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The influence of autonomic nervous system (ANS) activity on the development and 

progression of cardiovascular disease (CVD) is widely acknowledged, as most common CVD 

risk factors (e.g., hypertension, impaired glucose management, obesity, low cardiovascular 

fitness) affect and/or are affected by ANS activity.  Increased adiposity can be viewed as an 

amplifier of CVD development, as it has been shown to elevate the chances of developing 

hypertension and diabetes mellitus.  Thus, adiposity may have direct and indirect effects on CVD 

development.  In turn, it is important to determine if similar multidirectional relations can be 

observed between adiposity and altered ANS activity. Therefore, this dissertation addressed two 

main goals.  The first was to evaluate the direct and indirect influence of adiposity on ANS 

activity through secondary data analyses employing structural equation modeling in a large, 

population-based cohort.  The parasympathetic and sympathetic branches of the ANS were 

noninvasively assessed via heart rate variability [reflected by root mean square of successive 

differences between normal beats (RMSSD)] and the pre-ejection period of systole [(PEP); 

measured via impedance cardiography], respectively.  The direct effects of adiposity on ANS 

activity were assessed by examining the magnitude of influence of waist circumference (WC) on 

RMSSD and PEP.  Indirect effects were assessed via the impact of WC on the latent variables of 

glycemic impairment (GI; fasting blood glucose and insulin concentrations, hemoglobin 

glycosylation percentage) and cardiac stress (CS;  heart rate, diastolic blood pressure) 

parameters. Adiposity had both significant direct (β = 0.208, p = 0.018) and indirect (β = -.217, 

p=.041) effects on PEP through GI.   Adiposity displayed no significant direct effect on RMSSD.  

CS displayed a significant pathway (β = -0.524, p = 0.035) on RMSSD, but the indirect effect of 



 

WC on RMSSD through CS was not significant.   These results suggest that adiposity’s relation 

to ANS activity is multifaceted, as increased central adiposity had opposing direct and indirect 

effects on markers of sympathetic activity in this population of older adults.  The second goal of 

this dissertation was to determine if cardiovascular fitness, as determined through graded 

exercise testing, influenced the relation of adiposity and ANS activity beyond the role it plays in 

determining adiposity, per se.  To accomplish this goal, ANS activity was examined in a small 

cohort of young males with a range of fitness and adiposity levels before and after maximal 

aerobic exercise. A mixed model analysis of covariance was employed to test the additional 

impact of cardiovascular fitness on the relations between adiposity and ANS activity at rest and 

following maximal exercise.  Group stratification by waist circumference or body fat percentage 

(BF%) revealed no across-group differences in resting or post-maximal exercise HRV or PEP 

measurements.  Accounting for weight-relative peak oxygen uptake (VO2peak) resulted in 

significant between-group differences in the natural logarithm SDNN (ln-SDNN), RMSSD (ln-

RMSSD)], and high frequency spectral power (ln-HF) at 3- and 5-minutes post-exercise when 

groups were stratified by BF%.  However, these differences were no longer statistically 

significant following adjustments for lean body weight-relative VO2peak, suggesting no effect of 

BF% on ANS activity.  These results provide evidence that there may not be differences in 

resting ANS activity and post-maximal exercise ANS responsiveness across adiposity groups in 

apparently healthy males.  Taken together, these two studies highlight the nuanced involvement 

of adiposity on physiological parameters that influence ANS activity.  However, they do not 

support the notion that adiposity has a strong, independent influence on ANS activity.
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CHAPTER I: INTRODUCTION 

Cardiovascular disease (CVD) continues to be one of the leading causes of death in the 

United States.  Heart disease alone caused or contributed to approximately 1 out of 4 deaths in 

2016 (Heron, M., 2018).  Given this, it is pertinent that the scientific community have a concrete 

understanding of the underling pathophysiology of CVD.  Major risk factors for CVD include 

both lifestyle choices (i.e., physical inactivity, poor diet) and medical conditions (i.e. diabetes 

mellitus, hypertension, obesity) (Tzoulaki et al., 2016), both of which have been associated with 

altered autonomic nervous system (ANS) activity (Alam, Lewis, Morgan, & Baxter, 2009; 

Erdogan et al., 2011; Soares-Miranda et al., 2014; Tarvainen, Laitinen, Lipponen, Cornforth, & 

Jelinek, 2014). 

ANS activity is comprised of output from the two branches of the ANS, the sympathetic 

and parasympathetic nervous system.  The relation of these subsystems is both opposing and 

dynamic in nature.  The sympathetic branch provides an overarching accelerator stimulus to the 

body, promoting metabolic substrate mobilization and utilization in addition to increasing heart 

rate and cardiac contractile force.  In contrast, the parasympathetic branch is the overarching 

decelerator of the body, inducing metabolic substrate storage as well as promoting a decrease in 

heart rate (Thayer et al., 2010).  The activity of these branches is stimulated by a myriad of 

external stimuli and is inhibited by the activity of the opposing branch.  This continuous 

counterbalance of trigger and repression is brought about by daily activities and external stimuli 

and results in a dynamic fluctuation between the two branches.  All target organs receive varying 

balance of input from both branches and the resulting action is a direct reflection of the ANS 

branch with the largest contribution related to a particular stimuli.  Bodily functions are regulated 

by this balance and any prolonged disturbance or asymmetry of this relation in the ANS branches 
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can result in the development of several clinical and physiological conditions, including CVD 

(Pagani et al., 1988; Zhou et al., 2012). 

Non-invasive evaluation of ANS activity can be assessed by multiple metrics but is most 

commonly gauged by indices of heart rate variability (HRV).  HRV, or the variance among the 

intervals of consecutive cardiac cycles, is a widely used and is an accepted means of assessing 

ANS activity at the level of the heart (Malik et al., 1996).  Various time and frequency domain 

HRV metrics can be used to estimate the level of parasympathetic output at the heart, including 

the root mean square of successive differences between normal (non-ectopic) beats (RMSSD) 

and frequency input observed in the range of 0.15-0.40 Hz, denoted as High Frequency (HF) 

(Michael, Graham, et al., 2017).  Some HRV metrics have been suggested to estimate 

sympathetic activity (namely the low frequency spectral power component and the ratio of low 

frequency to high frequency spectral power components), but these values are inherently limited 

in evaluating sympathetic output given that they are also influenced by parasympathetic activity 

(Shaffer & Ginsberg, 2017).  Thus, most HRV research assumes that if metrics of 

parasympathetic activity are high, sympathetic activity is most likely low, given their opposing 

nature.  An alternative and more independent method of evaluating sympathetic activity at the 

level of the heart is to monitor systolic time intervals, i.e., the amount of time between electrical 

stimulation of the heart and its mechanical response.  Specifically, the segment of time known as 

the pre-ejection period (PEP), an estimate of the electromechanical delay of the left ventricle 

(Tavakolian, 2016), can be used to accurately estimate sympathetic activity (Ahmed et al., 1972).  

Simultaneous utilization of PEP and HRV measurements would provide greater details of ANS 

activity at the level of the heart. 



 3 

 Irregular ANS activity has been evaluated for its association with CVD and mortality.  

Specifically, chronically reduced parasympathetic and elevated sympathetic activities are 

associated with increased CVD risk, including earlier mortality, increased risk for myocardial 

infarction, and development of diabetes mellitus and hypertension (Gerritsen et al., 2001; Kleiger 

et al., 1987; Tsuji et al., 1996).  Furthermore, researchers have found significant associations 

between metrics of increased adiposity and altered ANS activity (Farah et al., 2013; Poirier et al., 

2003; Windham et al., 2012). 

Obesity is an independent factor for CVD development (Hubert et al., 1983) and is also a 

well-established risk factor for the development of comorbidities such as diabetes mellitus (Koh-

Banerjee et al., 2004) and hypertension (Landsberg et al., 2013).  This suggests that obesity 

(increased adiposity) has an amplified impact on CVD risk, as it has both direct and indirect 

routes of influence.  It is unknown if this concept of amplified impact can be applied to the 

relation of ANS activity and increased adiposity. 

Accounting for the physiological interaction of blood pressure and glucose metabolism 

makes it difficult to determine if the aforementioned associations with altered ANS activity are 

solely attributable to increased adiposity.  The application of structural equation modeling can 

provide a holistic means to resolving this quandary.  Structural equation modeling is an 

extension of regression analysis that models multiple paths of variable influence and represents 

the magnitude of each path with a regression weight.  A path analysis based on structural 

equation modeling allows for detailed relations that have the capability to account for both 

observed and unobserved, or latent, variables (Anderson & Gerbing, 1988).  As no single 

variable can accurately represent the concepts of glycemic impairment or cardiac stress 

parameters, this approach allows for the combined influence of multiple observed variables to be 
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treated as a single latent variable.  Furthermore, this statistical approach allows the assessment of 

direct and indirect effects of observed variables and/or latent constructs on dependent variables, 

making it possible to more accurately account for the influences of both cardiac stress and 

glycemic impairment parameters while also teasing out the actual effects of adiposity on 

indictors of ANS activity. 

To further convolute this paradigm, the influence of cardiorespiratory fitness must be 

considered.  Cardiorespiratory  fitness has a natural inverse relation with measurements of 

adiposity, such that higher levels of cardiorespiratory  fitness tend to be associated with lower 

levels of adiposity (Söğüt et al., 2019).  Also, low cardiorespiratory fitness increases the risk of 

CVD mortality (Gupta et al., 2011), type II diabetes (Blair & Church, 2003), hypertension 

(Kokkinos, 2014), and an imbalance between sympathetic and parasympathetic activities (Thayer 

et al., 2010). Furthermore, it has been suggested that cardiorespiratory  fitness may be a greater 

determinate of ANS activity than adiposity (Chen et al., 2018).  Thus, the proposed amplified 

impact of adiposity may be an indirect function of the physiological effects of cardiorespiratory 

fitness. 

Furthermore, the relation of cardiorespiratory  fitness and ANS activity, specifically ANS 

activity post-exercise or ANS responsiveness and its representation of physical health, has long 

been documented (Blomqvist & Saltin, 1983; Smith et al., 1989).  A faster heart rate recovery, 

the slowing of heart rate following exercise, is inversely related to cardiovascular disease 

incidence (Morshedi-Meibodi et al., 2002) and all-cause mortality (Jouven et al., 2005).  The 

adjustment of heart rate (HR) before and after exercise is primarily due to modulations in ANS 

activity at the cardiovascular level in response to changing metabolic and physiological demands 

(L. R. B. E. Silva et al., 2017).  HR increases in response to exercise due to parasympathetic 
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withdrawal and increased sympathetic drive, while the post-exercise decrease in HR is due to a 

reversal of this activity (Michael, Graham, et al., 2017).  Evaluating alterations in ANS 

responsiveness to the cessation of exercise could yield valuable insights into the underlying 

influence of adiposity on ANS activity. 

The proposed study had two purposes.  The first was to evaluate the direct and indirect 

influences of adiposity on resting autonomic nervous system (ANS) activity.  Utilizing the 

Atherosclerosis Risk in Communities (ARIC) dataset, activities of both the parasympathetic and 

sympathetic branches of the ANS were assessed via non-invasive methods.  Specifically, 

parasympathetic activity was measured via heart rate variability (HRV) utilizing the 

measurement of the root mean square of successive differences between normal beats (RMSSD).  

Sympathetic activity was evaluated via impedance cardiography employing the systolic time 

interval known as the pre-ejection period (PEP).  The direct effects of adiposity on ANS activity 

were assessed by the magnitude of influence that abdominal adiposity, reflected by waist 

circumference (WC), has on RMSSD and PEP.  Indirect effects were assessed via the impact of 

adiposity on glycemic impairment and cardiac stress parameters.  The proposed conceptual 

model (Figure 1.1) graphically outlines these direct and indirect effects on markers of ANS 

activity.  Further details concerning the specific model are described in Chapter 3. 
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Figure 1-1. Proposed Model 

 

Note: Theoretical model including observed variables (squares) depicting the proposed 

pathways for the direct and indirect effects of waist circumference on markers of ANS activity.  

Construction of the latent variables (circles) Cardiac Stress (CS) and Glycemic Impairment (GI) 

are depicted. WC, Waist Circumference; HR, Heart Rate; DBP, Diastolic Blood Pressure; HbA1c, 

Glycosylated Hemoglobin; FBG, Fasting Blood Glucose; RMSSD, Root Mean Square of 

Successive Differences between normal-to-normal beats; PEP, Pre-Ejection Period. 

The second purpose was to establish if cardiorespiratory fitness influences the observed 

effects of adiposity on markers of ANS activity beyond the role it plays in determining adiposity.   

Data collected from a small cohort of apparently healthy, adult males was examined using 
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multiple mixed model analysis of covariance analyses to test the additional impact of 

cardiorespiratory fitness on the relation between two indices of adiposity and ANS activity.  

Specifically, parasympathetic activity was measured via multiple metrics of HRV while 

sympathetic activity was evaluated via impedance cardiography employing the systolic time 

interval of PEP.  Characterizing adiposity was accomplished be the dualistic use of waist 

circumference (WC) and body fat percentage (BF%).  A maximal exercise test was used to 

measure cardiorespiratory fitness with representative values used to determine if adjustments for 

cardiorespiratory fitness significantly influenced any observed differences across WC or BF% 

strata.  

Specific Aims and Hypotheses 

The following specific aims was tested: 

Aim 1. To determine the direct and indirect influence of adiposity on ANS activity as 

evaluated through structural equation modeling. 

Hypotheses: (1a) Adiposity (WC) will have a direct influence on resting ANS activity as 

reflecting inhibitory effect on parasympathetic activity (decreased RMSSD) and a stimulatory 

effect on sympathetic activity (decreased PEP).  (1b) Adiposity (WC) will have significant 

indirect influences on marks of ANS activity through its impact on glycemic impairment and 

cardiac stress parameters.  

Aim 2. To determine if cardiorespiratory fitness influences the observed effects of 

adiposity on markers of ANS activity beyond the role it plays in determining adiposity. 

Hypotheses: (2a) Adjustments for cardiorespiratory fitness will mitigate the observed 

differences in resting ANS activity across WC and BF% strata.  (2b) Adjustments for 
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cardiorespiratory fitness will mitigate the observed differences in ANS responsiveness post-

maximal exercise across WC and BF% strata. 
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CHAPTER II: REVIEW OF THE LITERATURE 

Overview 

The contents of this literature review will commence by briefly outlining the effects of 

both branches of the ANS on chronotropic and ionotropic characteristics of the heart.  While 

these specific mechanisms are not the central focus of the dissertation, a general understanding 

of the dual influence of the sympathetic and parasympathetic branches of the ANS on the heart is 

key to the implications of this dissertation.  Following this summary, the common measurements 

of ANS activity will be discussed with special attention given to the most common non-invasive 

techniques of heart rate variability and systolic time intervals.  Next, a synopsis of the 

mechanistic relation between the key influences on ANS activity related to this dissertation and 

the non-invasive measurements will be provided.  These key influences include glycemic 

impairment, cardiac stress, adiposity, and cardiorespiratory fitness.  Finally, a description of the 

proposed conceptual model and summary of the current literature describing the interrelated 

nature of the variables of interest will be offered.  

Autonomic Nervous System Innervation of the Heart 

At rest, the average adult’s heart rate is between 60-80 beats per minute (Shaffer et al., 

2014).  This rate is much slower than the approximant auto-rhythmic rate of 100 bpm generated 

by the “pace making” sinoatrial node located lateral to the opening of the superior vena cava in 

the right atrium (Katona et al., 1982).  The “braking” influence of the parasympathetic branch of 

the ANS is responsible for this lower resting rate, as it prevails over both the “accelerating” 

influence of the sympathetic branch of the ANS and the inherent pacing of the heart (Gordan et 

al., 2015). 
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Figure 2-1. Diagram of Cardiac Innervation. 

 

Note: CNS, Central Nervous System; T1-T4, Thoracic Segments 1-4; ACh, 

Acetylcholine; NE, Norepinephrine; SA, Sinoatrial Node; AV, Atrioventricular Node; RA, Right 

Atrium; LA, Left Atrium; RV, Right Ventricle; LV, Left Ventricle. (As illustrated by Gordan et 

al., 2015) 

Above, Figure 2.1 provides a graphic representation of ANS innervation of the heart.  

Receiving input from the nucleus tractus solitarii (NTS), the medulla oblongata (located in the 

midbrain of the central nervous system) is the location of origin for both sympathetic and 

parasympathetic output.  The caudal ventrolateral medulla and rostro ventrolateral medulla serve 

as the primary originators of sympathetic output while the nucleus ambiguous (NA)  generates 

parasympathetic output (Michael, Graham, et al., 2017).  Action potentials from the caudal 

ventrolateral medulla and rostro ventrolateral medulla travel down the spinal column to the 

thoracic region through preganglionic fibers to the sympathetic ganglia chain near the T1-T4 

vertebra.  At the ganglia chain, the neurotransmitter acetylcholine is released and stimulates 

action potentials on the postganglionic fibers that release norepinephrine (NE).  At the end organ 
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level, the release of the neurotransmitter, NE, binds to adrenergic receptors on both the sinoatrial 

and atrioventricular nodes and ventricular cardiomyocytes.  Once bound, norepinephrine will 

stimulate an increase in the chronotropic (rate) and inotropic (force) effects of the heart.  In a 

similar fashion, parasympathetic output, initiated as action potentials from the NA, travel down 

the vagus nerve, stimulating the release of acetylcholine from preganglionic fibers that binds to 

the parasympathetic ganglia serving the heart, stimulating these ganglia to release acetylcholine 

at the heart.  Some of the acetylcholine binds to muscarinic receptors on cardiac nodal tissue, 

directly causing a decrease in chronotropic effects while also influencing inotropic responses. 

While both the sympathetic and parasympathetic branches originate from divisions of the 

medulla and provide constant input to the heart, the parasympathetic branch typically has the 

dominant influence during resting conditions.  This is driven by inhibitory factors at both the 

neural and cell membrane levels as outlined in Figure 2.2.  At the cardiac cellular membrane, 

parasympathetic stimulation occurs at an accelerated rate compared to sympathetic stimulation 

due to direct influence of specialized potassium ion channels regulated by G-protein subunits of 

the muscarinic receptor (Ivanova-Nikolova et al., 1998).  The beta gamma subunit of the 

muscarinic receptor opens these specialized ion channels, allowing potassium to exit the cell, 

altering resting membrane potential and causing a delay in the ability to reach threshold and a 

subsequent action potential to induce contraction. The sympathetically-driven chronotropic effect 

requires activation of the second messenger cyclic adenosine monophosphate (cAMP).  This 

additional step results in a comparatively slower effect.  Thus, when present, parasympathetic 

influence dominates cardiac function at rest. 
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Figure 2.-2. Cardiac Cell Membrane Signaling. 

 

Note: ACh, Acetylcholine; NE, Norepinephrine; NPY, Neural Peptide Y;  M2, 

Muscarinic 2 Receptor; 𝛽1	|	𝛽2, Beta 1 and Beta 2 Adrenergic Receptors; 𝛽𝛾, Beta gamma 

subunit of G-protein; 𝛼i, Inhibitory subunit of G-protein; 𝛼s, Stimulatory subunit of G-protein; 

AC, Adenylyl Cyclase; ATP, Adenosine Triphosphate; cAMP, Cyclic Adenosine 

Monophosphate; PKA, Protein Kinase A; TnI, Troponin I; PLB, Phospholamban. 

Additional mitigation of sympathetic influence is achieved by inhibition at the nerve level 

to inhibit norepinephrine release and within the membrane to alter signaling to the enzyme to 

influence cAMP formation.  Conversely, increased sympathetic stimulation can result in a build-

up of Neural Peptide Y (NPY), blocking ACH release, thus limiting ACH binding to muscarinic 

receptors.  In addition, both muscarinic and adrenergic receptor activation alter the rate of 

adenylyl cyclase activation—muscarinic G-protein subunits are inhibitory, while adrenergic G-
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protein subunits are stimulatory.  Any increase in adenylyl cyclase activity will result in greater 

synthesis of cAMP.  cAMP amplifies activation of protein kinase A which, in turn, causes the 

phosphorylation of several influential proteins, including troponin I, phospholamban, ionic 

channels and certain glycolysis-regulating enzymes.  These proteins and regulatory factors 

increase the ionotropic and chronotropic effects on the heart primarily by increasing the 

concentration of intercellular calcium in the cardiomyocyte (Gordan et al., 2015).  Thus, when 

sympathetic output is the predominate driver there is an increased rate of contraction 

(chronotropic effect) as well as an increase in contractile force (ionotropic effect).  Conversely, 

the concentration of cAMP can be decreased via the inhibitory effect of the G-protein subunits of 

muscarinic receptors on adenylyl cyclase activity, thereby decreasing the signaling pathway of 

protein kinase A.  This inhibitory action, coupled with the stimulation of acetylcholine sensitive 

potassium ion channels, exerts an overall decreased chronotropic effect on the heart.  This 

chronotropic decrease happens without significant changes in the ionotropic effect given the 

limited appearance of muscarinic receptors on ventricle myocardium. 

Although cardiac regulation is typically dominated by the parasympathetic nervous 

system at rest, autonomic imbalance can be created via a sympathetic-dominate state.  This 

autonomic imbalance results in a chronic “accelerator” stimulation that manifests as an elevated 

resting heart rate and, potentially, increased blood pressure, raising the risk of idiopathic 

hypertension over time  (Charkoudian & Rabbitts, 2009; Schroeder et al., 2003).  Additionally, 

this long term increase in chronotropic and inotropic myocardial activity leads to an overall 

increase in the rate pressure product, an indirect reflection of myocardial work (Nelson et al., 

1974).  Furthermore, this prolonged imbalance has been found to be correlated with an increased 

risk of developing CVD (Thayer et al., 2010) and both the development and severity of diabetes 
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(Tarvainen, Laitinen, et al., 2014).  Given these negative health implications, it is imperative that 

observations of ANS activity be made by accurate and valid means. The following section will 

outline common methods of evaluating ANS activity and defend the selection of metrics 

included in this study. 

Assessment of Autonomic Nervous System Activity 

Overview 

ANS activity measurement techniques vary based on invasiveness, expense, and burden 

on the patient or research participant. While some techniques require chemical analysis of blood, 

electrode implantation in different tissues, or challenges of physiological reflexes and bodily 

functions, non-invasive techniques typically require little to no effort from the subject also exist.  

Measurement of catecholamine concentration in either blood or tissue samples is a classic 

laboratory method used to gage ANS activity in response to either varying stimuli or ANS 

blockade with various chemicals (Breuer et al., 1993).  No technique is without limitation, as 

most of the methods discussed below primarily focus on evaluating the activity of the 

sympathetic nervous system and are highly invasive. 

Neurotransmitters (primarily norepinephrine) can be measured in blood with some degree 

of laboratory proficiency.  However, circulating concentration may not be a reliable indicator for 

neural activity at the end organ site as, it is estimated that circulating concentrations of 

norepinephrine represent only 5-10% of the total secreted amount of this neurotransmitter (Sinski 

et al., 2006).  Additionally, acetylcholinesterase breaks down acetylcholine at an extremely 

accelerated rate, making it extremely difficult to collect and analyze a physiologically 

meaningful concentration of this neurotransmitter (Grassi & Esler, 1999).  Thus, concentration 

analysis focuses exclusively on estimating sympathetic activity.  Finally, venipuncture has the 
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potential to elicit a stress response that could alter the normal neurotransmitter milieu 

(Hoogerwerf et al., 2018). 

