 0 0 

-.20 6 0 0 21 0 0 55 0 0 
Low -.35 0 0 0 0 0 0 0 0 0 

-.50 0 0 0 0 0 0 0 0 0 

Follow-up HSMAT Analysis 

The contamination of matching criterion with multidimensional 

items makes the use of total scores problematic. The use of purified factor 

scores or factor-based scores appears to offer the necessary unidimensional 

matching criterion. It is unreasonable to assume that test developers will 

perfectly identify problematic items. To simulate the manner in which a test 

practitioner might operationalize the purification of the factor score and the 
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factor-based score, the HSMAT data were reanalyzed using purified matching 

criteria. 

The HSMAT was selected since the structure of the data reflected the 

structure of the simulated data for urban and rural examinees 

(Factor Structure 1). Item loadings for the two groups can be found in 

Appendix D. Items with high, positive loadings on the second factor were 

removed from the analysis. The 18 items removed were 1, 2, 4-7, 10-12, 13, 17, 

21, 23, 27, 40, 43, 46, and 49. The loadings on the second factor for the items 

ranged from .21902 to .61162. After removing items that did not load on the 

same factor for both groups, the combined data set was submitted to a two-

factor, non-rotated orthogonal solution. 

The removal of the contaminating items resulted in the correlation of 

item loadings for White and African American examinees changing from .10 

for the complete set of 50 items to .18 for the subset of 32 items. For the 

combined group, the first, unrotated factor accounted for 75.9% of the 

common variance in the selected HSMAT items; the second factor accounted 

for an additional 24% of the variance. In the separate factor solution for 

African American examinees, the first factor for the purified test accounted 

for 84.4% of the variance in the data prior to rotation, and for White 

examinees the first factor of the mathematics test accounted for 83.0% of the 

variance in the data prior to rotation. Even though 18 items were removed 

from the analysis, the factor plot for the combined group indicated that some 

items highly related to the second factor were not removed (see Figure 6). 

In Table 14 through Table 16 the results of the DIF analyses have been 

summarized. Note that when using total score and a purified factor score as 
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the matching criteria, twenty-two percent of the items changed flagging 

designation (see Table 14). When the matching criteria were the fifty-item 

factor score and a purified factor score, 12% of the items changed flagging 

designation (see Table 15). Finally, when the matching criteria were a 

purified factor score and a factor-based score, 10% percent of items were 

inconsistently identified (see Table 16). 

As mentioned previously, the factor-based score could be labeled a 

purified total score; and, thus, the factor-based and purified factor score 

comparison is analogous to the total score and factor score comparison made 
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Figure 6. Factor Plot for African American and White Examinees with 

Purified Item Set 

at the beginning of the Results section. When the two matching criteria were 

total score and factor score, 24% of the items were inconsistently identified— 
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compared to 10% for the purified analogs. It appears that the creation of a 

more unidimensional matching criterion resulted in more consistent 

flagging. 

Table 14 

Pattern of Changes in Flagging Designations of HSMAT Items for Total Score 

and a Purified Factor Score as Matching Criterion 
Total Score Purified Factor Score Number of items 

+ + + 3 
+ No flag 4 
No flag - 0 
- 2 

- 1 
- No flag 1 
No flag + 0 
+ + + 0 
No change 39 

Table 15 

Pattern of Changes in Flagging Designations of HSMAT Items for Factor Score 

and a Purified Factor Score as Matching Criterion 
Factor Score Purified Factor Score Number of items 

+ + + 0 
+ No flag 1 
No flag - 2 
- 2 

- 0 
- No flag 0 
No flag + 1 
+ + + 0 
No change 44 
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Table 16 

Pattern of Changes in Flagging Designations of HSMAT Items for a Purified 

Factor Score and a Factor-based Score as Matching Criterion 
Purified Factor Score Factor-Based Score Number of items 

+ + + 0 
+ No flag 0 
No flag - 1 
- 2 

- 1 
- No flag 0 
No flag + 1 
+ + + 0 
No change 45 
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CHAPTER V 

DISCUSSION 

In first section of this chapter a summary of the results will be 

presented. Following the summary, the implications for future research will 

be explored. 

Summary of Results for Empirical Studies 

The results of the empirical studies indicated the consistency of flagging 

for the total-score and factor-score matching criterion was affected by the 

dimensionality of the data. The total-score and factor-score matching criteria 

flagged items differently as the data set became increasingly multidimensional; 

however, in the case of tests that are primarily unidimensional, the two 

matching criterion resulted in essentially the same flagged items. 

The GMAT verbal and quantitative subtests appeared to be primarily 

unidimensional and displayed similar factor structures for African American 

and White examinees. In the case of the GMAT quantitative subtest, the first 

factor accounted for 88.2% of the common variance; and 92% of the items 

received the same flag designations across the two matching criterion. For the 

GMAT verbal subtest, the first factor accounted for 83.7% of the common 

variance, and 84% of the items received the same flag designation. 

The factor structure for the high-stakes mathematics test (HSMAT) 

appeared to be multifactorial, and separate factor plots for African American 

and White examinees revealed different factor structures for the two groups. 

Somewhat surprisingly, the factor structure for White examinees appeared to 

have two factors, while the test appeared to be primarily unidimensional for 
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African American examinees. The HSMAT data set had a first factor that 

accounted for 65.8% of the common variance. For this apparently two-factor 

data set, 76% of the items were consistently flagged. For the three empirical 

tests there appeared to be a trend toward lower levels of consistency for the 

two matching criteria as the data departed from unidimensionality. 

Summary of Results for Simulated Studies 

The inconsistency of the two matching criteria indicated a need to 

explore the efficacy of total-score and factor-score matching criteria as a test 

departed from unidimensionality. In a series of simulations, tests were 

created to model two different factor structures. In the first factor structure 

(Factor Structure 1), the items for the referent group members were formed to 

load solely on the first factor. In the case of focal group members, different 

degrees of multidimensionality were introduced into the "test" by correlating 

the factor loadings of 10, 20, or 30 items with a second factor. 

In a second series of simulations, the majority of the 100 items for the 

referent and focal group members were formed to load on the first factor. A 

subset of 10, 20, or 30 multidimensional items were created to load on the first 

and second factor for all examinees—focal and referent group members (Factor 

Structure 2). The level of multidimensionality was also manipulated. In one 

series of analyses, the multidimensional items were created to load on both 

factors, and in the second series of simulations the multidimensional items 

were created to load primarily on the first factor with a minor loading on the 

second factor. In both factor structures, differential item functioning was 

simulated for focal group members in the subset of items associated with the 
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nuisance factor. The two types of factor structures were retained in the 

preliminary investigation and the final series of simulations. 

Summary of Results for Factor Structure 1 

For tests composed of items loading on one of two factors (Factor 

Structure 1), the factor score from a rotated, orthogonal solution as a matching 

criterion resulted in no spurious flagging of any items for the 90/10, 80/20, and 

70/30 tests. When the simulated test was primarily unidimensional (90/10), 

total score and the rotated factor score performed almost equally well as 

matching criteria. None of the items were spuriously flagged at the lowest 

levels of DIF and only 1% were flagged at the -.50 level for the total-score 

matching criterion. As the simulated test departed from unidimensionality, 

use of the total score as a matching criterion resulted in increasingly larger 

numbers of items being spuriously flagged. 

