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Masked language modeling (MLM) is a well-known technique in Natural language
processing (NLP) to train a model on randomly masked tokens and use the trained
model to predict the masked words. FNet is a recently developed Fourier transform-
based transformer that helps solve the MLM problems. It completely eschews the
attention computation that has been relatively very famous and replaces it with Fourier
transform to perform token mixing. The FNet model reduces the computational com-
plexity of self-attention; however, it compromises with the accuracy scores in contrast
to its counterparts. It is well-known that the Fourier transform suffers from the spectral
leakage problem caused by the constraint of undersampling of the frequencies from the
true infinite frequency domain, as a result; FNet suffers from an aliasing problem that
we call text aliasing in our study. The text aliasing, as it resulted from the spectral
leakage in Fourier domain, reduces the FNet’s ability to predict the correct word for a
masked token. In this thesis, we adapted the concept of learning by exclusion that
is well-established in word learning for children’s conceptual development and intro-
duced a new concept of learning by frequency-exclusion in the Fourier domain to
facilitate word learning for machine’s (e.g.FNet’s) conceptual development. The idea is
to detect the effect of word aliasing through the mutual exclusivity of the narrow-band
frequencies, and pass that information to the FNet’s encoding mechanism such that
the encoder can learn the masked tokens as its vocabulary grows. To validate and
evaluate the performance of the proposed approach, we conducted experiments with 15
different sentences as inputs by masking a few words and performing MLM using the
pre-trained FNet model parameters. Our finding is that the integration of the proposed
learning by frequency-exclusion helps FNet to improve its performance.
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Chapter 1: Introduction

Transfer learning-based analysis helps improve the interaction between humans and
machines. Today human-to-machine interaction is getting more popular because of
the latest advancements in technology. Machines can capture the subtle information
in the data and respond intelligently, comparable to human cognition. NLP is a
branch of Artificial intelligence that aims to teach machines to understand, analyze
and comprehend the human language. Appliances like Alexa and Google home have
become a vital part of our lives, and they use NLP techniques to learn language
representations. A few applications of NLP include text summarization [24, 29]
sentiment analysis [21], question answering [19,23] and language translation [28].

1.1 Machine word learning

Learning from text data for a machine is difficult because of problems like contextual
words, homonyms, synonyms, sarcasm, and ambiguity. The same word can have a
different meaning according to the context of the sentence. The sentences "I am doing
the dishes today" and "That dish was delicious" interpret the word "dish" differently.
This problem is categorized as a contextual word problem. Homonyms give rise to a
problem for the machine where the spelling of the two words is the same but with
different meanings. For instance, "The tree bark" and the "dog barks" are very
different in meaning, but the word "bark" has the exact spelling and pronunciation.
Text processing in NLP faces tremendous issues due to synonyms. Multiple words can
express the same feelings. The terms happy, merry, ecstatic, and joyful convey the
same sense, but the intensity of the sentence changes when used in different sentences.
For example, when someone says "I am happy" or "I am ecstatic", they don’t convey
the same meaning. Even though both sentences analyze that the person is happy, the
ecstatic word in the second sentence exaggerates the meaning of happy and gives a
new dimension to the sentence. Another example could be "The building is excellent"
and "The building is magnificent." Here magnificent adds a wow factor that excellent
fails to express. Sarcasm is when someone says something but means precisely the
opposite. For instance, when the weather is terrible, and someone remarks, "It is
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lovely weather today," it actually means the weather is awful but using a positive
statement. An ambiguity arises in machine learning when the system cannot interpret
the pronouns to what noun they are referring to. For example if we consider the
sentence, "The trophy doesn’t fit the suitcase because it is too big.", it is easy for us
to understand the meaning of the word "it" through a process of word learning and
context development. But, for a machine to get the context of "it" is not accessible.
There is an ambiguity concerning whether "it" refers to the trophy or the suitcase."
These problems make text data learning difficult for a machine learning model [26].

1.2 Masked language modeling

MLM is an NLP modeling technique where the model is trained on a large corpus of
data by randomly masking some words. The aim is to predict the masked words by
utilizing the unmasked words. The model derives the context of the sentence using
the unmasked words to predict the word that best fits into the blank word with the
[MASK] token. FNet is a transformer-based architecture that uses MLM to address
some of the language problems discussed above. The uniqueness of FNet is that
it is attention free, unlike its precursor Bi-directional encoder representation from
transformer (BERT) [2]. Self-attention helps evaluate the importance of every word
w.r.t to other words in the sequence by assigning a score in order to determine the
context of that word. This calculation is computationally expensive.

Hence, FNet replaces the self-attention layer with Fourier Transforms to achieve
MLM with limited accuracy. Fourier Transform converts the word representation in
the time domain to the frequency domain by performing DFT on the sequence length
and the dimension length. A significant drawback of the Fourier Transforms is the
spectral leakage problem caused by the under-sampling of the frequencies. As a result,
the spectral leakage creates text aliasing problems in the Fourier domain which affects
the performance of FNet in selecting the correct token for masked words. We perform
frequency-masking for the output generated from Fourier Transform to show the
spectral leakage and the text-aliasing problem. This thesis shows that our technique
learning by frequency exclusion that the FNet can achieve better results when specific
frequencies in the Fourier layer output are excluded. The rest of the thesis is organized
as follows: Chapter 2 discusses the literature survey required to understand the related
work performed to understand the concept of thesis. Chapter 3 describes the FNet
model and the internal working. Chapter 4 explains the methodology incorporated to
achieve the results. Chapter 5 delivers the experimentation and results to prove the
hypothesis. And at last, chapter 6 concludes the experimentation findings and the
scope for future work.
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1.3 Terminologies

This thesis explains models like ANN, BERT, LSTM, MLM, NSP, Bi-LSTM, GRUs,
CECs, LSTM-CRFs, Transformer, and concepts like self-attention to get acquainted
with the previous related work. These concepts are essential because it helps the reader
understand the evolution of the model. However, the principal model and the idea that
drives this thesis are the FNet model and the Fourier layer. The experimentation is
solely based on the Fourier layer to observe and analyze the drawbacks and pave a new
thought process to improve the model’s performance using the Frequency-exclusion
technique. Several new terminologies are introduced and used throughout this thesis,
including text-aliasing, learning by exclusion, learning by frequency exclusion, and
machine word learning. These terminologies are explained below:

• Text aliasing : It is renowned that Fourier Transforms are prone to spectral
leakage problems during windowing. This effect causes the word frequencies to
shift from their original position; thus, creates an aliasing effect. We call this
replacement of word’s frequency from its original position to a shifted position
in the Fourier layer output as text aliasing in the context of word learning.

• Learning by exclusion: The concept of learning by exclusion was introduced and
experimented on children to learn new vocabulary by excluding whatever they
are aware of [8]. In the experimentation, children were shown two images and
hear a word. It is up to the child to associate the heard word to any image based
on phonolgy and guessing. Let’s say the child connects the image 1 with the
heard word and labels it. In order to label the other image, they can completely
exclude the heard word since it is already associated with the first image 1.

• Learning by frequency-exclusion: We borrow the idea of learning by exclusion
to learning by frequency-exclusion in FNet. The low frequencies in the Fourier
layer output are masked by not letting FNet to see the words in that frequencies
and depend on the other unmasked frequencies to infer the words. By doing
so, we have successfully seen the FNet predicting the correct masked words as
high probability word in some cases or moved them from low priority to higher
probability places in the window of 5 predictions.

• Machine word learning : The ability of the machine to understand and interpret
the words in the sentence concerning all aspects of the language like grammar,
context, homonyms, synonyms, ambiguity, sarcasm, etc is termed machine word
learning
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Chapter 2: Background

This section will discuss the major problems existing in the sequence transduction
task of NLP and the new techniques developed to overcome them. We start with
Artificial Neural Networks (ANNs) as they are the building blocks of Deep Learning
[25]. We familiarize with the ANN-based models, the drawbacks associated with
them and the improvements made. Then we discuss about encoder-decoder-based
Transformers designed for machine translation using the self-attention and BERT –
the first pre-trained model to perform MLM. Finally, we discuss about the FNet model,
its advantages, drawbacks as well as literature survey about the Fourier Transforms in
deep learning.