Microneurographic measurements can be used with or in lieu of catecholamine 

concentration measurement.  Traditionally used to observe sympathetic activity in peripheral 

skin and skeletal muscle tissue, microneurography requires extremely small needle electrodes to 

be inserted subcutaneously in a pinpointed peripheral nerve.  Once placed, the electrode becomes 

a conductor of sympathetic neural traffic, allowing for the comprehensive recording of amplitude 

changes in stimulation (Neukirchen & Kienbaum, 2008).  While this method can provide 

detailed information, it is limited by its inherent site-specific recording (peripheral skeletal 

muscle or skin), the production of motion artifact with minimal movement, and its invasive 

nature.  Thus, this might not accurately reflect the sympathetic activity at the heart. 

All of these measurement issues give rise to the use of physiological challenges and/or 

non-invasive techniques for observing ANS activity.  Assessment of changes in heart rate or R 

wave to R wave intervals during physiological challenge such as the Valsalva maneuver, deep 

breathing, cold pressor test, orthostatic challenges, head-up tilt test, and/or various means of 

baroreflex stimulation (i.e. carotid massage), have been used regularly to assess ANS function 

(Zygmunt & Stanczyk, 2010).  As ANS activity can vary depending on the organ or system 

observed, a battery of challenges is typical, with the Ewing Battery being most popular (Ryder & 

Hardisty, 1990).  One of the earliest forms of heart beat interval evaluation (Malik et al., 1996), 

this battery provides only simple clinical markers of reflex engagement and lacks the ability to 

accurately tease apart the activities of individual ANS branches. 

None of the metrics previously outlined can accurately account for specific 

parasympathetic engagement.  Therefore, the need for a non-invasive, detailed measurement of 
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parasympathetic activity such as heart rate variability (HRV) is apparent.  HRV coupled with the 

use of systolic time intervals (STI), a valid indicator of sympathetic activation, can potentially 

provide holistic insight into ANS activity at the same end-organ location.  The following sections 

will provide a synopsis of both HRV and STI, with particular attention given to the metrics of 

interest to the proposed dissertation. 

Heart Rate Variability 

Since it was first employed by Hon and Lee in 1965 to detail preceding events of fetal 

death (Hon & Lee, 1965), HRV has been widely accepted as a non-invasive marker of cardiac-

level ANS activity.  While heart rate is merely the number of complete cardiac cycles in a 

minute, HRV can be described as the fluctuation in the time intervals between adjacent 

heartbeats (McCraty & Shaffer, 2015).  Analyzing the variation of this interval pattern can 

provide an insight into autonomic function at the cardiac level.  Given that cardiac contractions 

are under the influence of multiple sources, including both branches of the ANS, baroreceptors, 

peripheral chemoreceptors, and the auto-rhythmic pacing of the heart, the resulting signal or 

interval pattern is complex, or “regularly irregular”.  The degree of complexity and dysregulation 

of heart rate is reflective of the overall health of the cardiorespiratory system. In general, the 

degree of complexity that a biological system displays is thought to be linked to its function 

(Vaillancourt & Newell, 2002), i.e., a system that is variable in nature and displays “organized 

variability” is healthy, while a less complex and more regular system coincides more with 

disease (Goldberger, 1997).   Thus, a resting cardiac rhythm with greater variability is believed 

to be healthier than a rhythm that is more fixed and rigid.  Various means of assessing a rhythm’s 

degree of variability have been developed since 1965, including metrics that depict its time and 

frequency aspects. Although this dissertation acknowledges the existence and validity of multiple 
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non-linear HRV metrics (i.e. ApEn; approximate entropy), these indices are outside the scope of 

this dissertation. Thus, the remaining portion of this subsection will focus exclusively on the time 

and frequency domains of HRV. 

The existence of numerous HRV monitoring nuances, including but not limited to, 

sampling rate and recording length, complicates the comparison of data across studies.  A 

minimum sampling rate of 100Hz is suggested to ensure complete capture of the electrical 

signals (Malik et al., 1996), and this sampling rate is easily achieved by most modern 

electrocardiograms.  Depending on the metric used, recording length can have a sizable impact 

on results depending on the metric used.  Considered the gold-standard of clinical HRV 

assessment, a recording length of 24 hours provides the most detailed evaluation of ANS activity 

(Shaffer & Ginsberg, 2017).  However, shorter recordings of approximately five minutes have 

been successfully used in numerous studies (Nunan et al., 2010).  One limitation to a shorter 

recording is the magnified impact of baroreceptor activity on the measures of very low band and 

high band frequency analyses (Shaffer & Ginsberg, 2017).  Additionally, length dependent time 

domain measurements, such as the standard deviation of normal beats (SDNN) are also 

weakened by shorter recording periods (Malik et al., 1996).  It should be noted however, that 

when using short-term recordings, frequency domain measures are preferred since they are 

influenced to a lesser extent than most time domain measures (Malik et al., 1996).  While not 

ideal, ultra-short recordings of 1-5 minutes have been used, typically when experimental design 

does not allow for longer periods of time.  Finally, although the same equations and methods are 

used to calculate HRV metrics for recording of any length, it is viewed as inappropriate to 

compare values from short-term recordings to long-term recordings as they are inherently 
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affected by differing physiological variables and thus have varying biological interpretations 

(Stein & Pu, 2012).  

Time Domain. While heart rate and the HRV time domain both employ units of time, 

they detail differing characteristics of the same recording.  Stated previous, heart rate is merely 

the number of complete cardiac cycles in one minute.  This metric only describes the average 

rate of cardiac contractions and does not give a detailed understanding as to the rhythm of the 

contractions in that same time frame.  HRV reflects the fluctuations of the time intervals between 

adjacent heartbeats.  The simplest and most commonly used time domain measurements of HRV 

are the standard deviation of normal to normal beats (SDNN) and the root mean square of 

successive differences between normal to normal beats (RMSSD) (Michael, Graham, et al., 

2017; Thayer et al., 2010).  Both metrics are valid and commonly used measurements in short-

term recordings (Malik et al., 1996).  The standard deviation of R to R waves (SDRR) is another 

commonly used measurement.  SDNN excludes all abnormal cardiac cycles, while SDRR does 

not have such a restriction.  Thus, SDRR has the inherent disadvantage of being influenced by 

non-sinoatrial node-induced (ectopic) contractions.  These ectopic or premature beats may 

introduce noise or artifact into the recording and confound the true interpretation of SDRR 

(Shaffer & Ginsberg, 2017). 

The SDNN and lesser valued SDRR can be used as overall indicators of variability 

(Michael, Graham, et al., 2017) but lack the capacity to discern the source of the variability.  

This is primarily due to the fact that both branches of the ANS have been shown to influence the 

measurement (McCraty & Shaffer, 2015).  As previously mentioned, SDNN is highly susceptible 

to the length of the recording and as such, will be more tainted than other time-domain metrics in 

short-term recordings (Nunan et al., 2010).  Furthermore, in short-term measurements, SDNN is 
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highly influenced by respiratory patterns and the subsequent activation of baroreceptors.  These 

issues muddy the interpretation of SDNN in short-term recordings and strengthen the 

recommendation of frequency analyses in recording periods of less than 10 minutes. 

On the contrary, RMSSD is not affected by the length of the recording. This is primarily 

a result of its statistical properties and inherent immunity to the influence of time on its 

computation (Malik et al., 1996).  The value is calculated by squaring the time difference of each 

successive R-R interval, averaging all of those values, and then taking the square root of that 

overall average.  The initial squaring of the R-R intervals and follow-up square root of the 

average interval length provides a mathematical correction for the recoding length.  It has also 

been repeatedly shown to be a valid marker of parasympathetic activity in both short and long-

term recordings (Nunan et al., 2010; Shaffer et al., 2014; Windham et al., 2012).  Additionally, 

RMSSD highly correlates with frequency metrics of parasympathetic activity (high frequency 

band) during short-term recordings (Malik et al., 1996; Shaffer et al., 2014) and as such is one of 

the most commonly used time domain metrics.  

Frequency Domain. Understanding the mechanisms of frequency domain metrics is not 

an inherently intuitive concept.  In the simplest form, a mathematical algorithm is used to 

convert a time domain signal (i.e. ECG tracing) into its corresponding sinusoidal function that is 

comprised of multiple frequency components (Montano et al., 2009).  A complex signal such as 

an ECG tracing is influenced by a plethora of stimuli including parasympathetic activity, 

sympathetic activity, the auto-rhythmic pacing of the sinoatrial node and other biological 

influences (i.e. hormones).  It is appropriate to view it as the result of multiple signals that are 

providing influence over the electrical activity of the heart at various rates or frequency.  If an 

ECG tracing (cardiac cycles over time) was to be processed using a mathematical algorithm, Fast 
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Fourier Transform being one of the most common (Shaffer & Ginsberg, 2017), the resulting data 

could be graphed as the power spectral density (area under the curve) on the y axis and 

frequency (Hz) on the x-axis.  Any spike on this graph would identify a source component that is 

providing enough influence on the original signal to alter its overall appearance or shape. 

Short term recordings, two to five minutes, of ECG tracings are classically composed of 

three frequency components; Very Low Frequency (VLF) observed between 0.0033-0.04 Hz, 

Low Frequency (LF) observed between 0.04-0.15 Hz, and High Frequency (HF) observed 

between (0.15-0.40 Hz) (Shaffer & Ginsberg, 2017).  Though usually present, the meaning or 

cause of the VLF band in short-term tracings is not fully understood and the use of it should 

generally be avoided (Malik et al., 1996).  The LF band was formally known as the baroreceptor 

range as alterations of baroreceptor signaling at rest provided the largest influence over LF 

values (McCraty & Shaffer, 2015).  Although some studies try to infer sympathetic activity from 

the LF values, a large volume of evidence demonstrates that it is influenced by both 

parasympathetic and sympathetic activity (Billman, 2013; Eckberg, 1997).  Additionally, some 

studies have observed little to no association with LF values and increased sympathetic activity 

assessed by epinephrine and norepinephrine concentration during exercise, suggesting that 

sympathetic activity and circulating catecholamines are not reflected by LF augmentation 

(Breuer et al., 1993). 

Conversely, the HF band is broadly viewed as a reflection of parasympathetic activity 

(Malik et al., 1996; McCraty & Shaffer, 2015; Montano et al., 2009; Shaffer et al., 2014; Thayer 

et al., 2010; Zygmunt & Stanczyk, 2010).  Researchers employing ANS blockade have shown 

HF to be one of the strongest non-invasive indices of parasympathetic activity (Cacioppo et al., 

1994).  The representation of parasympathetic activity occurring at a higher frequency or faster 
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rate per second is physiologically sound, given the ability of the parasympathetic nervous system 

to directly alter the chronotropic activity of the heart via acetylcholine sensitive potassium ion 

channels. 

A ratio of LF to HF power has been suggested to be a indictor of “sympathovagal 

balance” (Malliani et al., 1997; Montano et al., 2009).  With the true underlying physiological 

driver of the LF band still unclear, multiple sources have refuted this suggestion with findings of 

little to no association between the ratio of LF to HF power and validated markers of ANS 

activity (Billman, 2013; Breuer et al., 1993; Cacioppo et al., 1994; Michael, Graham, et al., 

2017).  Therefore, this metric will be reported for the sake of comparison to other research, but it 

will not be used for the statistical analyses or as a true reflection of ANS activity. 

It should be stated that a fourth common frequency band, ultra-low frequency, does 

appear below the 0.0033Hz cut off of VLF, but this only emerges during recordings lasting 24 

hours or longer (Malik et al., 1996).  Given that this dissertation will focus primarily on data 

from short-term records (2-10 minutes), properties of this frequency band will not be assessed or 

discussed.   

Systolic Time Intervals 

Although there doesn’t appear to be an agreed upon “gold standard” for measuring 

sympathetic activity (Grassi & Esler, 1999), systolic time intervals (STI) have been viewed as a 

non-invasive marker of cardiac performance since the 1940’s (Benouar et al., 2018).  Certain STI 

parameters have been repeatedly validated as indictors of sympathetic activity (Ablonskytė-

Dūdonienė et al., 2012; Cacioppo et al., 1994; Michael, Graham, et al., 2017; Tavakolian, 2016).  

Originally collected by the simultaneous recording of an electrocardiogram, a carotid pulse 

tracing, and a phonocardiogram to estimate the movements of the aortic valve, STI provide a 
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non-invasive assessment of left ventricular function in regards to the amount of time required for 

the electrical activity of the heart to cause a mechanical effect (Lewis et al., 1977).  Since it’s 

conception, multiple methods of estimating this cause and effect relationship have been 

suggested in attempts to refine and simplify the data collection process.  Recently, the use of 

esophageal doppler imaging, echocardiography, seismocardiography and impedance 

cardiography have all been suggested as alternative means of evaluating STI (Tavakolian, 2016).  

Compared to the other methods, impedance cardiography has the benefits of being one of the 

least invasive and most clinically repeatable measurements.  Furthermore, the accuracy of 

impedance cardiography to estimate STI has been shown to be significantly correlated with STI 

measurements collected from highly invasive thermodilution techniques (Zoremba et al., 2007) 

and the less invasive (but still tedious) methods of echocardiography (Noda et al., 2017) and 

esophageal doppler monitoring (Lorne et al., 2014). 

Impedance cardiography seeks to determine the timing of the opening and closing of the 

aortic valve by calculating the impedance of a small electrical current passing through the thorax.  

This is accomplished by the bilateral placement of paired electrodes at the base of the neck and 

around the chest at the level of the xiphoid process (Sherwood et al., 1990) with the intent to 

generate a small, imperceptible current and measure the voltage development across the thorax 

depicted in Figure 2.3. 
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Figure 2-3. Typical Electrode Placement for Impedance Cardiograph. 

 

Note: I, Current; V, Voltage. (As illustrated by Biopac Systems Inc.) 

With this setup, the raw impedance value can be obtained and a calculated output of the 

change in impedance over change in time (dz/dt) measured in ohms per second can be generated.  

In order to calculate the desired STI, a simultaneous ECG tracing outlining the concomitant 

electrical activity is required since the impedance graph only specifies information regarding the 

mechanical cardiac events.  A typical graphical product of both of these recordings is provided in 

Figure 2.4 with pertinent physiological events labeled on each tracing. 
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Figure 2-4. Diagram of typical Impedance Cardiography and ECG waveforms. 

 

Note: (As illustrated by Benouar et al., 2018). See text for explanation. ICG points 

represent: A, atrial contraction; B, aortic valve opening; E, highest peak if dz/dt coinciding with 

maximal aortic flow; X, closing of aortic valve; Y, pulmonic point closing; O and Z, relating to 

mitral valve opening and possible regurgitation respectively. 

Keeping in mind the inherent fluctuating nature of the electrical signal, the wave forms 

appearing in Figure 2.4 are typical morphology for both impedance and ECG voltage readings 

across the same section of time.  The common ECG waveforms are labeled and presented on the 

lower section of Figure 2.4, with the P wave representing atrial depolarization, the QRS complex 

reflecting ventricular depolarization, and the T wave representing ventricular repolarization.  The 

characteristics of impedance during a cardiac cycle are displayed on the same time scale.  The A 

point signifies atrial contraction, followed shortly by the B point representing aortic valve 

opening.  While not as clearly discernable as other specified wave forms, the location of the B 

point is typically defined as the point at which there is an initial rapid upstroke towards 

dZ/dt(max) or the highest peak of the dZ/dt signal.  This apex or highest peak is labeled as the E 
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point (Sherwood et al., 1990).  Physiologically, the E point, also referenced as the C point, is said 

to represent the maximal aortic flow (Benouar et al., 2018).  The dZ/dt(max) precedes a sloping 

fall in impedance until the X point, the lowest point on the waveform, is reached.  This low point 

represents the physical closing of the aortic valve and typically follows shortly after the 

completion of the T wave on the ECG in the same time series.  The Y point reflects the pulmonic 

valve closing and is the minimum notch between the X point and the maximum impedance valve 

after the E point, known as the O point.  The O and Z points respectively signify the opening of 

the mitral valve and any sign of mitral regurgitation if present (Benouar et al., 2018). 

Metrics of Interest. Various physiological events and segments of time with deep 

functional value can be derived from the waveforms detailed above.  Parameters such as cardiac 

output, stroke volume, left ventricular ejection time and the pre-ejection period as well as other 

factors can all be calculated using the combined recordings of ECG and impedance cardiography 

(Siedlecka et al., 2015).  While it is possible to calculate stroke volume and thus cardiac output 

from the recordings, research has shown that the accuracy of impedance cardiography to observe 

these parameters should be questioned, with significant issues placed on the mathematical model 

employed in the analysis (Sherwood et al., 1990).  However, the primary focus of this 

dissertation in regard to impedance cardiography is the estimation of the Pre-Ejection Period 

(PEP). 

In terms of waveform analysis, the PEP is defined as the period of time between the Q 

wave on the ECG and the B point on the dZ/dt recording.  The PEP is biologically defined as the 

interval of time from the initiation of left ventricle depolarization to the opening of the aortic 

value.  The concept of the PEP is to estimate the amount of time required for the left ventricle to 

generate enough force to open the aortic valve once it has received the neural signal to contract.  
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Thus, the PEP can be used as an index of left ventricular contractility (Sherwood et al., 1990).  

Given that parasympathetic activity, while affecting HR, has minimal influence on contractility, 

an increase in contractility via neural stimulation can only be achieved by an increase in 

sympathetic activity. Thus, PEP is considered by most researchers as an acceptable marker of 

sympathetic activity (Cacioppo et al., 1994; Michael et al., 2017; Siedlecka et al., 2015). 

Early studies on STI such as Ahmed et al. (1972), evaluated the validity of STI as a 

marker of myocardial performance and usefulness as a marker of left ventricular contractility.  

The study employed several invasive medical procedures including the placement of three 

cardiac catheters at the main pulmonary artery, left ventricular apex, and the aortic root used 

along with the coordinated injection of indicator dye in the left ventricle to directly measure left 

ventricular ejection fraction and cardiac output.  Additionally, non-invasive recordings of ECG, 

oscilloscopic recordings, and an aortic pulse tracing were used to document pressure changes and 

STI parameters.  After observing the cardiac function of 70 subjects, STI derived PEP positively 

correlated with direct measurements of cardiac pump function and exceeded several 

predetermined qualifications of a valid index of myocardial contractility (Ahmed et al., 1972). 

 Utilizing single and double autonomic blockade via metoprolol and atropine sulfate in 10 

health males, Cacioppo et al. (1994) revealed that PEP derived from impedance cardiography 

and HF derived from short-term HRV were the only significantly reliable, non-invasive indices 

of sympathetic and parasympathetic nervous system activity respectively (Cacioppo et al., 1994).  

These findings echo those of Ahmed et al. (1972) in establishing the validity of PEP as a marker 

of myocardial contractility and sympathetic neural activity.   

Since its origin, many studies have examined the properties of PEP and outlined the 

clinical significance of the parameter.  In the late 1970s, critical reviews such as Lewis et al. 
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(1977), detailed the validity of utilizing PEP and other STI as clinical markers for various rhythm 

abnormalities and disease states (Lewis et al., 1977).  Of more recent notoriety, researchers have 

suggested that PEP and other STI be used as non-invasive detectors of hypertension, cardiac 

insufficiency, and causes of acute dyspnea in addition to being used as an early stage risk factor 

for CVD development (DeMarzo, 2018; Siedlecka et al., 2015).  Congruently, PEP has also been 

employed to evaluate ANS activity pre and post exercise in attempts to outline the initial 

disengagement and subsequent re-engagement of the parasympathetic nervous system (Michael, 

Graham, et al., 2017; Michael, Jay, et al., 2017a; Michael et al., 2018) 

Table 2-1. Absolute Values for Short-term HRV and STI Measurements of Healthy Adults. 

 Measurement Mean SD Range Number of 
studies 

1SDNN (ms) 50 16 32-93 27 
1RMSSD 
(ms) 42 15 19-75 15 
1LF (ms2) 519 291 193-1,009 35 
1LF (nu) 52 10 30-65 29 
1HF (ms2) 657 777 82-3,3630 36 
1HF (nu) 40 10 16-60 30 
1LF:HF 2.8 2.6 1.1-11.6 25 
2PEP (ms)  n/a n/a 50-120 n/a 

Note: SD, standard deviation; SDNN, standard deviation of normal to normal beats; 

RMSSD, root mean square of successive differences between normal to normal beats; LF, low 

frequency power; nu, normalized units; HF, high frequency power; LF:HF, ratio of low 

frequency power to high frequency power; PEP, pre-ejection period. 1As published by Nunan et 

al. (2010), 2As published by Turner (2000). 
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Normative values for short-term recordings of HRV metrics of interest and PEP have 

been provided in Table 2.1 above.  Given the widely agreed upon and followed guidelines of 

HRV recordings and analysis, these values are broadly accepted for recordings of 10 minutes or 

less in healthy adults.  Such cohesion is not readily applicable to PEP values due to a lack of 

agreed upon measurement guidelines and the use of various methodological approaches to 

determining PEP.  While methods previously discussed are significantly correlated with ICG 

derived PEP (Lorne et al., 2014; Noda et al., 2017; Zoremba et al., 2007), other methods such as 

phonocardiography and seismocardiography have been shown to produce significantly different 

PEP values compared to ICG (Dehkordi et al., 2019).  Thus, staunch guidelines for PEP values 

are not fully available.   The PEP range provided in Table 2.1 is based upon published clinical 

nursing guidelines for monitoring hemodynamics (Turner, 2000). 

In sum, PEP can be used as a valid marker of sympathetic activity at the level of the 

heart.  Coupled with various metrics of HRV, comprehensive observations of ANS activity can 

be achieved non-invasively.  The remainder of this review of literature will focus on individual 

and compounding influences of various physiological variables on ANS activity by tracking 

changes in HRV and STI.  The interrelated nature of these influences will be outlined in a 

conceptual model and give light to the rational for this dissertation. 

Influencers of Autonomic Nervous System Activity 

Glycemic Impairment 

Overview. Type 2 diabetes mellitus (T2D) is the chronic disease state of poor glucose 

management and greatly effects the functionality of the ANS.  This is primarily due to the 

metabolic imbalance associated with T2D and the resulting complication of cardiac autonomic 

neuropathy.  Cardiac autonomic neuropathy is the impairment of cardiovascular autonomic 
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control due to nerve damage and affects 20-73% of T2D patients (Dimitropoulos, 2014; Fisher & 

Tahrani, 2017).  Numerous studies have shown that altered ANS activity, characterized by 

reduced parasympathetic and elevated sympathetic activity, is associated with T2D and indices 

of glycemic impairment (Benichou et al., 2018; Seyd et al., 2008; Thayer et al., 2010; Wulsin et 

al., 2015).  As the concept of glycemic impairment cannot be adequately evaluated by a single 

metric, this review will outline the relations of the most common indictors of glycemic 

impairment and ANS activity, as measured by HRV and STI. Glycemic impairment indictors 

include fasting blood glucose (FBG), insulin concentrations, and glycated hemoglobin 

(Hemoglobin A1c: HbA1c) concentration in the blood. 