In the preliminary investigation, for tests that were primarily 

unidimensional (90/10), the two matching criteria resulted in biased items 

being missed at only the lowest level of DIF (-.20). The use of the total score as 

the matching criterion resulted in greater numbers of false negatives as the 

test became more factorially complex. The use of the factor score as the 

matching criterion also resulted in larger numbers of biased items being 

missed as the test became more factorially complex; however, the percentage 

of false negatives was lower for factor scores. Thus, compared to the total-

score matching criterion, the factor score appeared to improve the 

identification of biased items. 
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Summary of Results for Factor Structure 2 

The preliminary results for the factor structure containing inherently 

multidimensional items (Factor Structure 2) called into question the efficacy of 

the unrotated factor score as a matching criterion. For primarily 

unidimensional tests (90/10) in which 10% of the items were constructed to 

have high levels of multidimensionality, none of the items were spuriously 

flagged with the total-score matching criterion; however, the factor-score 

matching criterion spuriously flagged 20% of the items at the -.50 level. As the 

tests increased in factorial complexity, the number of false positives increased 

for the total-score matching criterion. The factor score, however, spuriously 

flagged even more items as the data set became more factorially complex. 

For the data set composed of items with high levels of 

multidimensionality, the use of the two matching criteria resulted in biased 

items being missed at only the lowest level of DIF (-.20). As the test became 

increasingly more complex, use of the total-score matching criterion resulted 

in more false negatives. No items were missed when the factor score was used 

as the matching criterion for tests composed of items with high levels of 

multidimensionality. 

Tests with low-level multidimensional items followed the same 

pattern of more false positives as the factor structure departed from 

unidimensionality. As was the trend for the tests with high-level 

multidimensional items, for the low-level items the factor score was 

associated with higher levels of spurious flagging than the total score. In more 

factorially complex tests, use of the total score as a matching criterion resulted 

in increasing numbers of false negative errors, that is, biased items that were 
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not flagged. By contrast, there were few false negatives when factor scores 

were used as the matching criterion. 

While use of the factor score improved the identification of items at 

low levels of DIF, the factor-score matching criterion was associated with a 

higher level of spurious flagging than the total-score matching criterion. 

Neither criteria—total score or factor score—appeared to function appropriately 

as the factor structure departed from unidimensionality. 

The preliminary simulation results summarized above prompted a set 

of additional analyses designed to "purify" the matching criterion. The results 

of these analyses will be briefly summarized. 

Summary of Follow-up Simulation Analyses 

To create a "purified factor score" the factor score was computed as any 

ordinary factor score, except that biased items were eliminated from the 

computation. A "factor-based score" was created by summing item scores for 

all unbiased items. (The factor-based score could just as accurately be called a 

"purified total score.") True to the pattern detected in the preliminary 

analyses, as the data structure departed from unidimensionality, and as the 

level of DIF increased, the number of spurious flags proliferated. This trend 

was seen in Factor Structure 1 and Factor Structure 2. 

Summary of Follow-up Results for Factor Structure 1 

In the case of Factor Structure 1, the percentage of spuriously flagged 

items for the total-score matching criterion ranged from less than 1% to 2% for 

the 90/10 factor structure to as high as 59% for the 70/30 factor structure. 
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Purified factor scores and factor-based scores spuriously flagged items less than 

1 percent of the time across factor structures and DIF levels. 

Using total score as the matching criterion, the percentage of biased 

items that failed to be flagged increased as the data set contained more items 

with DIF. When using purified factor scores or factor-based scores as the 

matching criterion, the average percentage of false positives ranged between 

one and two percent. 

Summary of Follow-up Results for Factor Structure 2 

The trends for detection of biased items were the same for tests 

composed of either high-level or low-level multidimensional items (Factor 

Structure 2). In a data set with only 10 multidimensional items—high or low 

levels of multidimensionality—less than 2% of the items were spuriously 

flagged using the total-score matching criterion. As has been previously seen, 

increasing factorial complexity was accompanied by greater numbers of false 

positives when matching on total-score. At high and low levels of 

multidimensionality, no items were spuriously flagged when purified factor 

score and factor-based score were used as matching criteria. 

The percentage of biased items that failed to be flagged using the total-

score matching criterion increased as the data set contained more 

multidimensional items. No false negatives occurred at moderate and high 

levels of DIF for the five replications when using total score as the matching 

criterion. In addition, the use of purified factor score and factor-based scores as 

matching criteria resulted in the identification of all biased items. 
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Summary of Follow-up HSMAT Analysis 

The elimination of contaminated items was applied to a test-

developer's situation by application of the information gained in the previous 

studies to the HSMAT data set. The consistency of the flagging of items was 

examined for the total score, the factor score, the purified factor score, and the 

factor-based score. Twenty-two percent of the HSMAT items changed flagging 

designation when using the total-score and purified factor-score matching 

criteria. When the matching criteria were the 50-item factor score and a 

purified factor score, twelve percent of the items changed flagging designation. 

Finally, when the matching criteria were purified factor scores and a factor-

based scores the percentage of items switching flagging designation was 10%. 

As mentioned previously, the factor-based score could be labeled a 

purified total score; and, thus, the factor-based and purified factor score 

comparison is analogous to the total score and factor score comparison made 

at the beginning of the Results section. When the two matching criteria were 

total score and factor score, the flags changed for 24% of the items-compared 

to 10% for the purified analogs. It appears that the creation of a more 

unidimensional matching criterion resulted in more consistent flagging. 

Implications for Future Studies 

Virtually all text books on tests and measurement emphasize the 

importance of investigating the factor structure of newly-developed tests to 

ensure that the internal test structure is consistent with the developer's theory 

and intended use. The results of this investigation suggest that the factor 

structure of tests should be examined not only for the entire sample of test 
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takers, but, where sample sizes allow, for relevant subpopulations of 

examinees as well. This is advisable not only to ensure that the test is 

measuring the same underlying factors across subpopulations of test takers, 

but also to ensure that a subsequent DIF analysis equates the groups under 

study using the appropriate criterion. If a sizable percentage of the test items 

load on a factor other than that intended by the developer, or if the items are 

inherently multidimensional (e.g., word problems), then the results of this 

investigation suggest that the usual practice of matching groups on the total 

score is probably incorrect. 

The design of the present study was developed from the 

multidimensionality model of DIF advanced by Shealy and Stout (1993) and 

Ackerman (1992). In the model, if DIF exists then the item must be 

multidimensional—that is it must measure a target ability and a nuisance 

ability. For DIF to exist, the focal group and the referent group must differ on 

the nuisance ability. With real tests, it will usually be the case that if DIF is 

present (that is, if the test contains both a target and a nuisance factor, and 

subgroups of the population differ on the nuisance factor), then it is likely that 

items will load differentially on the nuisance factor. That is, it is likely that 

item responses will depend to varying degrees on the nuisance factor. In the 

models created for this study, all DIF items were modeled to load equally on 

the nuisance factor. Thus in a data set with 70 items loading primarily on the 

first factor (the target ability) and 30 items loading on the second factor (the 

nuisance ability), when DIF was simulated at a low level (-.20), it was so 

defined for all 30 items. Additional research should expand the current 

investigation to simulate items that load differentially on the nuisance 
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parameter. This would more nearly simulate real tests and may provide more 

explicit guidance to practitioners. 