2.1 Artificial Neural Networks

Deep learning is a trusted technique for NLP as it provides flexibility in modeling
that can achieve state-of-the-art results. The deep learning models help eliminate the
scalability issues of big data. Artificial Neural Networks (ANNs) are a class of deep
learning algorithms that mimics the human brain-like structure. ANN consists of an
input layer, a hidden layer, and an output layer. Every layer has its own set of neurons
and is connected to subsequent layers. A simple architecture of an ANN is shown
in Figure 2.1. Every node or neuron is associated with an input, weight, bias, and
output. Each neuron is assigned a value between 0 and 1, called the activation value.
An input text or image is passed through the input layer, giving weights to every layer
connection. The input passes through the input layer first and then activates the
neurons in the next layer based on the weighted sum of the connections. The weights
and biases are initialized to small random numbers. The formula for the weighted
sum is [16]:

y =
n∑

i=1

wi × xi + bias (2.1)

A weighted sum is calculated to activate a neuron, which can sum up to any value. But
for activation, we need values between 0 and 1 because the neurons have activation
values between 0 and 1. Hence, the weighted sum is passed through an activation
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Figure 2.1. Artificial Neural Network. The diagram shows the multiple layers of ANN

function like a sigmoid or logistic curve that yields a value between 0 and 1. Ideally,
negative inputs end up close to 0, and positive numbers end up close to 1. The
activation neuron is a measure of how positive the weighted sum is. There are cases
where the weighted sum is greater than the required value, in which case a bias is
added to make the sum 0. The bias is added to the weighted sum before passing
through an activation function. The input reaches the output layer by activating
multiple neurons in the hidden layer with some output. This one iteration of input
data from the input layer to the output layer is called Forward propagation. The
results obtained in the forward propagation are not correct yet. The algorithm must
evaluate the error and backpropagate to reduce the losses by updating the weights
and biases. The weights are updated by taking the difference between old weight and
learning rate product and derivative of loss function w.r.t to that weight. The weight
updates in the backpropagation is given by [10]:

Wnew = Wold − η(
∂L

∂Wold

), (2.2)

where the loss function L is defined by L = y − ŷ. Weights are updated backward
from the output and hidden layers up to the input layers. This iteration of a single
forward and backward propagation is called an epoch. A neural network can run many
epochs until the losses reach the minimum and the distance between the original and
predicted output is reduced. Generally, the learning rate is set to the minimum value
to help the model learn optimally by updating the weights minimally. Even though
the process can take longer with a lower learning rate, reaching the global minimum
in the gradient descent curve becomes easy.
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Recurrent Neural Networks (RNNs) are built from recurrent ANNs popularly used
for deep learning objectives. They are trained from left to right on sequential data
and suitable to preserve the long-term dependencies [20]. But as the length of the
text sequence increases, the weight updates in backpropagation get weaker or higher,
giving rise to vanishing and exploding gradient problems [12]. As a result, it reduces
the training ability of the model and produces inaccurate models. Hence RNNs
become unsuitable for preserving long-term dependencies. Long short term memory
(LSTM) overcomes the error in backpropagation by maintaining the constant error
flow through constant error carrousels (CECs) within special units called cells [13].
Gated recurrent units (GRUs) alleviates the vanishing gradient by introducing a
reset gate and an update gate [7]. The gates are vectors that filter the information
flow by deciding what information is passed to the output layer. Several versions
of LSTM like Bi-directional LSTM (Bi-LSTM), LSTM - Conditional Random Field
(LSTM - CRF), and BI-LSTM-CRF have experimented with sequence tagging tasks
achieved state-of-the-art results [14]. These versions of LSTMs improved the model’s
performance in preserving the context of the sequences for a longer time and alleviated
the vanishing gradient concerns. Although they circumvent the vanishing gradient
problem and help maintain the context of the sentence for a more extended sequence,
the definition of the longer sequence is limited to sequences of length 100s or 1000s
but not for 10000s and more.

2.2 Transformers - a self-attention model

As the word suggests, a Transformer helps transform or translate a sequence of words
from one form to another, like language translation, question answering, and chatbot
conversation. The Transformer does not have any Recurrent Neural network to re-
member the sequential information of words in a sentence. Instead, it has layers of
multi-headed attention and feed-forward layers packed inside the stack of encoders and
decoders. The attention mechanism notes down keywords or attention words that are
important to the semantics of the sentence. This process helps the decoder decipher
the meaningful translation from the given input. Other models like GRU and LSTM
provide the memory of sequence for a short period, but attention-mechanism retains
an infinite window given proper computational resources. Self-attention enables the
model to associate each word in the input with other words. Self-attention is the
method the Transformer uses to bake the understanding of other relevant words into
the one we’re currently processing. Remember the text example we considered in the
introduction, "The trophy doesn’t fit the suitcase because it is too big." Here for a
normal human being, it is easy to understand what "it" refers to in the context. But,
for a machine to get the context of "it" is not accessible. Self-attention model scans
each word (each position in the input sequence) and allows to look at other places in
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the input for hints that can help lead to a better encoding for this word. Now the
machine will be able to associate "it" with "trophy."

The self-attention calculation is entirely dependent on the Query (Q), Key (K),
and Value (V) vectors. Q, K, and V are obtained by multiplying the word embedding
with the weight matrix WQ, WK, and WV respectively. These vector dimensions are
typically lesser than the dimension of word embeddings. Each word allocates a score
to other words in the sentence to determine the importance of that word. The score is
calculated by the dot product of Q and K vectors at each location, divided by the
square root of query and key vector’s dimension (dk), and then passed through a
softmax function. A higher softmax value means that word requires more attention
while processing a current word. Multiply the resulting number by a Value vector to
keep the essential words for the context and chop off the low-scored words. BERT
generates Value vectors for every word while processing a current word, and the value
vectors are summed at each position. Instead of using a single attention calculation,
multiple attention vectors are calculated by linearly projecting the Query, Key, and
Value vectors h times (h-number of heads) using multi-headed attention. In the case
of BERT, the h value is 8 and dk is 64 and dmodel is 768. Finally, concatenating the
attention calculated at each head and multiplying with a weight matrix WO since the
concatenated dimension does not match the original dimension. The attention layer
output is then passed to feed-forward layers and the process repeats for n-encoders.
The attention matrix calculation is given by the formula [27]:

Attention(Q,K, V ) = softmax
QKT

√
dk

× V (2.3)

Multi-headed attention is calculated by the formula [27]:

Multi-head(Q,K, V ) = Concat(head1, ......., head12)WO (2.4)

where each head is given by the formula [27]:

headi = Attention(QWQ
i , KWK

i , V W V
i ) (2.5)

2.3 Pre-training and its advantages

Traditionally, a neural network is trained by initializing random weights and then
updating the weights in backpropagation. Once the training is complete, the weights
are saved to perform analysis on future data. Let’s say we have trained the model on
text data and want to perform some other classification on new data, but text data.
Instead of starting from scratch from weight initialization and going over the process
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all over again, what if we can use the old weights to give the model some context
about the data beforehand?. Yes, the former model in such a case is the pre-trained
model. The trained weights are used as a starting point instead of initializing the
weights to random numbers and help the machine to have some knowledge before it is
trained for some other related task. Pre-training improves the fine-tuning tasks by
reusing the model weights.

2.4 BERT Architecture

BERT is an unsupervised language model pre-trained on a large corpus of unlabelled
data trained with an objective of Masked Language Modeling (MLM) and Next Sen-
tence Prediction (NSP)[6]. It is the most reliable and flexible model that performs
various NLP tasks like Question Answering, abstract summarization, sentence predic-
tions, etc. The Bi in BERT emphasizes on the bi-directional training capacity. MLM
helps the model look to the right and left sides of the masked word to obtain the word’s
context in the sentence. The context learning happens via the self-attention layer
present in the stacked encoders of BERT. The RNNs were only capable of left-to-right
sequential training. The main goal of the BERT is to provide bi-directional and
parallelization features for training that RNN and Transformer failed to deliver. Also,
the pre-training helps the model fine-tune into various NLP applications.

BERT constitutes 12 identical encoders that are stacked and fully connected. Each
encoder has a Multliheaded attention layer, a normalization layer, and a feed-forward
layer. The first encoder receives the input and passes its output to the successive
encoders. At the end of 12 encoders, there is an Output layer for classification tasks.
Figure 4 shows a simple diagram of BERT architecture and components of the encoder.
To achieve MLM, BERT takes a large corpus of the unlabelled dataset by randomly
replacing 15% of the tokens with a unique token called [MASK]. Let’s take a simple
original sentence - "Machine Learning is an art" and mask the word "art" with [MASK].
The input sequence to the model becomes "Machine Learning is an [MASK]." After
pre-training, the model should be able to predict the masked word "art." NSP is a
binary classification task and takes two sentences as input separated by a special token
[SEP]. It predicts whether the second sentence follows the first sentence by outputting
0 or 1. If the second sentence follows the first sentence logically at any point in the
dataset, it outputs 1 and vice versa. [CLS] token marks the beginning of a sentence,
and [SEP] determines the end of a sentence. After adding the special tokens, the
complete input to the BERT becomes [CLS] Machine Learning is an [MASK]. [SEP] I
am very interested in [MASK] about it.[SEP].
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Figure 2.2. BERT. The BERT BASE architecture comprising of 12 encoders

BERT requires a specific format of the input. Every word in the input sequence
is converted to tokens and then to a token id that matches the words in the BERT’s
vocabulary. The token ids are converted into word embeddings and summed with
positional embedding to preserve the order of words. The dimension of the word
embeddings is [MAX_SEQ_LENGTH, HIDDEN_DIM]. The MAX_SEQ_LENGTH
is 512, and HIDDEN_DIM is 768. The first encoder receives an embedding vector of
size 512 and a hidden dimension of size 768. The output from the first encoder is given
to the subsequent 11 encoders and then projected over a classification layer to get the
output. Figure 2.2 shows the components of encoder and 12 encoder connections up
to classification layer.