Fasting Blood Glucose. While the overall disease state of T2D has been associated with 

decreased parasympathetic and increased sympathetic activity, varying results have been found 

in regard to the relation between FBG concentration and altered ANS activity.  FBG is used to 

evaluate current or transient blood glucose management status with a typical range being defined 

as less than 100 mg/dL (5.6 mmol/L).  A concentration higher than 100mg/dL is viewed as a 

marker of poor glucose management, with concentrations between 100-126mg/dL termed as 

impaired FBG or pre-diabetic.  Having FBG concentrations higher than 126 mg/dL on two 

separate occasions categorizes an individual as diabetic.  Although FBG concentrations can be 

used to classify T2D status, it is inherently limited as a sole reflector of overall glucose 

management, given that concentrations constantly fluctuate.  This fluctuation is caused by 

multiple factors including hormonal regulation, physical activity level, menstrual cycle, illness, 

stress and diet.  The following discussion will summarize the general concepts of the relation 

between FBG concentration and ANS activity from both population and single cohort-based 

perspectives. 
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One of the first population based studies to examine the relation between FBG and ANS 

activity (Liao et al., 1995) focused on data from the Atherosclerosis Risk in Communities 

(ARIC) study.  Using spectral HF power derived from two-minute ECG recordings, Liao and 

colleagues compared diabetic (n=154), defined as having a FBG greater than 140mg/dL, and 

non-diabetic (n=1,779) subjects while controlling for age, race, and gender.  The diabetic group 

displayed significantly lower HF power compared to non-diabetic subjects [0.78 and 1.27 

(beat/min)2, respectively].  Further investigation of the non-diabetic group found a significant 

inverse linear trend between FBG and HF power when divided into quartiles.  This relation lost 

statistical significance once the model was adjusted for age, race, and gender.  It should be noted 

that only the highest quartile (>107mg/dL) did not fit the linear trend in the adjusted model, 

possibly due to the fact that FBG of this concentration already suggest glycemic impairment by 

present standards.  In sum, it was concluded that non-diabetics display greater levels of 

parasympathetic activity as measured by HF power compared to diabetics.  Moreover, FBG 

concentrations appear to have a negative relation with the amount of parasympathetic activity in 

non-diabetic subjects, specifically in individuals within the current recommended range 

(<100mg/dL) of FBG (Liao et al., 1995). 

Similar results were found by Singh and colleagues (2000) utilizing data from the 

Framingham Heart Study.  Groups from the offspring cohort stratified by FBG had ECG 

recordings completed between 1983-1987.  A total of 1,919 subjects were used, with 1,779 

classified as normal FBG (<110 mg/dL), 56 classified as impaired FBG (110-125mg/dL), and 84 

classified as diabetic (≥126mg/dL).  The natural log of SDNN, LF power, HF power, and LF/HF 

ratio derived from the first two hours of ambulatory activity were compared among the three 

groups.  Additionally, a multivariable regression analysis was used to examine relations between 
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FBG and the same HRV metrics while controlling for age, sex, body mass index, heart rate, 

systolic and diastolic blood pressure, smoking, and the use of caffeine, alcohol, and cardiac 

medications.  Group analyses revealed that the normal FBG group had significantly higher 

values of SDNN, LF and HF power, while the LF/HF ratio was only significantly lower in the 

diabetic group.  The multivariate regression analysis demonstrated a significant inverse relation 

between FBG and SDNN, LF power, and HF power while accounting for the covariates.  This 

association of higher FBG with lower HF values echoes the above findings of Liao et al., (1995).  

Taken together, these studies indicate that higher concentrations of FBG are associated with 

lower parasympathetic activity at the cardiac level.  

A recent meta-analysis of over 25 studies, focusing on the relations between HRV indices 

observed in 24 hours ECG recordings and T2D status,  was conducted by (Benichou et al., 2018).  

The analysis also examined the relations among multiple HRV indices and clinically relevant 

parameters of T2D status, including gender, age, FBG, HbA1c, time from diagnosis, systolic and 

diastolic blood pressure, and lipoprotein concentrations.  Adults being treated with oral 

antidiabetic agents were classified as T2D.  All studies used age and gender matched non-

diabetic controls.  It is important to note only one of these 25 studies controlled for body mass 

index (BMI), only two controlled for body weight, and only one controlled for blood pressure 

differences between groups.  Overall, individuals with T2D (n= 1,356) presented with 

significantly lower SDNN, RMSSD, total spectral power, LF, and HF power compared to 

healthy controls (n = 1,576).  These results collectively demonstrate low HRV in those with 

T2D, supporting the above findings of Singh et al. (2000) and Liao et al. (1995).  Conversely, the 

meta regression analysis across the whole population revealed that FBG was positively 

associated LF power, HF power, RMSSD, and SDNN.  The authors concluded that these results 
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may be due to the deleterious effects of altered glucose metabolism and suggest that an increase 

in FBG was associated with increases in both parasympathetic activity (as represented by 

RMSSD and HF power) and sympathetic activity (as represented by SDNN and LF power).   

While this dissertation does not support the use of SDNN and LF power as markers of 

sympathetic activity, it does acknowledge the interpretation that an increase in these specific 

markers would represent an increase in HRV components.  These conflicting findings could be 

due to the lack of control for BMI, body weight, and blood pressure as previously noted.  

Elevations in BMI (Molfino et al., 2009) and blood pressure (Schroeder et al., 2003) have been 

found to be significantly associated with decreased HRV.  Thus, a lack of control for these 

factors could muddy the findings of this meta-analysis.  Additionally, the difference in recording 

length (24 hours vs two minutes) could play a major role in these findings, since the 

physiological interpretation of HRV metrics differ depending on the length of the recording. 

The results of various smaller cohort studies are more diverse than those of the 

population-based findings, possibly due to the lack of universal control for assorted covariates as 

well as differing methods of observation.  Cross-sectionally, Lutfi & Elhakeem (2016) evaluated 

the relations between FBG concentration and various HRV metrics derived from five-minute 

ECG recordings in 42 non-diabetic males free from disease.  Individuals in the lowest quintile of 

FBG concentration (<73mg/dL) had significantly lower logarithmic HF power and normalized 

HF power and higher values of normalized LF power than individuals in the other four quintiles.  

BMI, mean arteriole blood pressure, mean heart rate, age, and gender did not significantly impact 

the relations between FBG and the HRV metrics as determined by linear regression analysis.  No 

significant differences were found among the other four quintiles.  These results contrast those of 

Perpiñan, Severeyn, Wong, & Altuve (2019), who found that healthy, sedentary, individuals with 
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an average FBG of 95 mg/dL had significantly lower values of normalized LF and significantly 

higher values of normalized HF compared to age-matched subjects with diagnosed metabolic 

syndrome.  Both studies included individuals with normal FBG concentrations but found 

opposing results.  This could be due to the effects of the considerably lower mean FBG 

concentrations reported in the study by Letfi & Elhakeem.  While not considered hypoglycemic, 

73mg/dL could be low enough to stimulate increases in the release of glucose regulatory 

hormones (e.g., glucagon, epinephrine, and cortisol) in an attempt to increase blood glucose 

concentrations, which would reflect less parasympathetic and greater sympathetic activity.  

Multiple studies have also observed ANS activity in response to increased glucose 

concentrations during oral glucose tolerance testing (OGTT).  Perpiñan et al. (2019) measured 

five-minute HRV recordings and blood glucose and insulin concentrations in 30-minute intervals 

before and 120 minutes after OGTT in 11 subjects with metabolic syndrome and five healthy 

age-matched controls.  Compared to fasting values, those with metabolic syndrome displayed 

higher levels of SDNN at 30, 60, 90, and 120 minutes post OGTT, absolute LF power at 60, 90, 

and 120 minutes post OGTT, normalized LF power 120 minutes post OGTT, and lower 

normalized HF power 120 minutes post OGTT.  The control group did not display significant 

changes in HRV parameters at any time point post OGTT compared to fasting (baseline) values.  

These results suggest that an increase in blood glucose concentration in those with poor glucose 

metabolism will result in ANS activity markers that reflect increased sympathetic drive and 

decreased parasympathetic tone while simultaneously displaying increased overall HRV 

(SDNN).  Contrasting reactions in SDNN values following an OGTT were found by Perticone et 

al. (2016) in that subjects with normal glucose tolerance, impaired glucose tolerance, and T2D 

all displayed decreases in SDNN compared to fasting values.  It was observed that the T2D 
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subjects had lower SDNN levels at two hours post OGTT compared to the normal glucose 

tolerance group. Additionally, LF and HF power values were not individually reported but the 

LF/HR ratio was noted to be elevated at all time pointes in the T2D group compared to the 

normal glucose tolerance group.  In sum, an increase in blood glucose resulted in a decrease in 

overall HRV (SDNN) regardless of fasting glucose metabolism status and those individuals 

suffering from poor glucose metabolism displayed altered HRV metrics compared to health 

controls.  Perticone et al. (2016) and Perpiñan et al. (2019) utilized different recording lengths 

(30 minutes and 5 minutes respectively) and both lacked control for obesity status or body 

composition. 

Kanaley et al. (2007) provided data on ANS activity alteration before and after OGTT in 

females grouped by obesity and T2D status while accounting for body composition and 

cardiorespiratory fitness.  The groups consisted of nine subjects with obesity and T2D, 22 non-

T2D obese subjects, and 11 non-obese subject free from T2D, with all subjects completing an 

exercise test on a prior laboratory visit to determine cardiorespiratory fitness. HRV analyses 

derived from 10-minute supine ECG recordings and blood samples were taken before and after 

an OGTT.  An up-right tilt test was done before and after the OGTT with HRV analyses and 

blood samples were taken on each occasion.  Group by position (supine vs tilt) by glycemic load 

(pre vs post OGTT) statistical analysis revealed that all group displayed an increase in HF power 

following the OGTT.  Interestingly, the only significant group difference was in the natural log 

of the LF/HF ratio, with the T2D group displaying significantly lower levels compare to both the 

obese and non-obese groups.  Furthermore, neither fasting glucose or insulin concentrations were 

significantly correlated with any HRV metric.  Notable differences in post OGTT data collection 

time were reported for the T2D group (1 hour) compared to both the obese and non-obese groups 
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(30 minutes) with the authors suggesting that these were the times that each group had the 

highest concentration of blood glucose.  In spite of the lack of group differences, these results 

demonstrate that an increase in blood glucose is accompanied by an increase in a marker of 

parasympathetic activity (HF power) and provide yet another paradigm for the relation between 

ANS activity and blood glucose concentration.  

PEP and its relation to FBG has been published to a lesser extent.  Sykes, Wright, Malins, 

& Pentecost (1977) examined the changes in PEP in 19 diabetics undergoing treatment via diet 

modification (n=9) or sulphonylurea usage (n=10) compared to 27 healthy, age and weight 

matched controls over a three-month period.  At baseline, all diabetic subjects had evaluated 

FBG concentrations compared to the controls.  Additionally, PEP length corrected for resting HR 

was significantly shorter in all diabetic subjects compared to health controls, denoting an 

increase in sympathetic activity at the cardiac level in the diabetic subjects.  After three months 

of treatment, both the diet modification and sulphonylurea groups presented with significantly 

decreased FBG concentrations, while the diet modification group still had significantly evaluated 

concentrations compared to the control group.  Moreover, both treatment groups had markedly 

lengthened PEP measurements that were not significantly different than the control group.  These 

results provide evidence that an improvement in glucose management represented by a decrease 

in FBG is related to a decrease in sympathetic activity at the cardiac level.  Similar results were 

found more recently by Synowski, Kop, Warwick, & Waldstein, (2013) while investigating the 

effects of glucose ingestion on STI metrics before and after mental challenges in obese males.  

On two separate occasions, the subjects ingested a 20% solution of glucose at 1g of glucose per 

kilogram of body weight or a volume matched placebo of sugar-free Kool-Aid.  Pre and 30 

minutes post-ingestion impedance cardiography and ECG measurements were recorded for five 
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minutes.  While changes in blood glucose were not confirmed, the ingestion of a glucose solution 

resulted in significant, prolonged shortening of PEP length for the remainder of the visit.  This 

echoes the results of Sykes et al. (1977) in that an increase in blood glucose was related to an 

increase in sympathetic activity as represented by a decrease in PEP length. 

Individually, each of the smaller cohort studies provide different pictures of ANS activity 

and acute blood glucose concertation.  Holistically, blood glucose concentration is likely related 

to ANS activity, as individuals with glycemic impairment generally display indices of increased 

sympathetic and decreased parasympathetic activity.  It has been suggested that periods of 

chronic hyperglycemia, in which glucose concentrations are evaluated for multiple months to 

years could have a more meaningful impact on ANS activity compared to acute fluctuations.  

Additionally, it is currently not possible to state whether this relation is caused by the acute 

effects of glucose on cardiac and neural tissue or if a simultaneous fluctuation in insulin 

concentration might have some effect.  Furthermore, modifications of the hypothalamic-

pituitary-adrenal (HPA) axis may play a mitigating role in the observed relation between blood 

glucose and ANS activity.  Research into the relations of prolonged glycemic impairment and 

insulin concentrations with ANS activity will be presented in subsequent sections, followed by a 

brief outline of the HPA axis and its implications.  

HbA1c. Given the evidence for a connection between ANS activity and acute glucose 

concentrations, it is logical that chronically elevated levels of glucose would have a magnified 

impact on ANS activity.  Such observations have been conducted with particular attention given 

to glycosylated hemoglobin.  Commonly used as an indicator of prolonged glucose homeostasis, 

glycosylated hemoglobin or Hemoglobin A1c, (HbA1c) is also used to categorize diabatic status.  

Having a HbA1c level of 6.5% or higher on two separate occasions indicates diabetic status, with 



 37 

percentages between 6.5 and 5.7 denoting pre-diabetes and non-diabetic status residing below 

5.7%. 

Jaiswal and colleagues evaluated the relations of multiple HRV parameters and various 

physiological characteristics of 530 age matched youths with and without (control group) type I 

diabetes (Jaiswal et al., 2013).  Compared to the control group, the diabetic group displayed 

significantly lower SDNN, RMSSD, and normalized HF power alongside elevated normalized 

LF power.  Additional analysis was conducted on the diabetic group by subdivision based on 

HbA1c level (above and below 7.5%) and revealed that all HRV metrics were further reduced in 

those with HbA1c greater than 7.5% compared to the control group.  Interestingly, following the 

subdivision, those diabetics with HbA1c less than 7.5% were no longer significantly different 

from the control group.  These findings support the view that prolonged glycemic impairment is 

related to altered ANS activity characterized by reduced parasympathetic activity.  Similar 

results were discovered analyzing information collected in the Data from an Epidemiology Study 

on Insulin Resistance syndrome (DESIR) Study.  A significant linear trend between HbA1c 

percentage and SDNN derived from five-minute ECG recordings among quartiles of diabetic 

status denoted a reduction in SDNN was associated with an increase in HbA1c percentage 

(Valensi et al., 2011). 

Though studying different recording lengths, Boer-Martins et al (2011) found the same 

inverse association between SDNN and HbA1c levels in hypertension patients with and without 

T2D.  Calculated from the 24-hour ECG recording, total group analysis determined that SDNN 

was negatively correlated with HbA1c levels (r = -0.58, p < 0.000). The meta-analysis by 

Benichou et al. (2018) on 24-hour ECG recordings harmonizes with these findings reporting that 

HbA1c percentage was significantly associated with decreased HRV as defined by a decrease in 
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R-R intervals.  Furthermore, time from diagnosis of diabetes was inversely related to total 

spectral power in diabetics.  Together, these results support the notion that altered ANS activity 

intensifies with sustained glucose mismanagement. 

Conversely, the findings outlined above by Kanaley et al (2007) do not fully agree with 

this paradigm.  While ANS activity differed between the groups stratified by obesity and diabetic 

status, there was no significant group difference in regard to HbA1c levels.  This suggests that 

the increase in parasympathetic activity post glucose consumption is not further influenced by 

imbalances in prolonged glucose homeostasis beyond HbA1c’s relation to diabetic status 

determined by FBG.  Moreover, it has been suggested that baseline HbA1c is not significantly 

associated with observed decreases in PEP length post insulin treatment in diabetics (Dungan et 

al., 2013).  Beyond agreeing with the lack of impact found by Kanaley et al (2007), this implies 

that insulin could have an influence on ANS activity regardless of HbA1c status.  The following 

section will review this concept and confirm the relation between insulin concentration and ANS 

activity. 

Insulin. It is apparent that insulin concentrations are fundamental in the relation between 

ANS activity and glycemic impairment, as insulin is both a key regulatory hormone for glucose 

homeostasis and insulin secretion is sensitive to neural output.  Insulin is the principle hormonal 

stimulator of glucose uptake from the circulation, hepatic glycogenesis, lipogenesis in the 

adipose tissue, and stimulates cellular growth.  Release of Insulin from pancreatic beta cell islets 

is stimulated by both elevated blood glucose concentrations and parasympathetic stimulation 

from the vagus nerve.  Conversely, lowered blood glucose concentrations, sympathetic 

stimulation from the lower thoracic and upper lumbar preganglionic sympathetic neurons, and 

sympathetically driven hormones (epinephrine, norepinephrine, and glucagon) all inhibit the 
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release of insulin.  Thus, insulin is an intertwined aspect of the relation between ANS activity 

and glycemic impairment. 

Research on insulin concentrations and markers of ANS activity has been conducted 

independently and congruent with glucose concentrations.  In the above study by Liao et al. 

(1995), the relation between insulin concentration and HRV metrics derived from two-minute 

ECG recordings was evaluated using the Atherosclerosis Risk in Communities dataset.  Quartile 

comparisons revealed a significant inverse linear trend between insulin concentration and HF 

power in non-diabetic subjects, with the lowest quartile of insulin presenting with the highest 

value of HF power (1.34 beats/min2) while the highest quartile of insulin presented the lowest 

value of HF power (1.14 beats/min2).  This suggests that higher concentrations of insulin are 

associated with lower parasympathetic activity in non-diabetic individuals. 

A similar inverse trend was found by Saito et al. (2015) examining the Toon Health 

Study.  Quartiles of SDNN values derived from five-minute ECG recording were taken from 

1,899 individuals not currently taking diabetic medication.  Quartile comparison displayed a 

significant inverse relation with insulin concentrations, in that the lowest quartile of SDNN had 

the highest concentration of insulin (36.0mmol/L) and the highest quartile of SDNN had the 

lowest concentration of insulin (32.4mmol/L).  The study compared frequency component HRV 

analyses to insulin sensitivity via the Gutt’s insulin sensitivity index, rather than insulin 

concentration, per se.  Similarly, Festa, D’Agostino, Hales, Mykkanen, & Haffner (2000) 

observed that heart rate had a significant relation with fasting insulin (r=0.20) as well as an acute 

insulin response (r=0.18) to a glucose load in 1,000 nondiabetic subjects.   These relations 

remained significant after accounting for age, sex, ethnicity, smoking status, and glucose 

tolerance status.   Taken together, these studies provide evidence that HRV decreases and heart 
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rate increases as insulin concentrations increase, suggesting a predominance of sympathetic 

activity. 

The notion of increased sympathetic activity is not shared by Quilliot, Zannad, & Ziegler 

(2005), who observed an increase in normalized HF power in groups with varying BMI values 

and insulin resistance status after an OGTT.  Groups consisting of non-obese (BMI 18-

24.9kg/m2) without insulin resistance, overweight (BMI 25-29.9kg/m2) with, class I and II 

obesity (BMI 30-39.9kg/m2) and class III obese (BMI ≥	40.0kg/m2) were evaluated before and 

after an OGTT using 10-minute heart rate recordings.  Based on group averages, both obesity 

groups were classified as having insulin resistance.   All groups displayed increased LF power, 

and normalized LF and HF power following the OGTT, with the two obesity groups having the 

highest area under the curve for normalized HF power and lowest LF power post OGTT.  The 

obesity groups also displayed the highest concentrations of insulin and blood glucose, suggesting 

that these concentrations are associated with the altered ANS activity post OGTT.  While 

providing opposing results to research pervious presented, these findings could not delineate the 

individual effects of increased blood glucose and insulin concentrations.  Furthermore, this study 

utilized finger photophlethysmography to monitor heart rate and calculate HRV alterations 

instead of a standard ECG recording.  These severe differences in methodology could introduce a 

potential source of error. 

More in-line with the large cohort studies, Perciaccante, Fiorentini, Paris, Serra, & 

Tubani (2006) presented data on 24 hour ECG recordings across groups of varying insulin 

resistance status and age matched controls.  HRV was calculated during nighttime and daytime 

hours as well as total 24-hour period.  Total SDNN was significantly decreased in all insulin 

resistance groups compared to the normal glucose tolerance controls, suggesting a decrease in 
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HRV with an increase in insulin concentrations.  Additionally, total normalized LF power was 

significantly elevated while normalized HF power was significantly decreased in all insulin 

resistance groups compared to the control group.  Those with the most severe status of insulin 

resistance (T2D) had the lowest values of normalized HF and LF power compared to the other 

insulin resistance groups.  Taken together, these data support the notion that an increase in 

insulin concentration is associated with a decrease in parasympathetic activity accompanied by 

an increase in sympathetic activity resulting in an overall decrease in HRV in individuals with 

glycemic impairment. 

Individuals with normal glucose management have been shown to have different ANS 

reactions with alterations in insulin concentrations.  Stockhorst, Huenig, Ziegler, & Scherbaum 

(2011) evaluated the effects of insulin, glucose, or placebo injections on HRV metrics in 

apparently healthy, normal weight individuals.  HF power, insulin, and glucose were assessed at 

regular time intervals post injections.  Both injections of insulin and glucose resulted in large 

increases in insulin concentrations that aligned with spikes in the total change of HF power 

values compared to the placebo injection of volume matched saline solution.  These results 

demonstrate that in individuals with healthy glucose management, a direct increase in insulin 

concentration or increased stimulation of insulin secretion via increase in blood glucose is 

associated with increased parasympathetic activity.  Thus, it appears that glycemic impairment 

status alters the ANS response to insulin concentration fluctuations. 

From a medical treatment standpoint, most research supports the concept that insulin 

infusions alter ANS activity, typically in a sympathetically predominant manner.  An infusion of 

a glucose, insulin, and potassium cocktail has been used for decades to increase cardiac 

parameters in cardiovascular patients (Klein & Visser, 2010).  Postulated to be caused by 
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calcium dependent and independent pathways (von Lewinski et al., 2005), insulin infusions have 

been shown to exert positive inotropic effects on the heart, including an increase in cardiac index 

and coronary blood flow (Klein & Visser, 2010). 

Injections of insulin alone have been shown to increase heart rate, pulse pressure, double 

product, and mean arterial pressure, suggesting an increase in sympathetic activity at the cardiac 

level (Rowe et al., 1981).  Additionally, insulin infusions in hospitalized diabetic patients 

resulted in decreased PEP length at six hours and 24 hours post administration, further 

representing an increase in sympathetic activity (Dungan et al., 2013).  This relation of increased 

insulin concentration and accompanying decrease in PEP length is also supported by Ochoa et al. 

(2015) who investigated the association between insulin resistance and ANS activity in 731 non-

diabetic individuals.  Quartile comparison based on homeostasis model assessment of insulin 

resistance scores demonstrated that increasing the degree of insulin resistance (and subsequent 

concentration of insulin) was associated with a shorting of PEP length regardless of BMI and 

blood pressure status. 