The inability of the factor-score to identify biased items in data sets 

composed of inherently multidimensional items (Factor Structure 2) appears 

to support the earlier work of Shepard et al. (1985). The model used in this 

study to simulate data for Factor Structure 2 was based on the findings of 

Camilli and Smith (1990), Ryan (1991), and Shepard et al. (1985) that DIF was 

often displayed in verbally-loaded mathematics items that required the 

"nuisance" ability of reading. Shepard et al. reported that chi-square measures 

of DIF which used a factor-score matching criterion correlated poorly with 

IRT-based measures of DIF. The inability of the factor-score in the current 

study to identify biased items appears to support Shepard's conclusions. Since 

the total-score matching criterion also performed poorly in the identification 

of biased items, investigation needs to continue in the creation of an 

unidimensional matching criterion for data sets composed of 

multidimensional items. 

One line of investigation might be to gauge the effect of the removal of 

multidimensional items from a data set on the consistency of the flagging 

designation. The results would provide further evidence about the need and 

utility of a purified criterion. The high consistency of flagging designations, 

and the apparently unidimensional factor structures of such instruments as 

the GMAT verbal and quantitative subtests, indicate such tests offer little 

opportunity for testing the purification process; however, tests with more 

multidimensionality would be candidates for inspection. 
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The present investigation is a beginning, but by no means exhausts the 

analytical possibilities in investigations of alternative matching criteria. 

Assuming more streamlined computer simulations can be devised, it would 

be informative to undertake many more replications than was practically 

feasible here in order to gain a better understanding of the distribution of false 

negative and false positive flags as a function of test factor structure. It would 

also appear possible to equate focal and reference group members 

simultaneously on all factors that underlie a given test. (Note that this is not 

the same as equating on total test score.) In this way aberrant items that 

measure trivial factors or draw upon very specialized knowledge could be 

identified. 

The results of the current study are relevant to the two-stage DIF 

analysis outlined by Dorans and Holland (1993). The authors referred to the 

first stage of the two-step procedure as a "...criterion refinement or purification 

step" (p. 60). In essence, in the first stage all items are used to compose the 

matching criterion and are submitted to a DIF analysis with this criterion. In 

the criterion refinement step, test items flagged as displaying sizable DIF are 

eliminated in the subsequent formation of a "purified" matching criterion. In 

the second step, the DIF analysis is then repeated with the purified matching 

criterion. 

The current findings indicate that even as a test becomes more 

factorially complex the criterion refinement step will identify items with 

moderate to high levels of DIF. Interestingly, the pervasive presence of low 

amounts of DIF, as seen in complex factor structures of this study, failed to be 

detected with the total-score matching criterion. In addition, the presence of 
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multidimensionality resulted in spurious flagging. Depending on Dorans and 

Holland's definition of sizable, the information provided by the criterion 

refinement study may be resulting in false positives being appropriately 

included or inappropriately excluded in the creation of the purified matching 

criterion. Further lines of investigation might be directed at the impact of 

low-levels of DIF and the ability to use information about the factor structure 

to improve the purification of the matching criterion. 

A consistent, if somewhat baffling, finding in DIF research is that test 

developers and subject matter experts have been frustrated in their attempts to 

find any substantive or experiential thread running through items that have 

been flagged. Moreover, flagged items appear to be indistinguishable from 

other, non-flagged items on the test. Green (1991) has suggested that part of 

the problem stems from the use of focal groups and referent groups that are 

defined sociologically or biologically (race, gender, etc.), rather than on some 

more substantive basis. As a result, he argues, the groups are too 

heterogeneous. More homogeneous groups (e.g., individuals who have taken 

the same courses) may result in flagged items that cohere in some theoretically 

or practically logical fashion. 

The results of the present study suggest an alternative possibility. A 

principal finding of this investigation was that matching on total score for 

factorially complex tests results in a substantial spurious flagging of items as 

biased. Inasmuch as the overwhelming majority of DIF studies in the past 

used either the Mantel-Haenszel, the standardization procedure, or a variant 

of the chi-square approach (all of which use total score as the matching 

criterion), it is possible that the lack of substantive coherence among flagged 
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items was a simple consequence of the fact that the items were spuriously 

flagged. A matching on factor scores may well result in the identification of 

items that do in fact allow explanations that are traceable to the experiential 

backgrounds of African American examinees, women, and other groups of 

examinees that have been the focus of bias studies in the past. At the very 

least, before researchers abandon traditionally disenfranchised groups as 

appropriate foci for investigation of bias, it would be wise to ensure that their 

analytical procedures were appropriate. 
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APPENDIX A 

SAS Code for Analyses 

SAS Code to Create Samples 

Options LS=80 PS=59; 
Filename New 'Scratch:[Scratch.Johnsong]GMAT_5000.Dat'; 

Data Score; 
Infile GMAT4234 Missover; 
Input State $ 67-68 YOB 101-102 Gender $ 103 Admin 104-107 Degobj 

121 
Citizn 124-126 Umajor 132-133 Gradtn 134-137 Pace 138 Area 139-

140 
Race 141 Edexp 143 Form 202-203 @204 (Ansl-Ans25) (1.) 

@244 (Ans26-Ans45) (1.) @284 (Ans46-Ans70) (1.) @324 (Ans71-
Ans95) (1.) 

@364 (Ans96-Ansll5) (1.) @404 (Ansll6-Ansl40) (1.0) Vright 449-451 
Qright 461-463 Tright 473-475 Fs_v 458-460 Fs_q 470-472 Fs_t 482-

484; 
If Gender NE ' ' and (Race=2 Or Race=3) and Form=71 and Fs_q Gt '0' and 

Fs_v GT '0'; 
Proc Sort Data=Score; 
By Race; 

Data Bycount; 
Set Score; 
By Race; 
N+l; 
If Last.Race; 
Output; 
N=0; 

Keep Race N; 
Data Sample; 
Merge Score Bycount; 
By Race; 

If First.Race Then K=2500; 
Retain K; 

If Uniform(0)<K/N Then Do; 
Output; 
K=K-1; 

End; 
N=N-1; 
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Proc Sort Data=Sample; 
By Race; 

Data All; 
Set Sample; 

File New; 
By Race; 

Put Race 1 @3 (Ansl - Ansl40) (Fl.) Vright 144-146 Qright 148-150 
Tright 152-154 Fs_v 155-156 Fs_q 158-159 Fs_t 161-162; 
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SAS Code to Score Student Responses for the GMAT 

Options Ls=80 Ps=59; 
Filename New 'Scratch: [Scratch.Johnsong]MH71_All.Dat'; 
Filename One 'Scratch:[Scratch.Johnsong]GMAT_5000.Dat'; 

Data First; 
Infile One Missover; 
Length Q1-Q140 $ 2; 
Retain Keyl-Keyl40; 
Array Key{*} Keyl-Keyl40; 
Array Ans{*} Ansl-Ansl40; *Ans Are Student Answers; 
Array Q{*} $ Q1-Q140; ^Character Vars Used With Proc Tabulate; 
Array S{*} S1-S140; *The S's Are Scored Responses; 
If _N_=1 Then Do; 

Input @12 (Keyl-Keyl40) (1.); 
Delete; 
End; 

Else Do; 
Input Race 1 @3 (Ansl - Ansl40) (Fl.) Vright 144-146 Qright 148-150 
Tright 152-154 Fs_v 155-156 Fs_q 158-159 Fs_t 161-162; 

Do 1=1 To 140; 
If Key{I}=Ans{I} Then Do; 

S{I}=1; 
End; 

Else S{I}=0; 
End; 

Drop I Keyl-Keyl40; 
End; 

Data All; 
Set First; 
Keep Race SI — S140; 

File New; 
Put @1 (SI -- S140) (1.) Race 142 Fs_v 144-145 Vright 147-148 Fs_q 150-151 

Qright 153-154; 



SAS Code to Create Factor Scores for Use as Matching Criteria 

Filename Rfac 'Rfactor.Dat'; 

Data New; 
Infile Rfac Lrecl=80 Recfm=V Missover; 
Input @1 (Iteml - Item4) (Fl.) @5 (Itemll - Item56) (Fl.) 