Attention mechanism provides flexibility, resolves one of the significant issues of
NLP of context preservation, and allows parallel training. But is it the optimal
technique? To find out, let’s evaluate the time complexity of the algorithm. Q KT

multiplications over Query and Key vectors of n×d and d×n matrices at every position
in the sentence result in n2d complexity. After applying the softmax on the n×n matrix
and multiplying the resulting matrix with the Value vector of n×d matrix yields n2d.
Since the evaluation of these matrices happens parallelly in multi-headed attention,
the end complexity is n2d. The higher time complexity gives rise to complex and
time-consuming evaluations and a genuine question - Do we really need self-attention?
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Several novel attempts were made to reduce the Quadratic time and space complexity
to linear time by altering the original attention layer. Performers modified the initial
attention with Fast Attention via a positive orthogonal random features approach
(FAVOR+) [4]. Linear Transformers replaces the actual softmax-based attention
with feature map-based dot product attention to achieve linear time complexity[15].
Longformer can process thousands of tokens linearly by drop-in replacement of self-
attention combined with local and global windows [1]. It gives attention to each word
locally and globally within the specified window, unlike BERT, where the attention is
provided locally for a given window length. These methods tweak the attention layer
but cannot erase the memory footprints and are still considered memory-bound. FNet
replaces the self-attention with a non-parametric Fourier Transform, which eschews
any learnable parameters in that layer, allowing a lighter memory footprint.

The use of Fourier transforms in the neural network is not new. In [3], Fourier
transforms are used in convolutional neural networks (CNN) to speed up the training
process. In [11], the authors further reduce the complexity of convolution in the
Fourier domain using the overlap-and-add method. FCNN trains the CNN completely
in the Fourier domain by initializing the convolutional kernels in the Fourier domain
as in [22]. ANNs are also trained by initializing weights using the Fast Fourier as in
[9]. FNet also utilizes the Fourier transformation to achieve a better computational
efficiency.

2.5 Drawback of Fourier transforms

Spectral leakage is an inherent problem in the Fourier transforms. FNet performs
Fourier transformation on the word embeddings to perform mixing of tokens. As a
result, spectral leakage of the word’s spectrum passes through subsequent layers and
results in wrong predictions sometimes. To show the spectral leakage problem in the
Fourier layer, we used the output of sentence 1 test case and generated the magnitude
spectrum of the Fourier layer output. The word embeddings are passed through the
FFT function, and the mean of 512 points (Maximum sequence length in FNet) over
the 768 dimensions is plotted in blue color. The average of windowed 496 points out
of 512 is plotted over the 768 dimensions in the red color of Figure 2.3. The original
magnitude spectrum of the word embedding is in blue. When the window of 496
values is taken from the actual embedding, spectral leakage can be observed in the
red as its magnitude spectrum deviates from the original spectrum. In our case, the
words are moving away from their original position where they are supposed to be.
And when the masked words are searched in the original frequencies, assuming that it
is present, there is no way to extract it because that information has moved to some
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other position. In the case of FNet, when the word embeddings that are windowed to
the length of 512 words are passed on to the Fourier layer, it generates a spectrum
of word frequencies replaced by their original position due to spectral leakage. This
leakage creeps into the subsequent layers and iterations, causing the model to predict
inaccurate words. We tackle the wrong predictions resulting from the spectral leakage
by employing learning by frequency-exclusion.

Figure 2.3. Spectral Leakage representation for Sentence 1 experiment. The blue
line represents the plot for 512 words over averaged 768 dimensions. The red plot is
the plot of 496 points over mean of 768 dimensions. The red line is leaked from it’s
original spectrum as a result of windowing
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Chapter 3: FNet model

FNet is a transformer model that replaces the self-attention layer with a Fourier
transform. It addresses the MLM problem by reducing the computations using FFT.
FNet performs 80% faster in GPUs and 70% faster on TPUs than its counterpart
BERT while performing the same task but with a bit of compromise in the accuracy.
Even though self-attention is a powerful tool to provide the language with contextual
information using MLM, the computational complexity of self-attention is O(n2). The
algorithm fails to scale up as the sequence length increases. While the models like
Linformer, Longformer have approximated self-attention to speed up the computation,
the concept of self-attention persists. FNet eschews the self-attention and expensive
dot product cost associated with a non-parametric Fourier Transform layer. Fourier
Transform is a mathematical function that converts the time domain x(t) values to
the frequency domain x(ω). The best time complexity available to compute the FFT
of a matrix is O(n log n) [5]. For any sequence xn where n ranges between 0 to n-1,
the DFT is defined by the formula:[18]

Xk =
N−1∑
n=0

xn × e
−
2πnki

N (3.1)

=
N−1∑
n=0

xn × [cos(
2πnk

N
)− i× sin(

2πnk

N
)], (3.2)

where i =
√
−1 and 0 ≤ k ≤ N − 1. FNet uses Discrete Fourier Transform (DFT)

to perform FFT operations. 2D DFT is performed on the word embeddings - one
1D DFT along the input sequence length (Fseq) and one 1D DFT along the hidden
dimension (Fh). FNet encoders alternatively operate in frequency and time domain.
When FFT is applied in second encoder it converts the output back in to its original
"time" domain and the process repeats in subsequent layers [18].

y = ℜ(Fseq(Fh(x))) (3.3)
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3.1 FNet Architecture

The FNet architecture is same as BERT, pre-trained on a large corpus of text data
to perform MLM and NSP. Still, the only difference being self-attention is replaced
by Fourier transformation. It has two variants, the "Base" and "Large" models like
BERT with 12 and 24 encoders, respectively. In this thesis, we are using the FNet
"Base" model. The input text is decomposed into word, position, and type embeddings
and summed to get the information as a single embedding vector. The embedding
vector is passed to the first encoder, output from the first encoder is fed to the second
up to 12 encoders. Each encoder comprises Fourier and Feed Forward layers. The
output from the last encoder is passed through a dense layer and then through the
output projection to perform the classification task. Figure 3.1 shows a simple FNet
architecture with 12 encoders.

Figure 3.1. FNet. The FNet architecture comprised of 12 encoders

3.2 Dataset and Sentencepiece

The FNet is pre-trained on c4/en dataset [18]. It is a cleaned version of common
crawl’s web crawl corpus. It has five columns, content-length, content-type, text,
timestamp, and URL. The only required column for the training is "text," and can
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Figure 3.2. c4 Dataset. The diagram shows the various columns of c4 dataset
Source: https://www.tensorflow.org/datasets/catalog/c4

contain varied lengths of words. The Figure 3.2 displays the sample dataset of c4.

The Sentencepiece is a vocabulary model that generates tokenizes and detokenizes the
subwords for the given input sentences. It is a language independent model and used
to generate vocabulary for specific datasets [17]. Sentencepiece is trained on the c4
dataset to generate all possible tokens for the dataset. It uses Byte Pair Encoding
(BPE) and Unigram model to create tokens or vocabulary. The vocabulary has 32000
tokens, each token saved in one line. The line numbers are the token ids for the
corresponding tokens. Figure shows a sample arrangement of token ids from 0 to 19
and corresponding tokens in the Sentencepiece vocab file. Similarly there are 32,000
token ids and tokens are available in the model.

The model has few special tokens, [CLS] - marks the beginning of a sentence, [SEP]
- a separator that separates two sentences and also exists at the end of a sentence,
<pad> - when the default array size cannot be filled because of shorter sequence, in
such cases the remaining values are filled with <pad>. The system ignores that token
whenever it’s read. Table 3.1 represents the special tokens used in FNet model and its
usage.
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Table 3.1. Sentencepiece model’s special tokens

Token Token id Usage

[CLS] 4 Used at the indicate the start of a sentence
[SEP] 5 Used to indicate ending of a sentence

[MASK] 6 Used to mask a word
<pad> 3 Used to pad the input arrays if sequence length is less than 512

< unk > < s > < /s > < pad > [CLS] [SEP ] [MASK]
0 1 2 3 4 5 6

_t _a in he re on _the
7 8 9 10 11 12 13

. wrest . . . R

. 15000 . . . 31999

Let’s take a simple sentence, "Machine Learning is an art" to understand the
tokenization process." Every word in the sentence tries to search for the same word
in the Sentencepiece model. If present, the row number of the corresponding word is
returned as token id. According to the output in the matrix representation below, we
can observe that all the words are present in the vocabulary and returns the token ids.
An underscore is always appended at the beginning of a sentence and in-front of every
token to indicate the presence of special character space.

_Machine _Learning _is _an _art .
8224 7789 65 102 747 16678

If a word is not present, it is split into subwords that can match the words in the
vocab and return their token id. This behavior can be seen in below representation,
where the word "ambiguous" is not present in the vocab, but splits it into three
subwords that are present in the vocab. We can also see in Figure 3.5 that there is no
underscore with "ig" and "uous" because "ambiguous" is one word and there is no
space present in between.