In summary, it appears that insulin’s influence on ANS activity is dependent on multiple 

factors including disease status.  As outlined above, most of the sympathetic drive effects of 

insulin on the cardiac tissue are more pronounced in individuals with some degree of disease 

status.  This could possibly be due to the concept that it is difficult to improve myocardial 

function in tissue that is currently performing adequately (Klein & Visser, 2010).  Even in 

disease-free individuals, the sympathetic effects of insulin appear to manifest most in those that 

are approaching disease status i.e. pre-diabetic (Ochoa et al., 2015).   Furthermore, there are site 

specific differences in the ANS reaction to insulin binding.  In the above studies, the effects of 

insulin administration focused primarily on the myocardial outcomes.  However, insulin 
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injections into cerebral ventricles can stimulate areas of the hypothalamus resulting in increased 

parasympathetic activity to the liver and white adipose tissue.  This action causes reduced 

hepatic gluconeogenesis and increased lipogenesis (Ruud et al., 2017).  This postulates the 

interaction of insulin and glucose metabolism and the HPA axis.  The following section will 

highlight the main concepts of the HPA axis and its likely involvement in glycemic impairment. 

HPA Axis. While the mechanistic effects of the HPA axis on glycemic impairment and 

ANS activity goes beyond the scope of this dissertation, a general description of how the two are 

related is warranted.  As its name implies, the HPA axis reflects how a physiological or mental 

stressor stimulates a cascading effect among the hypothalamus, anterior pituitary, and the adrenal 

glands.  Graphically outlined below in Figure 2.5, acute stress stimulates the release of 

corticotrophin-releasing hormone (CRH) from the hypothalamus, which stimulates the anterior 

pituitary gland to release adrenocorticotrophic hormone (ACTH).  ACTH then travels through 

circulation to the adrenal cortex and stimulates the release of cortisol.  Following its release, 

cortisol provides negative feedback to the hypothalamus and anterior pituitary gland, inhibiting 

the release of CRH and ACTH respectively.  Additionally, multiple downstream effects are 

caused by cortisol, including alterations in glucose metabolism and cardiac performance. 
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Figure 2-5. Diagram of HPA Axis 

 

Note: CRH, corticotrophin-releasing hormone; ACTH, adrenocorticotrophic hormone 

In terms of glucose management, glucocorticoids such as cortisol act in various ways to 

increase concentrations of blood glucose including impairing peripheral insulin signaling 

resulting in insulin resistance (Rafacho et al., 2014), decreasing the functionality of glucose 

transporters in skeletal muscle (Weinstein et al., 1995), and increasing food intake (Torrezan et 

al., 2019).  Additionally, cortisol is associated with a decrease in insulin secretion (Kamba et al., 

2016), compounding its effects on rising blood glucose concentration.  All of these actions 

support the concept that dysregulated HPA axis activity is related to the pathophysiology of T2D 

(Chan et al., 2005; John & Buckingham, 2010; Torrezan et al., 2019). 

Acutely, glucocorticoids stimulate an inotropic effect in cardiomyocytes (Penefsky & 

Kahn, 1971), such that the binding of cortisol to the glucocorticoid receptor on cardiac muscle 
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tissue will cause an increase in contractile force.  Additionally, cortisol plays a role in inhibiting 

the apoptotic effects of ischemia in cardiomyocytes (Oakley & Cidlowski, 2015).  Both of these 

mechanisms are critical for short-term reactions to physiological or environmental stressors and 

are fundamental for the natural development and normal function of the heart.  However, 

chronically highly levels of cortisol, like those seen in Cushing’s Syndrome, are associated with 

the development of cardiomyocyte hypertrophy, hypertension, dyslipidemia, obesity, and 

increased risk of cardiovascular morbidity and mortality (Whitworth et al., 2005).  Given this, it 

is apparent that a dysregulation in HPA axis activity resulting in prolonged cortisol secretion will 

have drastic effects on cardiovascular function.  The impact of these cardiovascular dysfunctions, 

specifically hypertension, and their relation to ANS activity will be outlined in the following 

section. 

Cardiac Stress Parameters 

This dissertation has previously outlined the mechanisms by which the ANS directly 

effects chronotropic and inotropic cardiac function, as well as the indirect influence produced by 

altered ANS activity via dysregulated HPA axis activity.  The resulting feedback loops created 

by those changes in cardiac functionality have yet to be addressed.  Figure 2.6 provides an 

exceptional depiction of the interrelated nature of ANS innervation and the cardiovascular 

system as illustrated by Michael et al. (2017). 
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Figure 2-6. Regulatory Pathways of Blood Pressure and ANS Innervation. 

 

Note: AC-cAMP-PKA, adenylate-cyclase/cyclic-AMP/Protein-kinase-A cascade; ACh, 

acetylcholine; aS, sympathetic outflow to adrenal medulla; β1 (β2), Beta1 (Beta2) adrenergic 

receptors; Ca2+, calcium ions; cP, cardiac parasympathetic outflow; cS, cardiac sympathetic 

outflow; CVLM, caudal ventrolateral medulla; E, epinephrine; Gi, G-protein inhibitory subunit; 

Gs, G-protein stimulatory subunit; HR, heart rate; HRV, heart rate variability; K+, potassium 

ions; M2, M2muscarinic receptor; MLC, myosin light chain; NA, nucleus ambiguus; Na+, 

sodium ions; NE, norepinephrine; NPY, neuropeptide Y; NTS, Nucleus Tractus Solitarii; P-, 

phosphorylation; PEP, pre-ejection period; PG, parasympathetic ganglia; Q, cardiac output; 

RVLM, rostro ventrolateral medulla; SG, sympathetic ganglia; SV, stroke volume; vS, vascular 

sympathetic outflow. (As illustrated by Michael et al., 2017) 
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The neural activity from the hypothalamus, through the nucleus tractus solitarius, nucleus 

ambiguous, and medulla, traveling to the heart via their corresponding ganglia, and their 

respective effects on the ionic and cellular activity was discussed in an earlier section.  These 

actions culminated with alterations to chronotropic and inotropic heart function, presented as a 

change in heart rate (HR) and myocardial contractility.  Oscillations in HR will directly affect 

and provide observable changes in HRV metrics.  Additionally, fluctuations in myocardial 

contractility are reflected by variations in the length of PEP.   The subsequent effects of 

chronotropic and inotropic modifications on stroke volume, cardiac output (Q), and pathways of 

neural feedback are further detailed. 

Alterations in heart rate and stroke volume will result in a fluctuation in cardiac output 

(Q).  These oscillations in Q will influence blood pressure and the rate of prefusion.  This is 

enhanced by vasomotor activity in peripheral blood vessels that are sensitive to sympathetic 

activation via NE and E released from the nervous and adrenal systems.  The adjustments in 

pressure and perfusion will stimulate various receptors located in the aorta, cardio-pulmonary 

circuit, and active muscles. These receptors translate changes in blood pressure and perfusion 

into neural signals that create a feedback loop of neural activity that is received and processed by 

the NTS to modulate ANS output.  Thus, Figure 2.6 keenly illustrates the need to account for the 

influence of HR and blood pressure on measurements of ANS activity.  Current views on these 

influences are outlined in the following subsections. 

Heart Rate. It is widely accepted that most HRV metrics are significantly influenced by 

HR (Billman, Huikuri, Sacha, & Trimmel, 2015; Bolea, Pueyo, Orini, & Bailón, 2016; Gasior et 

al., 2015; McCraty & Shaffer, 2015; Monfredi et al., 2014; Sacha, Barabach, et al., 2013; Sacha, 

Sobon, Sacha, & Barabach, 2013; Shaffer et al., 2014).  This is due in part to the physiological 
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link between HR and HRV, as previously outlined, and the mathematical fact that HR has a non-

linear, inverse relation to R-R intervals, in that an increase in HR results in an unequal decrease 

in R-R intervals (Sacha, 2013).  An explanation of this relation and its accompanying ceiling 

effect has been presented since the 1980’s (Akselrod et al., 1985).  While the existence of this 

mathematical linkage is agreed upon, the means to account for it is still being debated.  One of 

the prevailing methods is to normalize the individual HRV metrics (de Geus et al., 2019; 

Laborde et al., 2017).  A popular approach to normalize the data is to divide each HRV metric by 

the mean R-R interval for the time epoch raised to a corresponding power (Sacha, 2013; Sacha, 

Barabach, et al., 2013; Sacha, Sobon, et al., 2013).  The time domain metrics of SDNN and 

RMSSD would each be divided by the mean R-R interval, while the power spectral density 

measurements of the frequency domain would be divided by the mean R-R interval squared (de 

Geus et al., 2019; Sacha, Barabach, et al., 2013).  More complex corrections have been suggested 

but this simple normalization process is supported by a majority of researchers (Billman et al., 

2015; de Geus et al., 2019; Gasior et al., 2015; L. E. V. Silva et al., 2017; van Roon et al., 2016).  

Some researchers believe that normalization of the HRV metrics may still not be enough to 

account for the full influence of HR, given that HR is the inherent sampling rate of the HRV 

signal (Bolea et al., 2016).  Nevertheless, normalization of HRV metrics to mean R-R intervals is 

a valid data processing method to use during a stationary period.  In data analytics, the principle 

of stationarity expresses the requirement that the statistical properties (e.g. mean and variance) of 

time series data does not change over the length of the recording.  This does not mean that the 

series does not change over time, just that the rate or magnitude of change is consistent and does 

not follow a trend. If this statistical principle is violated, as it is during exercise recovery HR 
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recordings, the data will need to be detrended to account for the downward trend in HR before 

HRV metrics are calculated (Tarvainen et al., 2002). 

A similar relation between HR and PEP has long been suggested and described in an 

inverse, linear manner (Weissler, 1983; Weissler et al., 1968).  This linear decrease in PEP 

length with an increase in HR appears logical in that an increase in the frequency of contractions 

would decrease the amount of time available to cause said contraction.  This relation has be 

observed and supported by additional works (Cokkinos et al., 1976; Cybulski, Niewiadomski, 

Strasz, Laskowska, & Gąsiorowska, 2009; Warrington, Weerasuriya, & Burgess, 1988).  

Correction equations based on population studies have been used to correct for this underlying 

relation when using PEP as a diagnostic tool for cardiovascular health, with the most frequently 

used being PEPcorrected = PEP + 0.40(HR) (Warrington et al., 1988; Weissler et al., 1969).  These 

findings are not universally shared in that other research groups have found no significant 

relation between HR and PEP (Ferro et al., 1980; Mertens et al., 1981; Rousson et al., 1987; 

Sundberg, 1986).  These studies suggest that PEP should not be corrected for mean HR during a 

steady state.  The majority of these studies were conducted on small sample sizes, while studies 

by Weissler and colleagues’ utilized population-based observations.  The most robust defense for 

not correcting PEP for mean HR comes from Cacioppo et al. (1994), who found that corrected 

PEP was a less accurate marker of sympathetic activity than uncorrected PEP during varying 

autonomic blockades.  Recent studies use this research to justify not correcting PEP values for 

mean HR during a given time epoch (Michael et al., 2018; Michael, Jay, et al., 2017b).  It should 

be noted that an alternative line of thought suggests that the true nature of the HR and PEP 

relation is based on the linkage of PEP and R-R intervals of the given time period (Van der 

Hoeven et al., 1977; Wolf et al., 1978).  Thus, instead of correcting for mean HR, PEP 
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measurements should be corrected or normalized by mean R-R intervals.  It has been further 

recommended that superior methods of correction for cases of repeat observations or group 

comparisons would be to use the Theil-Sen regression equation, PEP =  70.3 + 0.0367(RRI), or 

an analysis of covariance respectively (Puri & Sen, 1971; Theil, 1992; Wolf & Belz, 1981).   

Given that only 5-10 consecutive cardiac cycles are needed to calculate PEP, there is no current 

recommendation to detrend raw signals before conducting STI calculations. 

Blood Pressure. It has been suggested that the link between ANS activity and 

hypertension may be a large factor for the relation of ANS activity and CVD risk (Thayer et al., 

2010).  While Figure 2.6 provides a mechanistic explanation of how short-term adjustments in 

ANS activity are related to changes in blood pressure, population-based studies have found data 

on the long-term effects of this relation.  Baseline group comparisons and three-year preceptive 

analysis revealed a strong link between baseline ANS activity and hypertension status and its 

development in data from the ARIC study (Liao et al., 1996).  At baseline, hypertensive subjects 

(n = 650), defined as those with systolic blood pressure of at least 140mmHg, diastolic blood 

pressure of at least 90mmHg, or who were taking medication for hypertension, were found to 

have significantly lower HF power, LF power, and SDNN compared to 1,411 normotensive 

subjects.  This suggests that lower HRV is related to a hypertensive state.  Odds ratios for the 

development of hypertension were calculated from the quartile comparisons of baseline HRV 

values and hypertension status at a three-year follow-up.  Of the 1,411 normotensive subjects, 

173 developed untreated-hypertension and another 477 were being newly treated for 

hypertension.  Baseline HF power had a significant inverse relation with the development of 

hypertension, with those in the lowest quartile having a 2.44 odds ratio compared to the highest 

quartile.  SDNN displayed a similar relation with the lowest quartile having a 1.74 odds ratio for 
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the development of hypertension compared to the highest quartile.  Both relations suggest that 

lower levels of HRV, specifically lower parasympathetic activity as measured by HF power, 

increase the risk of hypertension.  This notion was further confirmed by the findings of 

Schroeder et al. (2003) who examined nine years of data from the ARIC study.  As with Liao et 

al. (1996), hypertensive subjects were found to have lower indices of HRV (RMSSD and SDNN) 

at baseline compared to normotensive subjects.  Moreover, quartile comparison of baseline 

SDNN values revealed that those normotensive subjects with the lowest value of HRV had a 

hazard ratio of 1.24 for the development of hypertension over a nine-year span.  Quartiles based 

on baseline RMSSD values had a similar trend in that the normotensive subjects with the lowest 

RMSSD value had a hazard ratio of 1.36 for the development of hypertension.  This further 

supports the relation between ANS activity and hypertension.  While the ARIC dataset utilized 

short, two minute records of HRV analysis, similar relations have been investigated over two 

hour records from the Framingham Heart Study (Singh et al., 1998).  Hypertensive subjects (n = 

245) displayed significantly lower SDNN, RMSSD, HF power, and LF power at baseline 

compared to normotensive subjects (n=686).  However, only baseline LF power was a significant 

predictor of hypertension development in males at a four-year follow-up visit.   

Similar cross-sectional findings are presented by Fagard, Pardaens, & Staessen (2001), 

who observed subjects receiving treatment for hypertension (n=84) having significantly lower 

absolute LF and HF power compared to normotensive subjects (n=337) during resting 

conditions.  However, these relations were not significant during comparisons of 24-hour 

ambulatory blood pressure measurements.  Correlation analysis over the entire population 

revealed that normalized LF and absolute HF power were significantly correlated with 

conventional systolic (r = 0.14 and -0.11, respectively) and diastolic (r= 0.18 and -0.15, 
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respectively) blood pressure measurements at rest.  Only normalized LF power was weakly 

associated with diastolic blood pressure (r = 0.10) over the 24-hour ambulatory blood pressure 

measurements.  This stronger association of diastolic pressure and ANS activity has been 

previous examined with the suggestion that it has a more potent influence on baroreceptors than 

systolic pressure (Sanders & Ferguson, 1989).  Nevertheless, these results suggest that short-term 

measurements of HRV are related to hypertensive status as determined by acute resting 

measurements but provide little influence in 24-hour ambulatory measurements of blood 

pressure.  Comparable results examining short-term HRV measurements and 24-hour blood 

pressure monitoring have been found, with 24-hour pulse-pressure having no significant relation 

to any short-term metric of HRV after correcting for age and sex (Virtanen et al., 2004).  

Furthermore, Virtanen et al (2004) showed that 24-hour diastolic blood pressure was a 

significant determinate of baroreflex sensitivity, providing additional support to the notion that 

diastolic pressure is closely related to the ANS signaling. 

The notion of sex as a moderating factor in the relation between HRV measurements and 

blood pressure has been explored by multiple studies.  HRV metrics derived from 24-hour 

recordings were evaluated in 87 subjects with and without a family history of hypertension.  

SDNN, RMSSD, and HF power values were found to be significantly lower only in males with a 

family history of hypertension compared to males without a family history of hypertension and 

females regardless of a family history of hypertension.  No significant differences were found 

between females with and without a family history of hypertension (Pitzalis et al., 2001).  Its 

suggested that this sex influence is related to the notation that females have greater 

parasympathetic influence on R-R intervals and less sympathetic activity compared to males 

(Barnett et al., 1999). 
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While it has been suggested that parasympathetic neurons are more sensitive to 

baroreceptor input compared to sympathetic neurons (Kollai & Koizumi, 1989), markers of 

sympathetic activity, such as PEP have been found to be related to blood pressure. Shah & 

Slodki (1964) noticed that hypertensive patients presented with a prolonged QS2 (the total 

amount of time of electromechanical activity during systole) which was primarily due to a 

prolonged PEP.  A landmark study published by Weissler and colleagues outlined that systolic 

time intervals collected from 27 subjects with heart failure revealed a strong association between 

diastolic pressure and PEP corrected for heart rate (r=0.60), with diastolic pressures about 

90mmHg having a stronger relation with an increase in PEP (Weissler et al., 1968).  

Manipulation of various aortic and ventricular pressures in dogs supports this notion, finding that 

a small increase in diastolic pressure caused a notable increase in PEP (Talley et al., 1971).  

Further investigations on the correlation of blood pressures and STI found that diastolic pressure 

above 90mmHg was positively associated with PEP (r=0.44) and PEP corrected for HR (r=0.47) 

(Shaw et al., 1973).  This relation of diastolic blood pressure and PEP has not been found in all 

studies.  Montoye, Willis, Howard, & Keller (1971) failed to find any significant correlation 

between PEP and any measure of blood pressure in males and females in varying age ranges.  

Given that they failed to report the blood pressure ranges, it is unknown if the subjects were 

under the 90mmHg threshold for hypertension.  Their study noted that the testers, testing clinics, 

and data analysis teams were blinded to the health status of any subject.  A more recent study 

conducted by Wong and colleagues only found a significant relation between systolic blood 

pressure and PEP (Wong et al., 2011).  It should be noted that their study utilized “cuffless” 

pulse arrival time to estimate blood pressure readings. 
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Adiposity 

While the true nature of the relation is multifaceted, an increase in sympathetic tone is 

one of the mechanisms by which obesity is linked to increased CVD risk (López-Jiménez & 

Cortés-Bergoderi, 2011).  The connection between an increase in adiposity and increased 

sympathetic activity is believed to be through obesity’s influence on insulin signaling 

(Landsberg, 1986), gut hormone secretions (Guarino et al., 2017), and blood pressure alterations 

via baroreceptor impairment and increased renin-angiotensin-aldosterone system activity 

(Seravalle & Grassi, 2016).  Furthermore, the location of the adipose tissue has a strong 

influence on the relation between adiposity and sympathetic tone, in that deposits of visceral 

adipose tissue have a greater association with increased sympathetic activity than subcutaneous 

adipose tissue (Seravalle & Grassi, 2016).  Most studies that examine the relation between 

adiposity and sympathetic activity utilize microneurography, chemical analysis, or inference 

from HRV metrics.  While limited, some studies have employed the use of PEP measurements.  

The following paragraphs will outline the current understandings of this relation with attention 

given to those studies using HRV metrics or PEP. 

Similar to glucose metabolism, multiple markers of adiposity have been examined in 

relation to HRV metrics.  In general, an increase in adiposity has been observed by an increase in 

overall body weight, body mass index (BMI), waist circumference (WC), or body fat percentage 

(BF%).  A majority of studies have found that an increase in adiposity is linked to a decrease in 

markers of overall HRV, reflective of a decrease in parasympathetic and an increase in 

sympathetic activity.  Indeed, while observing the effects of weight change in seven male 

subjects, Hirsch, Leibel, Mackintosh, & Aguirre (1991) noted that a 10% increase in body weight 

was accompanied by a decrease in HF power and an increase in mean resting heart rate observed 
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during 4-5 minute ECG recordings.  Group comparisons of 52 obese subjects seeking assistance 

with weight reduction and 28 lean control subjects were made before and after differing weight 

loss interventions using 24 hour ECG recordings (Hirsch et al., 1991).  At baseline, the obese 

subjects presented with lower HF power compared to the lean subjects.  At a one-year follow-up, 

those subjects in the obese group that received weight-reducing gastric surgery lost a mean body 

weight of 28%, while those who received conventional dietary recommendations for weight loss 

did not have any significant change in adiposity.  The weight-reducing gastric surgery subjects 

displayed improved levels of HF power compared to those subjects that received dietary 

recommendations.  While the weight loss cannot claim full responsibility for these improvements 

in HF power, it can be inferred that the reduction in body weight was a contributing factor based 

on baseline comparisons with the lean control group. 

The same inverse nature of the HF component of HRV and adiposity has been observed 

with measurements of BMI.  HRV metrics from 24-hour ECG recordings and BMI were 

examined in 25 male and female adults without hypertension (Molfino et al., 2009).  While body 

weight was not significantly correlated with HF power, BMI displayed an inverse association 

with normalized HF power (r=-0.50, p<0.01).  Group stratification based on BMI values revealed 

that only those with a BMI < 20kg/m2 had significantly different (higher) values of normalized 

HF power compared to the BMI 20-25kg/m2 and the BMI >25kg/m2 groups. These results 

suggest that BMI may be a stronger marker for changes in HRV metrics in those with average or 

lower than average BMI values.  Similar results were found with five minute ECG recordings in 

59 apparently healthy adults (Koenig et al., 2014).  BMI was significantly correlated with 

RMSSD (r=-.279, p=0.039), suggesting an inverse association between adiposity and 
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parasympathetic activity.  There was no group difference in RMSSD when stratified by BMI 

values. 

Analysis of data from a larger sample size has suggested that WC may have a stronger 

association with markers of parasympathetic activity than BMI (Windham et al., 2012).  The 

association of both BMI and WC with SDNN and RMSSD calculated from 24-hour ECG 

recordings were examined in 214 subjects from the Baltimore Longitudinal Study of Aging.  

While controlling for the covariates of age, sex, race, hypertension, glucose tolerance, and 

physical activity, no significant association between BMI and SDNN or RMSSD was found in 

any age group.  An increase in WC was found to be significantly associated with a decrease in 

RMSSD and SDNN in younger (~45 years old) subjects. These results could be indicative of the 

greater association of sympathetic tone with centralized adiposity.  While WC was not found to 

be associated with any HRV metric in a study by Yadav et al. (2017), the waist to hip ratio was 

found to be significantly correlated with absolute HF power (r=-0.374, p=-.042) and normalized 

HF and LF power (r=-0.478, p=0.008; r=0.478, p=0.008, respectively) in 30 obese subjects.  The 

study compared HRV metrics derived from five-minute ECG recordings in obese (BMI 30-35 

kg/m2) and non-obese (BMI 18-24kg/m2) subjects.  While the obese group had significantly 

lower SDNN, RMSSD, and absolute HF power, neither BMI or WC were found to be correlated 

with any HRV metric in the obese group (Yadav et al., 2017).  The opposing findings of these 

two studies could be due to the differing anatomical location used for the WC measurement.  