@53 (Factorl) (F2.) @58 (Rawscr) (F2.) Ethnic 64; 

Proc Factor Data=New Scree Priors=Smc 
N=2 Reorder Plot Out=Flscores; 

Var Iteml — Item4 Iteml 1--Item56; 
Title 'Factor Analysis For Complete Data Set'; 

Proc Means Data=New; 
Var Rawscr; 

Proc Standard Data=Flscores Out=Zquant Mean=25.7634804 Std=8.8491931 
Var Factorl Factor2; 

Filename Facfile 'Twofac.Dat'; 
Data _Null_; 
Set Work.Zquant; 
File Facfile Lrecl=80 Recfm=V; 
Put @1 (Iteml ~ Item4) (Fl.) @5 (Itemll ~ Item56) (Fl.) 

@53 (Factorl) (F2.) @59 (Factor2) (F2.) 
@65 (Rawscr) (F2.) Ethnic 71; 



108 

SAS Macro for Analyzing Differential Item Functioning 

Harnisch, D.L. (1991) MHPROG SAS Macro Listing 

Source: Harnisch, D.L. (1991). Techniques for Assessing Differential Item 
Performance on Achievement Tests. Proceedings of the Sixteenth Annual 
SAS 
Users Group International Conference. Cary, NC: SAS Institute Inc., 1503-
1508. 

/*This macro computes DIF indices based on the Mantel-Haenszel procedure. 
Users must specify the test questions using variable names of Ql-Qn where n 
represents the number of items on the test. These variables must be scored as 
1 for correct and 0 for incorrect. The variable TOTAL must be created which 
represents the performance of the students on the criterion measure of 
interest. The SAS data set name which includes the binary coded test 
questions, total score, and the discrimating variable name (coded 1 for focal 
and 0 for reference) are used as arguments on the SAS macro MHPROG. For 
example, a SAS data set by the name of GR11MATH.DIF. containing 50 items 
binary coded and summed to create a variable TOTAL along with sex coded 1 
for males and 0 for females would be written: MHPROG 
(GR11M ATH.DIF,SEX,50); V 

%MACRO MHPROG(Data,Comvar,Nitem); 
Proc Summary Data = &Data Nway; 

Class Total &Comvar; 
Var Q1 - Q&Nitem; 
Output Out = Mhisum N = N1 - N&Nitem Sum = R1 - R&Nitem; 

Proc Sort Data=Mhisum; By Total; 

Data Mhsums ; 
Set Mhisum; 
By Total; 
Array Ns{&Nitem} N1 - N&Nitem; 
Array Rs{&Nitem} R1 - R&Nitem; 
If First.Total And Last.Total Then Do; 
Output; 
Do I = 1 To &Nitem; 

Ns(I) = 0.0; 
Rs(I) = 0; 

End; 
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If &Comvar = 0 Then &Comvar = l;Else &Comvar = 0; 
Output; 
End; 

Else Output; 
Proc Sort; By Total &Comvar; 
Data Mhbase; 

Set Mhsums (Keep=Nl-N&Nitem Rl-R&Nitem); 
If Mod(_n_/2)=l; 

Data Mhfocal; 
Set Mhsums (Keep=Nl-N&Nitem Rl-R&Nitem); 

If Mod(_n_,2)=0; 

Data Dtots; Set Mhsums; If Mod(_n_,2)=0; Keep Total; 

Proc Iml; 
Eps = 0.0000001; /* 1.0e-7 */ 

Use Mhbase; 
Read All Into Prebs; 
Nlevel=Nrow(Prebs); 
Rbs=Prebs( I l:Nlevel,&Nitem+l:&Nitem*21); 
Nbs=Prebs( 11: Nle vel, 1:&Nitem I); 

Free Prebs; 

Use Mhfocal; 
Read All Into Prefs; 
Nlevel=N row(Prefs); 
Rfs=Prefs( I l:Nlevel,&Nitem+l:&Nitem*21); 
Nfs=Prefs( I l:Nlevel,l:&Nitem I); 

Free Prefs; 

Wbs = Nbs - Rbs; 
Wfs = Nfs - Rfs; 

/* There Are Now Four Matricies Which Constitute The Table Cells */ 
/* Each Column Of These Matricies Corresponds To A Table Cell */ 
/* The Columns Correspond To The Different Items */ 

Alphas = (Rbs # Wfs ) / ( Rfs # Wbs ); 

Ms = (Wbs # Rfs ) / ( Nfs + Nbs ); 
Alpha_ms = (Rbs # Wfs) / (Nfs + Nbs); 



Alphamh = Alpha_ms (I +, I) / Ms( I +, I); 

Create Summary! From Alphas ; 
Append From Alphas; 

Free Ms Alpha_ms Alphas; 

Mus = Nbs # (Rbs + Rfs) / (Nfs + Nbs); 
Sigmas = ( Nbs # Nfs # ( Rbs + Rfs ) # ( Wbs + Wfs )) / 

((Nfs + Nbs ) # ( Nfs + Nbs ) # ( Nfs + Nbs -1)); 
Terml = Rbs( I +, I); 
Term2 = Mus( I +, I); 
Term3 = Sigmas( I +, I) <> (Eps # J(l, Ncol(Sigmas), 1.0)); 
Term4 = Abs ( Terml - Term2 ) - 0.5 ; 

Free Wfs Wbs Terml Term2 ; 

Chisqmh = ( Term4 # Term4 ) / Term3 ; 

Free Term3 Term4; 

Pchimh = J(Nrow(Chisqmh),Ncol(Chisqmh),1.0) - Probchi(Chisqmh , 1.0) 
Pfs = Rfs / Nfs; 
Pbs = Rbs / Nbs; 
Ds = Pfs - Pbs; 

^Creating Sas Data Sets For Plots; 
Use Dtots; Read All Into Dtotsm; 
Nrtot = Nrow(Dtotsm); 
Drefm = Repeat(0,Nrtot,l); 
Dfocm = Repeat(l,Nrtot/l); 
Diffs = Ds I I Dtotsm; 
Refpc = Pbsl I Dtotsm I I Drefm; 
Focpc = Pfs I I Dtotsm I I Dfocm; 
Allpc = Refpc/ / Focpc; 