_amb ig uous
5271 81 8075
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Chapter 4: Methodology

The process followed in the thesis involves two parts. First, we analyze the original
FNet model by passing an input sequence to perform MLM. We analyze the Fourier
layer output by drawing the magnitude spectrum and shifting the low-frequency
content to the middle using fftshift. Secondly, we modify the Fourier layer output by
masking the low-frequency region with 0 and predicting the masked words. Figure 4.1
and Figure 4.2 shows a generalized view of the methodolgy.

Figure 4.1. Pre-Trained Model. The FNet model pretrained on MLM and NSP

Figure 4.2. Our Modified Encoder. Fourier layer output is masked for various combinati
ons of low frequencies and forwarded to subsequent layers

In part one, we will walk through the execution of a simple sentence, "I want to
drive. But I am afraid of vehicles on the road". To achieve MLM, two words, "want"
and "road," are masked so that the model can predict the original words. The same
sentence is passed through the Pre-Trained model in Figure 4.1 and the modified
encoder in Figure 4.2.

The first step is to convert the words in the sentence to tokens using the Sentencepiece
model. For the machine to understand the start and end of a sentence, the start posi-
tion is prepended with a special token [CLS], and [SEP] is added after each sentence
to mark the end of a sentence. Once the modified input is passed to the Sentencepiece
model, it breaks the sentence into tokens. Figure 4.3 shows the generation of tokens
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and input ids using the Sentencepiece model. From Figure 4.3, we can see that [CLS]
is present in the 4th line, [SEP] in the 5th line, But in the 760th line of the model,
and the same holds for all other words. FNet has a constraint for the length of the
sequence to be 512. Suppose the sequence length is less than 512. In that case, the
remaining values will be padded with <pad> value, i.e., 3. Hence the shape of the
input id is [BATCH_SIZE, MAX_SEQUENCE_LENGTH]. The BATCH_SIZE for
the experimentation is 1. Figure 4.4 and Figure 4.5 shows the input id and type id
matrix for the sentence shown in Figure 4.3

Figure 4.3. Sentencepiece model. The input and output from the Sentencepiece
represented with a simple sentence.

The embedding layer takes in two parameters as its input - input id and type id. Type
id is the same shape as input id but used to represent the difference between sentence
one and sentence 2 for NSP. The length of sentence one is filled with 0, sentence two
with one, and the remaining values with 0. The token id and input id are passed into
the embedding layer to generate the word, type, and position embeddings. The embed-
ding layer converts the tokens into embeddings of dimension 768. Hence, the output of
the embedding layer is of the shape [BATCH_SIZE, MAX_SEQUENCE_LENGTH,
EMB_DIMENSION], and in our cases, it is [1,512,768]. Word, type, and position
embedding inside the embedding layer are added and represented as a single embedding
and returned. Embedding layer can be visualized as in Figure 4.6 and a sample output
is shown in Figure 4.7 The Pre-Trained FNet checkpoints are used to test the sentence.
The checkpoints are saved for each iteration of the encoder and all the layers inside
it. It consists of a dictionary with all the layers of FNet as keys and the associated
weights. The keys in the dictionary are embedder, encoders (0 to 11), Feed Forward
(0 to 11), and pooler. One can also view the output at each iteration. The embedder
does not have iteration because it generates the input ids. For embedding layer ther
is only one checkpoint param i.e., embedder. Fourier layer does not have checkpoint
parameters because it is non-parametric. Other layers like normalization and feed
forward layers takes parameters like encoder_0 and feed_forward_0 respectively for
layer 1. Similarly, other layers can be executed individually by giving the respective
checkpoints to the layers.
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Figure 4.4. Input ids. Input tokens of shape 512 - empty values are padded with 3

Figure 4.5. Type ids. Type ids of shape 512. Type ids are used to represent sentence
1 length with 0s and sentence 2 with 1s and is helpful in NSP task
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Figure 4.6. Embedding Layer. Embedding layer inputs and outputs shapes

Figure 4.7. Embedding Layer. A sample output of embeddings for sentence 1 experi-
mentation

The embedding layer output next goes through the Fourier Transform as in Figure 4.8.
2D DFT is applied across the length of the sequence and the hidden dimension, 1D
DFT across the sequence dimension, Fseq, and 1D DFT along the hidden dimension,
Fh, and returns the real part of Fourier output. A sample fourier output can be seen
in Figure 4.9. The equation for 2D Fourier transformations is given as below:

y = ℜ(Fseq(Fh(x))) (4.1)

Fourier output is passed to subsequent Feed Forward layers in the next step, as
shown in Figure 3.1. Our area of interest is to analyze the importance of frequencies in
the Fourier layer. The model predicts the masked words as in Figure 4.10. A sequence
of possible words are generated that fit into the blank position by rearranging the
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Figure 4.8. Fourier Layer. Produces the real part of resulting DFT

Figure 4.9. Fourier layer output. The real part of the output produced by applying
DFT on embedding layer output

Sentencepiece model. In Figure 4.10, we can see the first five potential values that fit
into the masked position, and according to the original sentence, the first value in the
array fits perfectly in the blank.

In part two, we will discuss the modifications performed to the Fourier Transform
layer for the same sentence considered above. The original flow of the model remains
the same, but we tweak the Fourier layer by masking the low frequencies to find the
impact in predictions. The dimension of the Fourier Layer output is (1,512,768) and
is reshaped to ((1*512), 768) to obtain the magnitude spectrum in 2 dimensional form.
We sum the frequencies at each word location and perform a fftshift operation on
the fourier layer output to produce the magnitude spectrum of the sentence. The
fftshift function rearranges the spectrum by moving the zero-frequency content to
the middle of the array. The dimension of the input embedding is (1,512,768) and is
reshaped to (BATCH_SIZE*512), 768 to get the magnitude spectrum in 2D form.

20



Figure 4.10. Masked words prediction. The masked words with the [MASK] keyword
are predicted

For the experimentation, we will be using BATCH_SIZE = 1. Since the length of
the input id is 512, the mid-frequency region is available at 256th and 257th locations.
We mask the zero-frequency part and areas around the zero-frequency, both LHS and
RHS components, by setting the values to 0. The masking technique is followed for
multiple regions in the magnitude spectrum. The fftshift is inversed after making the
required frequencies zero by performing inverse FFT shift. The word-frequencies are
masked at various locations of low frequency regions and few samples are shown in
Figure 4.11 The modified input is converted to its original dimension and passed on
to the Feed Forward layers. In Figure 4.11 (a), the original spectrum of sentence 1
experimentation is plotted without any masking of frequencies. The zero frequency
component is brought to the middle. In Figure 4.11 (b), we can observe the behaviour
of plot when the zero-frequency region is masked. Similarly, the masking region 1 to
9, 230 to 239, 254 to 259, and 259 to 263 plots can be observed from Figure 4.11 (c),
(d), (e), and (f) respectively. These are the sample masking techniques discussed, but
there are also many other regions that are masked for the experimentation and will
be explained in detail in experimentation section.
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(a) magnitude spectrum: original
(b) magnitude spectrum : masked position 256
and 257

(c) magnitude spectrum : masked position 1
to 9

(d) magnitude spectrum : masked position 230
to 239

(e) magnitude spectrum : masked position 254
to 259

(f) magnitude spectrum : masked position 259
to 263

Figure 4.11. Summed magnitude spectrum of Fourier layer output to visualize the
masked positions
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Chapter 5: Results

This section will discuss the experimentation conducted and the results obtained. The
results are divided into three sections: ace-case scenario, average-case scenario and
adverse-case scenario. FNet’s performance on the learning by frequency-exclusion are
discussed for these three cases. Also, the improvement in the predictions of masked
words which are giving better results than FNet original predictions are also discussed.
The experiment is conducted on 15 different sentences of various lengths. Some of
the words in the sentences are masked using the special token [MASK] and passed
through the original FNet encoder to get the masked words. The same sentences are
again experimented with by masking various low-frequency regions. The low-frequency
region is achieved by performing fftshift on the Fourier output of the word embeddings
of size [512, 768].

5.1 Ace-case scenario

Sentences 1, 4, and 7 performed equivalent to FNet in terms of predictions in multiple
frequency-exclusion scenarios. A very simple sentence is considered for the first experi-
mentation and the sentence was able to predict the correct words for masked tokens in
original encoder as well as the refined Fourier Transform. The sentence is "I [MASK]
to drive. [SEP]But I am of afraid of vehicles in the [MASK]." The masked words being
mask0 - want and mask1 - road. The FNet original encoder predicts the desired words
and our model also predicts the correct words. FNet predicts the range of words that
best fits the masked word. Ideally, it re-organizes the sentencepiece model with the
highest probable word to the least probable word. For the experimentation we only
consider top five predictions.