Windham et al. (2012) defined the WC as one inch above the anterior superior iliac crest while 

Yadav et al. (2017) measured at the natural waist or one finger width below the umbilicus. 

Poliakova et al. (2012) sought to determine the value of differing measurements of 

adiposity and the influence of body fat distribution on HRV metrics in 97 adult males.  All 
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subjects were non-diabetic and not taking blood pressure medication and completed a duel 

energy x-ray absorptiometry scan, computed axial tomography evaluation, and a 24-hour ECG 

recording.  Visceral adipose tissue volume was derived from the computed axial tomography 

evaluation and found to be significantly correlated with SDNN (r=-0.27), RMSSD (r=-0.21), HF 

power (r=-0.21) and LF power (r=-0.26).  Thus, as the amount of visceral adiposity increased, 

overall HRV (SDNN) and parasympathetic activity (RMSSD and HF power) decreased.  This 

further supports the positive relation between central adiposity and sympathetic activity.   

Additionally, BMI, WC, and BF% calculated from the duel energy x-ray absorptiometry scan 

were significantly correlated with visceral adipose tissue volume (r = 0.41, 0.66, 0.48, 

respectively), but none of these measurements were found to be significantly related to any HRV 

metric. 

While sympathetic activity can be loosely inferred from HRV data, multiple studies have 

sought to directly evaluate the relation of adiposity and sympathetic activity by observing 

differences in PEP.  Hu, Lamers, Hiles, Penninx, & de Geus, (2016) examined the cross-

sectional and longitudinal relation between ANS activity and components of metabolic 

syndrome, including WC, in 1,922 adults.  PEP was used as the primary index of sympathetic 

activity and was found to have a negative relation with WC (r2 = 0.277, p <0.001) in cross-

sectional analysis.  Furthermore, shorter baseline PEP was a significant predictor of increased 

WC at a four year follow up appointment (r2 = 0.081, p=0.015).  Both of these findings suggest 

greater levels of sympathetic activity with increased adiposity.  Licht et al. (2010) observed the 

same negative relation between PEP and WC in 1,883 adults (𝛽 =-0.143, p <.001). Given that 

WC is considered a clinical marker of centralized adiposity (Windham et al., 2012), the notion 
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that it has a significant relation with PEP is congruent with the idea that visceral adipose tissue 

has a greater association with sympathetic activity. 

Another study failed to find a similar cross-sectional relation between PEP length and the 

waist to hip ratio in 1,540 children aged 5-6 years old (Vrijkotte et al., 2015).  This study did not 

report WC; thus, a true comparison cannot be made.  Moreover, few studies have found 

completely opposite results, suggesting a decrease in sympathetic activity with elevated levels of 

adiposity. Evaluation of STI and cardiac function in 17 severely obese subjects free from 

hypertension, diabetes mellitus, or other cardiorespiratory diseases were compared to 16 age 

matched control subjects.  The researchers discovered that PEP and rate-corrected PEP (PEPI) 

were significantly lengthened in the severely obese subjects (Romano et al., 1986).  Correlational 

analysis in the severely obese group revealed that both PEP and PEPI were significantly 

associated with the amount of adiposity (r= 0.49 and 0.59, respectively).  These data suggest that 

as the degree of adiposity increases, so does the length of the PEP, representing a decrease in 

sympathetic activity. 

Compounding Influences 

 As implied by Figure 1 on page 12, ANS activity is related to multiple metabolic and 

physiological factors.  This review of literature has outlined data concerning the influence of 

glucose metabolism, cardiac control parameters, and adiposity on ANS activity.  Additionally, it 

has been suggested that these three factors have a strong interrelated nature; with adiposity being 

an amplifier for the development of hypertension (Landsberg, 2001; Landsberg et al., 2013) and 

diabetes mellites (Koh-Banerjee et al., 2004), while poor glucose metabolism and hypertension 

share common metabolic pathways (Cheung & Li, 2012).  The compounding influence of these 

variables has traditionally been addressed by means of group stratification, covariate assignment, 
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or exclusion of diseased populations (i.e. non-hypertension or non-diabetic subjects).  While 

these methods provide some control for confounding variables, they do not address the indirect 

effects of adiposity on ANS activity.  Given its magnifying ability on glycemic impairment and 

cardiac control parameters, it is evident that adiposity exerts its influence on ANS activity 

through both direct and indirect pathways. 

Finally, this paradigm may be further complicated by the influence of cardiorespiratory 

fitness.  Improvements in adiposity (Söğüt et al., 2019), decreased risk for type II diabetes (Blair 

& Church, 2003), reduced risk of hypertension (Kokkinos, 2014), and alter resting ANS activity 

that promotes a decrease in resting sympathetic activity (Thayer et al., 2010) have all been linked 

to cardiorespiratory fitness.  Recent statistical modeling has shown that cardiorespiratory fitness 

may be a stronger determinant of HRV metrics than adiposity as defined by WC or BMI (Chen 

et al., 2018).  Thus, the suggested amplified influence of adiposity may be an indirect function of 

the physiological effects on cardiorespiratory fitness 
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CHAPTER III: MANUSCRIPT I 

Direct and Indirect Effects of Adiposity on Markers of Autonomic Nervous System 
Activity. 

Abstract 

Several cardiovascular disease (CVD) risk factors (e.g., hypertension, poor glycemic 

impairment) affect and/or are affected by autonomic nervous system (ANS) activity.  Since 

excess adiposity can influence CVD development through its effect on hypertension and diabetes 

mellitus, it is important to determine how adiposity and altered ANS activity are related.  The 

present study employed structural equation modeling to investigate the relation between 

adiposity and ANS activity both directly, and indirectly through biological variables typically 

associated with glycemic impairment and cardiac stress.  Utilizing the Atherosclerosis Risk in 

Communities (ARIC) dataset, 1,145 non-smoking adults (74±4.8 yrs, 62.8% female) free from 

known CVD, hypertension, myocardial infraction, and diabetes and not currently taking beta-

blockers were evaluated for fasting glucose (FBG), insulin, and HbA1c concentrations, waist 

circumference (WC), blood pressure (BP), and markers of ANS activity. Resting 2-minute 

electrocardiograph recordings and pulse wave velocity data were used to assess the root mean 

square of successive differences in RR intervals (RMSSD) and the pre-ejection period (PEP), 

markers of parasympathetic and sympathetic activity, respectively.  FBG, insulin, and HbA1c 

inferred a latent variable termed glycemic impairment (GI), whereas heart rate and diastolic BP 

inferred a latent variable termed cardiac stress (CS). The structural equation model fit was 

acceptable [root mean square error of approximation = 0.050 (90% CI = .036, .066), comparative 

fit index = .970, Tucker Lewis Index = 0.929], with adiposity having both significant direct (β = 

0.208, p = 0.018) and indirect (β = -.217, p=.041) effects on PEP through GI.   Adiposity 
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displayed no significant direct effect on RMSSD.  CS displayed a significant pathway (β = -

0.524, p = 0.035) on RMSSD, but the indirect effect of WC on RMSSD through CS was not 

significant.   These results suggest that the true nature of adiposity’s relation to ANS activity is 

multifaceted, as increased central adiposity had opposing direct and indirect effects on markers 

of sympathetic activity in this population of older adults. 

Introduction 

Major risk factors for cardiovascular disease (CVD) include both lifestyle choices (i.e., 

physical inactivity, poor diet) and physiological conditions (i.e. diabetes mellitus, hypertension, 

obesity) (Tzoulaki et al., 2016).  These physiological conditions have been associated with 

altered autonomic nervous system (ANS) activity (Alam, Lewis, Morgan, & Baxter, 2009; 

Erdogan et al., 2011; Soares-Miranda et al., 2014; Tarvainen, Laitinen, Lipponen, Cornforth, & 

Jelinek, 2014).  ANS activity reflects a balance between the sympathetic and parasympathetic 

branches, which oppose one another but are flexible and dynamic in nature.  The sympathetic 

branch provides an overarching accelerating stimulus, promoting metabolic substrate 

mobilization and utilization in addition to increasing heart rate and cardiac contractile force.  In 

contrast, the parasympathetic branch is the overarching decelerator of the body, promoting 

substrate storage and decreased heart rate (Thayer et al., 2010).  Bodily functions are regulated 

by the balance between these opposing systems and any prolonged disturbance or asymmetry in 

activity can result in the development of several clinical and physiological conditions (Pagani et 

al., 1988; Zhou et al., 2012). 

ANS activity is often evaluated indirectly through indices of heart rate variability (HRV).  

HRV, or the time variance among intervals of consecutive cardiac cycles, is a widely used and 

accepted means of assessing ANS activity at the cardiac level (Malik et al., 1996).  Irregular 
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ANS activity as assessed by HRV has been heavily evaluated for its association with CVD and 

mortality.  Specifically, chronically reduced parasympathetic and elevated sympathetic activities 

are associated with increased CVD risk, including premature mortality, myocardial infarction, 

and development of type II diabetes mellitus and hypertension (Gerritsen et al., 2001; Kleiger et 

al., 1987; Tsuji et al., 1996).  Various time and frequency domain HRV metrics can be used to 

estimate the level of parasympathetic output at the cardiac level (Michael, Graham, et al., 2017).  

The root mean square of successive differences between normal (non-ectopic) beats (RMSSD) is 

the primary time domain metric used to reflect vagally mediated changes, with an increase in 

RMSSD reflecting an increase in parasympathetic activity (Shaffer et al., 2014) .  Some HRV 

metrics have been suggested to estimate sympathetic activity (namely the low frequency spectral 

power component and the ratio of low frequency to high frequency spectral power components), 

but these values are inherently limited in evaluating sympathetic output given that they are also 

influenced by parasympathetic activity (Shaffer & Ginsberg, 2017).  An alternative and more 

independent method of evaluating sympathetic activity at the cardiac level is to monitor systolic 

time intervals, i.e., the amount of time between electrical stimulation of the heart and its 

mechanical response.  Specifically, the segment of time known as the pre-ejection period (PEP), 

an estimate of the electromechanical delay of the left ventricle (Tavakolian, 2016), can be used 

to accurately estimate sympathetic activity (Ahmed et al., 1972).  PEP has been shown to have a 

pronounced inverse relation with sympathetic activity in that sympathetic neural blockade 

stimulates an increase in PEP length, while parasympathetic blockade results in no change in 

PEP (Cacioppo et al., 1994).  Used concurrently, PEP and HRV measurements can provide 

holistic details of ANS activity at the cardiac level. 
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While  increased adiposity is an independent risk factor for CVD development (Hubert et 

al., 1983), it is also a well-established risk factor for CVD comorbidities such as diabetes 

mellitus (Koh-Banerjee et al., 2004) and hypertension (Landsberg et al., 2013).  While 

significant associations between metrics of increased adiposity and altered ANS activity have 

been reported (Farah et al., 2013; Poirier et al., 2003; Windham et al., 2012), it is unclear if 

increased adiposity has a multifaceted relation to ANS activity (i.e. direct and indirect influence). 

However, evaluating the influence of adiposity on ANS activity through its risk for diabetes 

mellitus and hypertension development is a complex undertaking, as there is no single metric 

that can accurately reflect diabetic or hypertensive risk.  Latent variable modeling constructs an 

unobserved variable that reflects the combined influence of multiple measured variables.  

Applying this methodology to reflect relations within our conceptual model (Figure 3.1) provides 

a more comprehensive assessment of the influences of adiposity on ANS activity.  In this model, 

adiposity is reflected by waist circumference (WC) and has direct effects on RMSSD and PEP 

(markers of parasympathetic and sympathetic nervous system activities, respectively).  Our 

model also suggests that adiposity has indirect effects on ANS activity through latent constructs 

representing glycemic impairment (GI) and cardiac stress (CS). Utilizing a large previously 

collected dataset, we tested the direct and indirect influences of adiposity on ANS activity.  
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Figure 3-1. Proposed Model 

 

Note. A priori model including observed variables (squares) depicting the proposed 

pathways for the direct and indirect effects of waist circumference on markers of ANS activity.  

Construction of the latent variables (circles) Cardiac Stress (CS) and Glycemic Impairment (GI) 

are depicted. WC, Waist Circumference; HR, Heart Rate; DBP, Diastolic Blood Pressure; HbA1c, 

Glycosylated Hemoglobin; FBG, Fasting Blood Glucose; RMSSD, Root Mean Square of 

Successive Differences between normal-to-normal beats; PEP, Pre-Ejection Period.  
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Methods 

Study Population 

The data used in the present study was obtained from the Atherosclerosis Risk in 

Communities (ARIC) study.  The ARIC dataset consists of 15,792 participants recruited from 

four different field centers throughout the United States of America (Minneapolis, Minnesota; 

Washington County, Maryland; Forsyth County, North Carolina; and Jackson, Mississippi).  

These participants were given a comprehensive physical examination at baseline between the 

years of 1987-1989 and were reevaluated every three years.  Detailed methods about data 

collection and study design for ARIC have been published (“The Atherosclerosis Risk in 

Communities (ARIC) Study,” 1989). Data for the present study was derived from a fifth cycle of 

visits that was conducted with 5,900 participants between 2011 and 2013.  For the analyses 

outlined here, individuals with known cardiac disease, history of myocardial infraction or 

diabetes mellitus, those who identified as a smoker or that reported smoking in the last 6 months, 

those with a diastolic blood pressure ≥90 mm Hg or systolic blood pressure ≥140 mm Hg, and 

those taking beta-blockers at the time of evaluation were excluded.  Furthermore, those deemed 

as statistical multivariate outlier based on a mahalanobis distance analysis were excluded from 

the study.  The resulting participant pool (n=1145) was 61% female and 39% male, aged 74.6 

±	4.8 years. The majority (89%) of subjects self-identified as “white” with 11% self-identifying 

as “black”.  Further sample characteristics are provided in Table 3.1. 

Study Variables 

Overall, latent variables were constructed based on the proposed model and potential 

markers available from the ARIC dataset that aligned with each latent variable.  
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Glycemic Impairment. Multiple biomarkers and indices can be used to provide a 

holistic evaluation of an individual’s glucose handling capacity.  Thus, the variables of fasting 

blood glucose (FBG), glycosylated hemoglobin (HbA1c), and insulin were used to construct a 

“Glycemic Impairment” (GI) latent variable. FBG concentration provides a short-term 

approximation of glucose tolerance (~8-12 hours) while HbA1c concentrations provide a marker 

of long-term glucose homeostasis (~3-4 months).  Furthermore, the inclusion of concurrent 

insulin concentration provides information on possible insulin resistance. 

Cardiac Stress – Two resting cardiac parameters were used to reflect the functional 

status of the cardiac system.  The overall function of the heart is reflected through heart rate 

(HR) and contractility. HR is regulated by a multitude of factors and is tightly related to ANS 

output.  Although it is intuitive to employ systolic blood pressure (SBP) as a marker of 

contractility, previous research with the ARIC dataset showed diastolic blood pressure (DBP) to 

have greater associations with HRV metrics in normotensive subjects (Landsberg, 2001; 

Landsberg et al., 2013).  Additionally, DBP has a greater influence on mean arterial pressure at 

rest.  Of interest, various models were tested using various permutations and combinations of 

mean atrial pressure, SBP, and DBP, with all other models having weaker goodness of fit indices 

compared to the current model.  Given these factors, DBP appears to be a better metric for this 

concept. Thus, the observed variables of HR and DBP were used to construct a “Cardiac Stress” 

(CS) latent variable.  

ANS Activity Markers 

Resting electrocardiogram and pulse wave velocity data were collected in a supine 

position following at least eight hours of fasting.  A 2-minute electrocardiogram recording was 

used to calculate short term HRV metrics.  The root mean square of successive differences in RR 
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intervals (RMSSD) was employed to reflect parasympathetic nervous system activity (Nunan et 

al., 2010; Shaffer et al., 2014; Windham et al., 2012). The pre-ejection period (PEP), calculated 

from the pulse wave velocity measurement (Omron BP-203RPEIII, Omron Healthcare co. Ltd, 

Kyoto, Japan), was used to indicate sympathetic nervous system activity (Cacioppo et al., 1994; 

Michael, Graham, et al., 2017; Siedlecka et al., 2015). 

Model Construction 

Central adiposity, more than overall adiposity, is strongly related to the development of 

cardiometabolic diseases (Seravalle & Grassi, 2016). As such, the present model explored the 

effects of waist circumference (WC) on RMSSD (parasympathetic) and PEP (sympathetic), both 

directly and through the latent variables GI and CS.  Given the inherent nature of FBG and HbA1c 

and their strong relation (r=0.61, p<.001) in the current dataset, the model allowed for a 

covariance between the error terms of the two variables.  While HbA1c  may possibly be related to 

postprandial glucose concentration as much or more than FBG (Ketema & Kibret, 2015), the use 

of FBG and HbA1c  as markers of short-term (~4-6 hours) and chronic (~3-6 months) GI is 

theoretically sound.  Similarly, the error terms of the latent variables of GI and CS were allowed 

to covary given their strong correlation (r=0.78, p<.001) and their shared relation to CVD 

through similar metabolic pathways (Cheung & Li, 2012).  Since structural equation model 

calculations automatically assume that the error terms of the outcome variables in a latent 

variable analysis have a shared covariance, RMSSD and PEP were allowed to covary in the 

present analysis, even though their relation was not statistically significant (Table 3.2).  

Statistical Analysis 

Means, standard deviations, and Pearson’s correlation coefficients for the observed 

variables were calculated using SPSS Statistics Version 28.  The structural equation model was 
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gauged for goodness of fit using multiple fit indices including the root mean square error of 

approximation (RMSEA), comparative fit index (CFI: criterion value of 0.95), Tucker Lewis 

index (TLI: criterion value of 0.95), and the standardized root mean square residual (SRMR: 

criterion value of 0.08) (L. Hu & Bentler, 1999).  The direct and indirect relations outlined by the 

proposed model were conducted in Mplus Version 8.7 with statistical significance set at α=0.05. 

Results 

Descriptive Statistics 

Anthropometric and cardiometabolic characteristics are provided in Table 3.1.  The mean 

waist circumference (WC) for the total cohort was 96.6 cm, with the average for females (94.1 

cm) and males (100.4 cm) indicating borderline risk of CVD.  The mean values of Glycemic 

Impairment (GI) metrics (FBG, insulin, and HbA1c) were lower than clinical cutoffs for diabetes 

mellitus, though the mean FBG of 104.79 mg.dL-1 falls in the pre-diabetes range.  Mean values 

for cardiac stress (CS; HR and DBP) were within normal ranges.  The values for RMSSD and 

PEP are similar to the normal ranges presented in Table 2.1. 

Pearson’s correlation coefficients of all observed variables are provided in Table 3.2.  

Relations among GI variables were fair to moderate (r=0.19-0.61) while the CS variables, HR 

and DBP were weakly but significantly related (r=0.11).  Waist circumference (WC) displayed 

fair relations (r=0.28-0.49) with all GI metrics and was weakly but significantly related to DBP 

(r=0.18).  WC was weakly but significantly related to RMSSD (r=0.06) and was not significantly 

related to PEP. 
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Table 3-1. Characteristics of Study Population 

  Mean Standard 
Deviation Range (min, max) 

N = 1,145    

Age (years) 74.6 4.8 67, 88 
Mass (kg) 73.4 15.1 37.7, 145.2 
Height (cm) 165.6 9.5 141, 195 
Body Mass Index 
(kg·m-2) 26.67 4.6 15.89, 57.43 

Waist 
Circumference (cm) 96.6 12.5 59, 155 

Females (N=696) 94.1 13.1 59,155 
Males (N=449) 100.4 10.4 73, 137 

FBG (mg.dL-1) 104.79 15.85 65.01, 185.03 
Insulin (μU·mL-1)  10.86 7.97 0.20, 70.02 
HbA1c (%) 5.66 0.48 4.2, 8.6 
DBP (mmHg) 66.4 9.3 40, 89 
HR (bpm) 66 9.9 41, 110 
RMSSD (msec) 23.52 23.14 1.22, 166.98 
PEP (msec) 94.7 18.6 4.0, 173.5 

 

Table 3-2. Preliminary Correlations Matrix (Pearson’s r) 

                  
  FBG HbA1c Insulin DBP HR PEP RMSSD WC 
FBG --        
HbA1c 0.61** --       
Insulin 0.31** 0.19** --      
DBP 0.06 0.01 0.11** --     
HR 0.13** 0.14** 0.18** 0.11** --    
PEP -0.04 0.02 -0.02 0.07* 0.05 --   

RMSSD -0.05 -0.03 0 -0.05 -
0.21** -0.02 -- 

 
WC 0.28** 0.19** 0.49** 0.18** 0.05 0.05 0.06* -- 

Note: *p<.05, **p<.001 

Model Analyses 

The structural equation model displayed an adequate fit for the sample population with 

significant goodness of fit indices (cM2= 47.013, p=.000, RMSEA = 0.050 90% CI [0.036-0.066], 
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SRMR = 0.028, CFI = 0.970, TLI = 0.929).  While the Chi squared value was elevated and 

significant, this is most likely reflective of the large sample size.  Additionally, the other fit 

indices are well within acceptable ranges (L. Hu & Bentler, 1999).  Both latent variables (GI and 

CS) displayed significant factor loadings with their indicator variables (Table 3.3), suggesting a 

solid construct.  Direct variances and covariance parameter estimates for the entire model are 

listed in Table 3.4.  Most of the hypothesized relations specified by the conceptual model were 

statistically significant while the resulting direct and indirect effects displaced mixed outcomes 

Table 3-3. Latent Variable Parameter Estimates 

  Parameter Unstandardized SE Standardized 

Glycemic Impairment 
(GI) 

FBG 1 - 0.431** 
Insulin 14.964 1.418 0.711** 
HbA1c 0.36 0.036 0.285** 

Cardiac Stress (CS) HR 1 - 0.519** 
DBP 0.385 0.1 0.213** 

Note: SE, standard error; **p<.001 

Table 3-4. Variance and Covariance Estimates 

  Parameter Unstandardized SE Standardized 

RMSSD 
GI 17.605 13.228 0.288 
CS -2.352 1.117 -0.524* 
WC -0.091 0.215 -0.049 

PEP 
GI -15.573 7.252 -0.318* 
CS 0.874 0.51 0.243 
WC 0.308 0.131 0.208* 

Glycemic 
Impairment 
(GI) 

WC 0.021 0.002 0.682** 

Cardiac Stress 
(CS) WC 0.074 0.022 0.178** 

Covariances 
FBG~~ HbA1c 0.206 0.013 0.566** 

GI~~CS 0.796 0.141 0.566** 
RMSSD~~PEP 22.51 22.7 0.06 

Note: SE, standard error; *p<.05; **p<.001 
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Direct Effects 

The direct, indirect, and total effects of WC on RMSSD and PEP are provided in Table 

3.5.  WC failed to have a significant direct effect on RMSSD but had a significant direct effect 

on PEP (𝛽 = 0.209, p = .018) with a one standard deviation increase in WC being related to a 

0.208 standard deviation increase in PEP 

Table 3-5. Standardized Parameter Estimates of Direct, Indirect, and Total Effects of 

Waist Circumference on RMSSD and PEP 

  Path Estimate S.E. P-value 
RMSSD     
 Direct -0.049 0.108 0.647 

 
Indirect: 
WC›GI 0.196 0.147 0.181 

 
Indirect: 
WC›CS -0.094 0.063 0.137 

 Total Indirect 0.103 0.105 0.329 
 Total 0.053 0.029 0.07 

PEP     
 Direct 0.208 0.088 0.018* 

 
Indirect: 
WC›GI -0.217 0.106 0.041* 

 
Indirect: 
WC›CS 0.043 0.034 0.205 

 Total Indirect -0.173 0.083 0.038* 
  Total 0.034 0.03 0.247 

*Statistically significant at 𝛼 = 0.05 

Indirect and Total Effects 

In this model, WC failed to have a significant indirect effect on RMSSD through the 

latent variables of GI or CS, resulting in the lack of a significant total indirect effect (the sum of 

all indirect effects on the depended variable).   The Total effect (direct effect + Total indirect 

effect) of WC on RMSSD approached significance (p = 0.070).  The indirect effect of WC on 

PEP through CS was not significant.  The indirect effect of WC through GI had a significant 
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effect on PEP in that a one standard deviation increase in WC was associated with a 0.217 

standard deviation decrease in PEP.  Furthermore, the total indirect effect of WC on PEP was 

significant with a one standard deviation increase in WC being related to a 0.173 standard 

deviation decrease in PEP.  However, the total effect of WC on PEP was not significant. 