"•Create Sds.Ddiffs From Diffs; *Append From Diffs; 
Create Sds.Dallpc From Allpc; Append From Allpc; 

Create Summary2 From Ds ; 
Append From Ds ; 

Create Summary3 From Pfs ; 
Append From Pfs ; 



Il l  

Create Summary4 From Pbs ; 
Append From Pbs; 

Free Rbs Rfs; 

Efs = Nfs # Pfs; 
Ebs = Nfs # Pbs; 

Free Pfs Pbs; 

Psubf = (Efs (I +, I) / Nfs( I +,1)); 
Phatf = (Ebs (I +, I) / Nfs( I +, I)); 
Dstd = Psubf - Phatf; 

Free Nfs Nbs ; 

/* Bound The Probabilities Away From The Ends * / 

Psubf = (Eps # J(Nrow(Psubf),Ncol(Psubf),l-0)) <> Psubf; 
Psubf = ((1.0 - Eps) # J(Nrow(Psubf),Ncol(Psubf),1.0)) >< Psubf; 
Phatf = (Eps # J(Nrow(Phatf)/Ncol(Phatf),l -0)) <> Phatf; 
Phatf = ((1.0 - Eps) # J(Nrow(Phatf)/Ncol(Phatf)/1.0)) >< Phatf; 

Cnams = { 'psubf ', 'phatf'}; 
Outps = (Psubf") I I (Phatf); 
Create Pests From Outps (I Colname = Cnams I ); 
Append From Outps; 

Free Cnams Outps; 

Deltaps = J(Nrow(Psubf), Ncol(Psubf), 13.0) - 4.0 # Probit( Psubf); 
Deltaphs = J(Nrow(Phatf), Ncol(Phatf), 13.0) - 4.0 # Probit( Phatf); 
* Print Deltaps Deltaps ; 

Alphamh = (Eps # J(Nrow(Alphamh),Ncol(Alphamh)/1.0)) <> Alphamh ; 

Deltamh = -2.35 # Log ( Alphamh ); 
Deltastd = -2.35 # Log ((Phatf # (1 - Psubf))/(Psubf # (1 - Phatf))); 

* Print Deltamh Deltastd ; 

* Print Alphamh Deltamh Dstd Chisqmh Pchimh Deltastd Deltaps Deltaphs; 
Transposing The Matrix To Yield Item By Index Table; 
Talphamh=Alphamhx; Tdeltamh=Deltamhv; Tdstd=Dstdv; 
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Tchisqmh=Chisqmh"; Tpchimh=Pchimhv; Tdelstd=Deltastdv; 

*Print Talphamh Tdeltamh Tdstd Tchisqmh Tpchimh Tdelstd; 
Outs = Talphamh I I Tdeltamh I I Tdstd I I Tchisqmh I I Tpchimh I I Tdelstd; 
Cname={'alphamh','deltamh', 'dstd', 'chisqmh', 'pchimhV delstd'}; 

Create Results From Outs (I Colname = Cname I); 
Append From Outs; 

Data Results;Set Results; If Alphamh=0 Then Do ; 
Deltamh=.; Dstd=.;Chisqmh=.;Pchimh=.;Delstd=.;End; 
If DstdxlO Then Flag='m++"; 
Else If Dstd>.05 Then Flag='m+ '; 
Else If Dstdc-.IO Then Flag='m~'; 
Else If Dstd<-.05 Then Flag='m~ '; 
Else Flag=' '; 

Proc Print Data=Results; 
Title2 "Mantel-Haenszel Statistics: By &Comvar"; 
Title3 'flag Column Indicates Level Of Dif For Gender Group'; 

*Proc Means Data=Results; 
* Var Alphamh Deltamh Dstd Delstd; 
* Title2 "Descriptive Statistics Of Mh-Parameters: By &Comvar"; 
*Proc Corr Data=Results; 
* Var Alphamh Deltamh Dstd Delstd; 
* Title2 "Correlations Among Mh-Parameters: By &Comvar"; 
*If Ttest Wanted; 
/* 

Proc Ttest Data=&Data; 
Class &Comvar; 
Var Total Ql-Q&Nitem; 
Title2 "Ttest Of Performance On Items: By &Comvar"; 

V 

%Mend; 
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SAS Code to Simulate Factor Structure 1 

OPTIONS LS=80 PS=59; 
FILENAME NEW 'SCRATCH:[SCRATCH.JOHNSONGJMonte70_50.DAT'; 
/* 
This data step creates 1 trait, followed 
by the 100 items that tap that trait. 

The trait is in tslOl, while tsl-tslOO are 
the true scores on items that tap that trait. 

V 

data rcont; 

array seed[101] seedl-seedlOl; /* seeds for true scores and traits */ 
array ersed[100] ersedl-ersedlOO; /* seeds for error components */ 
array ts[101] tsl-tslOl; /* true scores and latent traits */ 
array errs[100] errsl-errslOO; /* error components */ 
array itcor[100] itcorl-itcorlOO; /* correlation of true score with 

latent trait */ 

keep tsl-tslOO 
errsl-errslOO; 

/* Initialize seeds first for the true scores to be kept in "ts," 
then for the error components kept in "errs." / 

tempseed = 123456789; 
do i = 1 to 101 by 1; 

call ranuni(tempseed/seed[i]); 
seed[i] = int(seed [i] *tempseed); 
end; 

do i = 1 to 100 by 1; 
call ranuni(tempseed,ersed[i]); 
ersedfi] = int(ersed[i]*tempseed); 
end; 

/* Create 100 item correlations (correlations with latent traits). */ 
tempseed = 987654321; 
m = 0.50; 
dispers = 0.1; 
do i = 1 to 100 by 1; 

call rannor(tempseed,itcor[i]); 
itcor[i] = m + dispers*itcor[i]; 



end; 

/* Create data for referent examinees */ 
do j = 1 to 1000 by 1; 

/* 
Create 101 random normal deviates. Remember that 
1-100 are the true scores on the items and 101 
is the latent trait 

V 

do i = 1 to 101 by 1; 
call rannor(seed[i],ts[i]); 

end; 

/* Correlate 100 true scores with trait (kept in 101) 
and normalize these later. 

V 
do i = 1 to 100 by 1; 

ts[i] = itcor[i]*ts[101] + sqrt(l-(itcor[i]*itcor[i]))*ts[i]; 
end; 

/* Create error components. 
These will need to be normalized later. 