In Figure 5.1, the ignored or windowed frequencies are made to 0 so that they are
not considered during prediction. It should be noted that since the experimentation
was performed in python, the selection [256:258] means the frequency band 256 and
257 were masked. It can be observed that the "want" is predicted as the first choice
in 19 cases and road is predicted with high probability in 25 scenarios. With some
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masked window like [250:254], [254:356], the expected words move farther from the
expected position. It can also be noted that in frequency-exclusion window [257:259],
[257:261], [258:260], [254:260], [259:265], [259:270] and [280:310] the required word
does not appear in the prediction window signifying the importance of the frequencies
in the prediction task. We evaluated these results by assigning weights to the FNet
predictions. 1st was assigned a weight of 5, 2nd position with 4, 3rd position with 3,
4nd position with 2 and 5th position with 1. At every masked window, we count the
occurrence of all the original predictions of FNet at each position and multiply with
assigned weights. Figure 5.2 shows the histogram for the weighted results. It is evident
that for mask 0, "want" has the maximum occurrence and for mask 1, "road" has the
maximum occurrence making our model behaving equivalent to FNet’s prediction but
using lesser frequencies.

Figure 5.1. Masked words predictions for original encoder in FNet and our modified
encoder for various frequency masks.
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(a) mask 0 words (b) mask 1 words

Figure 5.2. Histogram for Test 1 sentence - mask 0 and mask 1

Sentence 7 is a bigger sentence than sentence 1 and the count of masked words
are 9. A similar experiments were conducted as sentence 1 and the results are shown
from Figure 5.3, Figure 5.5 to Figure 5.7. The weighted sum v/s FNet predicted
words are also represented for the corresponding masks in Figure 5.5 to Figure 5.7.
The first row mentions the original words that are masked. The second row contains
the original FNet predictions without any frequency mask. FNet predicts the correct
words as the first option for all masks except mask 7. For mask 7, the correct word
"prestigious" is predicted as the 5th priority. But it can be seen that all other words
predicted from 1st to 4th position are synonyms of the word "prestigious". FNet
fails to predict the correct word as first option due to the presence of synonyms and
inability to extract the context from the unmasked words. From 5.7 it can be noted
that the word "prestigious" is moved from the last place to the first place in some of
the frequency-masks proving that the model can learn or predict the accurate words
by frequency-exclusion. From the histograms, it is evident that frequency-exclusion
technique performs equivalent to original FNet. Frequency-exclusion technique helps
the model to look into available frequencies and picking up the correct word at first
position as in case of mask 7. Sentence 4 is experimented by masking 8 words and
6 out of 8 words are predicted as the first choice both by original FNet and by
frequency-exclusion technique. The results can be viewed in Figure 5.9.
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Figure 5.3. Ace case scenario. The sentence 7 was able to predict 8/9 masks. Mask 0,
Mask 1 and Mask 2 results shown

(a) mask 0 words (b) mask 1 words (c) mask 2 words

Figure 5.4. Histogram for Test 7 sentence - mask 0, mask 1 and mask2
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Figure 5.5. Ace case scenario. The sentence 7 was able to predict 8/9 masks. Mask 3,
Mask 4 and Mask 5 results shown

(a) mask 3 words (b) mask 4 words (c) mask 5 words

Figure 5.6. Histogram for Test 7 sentence - mask 3, mask 4 and mask 5
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Figure 5.7. Ace case scenario. The sentence 7 was able to predict 8/9 masks. Mask 6,
Mask 7 and Mask 8 results shown

(a) mask 6 words (b) mask 7 words (c) mask 8 words

Figure 5.8. Histogram for Test 7 sentence - mask 6, mask 7 and mask 8
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(a) mask 0 words (b) mask 1 words (c) mask 2 words

(d) mask 3 words (e) mask 4 words (f) mask 5 words

(g) mask 6 words (h) mask 7 words

Figure 5.9. Histogram for Test 4 sentence - mask 0 to mask 7

5.2 Average-case scenario

Sentences 6, 9, 11, and 15 are categorized as average performing sentences as they
did not predict all the masks correctly but at least half of them. The weighted
sum v/s FNet predicted words histogram is shown for all the sentences from Figure
histograms of the results are presented for the sentences in Figure 5.10 and Figure
5.11. Sentence 11 is masked with 11 words and the frequency-exclusion technique
correctly predicts 6 out of 11 words as high probability word similar to original FNet.
Sentence 6 has 7 masked words among which 3 are predicted correctly by our modified
encoder. Sentence 9 has been masked with 4 words and correctly predicts 2 of them.
Sentence 25 has 7 masked words and the frequency-exclusion predicts 3 words at the
first position.

29



(a) Test 11 - mask 0 (b) Test 11 - mask 1 (c) Test 11 - mask 2

(d) Test 11 - mask 3 (e) Test 11 - mask 4 (f) Test 11 - mask 5

(g) Test 11 - mask 6 (h) Test 11 - mask 7 (i) Test 11 - mask 8

(j) Test 11 - mask 9 (k) Test 11 - mask 10 (l) Test 6 - mask 0

(m) Test 6 - mask 1 (n) Test 6 - mask 2 (o) Test 6 - mask 3

Figure 5.10. Histogram for Test 11 sentence - mask 0 to mask 10, Test 6 sentence -
mask 0 to mask 3
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(a) Test 6 - mask 4 (b) Test 6 - mask 5 (c) Test 6 - mask 6

(d) Test 9 - mask 0 (e) Test 9 - mask 1 (f) Test 9 - mask 2

(g) Test 9 - mask 3 (h) Test 15 - mask 0 (i) Test 15 - mask 1

(j) Test 15 - mask 2 (k) Test 15 - mask 3 (l) Test 15 - mask 4

(m) Test 15 - mask 5 (n) Test 15 - mask 6

Figure 5.11. Histogram of weighted sum for Test 6 sentence - mask 4 to mask 6, Test
9 sentence - mask 0 to mask 3, Test 15 sentence - mask 0 to mask 6
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5.3 Adverse-case scenario

Sentences 2, 3, 5, 8, 10, 12, 13, and 14 are categorized as adverse-case scenario as
the model was able to predict the correct words to a maximum of 2 words. Sentence
2 predicts 1 out of 5 , sentence 3 predicts 1 out of 5, sentence 5 predicts 1 out of 5,
sentence 8 predicts 1 out of 6, sentence 10 predicts 1 out of 8, sentence 12 predicts
1 out of 8, sentence 13 predicts 2 out of 12, and predicts 2 out of 10 masked words.
The histogram of weighted sum v/s FNet masked words is shown from Figure 5.12 to
Figure 5.15.

5.4 Improvement in FNet due to learning-by-exclusion

This section discusses the improvement in the predictions when the model was allowed
to predict the words without seeing a specific range of frequencies which we call
learning by frequency-exclusion. Along with correctly predicting the words as high
probability words similar to FNet, the frequency-exclusion technique improves the
FNet’s ability to bring the words from a farther position in the prediction window to
a nearer place. The table 5.1 shows the improvements made in 5 masked words. The
masked word "scheduling" has shifted from 3rd position to 2nd, "care" from 4th to 1st,
"performance" from 3rd to 1st, "preferences" originally not predicted in the window
show up in 5th position, and "critical" moved from 4th place to 2nd place.

Table 5.1. Learning-by-exclusion improvements in Sentence 2 experiments

Mask word Original position Improved position Excluded frequencies

Mask 0 scheduling 3 2 [262:268]
Mask 1 care 4 1 [280:285]
Mask 2 performance 3 1 [280:285]
Mask 3 preferences not present 5 [254:256]
Mask 4 critical 4 2 [242:247]

Sentence 3 predictions at mask 0 and mask 1 has improved from its original position
as shown in table 5.2. Similarly sentence 5, sentence 6, sentence 7, sentence 8, sentence
9, sentence 10, sentence 11, sentence 12, sentence 13, sentence 14, and sentence 15
have proved to perform better than original FNet by employing frequency-exclusion
technique. The results can be viewed from table 5.2.
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Table 5.2. Learning-by-exclusion improvements in Sentence 3 to 15 experiments

Note: The Excluded frequency column mentions only one frequency masking. But the
same results are obtained in multiple frequency-masking as well