Other Significant Pathways 

WC had significant effects on GI and CS with a one standard deviation increase in WC 

being associated with 0.682 and 0.178 standard deviation increases in GI and CS, respectively.  

CS had a significant effect on RMSSD in that a one standard deviation increase in CS would 

elicit a 0.524 standard deviation decrease in RMSSD.  However, CS failed to have a significant 

effect on PEP.  GI had a significant effect on PEP with a one standard deviation increase in GI 

being associated with a 0.318 standard deviation decrease in PEP.  GI did not have a significant 

effect on RMSSD. 
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Table 3-6. Conceptual Model 

 

Note: Conceptual model including standardized weights, both direct and indirect effects 

of waist circumference on markers of RMSSD and PEP.  Cardiac Stress, CS; Glycemic 

Impairment, GI; WC, Waist Circumference; HR, Heart Rate; DBP, Diastolic Blood Pressure; 

HbA1c, Glycosylated Hemoglobin; FBG, Fasting Blood Glucose; RMSSD, Root Mean Square of 

Successive Differences between normal-to-normal beats; PEP, Pre-Ejection Period. Note: SE, 

standard error; *p<.05; **p<.001 
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Discussion 

The results of this study support the concept that central adiposity, as measured by WC, 

has significant direct and indirect effects on markers of ANS activity.  Specifically, WC 

displayed robust associations with markers of sympathetic nervous system activity, while having 

little influence on parasympathetic nervous system activity when accounting for the impact of 

glycemic impairment markers and indices of cardiac stress.  This highlights the need to directly 

evaluate both branches of the autonomic nervous system when discussing the relation of ANS 

activity and adiposity.  Additionally, there is evidence that the impact of central adiposity goes 

beyond direct effects and that nuanced mechanisms may influence autonomic health. 

In this model, WC failed to have a significant direct, indirect, or total effect on RMSSD. 

These findings differ from earlier studies that have demonstrated direct relations between 

adiposity and metrics of parasympathetic activity. Windham et al. (2012) found that an increase 

in WC was significantly associated with a decrease in RMSSD and SDNN in younger (~45 years 

old), but not older (~85 years old), participants when controlling for age, sex, race, hypertension, 

glucose tolerance, and physical activity.  Our findings suggested that the direct effect of WC on 

RMSSD had a similar inverse nature as seen in the younger group, though it was not statistically 

significant.  The age difference between the Windham et al. younger cohort and the present study 

could be a contributing factor for this difference in statistical magnitude as it has been shown that 

the age-related decrease in time domain metrics of HRV subsides after 60 years of age in 

apparently healthy individuals (Geovanini et al., 2020).   

Our results displayed a significant direct effect of WC on PEP, suggesting a decrease in 

sympathetic activity.  However, the total effect of WC on PEP was neutralized through the 

negative influence of GI.  This model suggests that increases in central adiposity (WC) might 
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have a blunting effect on sympathetic activity (direct effect) while simultaneously increasing 

sympathetic drive by increasing (worsening) indices of glycemic impairment (indirect effect).  

These opposing actions appear to mitigate observable physiological changes in PEP, as reflected 

by the lack of a significant total effect of WC on PEP.  Simultaneous examinations of both the 

direct and indirect effects of adiposity on sympathetic activity in the previous literature are 

sparse, limiting comparison with the current findings.  However, the individual (direct) effect of 

WC on sympathetic activity as well as the individual effect of markers of GI (major portion of 

the significant indirect effect) have been documented (Esler et al., 2018; Seravalle & Grassi, 

2016). 

The direct effect of WC on PEP, suggesting a decrease in sympathetic activity with an 

increase in WC, seems counterintuitive, but is biologically plausible. Aging is often 

accompanied by an increase in sympathetic nervous system activity (Balasubramanian et al., 

2018), particularly due to impaired ability of baroreflexes to buffer changes in blood pressure 

(Monahan, 2007).  However, limited evidence suggests that sympathetic activity at the level of 

the heart is normal or lower in obese individuals compared to normal weight individuals in 

elderly populations with hypertension, lending credence to the concept that central adiposity 

could decrease sympathetic activity (Esler et al., 2018).  While those diagnosed with 

hypertension were excluded from the current study, this observation of lower and/or normal 

sympathetic activity in obese individuals coincides with the observed significant direct effect and 

the general lack of a total effect of WC on PEP. 

The observed indirect effect of increased WC being related to increased sympathetic 

activity (decrease in PEP) via an increase in GI was expected.  The latent variable GI reflects the 

combined influence of FBG, HbA1c, and insulin, with any increase in these metrics resulting in 
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increases in the GI variable. Insulin had the highest factor loading for the GI construct and is 

likely the primary driver for the observed effects.  Elevated serum insulin concentrations are 

postulated as one of the major pathways linking increased adiposity (specifically central 

adiposity) to sympathetic nervous system overactivity (Seravalle & Grassi, 2016).  In addition, 

direct exposure of cardiac tissue to insulin can induce positive inotropic effects through calcium 

dependent and independent mechanisms (von Lewinski et al., 2005).  The present study also 

showed FBG and HbA1c to have significant factor loadings for the GI construct.  Previous 

research has demonstrated increases in FBG (Perpiñan et al., 2019; Sykes et al., 1977; Synowski 

et al., 2013) and HbA1c (Benichou et al., 2018; Boer-Martins et al., 2011; Jaiswal et al., 2013) 

with increases in markers of sympathetic activity.  Furthermore, ANS activity reflective of 

cardiac autonomic neuropathy complications have been associated with diabetes mellitus 

(Dimitropoulos, 2014).   

Given that HRV metrics have been shown to be altered with diabetic status and impaired 

glycemic control (Nganou-Gnindjio et al., 2018; Ribeiro et al., 2017; Schroeder et al., 2005), 

those previously diagnosed with diabetes mellitus were excluded from the current study.  

However, the sample population in this cohort had a mean fasting blood glucose of 

104.79±15.85 mg.dL-1, suggesting that a large section of the sample could be classified as pre-

diabetic.  Reports of prediabetics showing signs of cardiac autonomic neuropathy have been 

increasing (Williams et al., 2019), suggesting that prediabetics may have altered ANS activity.  

Similarly, blood pressure between the normal and hypertensive ranges is associated with 

autonomic disfunction (Erdogan et al., 2011). While the mean diastolic blood pressure of the 

sample population did not classify as hypertensive (66.4±9.3 mmHg), there were 102 

participants (roughly 9% of the sample population) that had a DBP of ≥80 mmHg, demonstrating 
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that those at risk for but not formally diagnosed with hypertension were included in the sample.  

Therefore, despite the exclusion of those diagnosed with diabetes and/or hypertension, the ranges 

of glycemic and cardiovascular parameters in the present data set are likely adequate for the 

investigation of their influence on autonomic function.   

The choice of WC as our marker of adiposity over other population-based metrics could 

have influenced the observed results.  WC reflects the amount of visceral fat (Ross et al., 2020), 

which is more metabolically deleterious and a greater predictor of mortality than subcutaneous 

fat (Ibrahim, 2010).   Increases in visceral fat depots as measured by computed axial tomography 

have been shown to have significant inverse relations with RMSSD in the absence of a 

significant correlation between WC and RMSSD, despite WC and visceral fat area being 

positively related (Poliakova et al., 2012).   Still, studies with larger cohorts (n=8,538) suggest 

that WC has a stronger inverse relation to HRV metrics, specifically RMSSD, than body mass 

index or waist to hip ratio in apparently healthy populations (Koenig et al., 2015).  These 

previously observed decreases in markers of parasympathetic activity, including RMSSD, were 

attributed to an increase in sympathetic activity due to an increase in adiposity, which the current 

study observed in the significant indirect effects of WC on PEP via GI.  As a whole, the results 

of our study suggest that a greater association of sympathetic tone with centralized adiposity 

occurs without direct alterations to parasympathetic activity.   

The ARIC study utilized pulse wave velocity data to calculate PEP.  Studies have used 

this methodology to provide various markers of CVD risk (Koji et al., 2004; Tomiyama et al., 

2016) and monitor disease progression (Ato & Sawayama, 2017). This method has been shown 

to be a good alternative to measure systolic time intervals in the absences of more precise 

methods such as echocardiogram (Su et al., 2013), giving credence to the accuracy and validity 
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of the PEP measurements used for the current study.  HRV results were derived from a 2-minute 

ECG rhythm strip, which depending on the metric used, could have a sizable impact on results.  

Considered the gold-standard of clinical HRV assessment, a recording length of 24 hours 

provides the most detailed evaluation of ANS activity (Shaffer & Ginsberg, 2017).  However, 

shorter recordings of approximately five minutes have been successfully used in numerous 

studies (Nunan et al., 2010).  Frequency domain measures are preferred since they are influenced 

to a lesser extent by shorter recording lengths than most time domain measures (Malik et al., 

1996), but only time domain metrics were available in the ARIC dataset. 

Our results are strengthened by the inclusions of validated indices of both branches of the 

ANS.  This provides an accurate, holistic representation of ANS activity without relying on the 

inferences from a single branch as is a common practice when solely using HRV results.  

Additionally, our cohort included both male and female participants.  While this choice could 

possibly introduce confounding effects of sex differences, HRV differences between the sexes 

has been shown to be reduced after approximately 60 years of age (Voss et al., 2015).  However, 

given that there are differences in the physiological manifestations of hypertension (Gillis & 

Sullivan, 2016) and diabetes mellitus (G Duarte et al., 2019) between the sexes, evaluation of the 

proposed model should be conducted in sex specific samples.  Such comparisons utilizing the 

structural equation model were not conducted in the present study due to a limited sample size 

for males.  The current study is not without its limitations. The cross-sectional design of our 

study diminishes inferences of causality in the observed relations and the directions of the effects 

beyond those suggested in the model development.  Given that only 11% of the sample self-

identified as “black”, the ability of our results to be generalized to a more diverse population is 

limited. Furthermore, the use of a single adiposity marker, WC, limits our ability to assess the 
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potential effect of overall adiposity on ANS activity.  The use of dual-energy x-

ray absorptiometry to assess body composition and/or the use of computed axial tomography to 

more accurately quantify visceral fat could strengthen the observed effects in this model and 

explain more of the variance in ANS activity. 

Interestingly, similar studies have found that adding markers of cardiovascular fitness 

could improve model fit parameters and be a stronger determiner of HRV indices of ANS 

activity (Chen et al., 2018).  The current model did not account for cardiovascular fitness or 

physical activity status even though both have direct effects on all the study’s variables.  

Specifically, an increase in cardiovascular fitness will have large physiological implications for 

adiposity, influence glycemic management capabilities, directly alter cardiac stress parameters, 

and have strong influences on ANS activity.   Investigations into how cardiovascular fitness may 

mitigate or abolish the observed effects of adiposity on ANS activity are warranted. 

In summary, our results provide support for a theoretical and statistically sound model for 

describing the relation of adiposity and ANS activity while accounting for the interactions of 

contributing physiological parameters.  In a population of older, apparently healthy adults, 

increased central adiposity displayed opposing direct and indirect effects on markers of 

sympathetic activity, resulting in unobservable changes in PEP.  Moreover, WC presented no 

significant direct or indirect effects on an index of parasympathetic activity.  These results 

suggest that the true nature of adiposity’s relation to ANS activity is multifaceted.  Using a latent 

path analysis, such as the purpose model, to uncover the complex interrelations of multiple risk 

factors may better illustrate the biological control systems behind cardiometabolic risk factors 

and CVD. 
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CHAPTER IV: MANUSCRIPT II 

Effects of Adiposity and Cardiorespiratory Fitness on Autonomic Nervous System Activity 
Following Maximal Exercise. 

Abstract 

In addition to directly contributing to the development of cardiovascular disease, excess 

adiposity has been shown to be related to altered autonomic nervous system (ANS) activity that 

further exacerbates health complications.  Cardiovascular fitness is related to both adiposity and 

ANS activity and may, therefore, affect the relation between the two.  The purpose of this study 

was to determine if adiposity influences the markers of ANS activity at rest and following 

maximal exercise, with and without accounting for fitness.  Twenty-six apparently health males, 

were assessed for body composition and then underwent telemetric electrocardiogram and 

impedance cardiography recordings while resting in a supine position for 10-minutes and while 

seated in a semi-recumbent position for 10-minutes before and immediately after a maximal 

exercise test. Markers of ANS activity were derived from time and frequency domains of heart 

rate variability (HRV) as well as systolic time intervals, namely the pre-ejection period (PEP).  

Group stratification by waist circumference or body fat percentage (BF%) revealed no among-

group differences in resting or post-maximal exercise HRV or PEP measurements.  Accounting 

for peak oxygen uptake (VO2peak) resulted in a significant between-group difference in the natural 

logarithm of time domain parameters [standard deviation ofnormal-to-normal beats (ln-SDNN) 

and the root mean square of successive differences between normal-to-normal beats (ln-

RMSSD)] as well as high frequency spectral power (ln-HF) at 3- and 5-minutes post-exercise, 

based on BF% stratification.  However, statistical significance was lost following adjustments for 

peak oxygen uptake standardized by lean body mass (Lean VO2peak), suggesting no difference in 
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HRV across BF% groups.  These results provide evidence that there may not be differences in 

resting ANS activity and post-maximal exercise ANS responsiveness across groups of differing 

levels of adiposity in young, apparently healthy males.  Adjusting for cardiovascular fitness 

minimally effected the observed relation of adiposity and ANS activity post-maximal exercise.   

Introduction 

The relation between adiposity and autonomic nervous system (ANS) activity is 

multifaceted and complex.  Increased sympathetic tone is considered one of the main 

mechanisms by which obesity is linked to increased risk of cardiovascular disease (CVD) 

(López-Jiménez & Cortés-Bergoderi, 2011).  The connection between adiposity and sympathetic 

activity is believed to occur through obesity’s influence on insulin signaling (Landsberg, 1986), 

gut hormone secretions (Guarino et al., 2017), baroreceptor impairment, and increased renin-

angiotensin-aldosterone system activity (Seravalle & Grassi, 2016).  Furthermore, visceral 

adipose tissue has a greater association with increased sympathetic activity than does 

subcutaneous fat (Seravalle & Grassi, 2016).  Most studies that examine the relation between 

adiposity and ANS activity utilize microneurography, chemical analysis, or inference from heart 

rate variability (HRV) metrics. Numerous studies indicate that increased adiposity is linked to 

altered HRV indices, reflecting a decrease in parasympathetic and an increase in sympathetic 

activity (Hirsch et al., 1991; Molfino et al., 2009; Thayer et al., 2010; Windham et al., 2012).  

While limited, some studies have employed the use of systolic time intervals, namely the pre-

ejection period (PEP) to non-invasively measure sympathetic activity (M. X. Hu et al., 2016; 

Licht et al., 2010; Romano et al., 1986). 

The relation of cardiorespiratory fitness and ANS activity has long been documented 

(Blomqvist & Saltin, 1983; Smith et al., 1989).  Low cardiorespiratory fitness has been 
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associated with an imbalance of ANS activity (i.e., increased sympathetic and decreased 

parasympathetic activity) at rest (Thayer et al., 2010) in addition to an increased risk of CVD 

mortality (Gupta et al., 2011) .  Since cardiorespiratory fitness is inversely related to adiposity 

(Söğüt et al., 2019), its influence on the relation between adiposity and ANS activity must be 

considered.  Moreover, it has been suggested that cardiorespiratory fitness may be a greater 

determinate of ANS activity than adiposity (Chen et al., 2018).  Thus, the proposed impact of 

adiposity may be an indirect function of the physiological effects of cardiorespiratory fitness.  

Furthermore, a faster heart rate recovery, the slowing of heart rate following exercise, is 

inversely related to cardiovascular disease incidence (Morshedi-Meibodi et al., 2002) and all-

cause mortality (Jouven et al., 2005).  The adjustment of heart rate (HR) before and after 

exercise is primarily due to modulations in ANS activity at the cardiovascular level in response 

to changing metabolic and physiological demands (Silva et al., 2017).  HR increases in response 

to exercise due to parasympathetic withdraw and increased sympathetic drive, while the post-

exercise decrease in HR is due to a reversal of this activity (Michael, Graham, et al., 2017).  

Evaluating alterations in ANS responsiveness to the cessation of exercise could yield valuable 

insights into the underlying influence of adiposity on ANS activity. 

The purpose of this study was to evaluate the influences of adiposity on the 

parasympathetic and sympathetic branches of the ANS before and after exercise.  Specifically, 

parasympathetic, and sympathetic activities were assessed via HRV and PEP, respectively. 

Central adiposity was characterized by waist circumference (WC), while overall adiposity was 

characterized by body fat percentage (BF%).  We hypothesized that increased adiposity reflects a 

blunted ANS response after maximal exercise through a delayed and decreased magnitude of 

parasympathetic activity (lower HRV) accompanied by prolonged and increased intensity of 



 84 

sympathetic activity (lower PEP).  Our secondary hypothesis was that differences in post-

exercise ANS activity across the adiposity continuum would be partially explained by 

differences in cardiorespiratory fitness. 

Methods 

Participants 

To limit the potential influence of hormonal variation (Koenig & Thayer, 2016) and age 

(Antelmi et al., 2004) on ANS activity, only males between the ages of 18-35 years old were 

recruited.  A total of 26 participants were evaluated and found to meet the inclusion criteria of no 

use of tobacco or vaping products for at least the past 6 months, having a diastolic blood pressure 

<90 mm Hg and a systolic blood pressure <140 mm Hg, no history of cardiovascular disease, 

myocardial infraction, and/or diabetes, and not currently taking medications known to affect 

heart rate and/or blood pressure.  Additionally, to limit the influence of circadian rhythm on ANS 

activity (Sammito et al., 2016), only participants that regularly rise by 0900 hours were included. 

Experimental Protocol 

 Participants were instructed to fast for a minimum of 8 hours and to refrain from 

exercising 24 hours prior to testing.  Upon arrival to the laboratory, participants completed the 

Aerobic Center Longitudinal Study Physical Activity Questionnaire (Kohl et al., 1988).  Resting 

blood pressure was then assessed using an automated cuff (HEM-907XL, Omron Healthcare 

Inc., Kyoto, Japan) following ≥5 minutes of quiet sitting. 

To provide comprehensive assessment of adiposity, multiple anthropometric 

measurements were collected.  Waist circumference was reported as the mean of two 

measurements taken at the narrowest part of the torso located above the umbilicus and below the 

xiphoid process.  Body mass index was calculated as weight (kg) divided by height (m) squared.  
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Estimation of fat and lean body mass was accomplished via air displacement plethysmography 

(BODPOD, COSMED, Chicago, Illinois). 

Participants were then prepared for ANS activity measurement (see below) and then 

rested quietly in a supine position for 10 minutes in an isolated exam room while ANS activity 

was recorded.  This 10-minute session was taken to assess true resting ANS activity.    Next, the 

participants again had their ANS activity monitored for an additional 10 minutes, this time while 

resting in semi-recumbent position.  This second resting position was used to limit the influence 

of postural changes on ANS activity during pre-post-exercise comparisons (Carnethon et al., 

2002).  At the end of the semi-recumbent resting session, blood was sampled via venipuncture 

for determination of glucose management parameters (see below).  Following a maximal graded 

exercise test (see below), participants rested in the semi-recumbent position for 10 minutes while 

post-exercise ANS activity was assessed. 

Assessment of Autonomic Nervous System Activity 

Activities of the parasympathetic and sympathetic nervous systems were assessed via 

heart rate variability (HRV) and systolic time intervals (STI), respectively.  HRV was monitored 

through standard 3-electrode ECG.  All ECG recordings were automatically corrected for signal 

artifact and cardiac dysrhythmia vis Kubios HRV Premium software (Tarvainen, Niskanen, et 

al., 2014) confirmed by follow-up visually inspected.  For classification purposes, time domain 

parameters [natural logarithm of the standard deviation of normal-to-normal beats (SDNN) and 

the root mean square of successive differences between normal-to-normal beats (RMSSD)] were 

calculated across the entire 10-minute supine rest period.  For pre-to-post exercise comparisons, 

ln-SDNN and ln-RMSSD were calculated for 1-minute segments during the 10th minute of semi-

recumbent rest pre-exercise and during the 1st, 3rd, 5th, and 10th minutes post-exercise rest periods. 
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Frequency domain parameters [natural logarithm of low frequency (ln-LF) assessed 

between 0.04-0.15 Hz and high frequency (ln-HF) assessed between 0.15-0.40 Hz] were also 

calculated across the 10-minutes of supine rest.  Recordings in the semi-recumbent position were 

used for pre-post exercise test comparison and were conducted over two-minute epochs per the 

minimal suggested requirement (Malik et al., 1996).  These time epochs align with those utilized 

in the time-domain analyses in attempts to best reflect ANS activity during the chosen time 

points.  As such, ln-LF and ln-HF analysis were conducted during the last two minutes of semi-

recumbent rest pre-exercise and during minutes 0-2, 2-4, 4-6, and 8-10 post-exercise. 

Following bilateral placement of paired electrodes at the base of the neck and around the 

chest at the level of the xiphoid process (Sherwood et al., 1990), the pre-ejection period (PEP) 

was calculated via impedance cardiography (BioNomadix, BIOPAC system Inc, Goleta, CA).  

PEP represents the time from the origination of ventricular depolarization (beginning of QRS 

complex) to the opening of the aortic valve (B-point, the point of inflection directly before the 

large amplitude jump in the wave, or the point of maximum rate change) on the simultaneous 

impedance recording.  PEP was calculated during the last minute of the 10-minute supine 

recording and at the same semi-recumbent pre-post exercise epochs as the ln-SDNN and ln-

RMSSD metrics, utilizing an ensemble average for each epoch. 

Blood Sampling and Analyses 

Glycosylated hemoglobin (HbA1c) was assessed immediately following the blood draw 

(Polymer Technology Systems Inc., Indianapolis, IN).  The remaining blood sample was 

centrifuged at 3500 rpm for 10-15 minutes and serum was aliquoted into coded tubes and 

immediately stored at -80°C.  Samples were analyzed for glucose and insulin concentrations via 
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a colorimetric assay (Cayman Chemical, Ann Arbor, MI) and an enzyme linked immunosorbent 

assay (Mercodia, Winston Salem, NC), respectively. 