V 

do i = 1 to 100 by 1; 
call rannor(ersed[i],errs[i]); 

end; 

output; /* response vector in continuous form */ 
end; 

run; 

/* Standardize true scores to be Z's. */ 
proc standard data=rcont out=rcont mean=0 std=l; 

var tsl-tslOO; 
run; 

/* Standardize errors. */ 
proc standard data=rcont out=rcont mean=0 std=.31; 

var errsl-errslOO; 
run; 



data fcont; 

array seed[102] seed 1-seed 102; /* seeds for true scores and traits */ 
array ersed[100] ersedl-ersedlOO; /* seeds for error components */ 
array ts[102] tsl-tsl02; /* true scores and latent traits */ 
array errs[100] errsl-errslOO; /* error components */ 
array itcor[100] itcorl-itcorlOO; /* correlation of true score with 

latent trait */ 

keep tsl-tslOO 
errsl-errslOO; 

/* Initialize seeds first for the true scores to be kept in "ts" 
and then for the error components kept in "errs." */ 

tempseed = 123456789; 
do i = 1 to 102 by 1; 

call ranuni(tempseed,seed[i]); 
seed[i] = int(seed[i]*tempseed); 
end; 

do i = 1 to 100 by 1; 
call ranuni(tempseed,ersed[i]); 
ersed[i] = int(ersed [i] *tempseed); 
end; 

/* Create 100 item correlations (correlations with latent traits). */ 
tempseed = 987654321; 
m = 0.50; 
dispers = 0.1; 
do i = 1 to 100 by 1; 

call rannor(tempseed,itcor[i]); 
itcor[i] = m + dispers*itcor[i]; 
end; 

/* Create data for subjects. */ 
do j = 1 to 1000 by 1; 

/* 
Create 102 random normal deviates. Remember that 
1-100 are the true scores on the items and 101-102 
are the latent traits. 

V 

do i = 1 to 102 by 1; 
call rannor(seed[i],ts[i]); 



end; 

/* Correlate 100 true scores with traits (kept in 101-102). 
Normalize these later 

V 

do i = 1 to 30 by 1; 
ts[i] = itcor[i]*ts[101] + sqrt(l-(itcor[i]*itcor[i]))*ts[i]; 

end; 
do i = 31 to 100 by 1; 

ts[i] = itcor[i]*ts[102] + sqrt(l-(itcor[i]*itcor[i]))*ts[i]; 
end; 

/* Create error components. 
These will need to be normalized later 

V 

do i = 1 to 100 by 1; 
call rannor(ersed[i],errs[i]); 

end; 

output; /* response vector in continuous form */ 
end; 

run; 

/* Standardize true scores to be Z's. */ 
proc standard data=fcont out=fcont mean=0 std=l; 

var tsl-tslOO; 
run; 

/* Standardize errors. */ 
proc standard data=fcont out=fcont mean=0 std=.31; 

var errsl-errslOO; 
run; 

/* Create reference group. */ 
data ref; 

set rcont; 
array dif[100] difl-diflOO; 

/* All DIF is nil for the reference group. */ 

do i = 1 to 100 by 1; 
dif[i] = 0; 



end; 
group = 1; /* Define reference group id here. */ 
drop i; 

run; 

/* Create focal group. */ 
data focal; 

set fcont; 
array dif[100] difl-diflOO; 

/* Here is where DIF is defined.*/ 
/* First initialize all the values, then set the particular items. */ 

do i = 1 to 100 by 1; 
dif[i] = 0; 

end; 
do i = 1 to 30 by 1; 

dif[i] = -.50; 
end; 
group = 0; /* Define focal group id here. */ 
drop i; 

run; 

/* Now concatenate and then sort the data sets. */ 
data total; 
set ref focal; 

run; 
proc sort data=total; 

by group; 
run; 

/* Now create continuous observed scores using DIF. */ 
data total; 

set total; 
array ts[100] tsl-tslOO; 
array errs[100] errsl-errslOO; 
array dif[100] difl-diflOO; 
array obs[100] obsl-obslOO; 

keep tsl-tslOO 
errsl-errslOO 
difl-diflOO 
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obsl-obslOO 
group; 

do i = 1 to 100 by 1; 
obs[i] = ts[i] + errs[i] + dif[i]; 

end; 
run; 

/* Standardize continuous observed scores. */ 
proc standard data=total mean=0 std=l; 

var obsl-obslOO; 

/* Create dichotomous response vectors 
and compute raw score. */ 

data total; 
set total; 

array ts[100] tsl-tslOO; 
array obs[100] obsl-obslOO; 
array errs[100] errsl-errslOO; 
array dif[100] difl-diflOO; 
array score[100] scorel-scorelOO; 

drop i; 

/* Dichotomize observed score. */ 
do i = 1 to 100 by 1; 

if obs[i] le 0 then score[i] = 0; 
else score[i] = 1; 

end; 
total= sum(of scorel-scorelOO); 

run; 

data focal; 
set total; 
if group=0; 

/* 
Factor analyze dichotomous response vectors, 
save results, and then score. When finished, data set FOCAL will 



include the two factor scores in addition to the other variables. 
V 

proc factor data=focal priors=smc scree n=2 rotate=varimax plot 
out=fscores; 

var scorel-scorelOO; 
titlel 'Factors found in focal data set'; 

/* Look at the correlations. */ 
proc corr data=fscores; 

var total factor 1 factor2; 
titlel 'Correlations of Focal Group'; 
title2 'Raw and Factor Scores'; 

run; 

data refer; 
set total; 
if group=l; 
/* 

Factor analyze dichotomous response vectors, 
save results, and then score. When finished, data set REFER will 
include the two factor scores in addition to the other variables. 

V 

proc factor data=refer priors=smc scree n=2 
plot out=rscores; 

var scorel-scorelOO; 
titlel 'Factors found in referent data set'; 

/* Look at the correlations. */ 
proc corr data=rscores; 

var total factorl factor2; 
titlel 'Correlations of Referent Group'; 
title2 'Raw and Factor Scores'; 

run; 

data comb; 
set fscores rscores; 
/* 

This step is to transform the factor scores to a more 
reasonable scale. 

V 



proc standard data=comb out=total m=50 std=15; 
var factorl factor2; 

proc factor data=comb priors=smc scree n=2 rotate=varimax plot 
var scorel-scorelOO; 

titlel 'Factors found in combined data set'; 

/* Now truncate factor scores so they will suit m-h analysis. */ 
data total; 

set total; 
factorl = int(factorl); 
factor2 = int(factor2); 

run; 

DATA ALL; 
SET total; 
KEEP group scorel-scorelOO total FACTORl factor2; 

FILE NEW; 
PUT @1 (scorel - scorelOO) (Fl.) total 102-104 @107 (factorl) (f2.) 

@110 (factor2) (f2.) group 113; 



SAS Code to Simulate Factor Structure 2 

OPTIONS LS=80 PS=59; 
FILENAME NEW 'SCRATCH:[SCRATCH.JOHNSONG]M701_50.DAT'; 
/* 
This data step creates the 2 traits, followed 
by the 100 items that tap those traits. 

The traits are in tslOl and tsl02, while tsl-tslOO are 
the true scores on items that tap those traits. 

V 

data cont; 

array seed[102] seedl-seedl02; /* seeds for true scores and traits */ 
array ersed[100] ersedl-ersedlOO; /* seeds for error components */ 
array ts[102] tsl-tsl02; /* true scores and latent traits */ 
array errs[100] errsl-errslOO; /* error components */ 
array itcor[100] itcorl-itcorlOO; /* correlation of true score with 

latent trait */ 

keep tsl-tslOO 
errsl-errslOO; 

/* Initialize seeds first for the true scores to be kept in "ts," 
and then for the error components kept in "errs." */ 

tempseed = 123456789; 
do i = 1 to 102 by 1; 

call ranuni(tempseed,seed[i]); 
seed[i] = int(seed [i] *tempseed); 
end; 

do i = 1 to 100 by 1; 
call ranuni(tempseed,ersed[i]); 
ersedfi] = int(ersed[i]*tempseed); 
end; 

/* Create 100 item correlations (correlations with latent traits). */ 
tempseed = 987654321; 
m = 0.50; 
dispers = 0.1; 
do i = 1 to 100 by 1; 

call rannor(tempseed,itcor[i]); 
itcor[i] = m + dispers*itcor[i]; 



end; 

/* Create data for subjects. */ 
do j = 1 to 1000 by 1; 

/* 
Create 102 random normal deviates. Remember that 
1-100 are the true scores on the items and 101-102. 
are the latent traits 

V 

do i = 1 to 102 by 1; 
call rannor(seed[i]/ts[i]); 

end; 

/* Correlate 100 true scores with traits (kept in 101-102). 
Normalize these later. 