Exp No Masks word Original pos Improved pos frequency excluded

sentence 3 Mask 0 worried 3 2 267:271
sentence 3 Mask 1 depression 4 1 267:271
sentence 5 Mask 0 essential 3 1 267:270
sentence 5 Mask 4 presence 4 1 267:270
sentence 6 Mask 3 innovation 2 1 257:259
sentence 7 Mask 7 prestigious 5 1 248:256
sentence 8 Mask 2 struggle 3 1 257:260
sentence 9 Mask 2 techniques 4 2 242:247
sentence 10 Mask 0 necessity not present 2 256:258
sentence 10 Mask 2 still 2 1 243:247
sentence 10 Mask 4 cooking 3 2 272:274
sentence 10 Mask 5 relationship 2 1 243:247
sentence 10 Mask 6 memories not present 4 257:259
sentence 11 Mask 0 spectacular 2 1 267:271
sentence 11 Mask 6 perspective 5 2 262:268
sentence 12 Mask 1 significant 4 2 267:270
sentence 12 Mask 6 forgotten 3 2 245:248
sentence 12 Mask 8 widespread not present 5 267:270
sentence 13 Mask 2 tough 4 2 251:256
sentence 13 Mask 4 values 4 3 500:511
sentence 13 Mask 6 emerge 5 4 245:248
sentence 13 Mask 11 positive 3 1 251:256
sentence 14 Mask 0 greatly not present 5 245:248
sentence 14 Mask 4 massive not present 2 230:240
sentence 14 Mask 5 launched 4 3 245:248
sentence 14 Mask 9 culinary 5 4 265:268
sentence 15 Mask 1 safety 2 1 262:268
sentence 15 Mask 2 advanced 3 1 257:261
sentence 15 Mask 3 capabilities not present 4 262:268
sentence 15 Mask 5 charged 4 2 230:240
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(a) Test 2 - mask 0 (b) Test 2 - mask 1 (c) Test 2 - mask 2

(d) Test 2 - mask 3 (e) Test 2 - mask 4 (f) Test 3 - mask 0

(g) Test 3 - mask 1 (h) Test 3 - mask 2 (i) Test 3 - mask 3

(j) Test 3 - mask 4 (k) Test 5 - mask 0 (l) Test 5 - mask 1

(m) Test 5 - mask 2 (n) Test 5 - mask 3 (o) Test 5 - mask 4

Figure 5.12. Histogram of weighted sum for Test 2 sentence - mask 0 to mask 4, Test
3 sentence - mask 0 to mask 4, Test 5 sentence - mask 0 to mask 4
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(a) Test 8 - mask 0 (b) Test 8 - mask 1 (c) Test 8 - mask 2

(d) Test 8 - mask 3 (e) Test 8 - mask 4 (f) Test 8 - mask 5

(g) Test 10 - mask 0 (h) Test 10 - mask 1 (i) Test 10 - mask 2

(j) Test 10 - mask 3 (k) Test 10 - mask 4 (l) Test 10 - mask 5

(m) Test 10 - mask 6 (n) Test 10 - mask 7 (o) Test 12 - mask 0

Figure 5.13. Histogram of weighted sum for Test 8 sentence - mask 0 to mask 5, Test
10 sentence - mask 7 to mask 4, Test 12 sentence - mask 1
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(a) Test 12 - mask 1 (b) Test 12 - mask 2 (c) Test 12 - mask 3

(d) Test 12 - mask 4 (e) Test 12 - mask 5 (f) Test 12 - mask 6

(g) Test 12 - mask 7 (h) Test 13 - mask 0 (i) Test 13 - mask 1

(j) Test 13 - mask 2 (k) Test 13 - mask 3 (l) Test 13 - mask 4

(m) Test 13 - mask 5 (n) Test 13 - mask 6 (o) Test 13 - mask 7

Figure 5.14. Histogram of weighted sum for Test 12 sentence - mask 1 to mask 6, Test
13 sentence - mask 0 to mask 7
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(a) Test 13 - mask 8 (b) Test 13 - mask 9 (c) Test 13 - mask 10

(d) Test 13 - mask 11 (e) Test 14 - mask 0 (f) Test 14 - mask 1

(g) Test 14 - mask 2 (h) Test 14 - mask 3 (i) Test 14 - mask 4

(j) Test 14 - mask 5 (k) Test 14 - mask 6 (l) Test 14 - mask 7

(m) Test 14 - mask 8 (n) Test 14 - mask 9 (o) dummy

Figure 5.15. Histogram of weighted sum for Test 12 sentence - mask to mask 6, Test
13 sentence - mask 0 to mask 7
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Chapter 6: Discussion

FNet reduces the computational time of training the large corpus of text data to
perform MLM and NSP using the Fourier Transforms. It is empirically shown that
training is 80% faster in GPUs and 70% faster in TPUs when compared to BERT
[18]. However, the inherent problem with the Fourier Transforms was not taken into
account while FNet was built. In this thesis, we have shown the existence of spectral
leakage with our dataset.

Figure 2.3 shows the spectral leakage problem in the red plot. The original fre-
quency domain is infinite, and when the undersampling of data or windowing is
performed over such domain, the information leaks from the original spectrum and
spreads across. We consider 512 points as the infinite domain to show the spectral
leakage problem. An original magnitude spectrum is generated over 512 points by
averaging the 768 features in blue. Then, a windowed frequency of 496 points averaged
at 768 features is laid on the same graph in red to observe the effect of spectral leakage.
As we observe from Figure 2.3 when windowing is performed for 496 points, the
magnitude of the frequency in red moves away from the original spectrum. As a result
of spectral leakage, the words shift from their original position. When the model looks
at that frequency in search of the word, it cannot find it because of "text-aliasing."
The words would have already leaked to other positions due to leakage in the original
spectrum. The model’s ability to capture the correct words for the masks in MLM is
reduced due to spectral leakage. This thesis shows how the model struggles to choose
the masked word as it shifts to another position from the original position in the
frequency spectrum of Fourier layer output. In the experimentation of 15 sentences,
it can be observed some of the words struggle with synonyms problem and fail to
appear as the first choice even though it is present in the prediction window. For
example, in sentence 7, mask 7, the predicted words are "respected", "successful",
"regarded", "ranked", and "prestigious". The correct word for mask 7 is "prestigious"
and is predicted as the 5th option in the window. Similar observations can be made
in sentence 15 as well. Mask 1, 2, 3, and 5 were originally predicted as 2nd, 3rd, not
present in the prediction window, 4th position but improved the predictions to 1st, 1st,
4th, and 2nd positions respectively.
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Similar observations are made in various experiments performed in the thesis. These
results prove that FNet is struggling with the synonyms problem and fails to choose
the correct word matching to the context of the sentence. Our approach of learning by
frequency-exclusion is motivated by learning by word-exclusion [8], which has shown
impressive results in improving the prediction quality of the FNet for MLM. The
sentences are categorized as ace-case scenarios based on FNet’s ability to predict the
masked words as the first choice in the maximum number of cases. Our model also
behaves similarly to the original FNet but uses fewer frequencies. The average-case
scenario sentences could predict at least half of the masked words as high probability
words. And in adverse-case cases scenarios, the original model and the frequency-
exclusion technique could only predict lesser than half of the masked words.

Along with matching the FNet’s performance, our model predicted the masked words
in a high probability position in most of the sentences when FNet failed to do so. The
complete proof of improvements achieved can be viewed in Table 5.1 and 5.2. The
adverse-case scenario does not mean our approach was unable to predict words. It
symbolizes FNet’s inability to predict at least half of the words as the first choice,
but in the given window, the word still existed or did not even occur. Our model
performed equivalent to FNet in adverse-case scenarios and, in some cases, boosted
the correct masked word from low probability position to high probability position.
The results can be verified in Table 5.2. For example, sentence ten is categorized as
an adverse-case scenario that only predicts one out of eight masked words at the first
position. But the improvements our model has made in bringing the words closer
to the correct position are visible in Table 5.2. In original FNet, Sentence 10 only
predicts mask 3 correctly, masks 0, 1, 6, and 7 are not predicted with correct words in
any place, and masks 2, 4, and 5 have the words predicted somewhere in the prediction
window, not as the first choice. The frequency-exclusion technique shifts the correct
word from originally predicted position 2 to 1 in mask 2, position 3 to position 2 in
mask 4, and position 2 to 1 in mask 5. Also, the unpredicted words appear in a specific
frequency-masking window in mask 0 and mask 6. We also expand the solution space
of FNet to two domains, spatial and frequency domains, wherein the original FNet
only produced results in the spatial domain. The original FNet only allowed to deliver
a one-dimensional array with five options. But as we experiment with the multiple
frequency-exclusion techniques, we generate a two-dimension solution space and give
the user to select from various frequency-mask options.
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We have performed multiple experiments on 15 sentences by following similar masking
techniques. The results demonstrate that there are frequencies that FNet does not have
to look at to make correct predictions which proves the correctness of our approach to
learning by frequency-exclusion. We have observed that different sentences perform
uniquely to the same masking techniques. This is because of the varying lengths of
the sequences. As the length of the sequence varies, the magnitude spectrum resulting
from the Fourier layer output also varies, and the words get distributed uniquely for
each sentence. As a result, no single masking window works for all sequences, meaning
our technique has no generalized model. But, the masking technique we used has given
very promising results. This is one area in which further analysis can be driven to
find a generalized model using frequency-exclusion to improve the overall performance
of the FNet.