Exercise Testing 

To account for the impact of cardiorespiratory fitness on ANS activity, participants 

completed a maximal graded exercise test.  All tests were conducted on a treadmill utilizing a 

protocol that increased in intensity every 2 minutes.  Oxygen consumption (VO2) was calculated 

through the measurement of expired gas composition and volume (Parvo, Salt Lake City, UT).  

Participants were instructed to give maximal effort and preformed the test to volitional fatigue.  

Immediately following the test termination, the mouthpiece and head gear were removed and the 

participants rested as described above.  The start time for the recovery period began as soon as 

the participants assumed the semi-recumbent position, approximately 30-45 seconds following 

test termination. 

Statistical Analyses 

 To assess the influence of various aspects of adiposity on ANS activity, WC and BF% 

were used as grouping factors.  Given that most WC measures were classified as low risk for 

cardiometabolic diseases, the participants were stratified into three groups derived from ordered 

racking of WC values. Naturally occurring breaks at 78cm and 88cm provided stratification 

boundaries resulting in groupings of “Low” (WC ≤78cm), “Mid” (78cm≤WC ≤88cm), and 

“High” (WC ≥88cm) WC values.  BF% varied considerably among the participants and natural 

breaks in the data.  Post hoc cluster analyses supported the use of these cutoff values as grouping 

determinants, despite resulting in unbalanced groups.  These groups represented “Low” 

(BF%<16%), “Mid” (20<BF%<30), and “High” (BF%>30%) body composition.  For both BF% 

and WC groupings, baseline characteristics and supine ANS activity metrics of the groups were 
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compared using a one-way ANOVA while pre-post maximal exercise alterations in ANS activity 

were evaluated using a factorial ANOVA with repeated measures.  Baseline ANCOVA and a 

factorial ANCOVA with repeated measures utilized VO2peak as a covariate to assess the additive 

impact of cardiorespiratory fitness on the dependent variables.  It has been suggested that the 

traditional practice to evaluate cardiorespiratory fitness by standardizing VO2 values by overall 

body mass (mL.kg body mass-1.min-1) underestimates cardiorespiratory fitness in obese 

populations (Krachler et al., 2015; Savonen et al., 2012).  Thus, to further delineate the 

independent effects of adiposity on ANS performance accounting for cardiorespiratory fitness, 

the above analyses were repeated with “Lean VO2peak” (mL.kg lean body mass-1.min-1) as a 

covariate.  Main effects and post hoc pairwise comparison results using a Bonferroni correction 

are reported.  Statistical significance was predetermined at 𝛼 = 0.05. 

Results 

Waist Circumference (Unadjusted) 

The baseline characteristics of the WC groups are provided in Table 4.1.  The Low and 

Mid groups had narrow WC ranges with a mean and standard deviation of 74.9±2.6cm and 

83.3±3.4cm respectively, while the range of the High group varied largely at 97.8± 12.1cm.  The 

High group had significantly higher anthropometric measures than the other two groups, but no 

significant intergroup differences were present among the other cardiometabolic parameters, 

VO2peak  (mL.kg body mass-1.min-1), or weekly leisure-time physical activity.  In addition, the 

three groups did not differ in any supine ANS metric before or after adjustment for VO2peak 

(mL.kg body mass-1.min-1) (Table 4.2) and these metrics were similar to the typical resting values 

outlined in Table 2.1. 
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Table 4-1. Baseline Characteristics for the WC Groups 

Group Low Mid High Overall 
N 9 9 8 26 
Age 23(5) 27(4) 25(5) 25(5) 
Height (cm) 174(8.0) 174.5(6.3) 181.5(4.5) 176.5(7.1) 
Weight (kg) 69.79(7.7)* 76.32(5.22)* 104.94(18.45) 82.86(18.87) 
Bodpod (BF%) 11.88(3.36)* 17.87(7.91)* 27.64(9.27) 18.80(9.50) 
WC (cm) 74.9(2.6)* 83.3(3.4)* 97.8(12.1) 84.9(11.7) 
BMI (kg·m-2) 22.94(0.88)* 25.09(2.08)* 31.86(5.61) 26.43(4.99) 
Lean mass/Fat mass 8.19(2.93)* 5.96(3.34) 2.97(1.32) 5.81(3.38) 
Resting SBP 

125(5) 124(10) 129(8) 126(8) (mmHg) 
Resting DBP 

75(8) 72(5) 79(10) 75(8) (mmHg) 
Resting Heart Rate 56(7) 57(10) 61(8) 59(10) (bpm) 
HbA1c (%) 5.1(0.5) 4.9(0.2) 4.9(0.2) 5.0(0.3) 
Glucose (mg.dL-1) 47.61(9.33) 57.14(14.67) 54.94(8.82) 53.16(11.68) 
Insulin (μU·mL-1) 3.48(1.42) 2.86(0.80) 4.13(1.60) 3.47(1.36) 
VO2peak 

51.81(7.42) 49.76(9.12) 43.61(11.34) 48.58(9.62) (mL.kg body mass-

1.min-1) 
Lean VO2peak 

58.62(6.90) 60.27(8.29) 59.72(11.69) 59.53(8.72) (mL.kg lean body 
mass-1.min-1) 
HRpeak 194(10) 186(10) 193(10) 191(10) 
APHRmax% 100.9(4.1) 98.6(4.7) 101.9(4.2) 100.4(4.4) 
RERpeak 1.08(.04) 1.07(.05) 1.07(.04) 1.08(.04) 
RPEpeak 19(1) 19(1) 19(1) 19(1) 
MET.h/wk 101(39) 81(49) 76(65) 86(51) 

Note: Mean(stdev); APHRmax%, Percentage of age predicted maximal heart rate achieved; 

* significantly different than High group 

The results of the one-way ANOVA for supine measurements and factorial ANOVA with 

repeated measures appear in Figure 4.1.  All variables displayed significant changes across time. 

HR remained significantly higher and the HRV metrics of Ln-HF, ln-LF, ln-RMSSD, and ln-
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SDNN remained significantly decreased following maximal exercise and remained so for the 

entire 10-minute recovery.  PEP significantly decreased at the onset of semi-recumbent recovery 

and remained so for all groups until 10 minutes post-exercise cessation.  There were no 

meaningful between-group differences in any variable amongst the three groups.     

Table 4-2. Supine ANS Measurements by WC Grouping by Model 

Model Group HR ln-RMSSD ln-SDNN 
(msec) 

PEP 
(msec) 

ln-HF 
(msec2) 

ln-LF 
(msec2) 

WC 
ANOVA Low 56(8) 4.60(0.38) 4.40(0.32) 99.3(14.0) 8.20(0.74) 7.89(0.70) 

 Mid 57(10) 4.38(0.49) 4.22(0.51) 90.2(19.5) 7.38(0.96) 7.47(1.04) 

 High 59(6) 4.86(0.59) 4.66(0.42) 103(23.6) 8.28(1.32) 8.15(0.71) 

 p value 0.754 0.15 0.118 0.38 0.168 0.257 
WC adjusted 
for VO2peak 

 
     

 Low 57(8) 4.61(0.40) 4.41(0.34) 96.5(14.2) 8.16(0.74) 7.90(0.70) 

 Mid 57(10) 4.38(0.53) 4.2(0.53) 89.2(20.6) 7.40(0.96) 7.47(1.04) 

 High 59(8) 4.86(0.59) 4.65(0.42) 107.4(23.6) 8.22(1.32) 8.14(0.71) 
  p value 0.91 0.159 0.246 0.275 0.203 0.301 
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Figure 4-1. Pre-Post ANS metrics for WC Groups 

 

Note. Data are means ± standard error for each variable from the 10 minutes supine, 

semi-recumbent position pre- and post- 1,3,5, and 10 minutes maximal exercise.  Supine values 

were not included in the repeated measures analyses and were compared with one-way ANOVA. 

Groups represent the Low (74.9±2.6cm), Mid (83.3±3.4cm), and High (97.8±12.1cm) WC 

groups respectively.  Ln-HF, Natural logarithm of high frequency power; ln-LF, Natural 

logarithm of low frequency power; ln-RMSSD, Natural logarithm of the root mean squared of 
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successive differences; ln-SDNN, Natural logarithm of stand deviation of normal-to-normal 

beats. 

Waist Circumference Adjusted for VO2peak 

As shown in Table 4.2, including VO2peak as a covariate did not result in appreciable 

adjustments of the means of supine measurements.  Still, there were no significant intergroup 

differences at baseline after adjusting for an average VO2peak of 48.58 mL.kg body mass-1.min-1.  

The results from the factorial ANCOVA with repeated measures are displayed in Figure 4.2.  All 

variables trended in a similar manner following exercise cessation, regardless of whether or not 

they were adjusted for VO2peak.  Ln-HF, ln-LF, and ln-RMSSD displayed significant main effects 

across time while PEP and ln-SDNN did not.  There were no significant between-group main 

effect differences in any variable among all three groups when adjusting for VO2peak. Additional 

factorial ANCOVA with repeated measures analyses were conducted for each dependent 

variable while controlling for an average Lean VO2peak of 59.53mL.kg lean body mass-1.min-1 and 

there were still no between-group differences (data not shown). 

 

 

 

 

 

 

 

 



 93 

Figure 4-2. Pre-Post ANS metrics for WC Groups Accounting for VO2peak 

 

Note. Data are adjusted means ± standard error accounting for an average VO2peak of 

48.58 ml/kg/min for each variable from the 10 minutes supine, semi-recumbent position pre- and 

post- 1,3,5, and 10 minutes maximal exercise. Supine values were not included in the repeated 

measures analyses and were compared with one-way ANOVAs.  Groups represent the Low 

(74.9±2.6cm), Mid (83.3±3.4cm), and High (97.8±12.1cm) WC groups respectively.  Ln-HF, 

Natural logarithm of high frequency power; ln-LF, Natural logarithm of low frequency power; 
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ln-RMSSD, Natural logarithm of the root mean squared of successive differences; ln-SDNN, 

Natural logarithm of stand deviation of normal-to-normal beats. 

Body Fat Percentage (Unadjusted)  

The participants were grouped by Low (BF%<16%), Mid (20<BF%<30), and High 

(BF%>30%) BF%.  As opposed to WC stratification, this grouping resulted in differences across 

several cardiometabolic variables (Table 4.3).  The Low group had significantly lower body 

weight, WC, BMI, BF%, fat mass, resting DBP, and insulin in addition to significantly higher 

VO2peak and MET-h/wk compared to the High group.  The Mid group was significantly lower 

compared to the High group in terms of fasting insulin concertation, BF%, and fat mass.  The 

Mid group only significantly higher compared to the Low group in terms of BF% and fat 

mass(kg). 

The results of the one-way ANOVA for resting supine values (Table 4.4) revealed no 

significant intergroups differences for any ANS activity marker.   The repeated measures 

ANOVA for BF% groups (Figure 4.3) displayed trends similar to those of the WC strata.  HR 

significantly increased for all groups immediately post maximal exercise and remained 

significantly elevated for the entire recovery period.  All groups displayed the same steep 

decrease in frequency-domain and gradual decline in time-domain HRV metrics post-exercise 

like WC group comparisons.  Similar alterations in PEP were observed post exercise, with a 

general steep decrease immediately upon resting and a marked increase following post-1 minute 

recovery.  There were no significant differences between main effects for any variable across the 

three groups. 
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Table 4-3. Sample Characteristics for BF% Groups 

Group Low Mid High Total 
N 15 7 4 26 
Age 23(4) 28(5) 27(4) 25(5) 
Height (cm) 174.6(7.7) 180.0(6.5) 177.6(4.2) 176.5(7.1) 
Weight (kg) 73.34(8.49)* 90.29(12.97) 105.60(31.97) 82.86(18.87) 
Body Fat (%) 12.12(3.23)† 23.54(2.77)† 35.55(6.20)† 18.80(9.50) 
Fat Mass (kg) 8.80(2.733) † 21.43(4.17) † 38.97(18.31) † 16.84(13.10) 
Lean Mass (kg) 64.68(7.45) 69.03(9.90) 66.77(14.61) 66.17(9.16) 
Lean mass/Fat mass 8.05(2.69) 3.27(0.47)** 1.87(0.46)** 5.81(3.38) 
Waist 
Circumference (cm) 78.5(5.4)* 90.0(7.1) 100.1(18.3) 84.9(11.7) 

BMI (kg·m-2) 24.00(2.02) * 27.80(2.83)  33.15(8.85)  26.43(4.99) 
Resting SBP 
(mmHg) 123(8) 128(5) 132(9) 126(8) 

Resting DBP 
(mmHg) 73(7)* 75(4) 85(11) 75(8) 

Resting Heart Rate 58(9) 57(8) 71(14) 59(10) 
HbA1c (%) 5.1(0.4) 4.9(0.1) 4.8(0.3) 5.0(0.3) 
Glucose (mg.dL-1) 53.85(12.67) 50.51(12.55) 55.22(6.84) 53.16(11.68) 
Insulin (μU/mL)  3.12(1.23)* 3.21(1.06)* 5.21(1.17) 3.47(1.36) 
VO2peak 

(mL.kg body mass-

1.min-1) 
51.92(7.71)* 48.59(8.07) 36.03(9.86) 48.58(9.62) 

Lean VO2peak 

(mL.kg lean body 
mass-1.min-1) 

58.83(7.56) 63.49(9.10) 55.22(11.74) 59.53(8.72) 

HRpeak 192(10) 190(12) 190(12) 191(10) 
APHRmax% 100.2(4.1) 100.7(4.9) 100.5(5.7) 100.4(4.4) 
RERpeak 1.07(0.05) 1.08(0.05) 1.08(0.03) 108(0.04) 
RPEpeak 19(1) 19(0) 19(1) 19(1) 
MET.h/wk 101.0(41.2)* 86.5(64.0) 31.6(13.3) 86(51) 

 

Note. Mean(stdev); Groups representative of BF% values at Low (BF%<16%), Mid 

(20<BF%<30), and High (BF%>30%) BF%.; ); APHRmax%, Percentage of age predicted 
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maximal heart rate achieved;  *significantly different than Group 3; ** significantly different 

than Group 1 †All groups are significantly different. 

Table 4-4. Supine ANS Measurements by BF% Groups by Model 

Model Group HR 
(bpm) 

ln-
RMSSD 
(msec) 

ln-SDNN 
(msec) PEP (msec) ln-HF 

(msec2) 
ln-LF 

(msec2) 

BF 
ANOVA 1 58(9) 4.57(0.46) 0.44(0.11) 100.5(15.5) 7.73(1.01) 7.63(0.91) 

 2 57.(8) 4.62(0.50) 0.36(0.14) 96.1(24.7) 8.02(1.04) 8.20(0.71) 

 3 59.(3) 4.72(0.80) 0.65(0.32) 87.3(23.9) 8.41(1.38) 7.89(0.80) 

 p value 0.909 0.482 0.87 0.668 0.506 0.362 
BF 

ANCOVA 
adjusting 

for VO2peak 

1 58.(9) 4.37(0.46) 4.37(0.44) 98.6(15.4) 7.73(1.01) 7.65(0.91) 

 2 57(8) 4.48(0.50) 4.48(0.36) 96.1(24.7) 8.02(1.04) 8.20(0.71) 

 
3 57(3) 4.49(0.80) 4.49(0.65) 94.4(23.4) 8.39(1.38) 7.82(0.80) 

 p value 0.945 0.936 0.964 0.865 0.659 0.41 
BF 

ANCOVA 
adjusting 
for Lean 
VO2peak 

1 57(9) 4.57(0.46) 4.35(0.44) 101.0(15.4) 7.73(1.01) 7.63(0.91) 

 2 58(8) 4.62(0.50) 4.49(0.36) 93.6(24.7) 8.0(1.0) 8.22(0.71) 

 3 59.(3) 4.74(0.80) 4.55(0.65) 90.0(23.9) 8.4(1.4) 7.86(0.80) 
  p value 0.973 0.506 0.87 0.679 0.512 0.367 
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Figure 4-3. Pre-Post ANS Metrics for BF% Groups 

 

Note. Data are means ± standard error for each variable from the 10 minutes supine, 

semi-recumbent position pre- and post- 1,3,5, and 10 minutes maximal exercise.  Supine values 

were not included in the repeated measures analyses and were compared with one-way 

ANOVAs.  Groups represent Low (BF%<16%), Mid (20<BF%<30), and High (BF%>30%) 

body compositions respectively.  Ln-HF, Natural logarithm of high frequency power; ln-LF, 

Natural logarithm of low frequency power; ln-RMSSD, Natural logarithm of the root mean 
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squared of successive differences; ln-SDNN, Natural logarithm of stand deviation of normal-to-

normal beats. 

Body Fat Percentage adjusted for VO2peak 

Controlling for VO2peak resulted in no significant across group differences at baseline 

(Table 4.4).  All variables, except PEP, had significant main effects across time (Figure 4.4).  HR 

significantly increased immediately post exercise and remained elevated for the entire 10-minute 

recovery session.  The Low and Mid groups had the same response in terms of ln-RMSSD and 

ln-SDNN across time in that they did not decrease until 3-minutes post exercise, remaining lower 

than pre-exercise levels for the remainder for the recovery session.  The High group differed in 

its response and remained at pre-exercise levels until significantly decreasing at the post 10-

minute time mark.  The Low group displayed an immediate decrease in ln-LF power and ln-HF 

power following cessation of exercise, with levels remaining significantly lower for the entire 

10-minute recovery period.  The Mid group had a delayed decrease in HRV frequency metrics 

with ln-LF power and ln-HF power decreasing at post-3 minutes and remaining lower than pre-

exercise levels.  The High group had a similar trend in ln-LF power, significantly decreasing at 

post-3 minutes and remaining lower than pre-exercise levels.  However, ln-HF power did not 

significantly decrease until the post-10 minute time point for the High group.  There were 

significant between-group main effects for ln-RMSSD (F = 4.33, p = .026), ln-SDNN (F = 4.26, 

p = .027), and ln-HF power (F = 3.93, p = .035).  Post-hoc pairwise comparisons revealed that 

the High group had significantly higher levels of all three variables compared to the Low group 

at 3- and 5-minutes post exercise recovery.  Additionally, the High group had significantly 

higher time-domain HRV metrics compared to the Mid group at the post 5-minute time mark. 
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Figure 4-4. Pre-Post ANS metrics for BF% Groups Accounting for VO2peak 

 

Note: Data are adjusted means ± standard error accounting for an average VO2peak of 

48.58 ml/kg/min for each variable from the 10 minutes supine, semi-recumbent position pre- and 

post- 1,3,5, and 10 minutes maximal exercise.  Supine values were not included in the repeated 

measures analyses and were compared with one-way ANOVAs.  Groups 1, 2, and 3 represent 

Low (BF%<16%), Mid (20<BF%<30), and High (BF%>30%) body compositions respectively.   

Ln-HF, Natural logarithm of high frequency power; ln-LF, Natural logarithm of low frequency 

power; ln-RMSSD, Natural logarithm of the root mean squared of successive differences; ln-
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SDNN, Natural logarithm of stand deviation of normal-to-normal beats.  † Denotes Low and 

High groups are significantly different; ‡ Denotes Mid and High groups are significantly 

different 

Body Fat Percentage adjusted for Lean VO2peak  

As previously suggested, standardizing VO2 values by division of overall body mass 

(mL.kg body mass-1.min-1) may not accurately reflect cardiorespiratory fitness in obese 

individuals.  Thus, to further investigate the independent effects of adiposity on ANS 

performance, the BF% group results were adjusted for oxygen uptake expressed as a factor of 

lean mass.  Correcting for Lean VO2peak resulted in no significant between group differences at 

baseline (Table 4.4).  Figure 4.5 depicts all HRV variables having significant main effects across 

time.  Additionally, PEP did not display a significant main effect across time.  All groups 

presented significantly increased HR immediately post-exercise and remained elevated compared 

to pre-exercise levels for the entire 10-minutes of recovery.  The Low and Mid groups showed 

similar gradual decreases in ln-RMSSD and ln-SDNN at 3-minutes post exercise cessation while 

the High group remained at pre-exercise levels for both variables until 10-minutes post-exercise.  

While this difference in responses displayed meaningful trends, the between-group main effects 

for ln-RMSSD and ln-SDNN failed to reach statistical significances (p = .065 and .075 

respectively).  Furthermore, there were no significant between-group main effects for any 

variable amongst all three groups.  Taken together, adjustment for Lean VO2peak resulted in 

similar pre-post exercise trends observed with unadjusted BF% analyses and lacked the 

significant between-group differences observed with adjustments for VO2peak (mL.kg body mass-

1.min-1). 
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Figure 4-5. Pre-Post ANS metrics for BF% Groups Accounting for Lean VO2peak 

 

Note. Data are adjusted means ± standard error accounting for an average lean VO2peak of 

59.53 mL.kg lean body mass-1.min-1 for each variable from the 10 minutes supine, semi-

recumbent position pre- and post- 1,3,5, and 10 minutes maximal exercise. Supine values were 

not included in the repeated measures analyses and were compared with one-way ANOVAs.  

Groups 1, 2, and 3 represent Low (BF%<16%), Mid (20<BF%<30), and High (BF%>30%) body 

compositions respectively. Ln-HF, Natural logarithm of high frequency power; ln-LF, Natural 
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logarithm of low frequency power; ln-RMSSD, Natural logarithm of the root mean squared of 

successive differences; ln-SDNN, Natural logarithm of stand deviation of normal-to-normal 

beats. 

Discussion  

Results from the present study suggest that adiposity has limited influence on ANS 

activity at rest or following maximal exercise in apparently healthy, young males.  No significant 

differences in HRV metrics or PEP existed across WC strata, with or without adjustment for 

cardiovascular fitness.  Similarly, no differences were found at rest across BF% groups. 

However, most HRV markers (ln-HF, ln-RMSSD, and ln-SDNN) were significantly higher in 

the High BF% group compared to the Low BF% group during the third- and fifth-minutes post-

exercise after adjusting for VO2peak, but statistical significance was lost with adjustment for Lean 

VO2peak.  As Lean VO2peak may more accurately reflect cardiovascular fitness in obese individuals 

(Krachler et al., 2015), a possible interpretation of these results is that ANS responses following 

maximal exercise do not differ substantially between lean individuals and those with higher 

adiposity.   

Concerning resting ANS activity, our results suggest that in young apparently healthy 

males, there is no difference in ANS activity between groups of varying adiposity, regardless of 

the grouping method.  Neither WC strata nor BF% clustering revealed significant differences in 

any of the various HRV metrics or PEP at rest in a supine or semi-recumbent position.  These 

results differ from those of previous research employing similar recording epochs.  In apparently 

healthy individuals with no known diseases, Yadav et al. (2017) reported that obese (BMI 

>30kg/m2; mean WC=98.30 cm) participants had significantly lower RMSSD, SDNN, and HF 

power derived from 5-minute resting electrocardiogram recordings in a supine position than 
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aged-matched (mean age 30.48±8.01 years) non-obese (BMI< 30kg/m2; mean WC=62.97 cm) 

individuals.  Additionally, DBP differed between the obese and non-obese groups (84.97 versus 

74.83 mmHg).  As DBP did not differ among the three WC groups in the present study, HRV in 

the above study might have been more a reflection of vascular resistance than of WC. Further 

evaluation of the relations among adiposity, mild diastolic hypertension, and ANS indices is 

warranted. 