*/ 
do i = 1 to 30 by 1; 

ts[i] = itcor[i]*ts[102] + itcor[i]/1.5*ts[101] + 
sqrt(l-(itcor[i]*itcor[i]*(l+l/2.25)))*ts[i]; 

end; 
do i = 31 to 100 by 1; 

ts[i] = itcor[i]*ts[102] + sqrt(l-(itcor[i]*itcor[i]))*ts[i]; 
end; 

/* Create error components. 
These will need to be normalized later. 

V 

do i = 1 to 100 by 1; 
call rannor(ersed[i],errs[i]); 

end; 

output; /* response vector in continuous form */ 
end; 

run; 

/* Standardize true scores to be Zs. */ 
proc standard data=cont out=cont mean=0 std=l; 

var tsl-tslOO; 
run; 

/* Standardize errors.*/ 



proc standard data=cont out=cont mean=0 std=.31; 
var errsl-errslOO; 

run; 

/* Create reference group. */ 
data ref; 

set cont; 
array dif[100] difl-diflOO; 

/* All DIF is nil for the reference group. */ 

do i = 1 to 100 by 1; 
dif[i] = 0; 

end; 
group = 1; /* Define reference group id. */ 
drop i; 

run; 

/* Create focal group. */ 
data focal; 

set cont; 
array dif[100] difl-diflOO; 

/* Define DIF. */ 
/* First initialize all the values, then set the particular items. */ 

do i = 1 to 100 by 1; 
dif[i] = 0; 

end; 
do i = 1 to 30 by 1; 

dif[i] = -.50; 
end; 
group = 0; /* Define focal group id. */ 
drop i; 

run; 

/* Concatenate and then sort the data sets. */ 
data total; 
set ref focal; 

run; 
proc sort data=total; 

by group; 
run; 



/* Create continuous observed scores using DIF. 
data total; 

set total; 
array ts[100] tsl-tslOO; 
array errs[100] errsl-errslOO; 
array dif[100] difl-diflOO; 
array obs[100] obsl-obslOO; 

keep tsl-tslOO 
errsl-errslOO 
difl-diflOO 
obsl-obslOO 
group; 

do i = 1 to 100 by 1; 
obs[i] = ts[i] + errs[i] + dif[i]; 

end; 
run; 

/* Standardize continuous observed scores. */ 
proc standard data=total mean=0 std=l; 

var obsl-obslOO; 

/* Create dichotomous response vectors 
and compute raw score */ 

data total; 
set total; 

array ts[100] tsl-tslOO; 
array obs[100] obsl-obslOO; 
array errs[100] errsl-errslOO; 
array dif[100] difl-diflOO; 
array score[100] scorel-scorelOO; 

drop i; 

/* Dichotomize observed score. */ 
do i = 1 to 100 by 1; 

if obs[i] le 0 then score[i] = 0; 
else score[i] = +1; 



end; 
total= sum(of scorel-score 100); 

run; 

/* Factor analyze dichotomous response vectors, */ 
/* save results, and then score. */ 
/* When finished data set TOTAL will include the two factor scores 
/""in addition to the other variables. */ 
proc factor data=total priors=smc scree n=2 rotate=varimax plot 

out=fscores; 
var scorel-scorelOO; 
titlel 'Factors found in combined data sets'; 

/* Look at the correlations. */ 
proc corr data=fscores; 

var total factorl factor2; 
titlel 'Correlations of Raw and Factor Scores'; 

run; 

/* 
This step is to transform the factor scores to a more 
reasonable scale. 

V 

proc standard data=fscores out=total m=50 std=15; 
var factorl factor2; 

/* Truncate factor scores so they will suit m-h analysis. */ 
data total; 

set total; 
factorl = int(factorl); 
factor2 = int(factor2); 

run; 

DATA ALU-
SET total; 
KEEP group scorel-scorelOO total FACTOR1 factor2; 

FILE NEW; 
PUT @1 (scorel - scorelOO) (Fl.) total 102-104 @107 (factorl) (f2.) 

@110 (factor2) (f2.) group 113 ; 
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APPENDIX B 

Scree Plots and Factor Plots 
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Figure Bl. Scree Plot of Eigenvalues for the GMAT Verbal Test 
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Figure B4. Scree Plot of Eigenvalues for the GMAT Quantitative Subtest 
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Structure 2 with Low-level Multidimensional Items 



Appendix C 

Results of Replications for Simulation Studies 



Table CI 

Number of Spurious Flags (False Positives) and Missed Flags (False Negatives) for Factor Structure 1 (90/10) 

DIF Level: -.20 DIF Level: -.35 DIF Level: -.50 
Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

R SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF 

1 
2 2 l 0 l 0 3 1 l 0 l 0 4 0 l 0 1 0 

2 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

3 
0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

4 
0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 

5 
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Note. 
R = Replication 
SF = Spurious Flags 
MF = Missed Flags 



Table C2. 

Number of Spurious Flags (False Positives) and Missed Flags (False Negatives) for Factor Structure 1 (80/20) 

DIF Level: -.20 DIF Level: -.35 DIF Level: -.50 
Total 
Score 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

R SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF 

1 
4 6 0 0 0 0 9 0 0 0 0 0 16 0 0 0 0 0 

2 
0 6 0 0 0 0 2 0 0 0 0 0 17 0 0 0 0 0 

3 
0 5 0 0 0 1 5 0 0 0 0 0 12 0 0 0 0 0 

4 
0 3 0 0 G 0 5 0 0 0 0 0 18 0 0 0 0 0 

5 
0 8 0 1 0 1 6 0 0 0 0 0 16 0 0 0 0 0 

Note. 
R = Replication 
SF = Spurious Flags 
MF = Missed Flags 



Table C3. 

Number of Spurious Flags (False Positives) and Missed Flags (False Negatives)for Factor Structure 1 (70/30) 

DIF Level: -.20 DIF Level: -.35 DIF Level: -.50 
Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

R SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF 

1 
6 11 l 0 l 0 19 0 l 0 l 0 43 0 l 0 l 0 

2 
1 13 0 1 0 0 18 0 0 0 0 0 40 0 0 0 0 0 

3 
0 12 0 0 0 0 17 1 0 0 0 0 36 0 0 0 0 0 

4 
2 9 0 0 0 0 20 0 0 0 0 0 45 0 0 0 0 0 

5 
2 13 0 1 0 2 16 0 0 0 0 0 43 0 0 0 0 0 

Note. 
R = Replication 
SF = Spurious Flags 
MF = Missed Flags 



Table C4. 