At this point, the performance of the our model is not evaluated using any mea-
sure like accuracy or precision. We solely rely on the observation that has been
made during the experimentation and the results obtained. A histogram using weight
assignment to the original predictions are drawn by counting the number of times
the words appear in the frequency-exclusion technique and multiplying them with
the weights. The histogram determines the correct word by the maximum value of
a masked word that appear in the prediction window. Further research could be
performed to expand the current work to find a qualitative measure to prove the
correctness of the predictions made using frequency-exclusion technique.
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Experiment Sentence Masks
1 I[MASK[ to drive. But I am afraid of the vehicles

on the[MASK[.
Mask 0 - want
Mask 1 - road

2 2 [CLS] Appointment[MASK] systems are used by
primary and specialty[MASK] clinics to manage
access to service providers, as well as by hospi-
tals to schedule elective surgeries.[SEP] Many fac-
tors affect the[MASK] of appointment systems in-
cluding arrival and servicetime variability, patient
and provider[MASK], available information tech-
nology and the experience level of the scheduling
staff. In addition, a[MASK] bottleneck lies in the
application of Industrial Engineering and Opera-
tions Research (IE/OR) techniques.[SEP] Source:
https://experts.umn.edu/en/publications/

Mask 0 - scheduling
Mask 1 - care
Mask 2 - performance
Mask 3 -preferences
Mask 4 - critical

3 As we know, movies have the power to make
or[MASK] the world. Movies can act as a[MASK]
medium for bringing significant changes in society.
Nowadays, people[MASK] watching movies than
reading[MASK]. Visualization leaves a great[MASK]
on the minds of people than imagination. So, the
best use of this should be made such that our
young[MASK] absorbs all the positive things from it.
Movies can act as a great source of[MASK] as well.
Many autobiographies have been made, through
which we can learn a lot about our culture and
history. But not everything shown in the movies
must be absorbed like fights, violence, vulgarity,
smoking, taking drugs, etc. It all depends upon
our perception that how we take it. Youth is a
stage of life when we are full of[MASK] and very
enthusiastic about learning new things. So, if the
positive things are taken into consideration, movies
can act as a source of social awareness as well as
motivation for achieving goals. Source: https:
//mbakarlo.com/impact-of-movies-on-youth/

Mask 0 - worried
Mask 1 - sadness
Mask 2 - depression
Mask 3 - sleeping
Mask 4 - develop
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4 People want to know that they are being[MASK].
Really listen to what the other person is[MASK],
instead of formulating your response. Ask for clarifi-
cation to avoid[MASK]. At that moment, the person
speaking to you should be the most[MASK] person
in your life. Another important point is to have one
conversation at a time. This means that if you are
speaking to someone on the phone, do not[MASK]
to an email, or send a text at the same time. The
other person will know that she doesn’t have your
undivided[MASK]. Body language is important for
face-to-face meetings and video conferencing. Make
sure that you appear accessible, so have[MASK]
body language. This means that you should not
cross your arms. And keep eye contact so that the
other person knows that you are paying[MASK].
Source: https://atlascorps.org

Mask 0 -heard
Mask 1 - saying
Mask 2 - misunderstand-
ing
Mask 3 - important
Mask 4 - respond
Mask 5 -attention
Mask 6 - open
Mask 7 - attention

5 Art is good for you. From beautifying the sur-
roundings to helping to alleviate stress and dis-
comforts, art is[MASK] for physical, emotional,
and[MASK] wellbeing. Music, for example, is in-
creasingly used by people to battle[MASK] and other
mental illnesses. For art creators, including musi-
cians, dancers, painters, and writers, creating or
performing a piece of art is a cathartic experience
that also provides a sense of[MASK]. There are
numerous studies showing how people feel better
whether by creating art or by consuming it or by
simply being in the[MASK] of something art-related.
Source: https://mylenebesancon.medium.com

Mask 0 - essential
Mask 1 - mental
Mask 2 - depression
Mask 4 - achievement
Mask 5 - presence

6 Advertising has brought in an advanced manner of
building[MASK] about any product or a service in
the[MASK]. It has enabled the consumers to have
knowledge about the service or the product before
making any[MASK]. Advertising has grown on the
levels of creativity and[MASK]. The types of ads be-
ing produced these days have shown great influence
on the minds of people by persuading them through
attractive advertising tactics. Today the human
needs are[MASK] by the source of advertisements.

Mask 0 - awareness
Mask 1 - society
Mask 2 - purchase
Mask 3 - innovation
Mask 4 - fullfilled
Mask 5 - sales
Mask 6 - dilemma
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Almost every product today is advertised in order
to reach larger group of people. This benefits the
company with increased[MASK]. For instance, if a
person wishes to buy a car and is in[MASK] whether
to make a purchase for it or not. In this case his
target would set and he would be eager to learn
more about it from the advertisements. The ad-
vertisement will in a way provoke him to buy. In
this way advertisements control the mind of the
interested person by fulfilling their want. Source:
https://www.easypresswire.com

7 Dr. Suthaharan is a[MASK] of Computer Science
at the University of North Carolina at Greensboro
(UNCG). He joined UNCG in 2001 as an Assis-
tant Professor, and[MASK] to Associate Professor
in 2005, then promoted to Professor in 2014. He
also served as[MASK] of Undergraduate Studies for
more than 10 years and as Interim Head in Fall
2015 at UNCG. He played a major role in lead-
ing the committee and maintaining ABET accred-
itation of the undergraduate program successfully.
Dr. Suthaharan is also the[MASK] of the high
impact and high quality textbook on the state-of-
the-art topics of big data analytics and machine
learning. Notably this book was reviewed by ACM
Computing Reviews and received a “Reviewer Rec-
ommended” rating. Dr. Suthaharan’s[MASK] inter-
ests mainly fall under the state-of-the-art themes of
big data and machine learning. He studies advanced
mathematical, statistical, and computational tech-
niques to formulate smart[MASK] learning models
and algorithms that can help accomplish secure big
data analytics research in interdisciplinary settings.
Dr. Suthaharan is a recipient of several[MASK],
including the research awards from University of
Pittsburgh Medical Center, Emory University, UC-
Irvine, UC-Berkeley, University of Sydney-Australia,
and University of Melbourne-Australia, and visited
these highly[MASK] universities to perform collab-
orative[MASK]. Source: https://sites.google.
com/uncg.edu/shan-suthaharan/home

Mask 0 - Professor
Mask 1 - promoted
Mask 2 - Director
Mask 3 - author
Mask 4 - research
Mask 5 - machine
Mask 6 - award
Mask 7 - prestigious
Mask 8 - research
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8 In my class, I ask open-ended questions—sometimes
I even call on students who don’t have their
hand[MASK]—and I put students in groups and
pairs to[MASK] participation. But sometimes my
students still[MASK]. One student in particular,
Anise, never[MASK] or raised her hand in class,
and I was quick to slot her as a student who
just wanted to make it to June. But one day,
halfway through the school year, Anise came to
see me during her lunch break. When no one
else was around, she seemed much more[MASK]
about the subject matter. She asked questions, she
listened to my answers, and we had a thorough
conversation related to the class[MASK]. Source:
https://www.wgu.edu/heyteach

Mask 0 - raised
Mask 1 - encourage
Mask 2 - struggle
Mask 3 - participated
Mask 4 - curious
Mask 5 - curriculum

9 Preparing for the[MASK] interview can be one of the
most[MASK] parts of the job search. Luckily, there
are a number of tools and[MASK] to make this task
easier. The[MASK] to any interview is being well
prepared. It is important to write down, in advance,
the answer to questions you are likely to be asked.
This will help you focus your thoughts. Source:
https://www.shawnee.edu/career-resources

Mask 0 - job
Mask 1 - stressful
Mask 2 - techniques
Mask 3 - key

10 Food is a universal[MASK]. But it is only human
beings who endeavour to transform food into some-
thing more. Several archaeologists and evolutionary
biologists[MASK] that cooking was, and[MASK] is,
crucial to our evolution. Not only did it simulate
mastery over fire and necessitated innovation in tool
making, but by eating cooked food, we are able to in-
crease our[MASK] output for other creative pursuits.
As primitive hunter-gatherer societies developed into
more sedentary ones,[MASK] became a social ac-
tivity. The preparing ans sharing of food came to
define[MASK] within families as well as in the larger
community. Food became central to community cel-
ebrations. Food is inextricably linked to occasions
and[MASK]. Even a simple meal of dal and rice
can[MASK] one to the sandy beaches of Sri Lanka
if that’s what you now associate it with. Source:
https://timesofindia.indiatimes.com

Mask 0 - necessity
Mask 1 - contend
Mask 2 - still
Mask 3 - energy
Mask 4 - cooking
Mask 5 - relationships
Mask 6 - memories
Mask 7 - transport
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11 Lake Tahoe, known for its[MASK] scenery and year-
round outdoor recreation, is one of the most[MASK]
tourist[MASK] in both California and Nevada. But
have you ever[MASK] what it would be like to live
there full time? In August of 2019, I decided to pull
the[MASK] and move from Los Angeles to Lake
Tahoe. As an outdoor photographer, I fell in love
with Tahoe’s jaw-dropping beauty and wanted to be
able to[MASK] it every day. After living in Tahoe
for roughly 9 months, I decided to put together a
list of pros and cons based on what my personal
experience has been like. I hope this list is helpful
to anyone who is contemplating a move to Lake
Tahoe and wants an inside[MASK]. The scenery in
Lake Tahoe is nothing short of[MASK]. In fact, it’s
the number one reason why I moved here. The phe-
nomenal clarity and color of the lake is something
you have to see to believe. Adding to the beauty
are the snow-capped peaks and alpine forests that
surround the[MASK] lake. Being able to wake up
every day and enjoy such stunning[MASK] is a huge
perk of living in Lake Tahoe. With its granite peaks,
towering forests, and turquoise beaches, Lake Tahoe
is an outdoor photographer’s dream. In addition to
the beautiful scenery, there’s ample wildlife to pho-
tograph such as black bears, eagles, and coyotes to
name a few. If action/adventure photography is your
thing, there’s plenty of[MASK] for photographing
skiers, rock climbers, wakeboarders, paddleboarders,
etc. Source: https://www.gabriellaviola.com/
post/living-in-lake-tahoe-pros-and-cons

Mask 0 - spectacular
Mask 1 - popular
Mask 2 - destinations
Mask 3 - wondered
Mask 4 - trigger
Mask 5 - photograph
Mask 6 - perspective
Mask 7 - magnificent
Mask 8 - sparkling
Mask 9 - scenery
Mask 10 - opportunity

12 For centuries, the adjective "black" has been ap-
plied to days upon which[MASK] occurred. Many
events have been described as "Black Friday", al-
though the most[MASK] such event in American
history was the Panic of 1869, which occurred when
financiers Jay Gould and James Fisk took advantage
of their connections with the Grant Administration
in an[MASK] to corner the gold market.

Mask 0 - spectacular
Mask 1 - calamities
Mask 2 - significant
Mask 3 - attempt
Mask 4 - congestion
Mask 5 - recommended
Mask 6 - forgotten
Mask 7 - appearing
Mask 8 - widespread
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When President Grant learned of this manipulation,
he ordered the Treasury to release a large supply
of gold, which halted the run and caused prices to
drop by 18%. Fortunes were made and lost in a
single day, and the president’s own brother-in-law,
Abel Corbin, was ruined. The earliest known use of
"Black Friday" to refer to the day after Thanksgiv-
ing occurred in the journal, Factory Management
and Maintenance, for November 1951, and again
in 1952. Here it referred to the practice of workers
calling in sick on the day after Thanksgiving, in
order to have a four-day week-end. However, this
use does not appear to have caught on. Around the
same time, the terms "Black Friday" and "Black
Saturday" came to be used by the police in Philadel-
phia and Rochester to describe the crowds and traf-
fic[MASK] accompanying the start of the Christmas
shopping season. In 1961, the city and merchants
of Philadelphia attempted to improve conditions,
and a public relations expert[MASK] rebranding
the days "Big Friday" and "Big Saturday"; but
these terms were quickly[MASK]. The use of the
phrase spread slowly, first[MASK] in The New York
Times on November 29, 1975, in which it still refers
specifically to "the busiest shopping and traffic day
of the year" in Philadelphia. Although it soon be-
came more[MASK], The Philadelphia Inquirer re-
ported in 1985 that retailers in Cincinnati and Los
Angeles were still unaware of the term. Source:
https://en.wikipedia.org

13 Some psychologists think values are[MASK] to teach,
and it is certainly true that telling kids to be more
honest, or diligent, or considerate, doesn’t work any
better than telling adults to be. But if values are
impossible to teach, they are too important to leave
to chance. In recent years, some schools have tried to
add[MASK] development to their curriculum. But
schools have a[MASK] time teaching kids values
because they intervene too late, not to mention in
too much[MASK] from the rest of the child’s life.
Worse yet, they are often at odds with what the
child is learning at home about values.
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Because the truth, of course, is that we do teach
values to kids, daily, every minute of their lives.
The question isn’t whether to teach[MASK], only
WHAT we are teaching. The way children learn
values, simply put, is by[MASK] what you do, and
drawing conclusions about what you think is im-
portant in life. Regardless of what you consciously
teach them, your children will[MASK] from child-
hood with clear[MASK] on what their parents really
value, and with a well developed value system of
their own. Of course, parents are not the only source
from which children learn values, and peers certainly
influence your kids, especially as teenagers. And
of course it’s healthy for young people to think for
themselves and develop their own world view, as
much as we may want to influence our children.
But research shows that the stronger your[MASK]
with your child, the more her world, including the
opinions of her[MASK] is filtered through the values
she’s picked up from you. Not to mention that if she
has good self-esteem and a warm home life, she is
more likely to pick friends who are more in[MASK]
with your values. TV is an effective teacher. While
some TV, especially public TV has many[MASK]
social messages for young children, most TV, es-
pecially commercial television with advertising -
teaches values antithetical to what most parents
want for their kids. Source: https://www.thefyi.
org/15-ways-raise-child-great-values

Mask 0 - impossible
Mask 1 - moral
Mask 2 - tough
Mask 3 - isolation
Mask 4 - values
Mask 5 - observing
Mask 6 - emerge
Mask 7 - views
Mask 8 - relationship
Mask 9 - peers
Mask 10 - sync
Mask 11 - positive

14 The past 20 years have[MASK] shaped how and
where we[MASK] media. In the early 2000s, many
tech firms were still focused on[MASK] communi-
cation for work through advanced bandwidth for
video streaming and other media consumption that
is common today. Others followed the path of ex-
panding media options beyond traditional outlets.
Early Tech Pioneers such as PlanetOut did this by
providing an outlet and alternative media source
for LGBTQIA communities as more people got on-
line. Following on from these first new[MASK] op-
tions, new communities and alternative media came
the[MASK] growth of social media.

Mask 0 - greatly
Mask 1 - consume
Mask 2 - expanding
Mask 3 - media
Mask 4 - massive
Mask 5 - launched
Mask 6 - mitigating
Mask 7 - Pioneers
Mask 8 - cuisine
Mask 9 - culinary
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In 2004, fewer than 1 million people were on Mys-
pace; Facebook had not even[MASK]. By 2018, Face-
book had more 2.26 billion users with other sites
also growing to hundreds of millions of users. While
these new online communities and communication
channels have offered great spaces for alternative
voices, their increased use has also brought issues of
increased disinformation and polarization. Today,
many tech start-ups are focused on preserving these
online media spaces while also[MASK] the disinfor-
mation which can come with them. Recently, some
Tech[MASK] have also approached this issue, includ-
ing TruePic – which focuses on photo identification
– and Two Hat, which is developing AI-powered con-
tent moderation for social media. Many scientists
today are looking to technology to lead us towards
a carbon-neutral world. Though renewed attention
is being given to climate change today, these efforts
to find a solution through technology is not new. In
2001, green tech offered a new investment oppor-
tunity for tech investors after the crash, leading to
a boom of investing in renewable energy start-ups
including Bloom Energy, a Technology Pioneer in
2010. In the past two decades, tech start-ups have
only expanded their climate focus. Many today
are focuses on initiatives far beyond clean energy
to slow the impact of climate change. When we
think of American classics our minds jump to the
comforting standbys we grew up with: hot dogs,
fried chicken and chocolate chip cookies. Over the
years, this[MASK] has made such a mark on us that
it seems like at some point or the other, everyone
has a little love affair with it. With the splash of
American grubs all over, it has transformed from
delicious to glorious in India too.
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And this 4th of July weekend, an all-American
feast is just what you need to celebrate the na-
tion’s endless[MASK] creativities. We present our
list of their 10 most delicious food items of all time.
This selection covers the gamut from summertime
staples to comfort food favourites. Source: https:
//www.weforum.org,https://food.ndtv.com

15 When it comes to electric vehicles, it is near[MASK]
to avoid talking about Tesla. Since the first Tesla
Roadster was created in 2008, the company has
since become synonymous with high-quality, lux-
ury electric vehicles. Always pushing the envelope
of modern vehicle[MASK] and convenience, Tesla
is known for offering[MASK] engineering features
built into their vehicles. For example, Tesla’s full
self-driving subscription options have changed the
way people view their morning commute to work
by offering innate self-driving[MASK] designed to
make the road a safer place for every driver. From
the Tesla FSD subscription to the sleek and[MASK]
body of the Model X, Tesla truly has a product for
nearly every type of consumer. In most instances
of city or commute driving, Tesla vehicles have no
problem maintaining their battery life. Capable of
being[MASK] at home overnight, there is rarely an
issue with battery range — especially when driving
short distances. But what about long drives or road
trips? As a leader in battery range amongst competi-
tor electric cars, the battery range of Tesla vehicles is
incredibly[MASK]. With some Tesla models capable
of achieving between 393-525 km on a single charge,
Tesla vehicles are highly dependable on longer drives
too. Source: https://www.loopit.co/blog/
the-top-5-benefits-of-switching-to-tesla

Mask 0 - impossible
Mask 1 - safety
Mask 2 - advanced
Mask 3 - capabilities
Mask 4 - stylish
Mask 5 - charged
Mask 6 - impressive

Table A.1. Sentences used for experimentation along with correct masked words
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