Number of Spurious Flags (False Positives) and Missed Flags (False Negatives) for Factor Structure 2 (90/10) with High 

Levels of Multidimensionality 
DIF Level: -.20 DIF Level: -.35 DIF Level: -.50 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

R SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF 

1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Note. 
R = Replication 
SF = Spurious Flags 
MF = Missed Flags 



Table C5. 

Number of Spurious Flags (False Positives) and Missed Flags (False Negatives) for Factor Structure 2 (80/20) with High 

Levels of Multidimensionality 
DIF Level: -.20 DIF Level: -.35 DIF Level: -.50 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

R SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF 

1 
0 3 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 

2 
0 6 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 

3 
0 5 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 

4 
0 4 0 0 0 0 1 0 0 0 0 0 6 0 0 0 0 0 

5 
0 3 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 

Note. 
R = Replication 
SF = Spurious Flags 
MF = Missed Flags 



Table C6. 

Number of Spurious Flags (False Positives) and Missed Flags (False Negatives) for Factor Structure 2 (70/30) with High 

Levels of Multidimensionality 
DIF Level: -.20 DIF Level: -.35 DIF Level: -.50 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

R SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF 

1 
0 14 0 0 0 0 5 0 0 0 0 0 52 0 0 0 0 0 

2 
0 22 0 0 0 0 5 0 0 0 0 0 42 0 0 0 0 0 

3 
0 22 0 0 0 0 17 0 0 0 0 0 45 0 0 0 0 0 

4 
0 16 0 0 0 0 10 0 0 0 0 0 42 0 0 0 0 0 

5 
0 15 0 0 0 0 10 0 0 0 0 0 44 0 0 0 0 0 

Note. 
R = Replication 
SF = Spurious Flags 
MF = Missed Flags 



Table C 7. 

Number of Spurious Flags (False Positives) and Missed Flags (False Negatives) for Factor Structure 2 (90/10) with Low 

Levels of Multidimensionality 
DIF Level: -.20 DIF Level: -.35 DIF Level: -.50 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

R SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF 

1 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Note. 
R = Replication 
SF = Spurious Flags 
MF = Missed Flags 



Table C8. 

Number of Spurious Flags (False Positives) and Missed Flags (False Negatives) for Factor Structure 2 (80/20) with Low 

Levels of Multidimensionality 
DIF Level: -.20 DIF Level: -.35 DIF Level: -.50 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

R SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF 

1 
0 5 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 

2 
0 1 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 

3 
0 6 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 

4 
0 4 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 

5 
0 5 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 

Note. 
R = Replication 
SF = Spurious Flags 
MF = Missed Flags 



Table C9. 

Number of Spurious Flags (False Positives) and Missed Flags (False Negatives) for Factor Structure 2 (70/30) with Low 

Levels ofMultidimensionality 
DIF Level: -.20 DIF Level: -.35 DIF Level: -.50 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 

Total 
Score 

Purified 
Factor 
Score 

Factor 
Based 
Score 
Score 

R SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF SF MF 

1 
0 11 0 0 0 0 6 0 0 0 0 0 52 0 0 0 0 0 

2 
0 22 0 0 0 0 11 0 0 0 0 0 50 0 0 0 0 0 

3 
0 20 0 0 0 0 13 0 0 0 0 0 46 0 0 0 0 0 

4 
0 15 0 0 0 0 12 0 0 0 0 0 44 0 0 0 0 0 

5 
0 14 0 0 0 0 11 0 0 0 0 0 41 0 0 0 0 0 

Note. 
R = Replication 
SF = Spurious Flags 
MF = Missed Flags 



Appendix D 

Item Loadings on the HSMAT 

Loadings on First Factor Loadings on Second Factor 
African-
American 

White African-
American 

White 

ITEMl 0.41791 0.083 -0.00398 0.37669 
ITEM2 0.16386 -0.01313 0.0595 0.21902 
ITEM3 0.18758 0.8379 0.09369 -0.37105 
ITEM4 0.33193 -0.09029 -0.00602 0.25429 
ITEM5 0.44493 0.0167 -0.04964 0.45093 
ITEM6 0.19353 -0.00352 0.15886 0.33719 
ITEM7 0.3026 -0.05553 0.14354 0.40817 
ITEM8 0.28438 0.63695 0.06556 -0.05498 
ITEM9 0.33574 0.49339 -0.08904 0.01254 
ITEM10 0.49557 0.00451 -0.22754 0.61162 
ITEMl 1 0.19244 -0.09409 0.21333 0.38442 
ITEM12 0.41957 -0.0187 -0.2867 0.55477 
ITEM13 0.14273 0.64525 0.29632 -0.06293 
ITEM14 0.1621 0.58181 0.10137 -0.12786 
ITEM15 0.36351 -0.03511 -0.07501 0.488 
ITEM16 0.53321 0.72993 0.01534 0.121 
ITEM17 0.19173 -0.19261 -0.00926 0.35987 
ITEM18 0.23524 0.52512 0.13575 -0.02501 
ITEM19 0.43259 0.62927 0.05109 0.08198 
ITEM20 0.36459 0.62328 -0.04908 0.02766 
ITEM21 0.30571 -0.09983 -0.23407 0.5025 
ITEM22 0.36877 0.6155 0.01457 0.13124 
ITEM23 0.40496 -0.11276 -0.01929 0.40733 
ITEM24 0.53515 0.6215 -0.13286 0.14562 
ITEM25 0.39618 0.671 0.14022 -0.01017 
ITEM26 0.3352 -0.1079 -0.16615 0.63102 
ITEM27 0.40415 0.67427 0.14342 -0.01043 
ITEM28 0.49166 0.63749 -0.04894 0.16339 
ITEM29 0.34421 0.45097 0.12787 0.08247 
ITEM30 0.33719 0.60829 -0.14693 0.12939 
ITEM31 0.34166 0.53034 -0.0864 0.1359 
ITEM32 0.22512 0.59871 0.0203 0.05546 
ITEM33 0.01261 0.46789 -0.04759 -0.08676 
ITEM34 0.18862 0.4845 0.09754 0.02331 



Item Loadings on the HSMAT (continued) 

Loadings on First Factor Loadings on Second Factor 
African-
American 

White African-
American 

White 

ITEM35 0.25045 0.46292 0.09747 -0.01476 
ITEM36 0.27667 0.52479 -0.12367 0.17545 
ITEM37 0.18899 0.52858 0.13744 0.01791 
ITEM38 0.3158 0.66996 0.18688 -0.01617 
ITEM39 0.30147 -0.18909 -0.12163 0.46671 
ITEM40 0.44992 0.49804 -0.04204 0.27651 
ITEM41 0.21095 0.4551 0.21189 -0.03349 
ITEM42 0.27531 -0.26865 -0.0299 0.5225 
ITEM43 0.34713 0.46405 -0.05537 0.05812 
ITEM44 0.21234 0.50507 0.14607 0.06052 
ITEM45 0.29518 -0.26558 0.2179 0.45108 
ITEM46 0.43524 0.55273 0.16458 0.16789 
ITEM47 0.1287 0.46327 0.07078 0.08231 
ITEM48 0.12171 -0.32589 0.05985 0.38111 
ITEM49 0.27561 0.56608 -0.09234 0.25716 
ITEM50 0.35917 0.5285 -0.04809 0.17937 