  Recent results from Osailan et al. (2020) showed no difference in heart rate recovery 

(HRR) following exercise to volitional fatigue between young men with BF% ≥30 

(WC=109.18±15.12 cm) and <30 (WC=80.86±8.07 cm).  Studies examining pre-post exercise 

comparisons between young (22.4±1.1 years) individuals with excessive body fat (≥30BF%) and 

individuals with normal body composition (≤30BF%) suggest no significant difference in ANS 

activity as determined by the use of heart rate recovery (HRR) (Osailan et al., 2020).  The study 

also did not find a significant correlation between HRR and any measured metric of adiposity 

(BMI, WC, waist-to-hip ratio, or BF%).  The authors suggested that the lack of differences in 

HRR following exercise tolerance testing is indicative of a similar parasympathetic response 

post-exercise regardless of differences in body composition.  These results are in line with the 

findings of the current study in that between-group differences were not found in groups 

stratified by WC or BF% without adjustments for VO2peak.  Notably, Osailan et al. (2020) utilized 

an exercise protocol that ceased testing based on the participants reports of volitional exhaustion 

and did not collect expired gas during the exercise test, limiting the ability to determine if 

maximal exercise intensity was truly achieved.  Furthermore, no methodological design or 

statistical adjustments for cardiorespiratory fitness were utilized beyond reporting the observed 

maximal heart rate of the excessive and normal fat groups (172±11.1 and 166.6±12.4 bpm, 
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respectively) which are less than the typically suggested minimum of ±10bpm of the age 

predicted maximal heart rate for maximal exercise. 

Accounting for cardiorespiratory fitness may mitigate the relation of adiposity and post-

exercise ANS responsiveness.  Orri et al. (2018) evaluated postmenopausal women of differing 

training practices before and after maximal exercise.  The study showed that women 

participating in moderate-intensity exercise training had HRV alterations during 2 minutes of 

active recovery following maximal exercise that were similar to those of women participating in 

vigorous-intensity exercise training.  Despite stratification being based on self-reported exercise 

training status, the vigorous-intensity group had a higher WC (81.3 versus 74.1 cm) and similar 

VO2peak (32.4 versus 34.5 mL.kg-1.min-1) compared to the moderate-intensity group, suggesting 

that WC does not cause HRV to differ across individuals when cardiovascular fitness is held 

constant.   The Low and Mid groups of the present study possessed similar differences for WC 

with very little difference in VO2peak and with no differences in HRV alterations following 

maximal exercise with or without adjustments for cardiorespiratory fitness.  These findings 

collectively suggest that individuals with different WC but similar cardiorespiratory fitness 

display similar ANS activity post-maximal exercise. 

The current study is strengthened by the employment of impedance cardiography as a 

non-invasive indicator of SNS activity.  The PEP has been shown to be a valid indicator of SNS 

activity (Cacioppo et al., 1994; Michael, Graham, et al., 2017; Siedlecka et al., 2015) and can be 

used in conjunction with HRV metrics to more completely reflect ANS activity pre-post 

exercise.  The relation between resting PEP and markers of adiposity is not well understood, with 

studies finding that lower PEP corresponds with higher WC (M. X. Hu et al., 2016; Licht et al., 

2010), PEP is higher in severely obese individuals free of CVD (Romano et al., 1986), or that 
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PEP is not related to measures of adiposity (Vrijkotte et al., 2015).  The present study found no 

significant between-group differences in resting PEP values regardless of adiposity stratification 

or adjustments for cardiorespiratory fitness.   

Moreover, no across-group differences in PEP were found post-maximal exercise, 

regardless of adiposity stratification or adjustments for cardiorespiratory fitness.  The maximal 

exercise used in the current study may have stimulated such a pronounced SNS response that 

capturing across-group differences in PEP might be limited by the recording methodology.  It 

has been shown that maximal exercise delays parasympathetic reactivation and sympathetic 

withdrawal compared to submaximal and anaerobic threshold workloads (Imai et al., 1994).  

This delayed changed in ANS dominance may have occurred at a time point during recovery that 

was not accurately captured by the 1-minute time epochs used for the determination of PEP.  The 

current time epochs were used to match those of the time-domain HRV metrics in attempts to 

reflect total ANS activity more accurately during the specified time segment.  Nandi & Spodick 

(1977) observed differences in PEP values post-exercise at varying levels of exercise intensity up 

to 3 minutes post-exercise cessation utilizing recording epochs less than 10 seconds long.  The 

true differences in PEP post-exercise could be lost in the current lengthier segments due to the 

rapid vagal reactivation and slower decay of SNS stimulation during the first few moments 

following exercise cessation.  This time frame of heart rate recovery (HRR) is reported as the 

fast phase and is roughly defined as approximately the first 60 seconds post-exercise cessation 

(Peçanha et al., 2017).  The fast phase is characterized as a steep decline in HR which is then 

followed by a gradual decay (slow phase) until HR reaches resting values. Given that the fast 

phase may be prolonged in those with decreased cardiorespiratory fitness and by exercise 

intensity (Imai et al., 1994), it is possible that the 1-minute time epochs may not be short enough 
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to distingue between the ANS activity of the fast phase and the slow phase of HRR.  This may 

have inadvertently prohibited the observation of any across-group differences in sympathetic 

activity (PEP) where groups stratification resulted in differences in VO2peak (e.g., BF% grouping).  

The present study limited the total post-exercise recording period to 10-minutes.  While 

this time frame would be more than adequate to evaluate the fast phase of HRR, it may not fully 

capture and evaluate the entire slow phase.  Previous studies have shown that metrics of ANS 

activity remained significantly altered compared to resting values from 30-minutes (Du et al., 

2005) up to 60 minutes (Cipryan & Vala, 2015; James et al., 2012) following exercise cessation 

in relatively fit and lean participants, suggesting that the gradual withdrawal of SNS activity may 

take considerably longer than 10 minutes.  Accordingly, the trends in post-exercise PEP 

alterations for BF% groupings (Figures 4.3-4.5) appear to be separating with the passage of time.  

Taken together, it is worth investigating whether individuals with higher levels of adiposity 

present with a similar delayed return to resting ANS activity or display different ANS activity 

during the slow phase of HRR observable in prolonged post-maximal exercise recordings. 

Adjusting to an average VO2peak of 48.58 mL.kg body mass-1.min-1 across groups stratified 

by BF% resulted in individuals with higher levels of adiposity having greater ln-HF, ln-RMSSD, 

and ln-SDNN at the same relative HR compared to leaner individuals at 3- and 5-minutes post 

exercise.  However, these between-group differences lost statistical significance when values 

were adjusted for Lean VO2peak instead of VO2peak.  Though the standard convention for 

expressing cardiorespiratory fitness in terms of maximal oxygen consumption is to report the 

volume of oxygen consumed per until of total body mass (mL.kg body mass-1.min-1, VO2peak), 

using this metric may unintentionally underrepresent the cardiovascular fitness of those with 

higher levels of adiposity (Savonen et al., 2012).  An alternative expression of oxygen 
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consumption per unit of lean body mass (mL.kg lean body mass-1.min-1, Lean VO2peak) may more 

accurately represent an individual’s true cardiorespiratory fitness regardless of total body mass 

(Krachler et al., 2015).  As such, the results of the repeated measures ANOCVA accounting for 

Lean VO2peak  has an increased prognostic value (Osman et al., 2000) and most likely provides a 

more accurate reflection cardiorespiratory fitness across the adiposity strata (Krachler et al., 

2015).  Given the fact that 4 out of the 5 repeated measures analyses failed to find significant 

between-group differences pre- or post-maximal exercise, these data may more appropriately 

denote no significant differences among groups of varying adiposities irrespective of controls for 

cardiorespiratory fitness.  While adjusting group means for VO2peak (mL.kg body mass-1.min-1) 

resulted in significant differences between the Low and High BF% groups post-exercise, this 

may be due to the covariate imposing a “double penalty” on the High BF% group. 

Possible complications may be present given the baseline characteristics of the BF% 

groups.  While group stratification based on BF% was theoretically and statistically sound as 

deemed by risk stratification guidelines and post-hoc cluster analyses, it revealed differences 

across groups in cardiometabolic risk indices besides adiposity.  The High BF% group had 

significantly higher values compared to the Low BF% group for resting diastolic blood pressure 

and serum insulin concentrations, and lower values for self-reported physical activity levels 

(MET-h/wk).  Though none of the participants were clinically diagnosed for hypertension or 

diabetes mellitus, the concept that ANS activity might differ across preclinical ranges of blood 

pressure and glucose management should be considered. A compounding effect was 

demonstrated in a study by Verma et al. (2018) in that individuals with hypertension and type II 

diabetes displayed significantly lower HRV metrics compared to those with hypertension or 

diabetes alone, or those that had neither disease.  This suggests that as health worsens, ANS 
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activity is significantly altered.  Given that the mean diastolic blood pressure values for the High 

BF% group was above the hypertension threshold (85±11 mmHg), the rationale that those with 

worse disease metrics have altered ANS activity could be viable.  Such differences were not 

present when group stratification was based on WC values, posing a possible explanation for the 

lack of any significant difference between the groups pre- and post-exercise.  As our data set had 

only two individuals with a mean WC value signifying high risk for CVD (≥102m), the true 

influence of high WC values on ANS activity may have been blunted. Moreover, BF% 

stratification increased the observed between-group differences in baseline cardiometabolic 

characteristics which may be more indicative of “pre-diseased” vs “healthy” individuals.    

While both time and frequency domain metrics of HRV were employed to evaluate ANS 

activity, non-linear metrics may be more adapt at evaluating the subtle differences across 

adiposity groupings. It is suggested that a loss of signal complexity or an increase in the 

predictability of a biological signal, such as HR, is a hallmark of a diseased state (Parker & 

Srivastava, 2013; Riganello et al., 2022).  Recent studies investigating the change in metrics of 

HR complexity (sample entropy) following exercise were shown to have significant relations 

with body composition while traditional linear metrics of HRV did not (Berry et al., 2021).  As 

such, more sophisticated metrics of ANS activity may provide unique insight into the alterations 

of ANS activity following exercise cessation in individuals of varying levels of adiposity. 

This study is strengthened by the dual use of HRV and PEP to provide valid 

measurements of both the parasympathetic and sympathetic branches of the ANS pre- and post-

maximal exercise.  Typically, studies using non-invasive practices rely on measurements that 

reflect a single branch, most commonly the parasympathetic, to interpret ANS function.  Our 

approach provides a more holistic representation of ANS activity at the cardiac level.  
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Additionally, we investigated the effect of more than one indicator of adiposity on resting ANS 

activity and ANS responsiveness post-maximal exercise, with and without adjusting for 

cardiorespiratory fitness.  The intertwined nature of adiposity and fitness produces a challenging 

obstacle to consider when assessing their impacts on a third variable.  Further investigation into 

the nuances of this relation is warranted.  Our interpretations are limited in the current study by 

the low numbers of participants with excessively high WC or BF%.  As noted, only two 

individuals had a WC signifying high risk for CVD (≥102cm) and only four had a BF% greater 

than 30%.  Additionally, concerns with the post-exercise recording length, specifically during the 

fast phase of HRR, were addressed above and should be considered. 

In summary, our results indicate that adiposity alone does not have a significant impact 

on parasympathetic or sympathetic nervous system activity, at rest or following exhaustive 

exercise, in young males with relatively healthy levels of adiposity and fitness. While accounting 

for the additive impact of cardiorespiratory fitness (VO2peak) did produce a significant difference 

between BF% groups, controlling for Lean VO2peak neutralized this effect.  Given the rationale of 

expressing VO2peak per lean body mass to provide an unbiased measurement of cardiorespiratory 

fitness in obese individuals compared to expressing VO2peak per total body mass, a possible 

interpretation of our results is that there is no considerable difference in ANS across adiposity 

groups at rest or following maximal exercise. 
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CHAPTER V: OVERALL SUMMARY  

The autonomic nervous system (ANS) plays fundamental roles in the development of 

cardiorespiratory diseases and their risk factors, namely hypertension, diabetes mellitus, obesity, 

and poor cardiorespiratory fitness (Alam, Lewis, Morgan, & Baxter, 2009; Erdogan et al., 2011; 

Soares-Miranda et al., 2014; Tarvainen, Laitinen, Lipponen, Cornforth, & Jelinek, 2014).  While 

the human body regulates biological functions with a fine-tuned balance of activity from both the 

parasympathetic and sympathetic branches, any prolonged disturbance or asymmetry amongst 

the two can result in the development of several clinical and physiological conditions (Pagani et 

al., 1988; Zhou et al., 2012).  Most often the case,  reduced parasympathetic and elevated 

sympathetic activities are associated with increased CVD risk, including earlier mortality, 

myocardial infarction, and development of diabetes mellitus and hypertension (Gerritsen et al., 

2001; Kleiger et al., 1987; Tsuji et al., 1996).  In addition to its direct relation with altered ANS 

activity (Farah et al., 2013; Poirier et al., 2003; Windham et al., 2012), increased adiposity has a 

multifaceted relation with ANS activity meditated by its undesirable influence on the 

development of hypertension and diabetes mellitus as well as a strong association with poor 

cardiorespiratory fitness.  Thus, the purpose of this dissertation was to provide a holistic 

evaluation of the influence of increased adiposity on ANS activity using two different 

methodological approaches. First, utilization of the Atherosclerosis Risk in Communities (ARIC) 

dataset allotted for the use of structural equation modeling to evaluate the effects of adiposity on 

markers of ANS activity while accounting for indices of glycemic impairment (GI) and cardiac 

stress (CS).  This approach provided the statistical means to simultaneously evaluate the direct 

effects of adiposity on resting levels of both branches of the ANS while accounting for its 

indirect effects via GI and CS in a large, population-based study of older adults.  Second, non-
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invasive measurements of ANS activity were collected in apparently healthy, young adult males 

before and after maximal exercise.  This approach allowed for assessment of physiological 

variables in a homogeneous sample and provided multiple methods to account for the influence 

of cardiorespiratory fitness on the observed data, namely through the use of adjusted means for 

VO2peak (mL.kg body mass-1.min-1) and Lean VO2peak(mL.kg lean body mass-1.min-1). 

Given the interconnected nature of increased adiposity with the development of 

hypertension and diabetes mellitus and their independent links to altered ANS activity, the model 

depicted in Figure 3.1 was proposed to test the multifaceted influence of adiposity on ANS 

activity.  Structural equation modeling suggested that adiposity had both significant direct (β = 

0.208, p = 0.018) and indirect (β = -.217, p=.041) effects on PEP (marker of sympathetic 

activity) through GI while displaying no significant effect on RMSSD (marker of 

parasympathetic activity).  Even though CS displayed a significant pathway (β = -0.524, p = 

0.035) on RMSSD, the indirect effect of WC on RMSSD through CS was not significant.  

Interestingly, increased central adiposity had opposing direct and indirect effects on PEP.  The 

conceptual model (Figure 3.2) suggests that increases in central adiposity (WC) might have a 

blunting effect on sympathetic activity (direct effect) while simultaneously increasing 

sympathetic drive by increasing (worsening) indices of glycemic impairment (indirect effect).  

These opposing actions mitigate any observable physiological changes in PEP.  In a mixed 

population of older adults, it appears that adiposity’s multifaceted influence on resting ANS 

activity results in a less than obvious overall changes in markers of ANS activity.  This sentiment 

is echoed by those of the smaller cohort study discussed in Chapter 4.  Group stratification by 

WC or body composition (BF%) across 26 young, adult males resulted in no meaningful 

between-group differences at rest regardless of adjustments for cardiorespiratory fitness.  
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Furthermore, ANS responsiveness to maximal exercised revealed mixed results following 

varying adjustments for cardiorespiratory fitness.  Although no significant between-group 

differences were found with PEP, adjusting for VO2peak (mL.kg body mass-1.min-1) revealed 

significant differences in ln-RMSSD, ln-SDNN, and ln-HF between the High and Low BF% 

groups at 3- and 5- minutes post maximal exercise, with the High group displaying the higher 

amount of heart rate variability (HRV).  However, statistical significance was no longer present 

when adjusted for Lean VO2peak (mL.kg lean body mass-1.min-1).  These differing results shed light 

on the impact of cardiorespiratory fitness on the relation between adiposity and ANS activity 

given the propensity of for VO2peak (mL.kg body mass-1.min-1) to be biased against obese 

individuals while Lean VO2peak (mL.kg lean body mass-1.min-1) does not.  Therefore, a plausible 

interpretation of these data is that adiposity does not have a substantial independent impact ANS 

activity at rest or during the first 10 minutes following maximal exercise and that accounting for 

cardiorespiratory fitness may have limited influence on ANS responsiveness post-maximal 

exercise.  

There were notable differences between the two experiments, including the sample 

demographics, methods used in the ANS analyses.  The cohorts differed greatly in terms of age 

with the larger cohort’s participants having a mean age of 74.6±4.8 years compared to the 

smaller cohort being 25±5 years.  Multiple studies have shown a strong association between age 

and ANS dynamics (Antelmi et al., 2004; Geovanini et al., 2020; Voss et al., 2015); most often 

increased sympathetic output, but decreased in sympathetic receptor responsiveness (Hogikyan 

& Supiano, 1994).  Indeed, the larger cohort study resulted in WC having opposing direct and 

indirect relations with PEP (denoting sympathetic activity), with limited impact on RMSSD 

(parasympathetic activity).  Yet, the total effect of WC on PEP was not significant, which is in 
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agreeance with the lack of a significant difference between groups regardless of group strata and 

adjustment for cardiorespiratory fitness used in the smaller cohort study.  Additionally, the larger 

cohort included both male and female participants while the smaller cohort was limited to males.  

However, the age of the larger cohort could mitigate the influence of sex on ANS activity as 

differences in HRV metrics between the sexes appear to be diminished after approximately 60 

years of age (Voss et al., 2015).  Finally, both studies excluded those with known history or 

clinical diagnosis of any cardiometabolic complications.  Despite this, the data suggest that 

individuals with worsening glycemic management capabilities and/or cardiorespiratory 

parameters may have influenced the results in the larger cohort study.  Roughly 9% had DBP 

values between 80 and 90 mmHg and the sample means for fasting glucose suggest that a large 

section of the sample was in the prediabetes range.  Both factors could have meaningful impact 

on the observed relations between adiposity and PEP, as both have been shown to be related to 

sympathetic activity (Erdogan et al., 2011; Williams et al., 2019).  Similarly, the smaller cohort 

study only found significant between-group differences when BF% strata resulted in group 

comparisons suggestive of apparently healthy vs pre-diseased individuals.  As those with 

multiple risk factors for CVD have altered ANS activity compared to those with singular or no 

risk factors (Verma et al., 2018), the inclusion of these individuals may have altered the 

independent effects of adiposity on ANS activity. 

Both studies in this dissertation utilized HRV and PEP to evaluate ANS activity, though 

they differed in methodology.  The ARIC study only determined time-domain metrics of HRV 

derived from a single 2-minute ECG rhythm strip, while the smaller cohort study calculated 

time-domain as well as frequency domain metrics over several epochs throughout 10-minute 

sampling periods.  Additionally, PEP determination also varied with the smaller cohort study 
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utilizing impedance cardiography whereas the larger cohort derived PEP from brachial pulse 

wave velocity data.  While these two methods differ in location and the physiological signal used 

to determine cardiac cycle timing, specifically the opening of the aortic valve, both have been 

shown to be reliable methods in the determination of systolic time intervals (Lorne et al., 2014; 

Su et al., 2013).  Furthermore, the post-maximal exercise time epochs for PEP determination 

may have hindered the appearance of significant group differences, as discussed in Chapter 4. 

Multiple indices can be used to describe the amount of adipose tissue an individual 

possesses.  WC provides some indication of visceral fat, which is more metabolically deleterious 

than subcutaneous fat (Ibrahim, 2010; Ross et al., 2020), although it does not provide separate 

quantification of visceral versus subcutaneous abdominal fat.  However, this metric only 

evaluates truncal fat content and may not accurately portray whole body adiposity.  The choice 

of WC as our single marker of adiposity in the large population study could have influenced the 

observed effects and limited our ability to assess the potential impact of overall adiposity in the 

conceptual model.  The smaller cohort study utilized both WC and BF%, as determined by air 

displacement plethysmography, in attempts to compare results to the larger cohort study while 

adding a more holistic marker of adiposity.  The application of diverse metrics of adiposity such 

as height-adjusted body mass index, computed tomography scan, or dual energy x-ray 

absorptiometry, the gold standard of body composition, could further contribute to the current 

understanding of the relation between adiposity and ANS activity. 

Collectively, the combined results from the above two studies shed light on the 

multifaceted influence of adiposity on ANS activity.  Adiposity displayed nuanced associations 

with a marker of sympathetic nervous system activity, while having little influence on 

parasympathetic nervous system activity at rest in the larger cohort study.  These findings were 
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in agreement with the lack of significant differences in ANS activity across adiposity groups at 

rest in this smaller cohort study.  There is limited evidence that the influence of adiposity on 

ANS responsiveness following maximal exercise may be modified by adjustments for 

cardiorespiratory fitness as represented by VO2peak (mL.kg body mass-1.min-1).  However, there is 

contestation concerning the best practices on quantifying fitness across body composition strata.  

Although the data from these two studies highlight the nuanced involvement of adiposity on 

physiological parameters that influence ANS activity, they do not support the concept that 

adiposity has a strong, independent influence on ANS activity.  Future research is needed to 

further unravel the complex entanglement between adiposity and autonomic health. 
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APPENDIX A: UNADJUSTED WAIST CIRCUMFERENCE ANOVA TABLE 

Variable Source SS df F p-value 
HR Time 47486.693 2.474 355.744 <.001 

 Group 2024.36 2 2.312 0.122 
 Group X Time 944.397 4.949 3.537 0.008 
 Within Error 3070.168 56.909   

 Total 53525.618 66.332   
PEP Time 0.033 2.891 69.91 <.001 

 Group 0 2 0.112 0.894 
 Group X Time 0.001 5.783 1.104 0.369 
 Within Error 0.011 66.499   

 Total 0.045 77.173   
ln-RMSSD Time 100.427 3.457 19.115 <0.001 

 Group 1.731 2 0.212 0.81 
 Group X Time 3.996 6.914 0.38 0.91 
 Within Error 120.836 79.509   

 Total 226.99 91.88   
ln-SDNN Time 76.592 3.115 19.433 <0.001 

 Group 2.121 2 0.354 0.706 
 Group X Time 4.064 6.231 0.516 0.801 
 Within Error 90.65 71.651   

 Total 173.427 82.997   
ln-HF Time 498.913 4 38.352 <.001 

 Group 17.558 2 0.532 0.594 
 Group X Time 8.833 8 0.339 0.948 
 Within Error 299.206 92   

 Total 824.51 106   
ln-LF Time 303.463 4 38.79 <0.001 

 Group 19.937 2 1.255 0.304 
 Group X Time 16.262 8 1.039 0.413 
 Within Error 179.933 92   

  Total 519.595 106     
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APPENDIX B: WAIST CIRCUMFERENCE ADJUSTED FOR VO2PEAK ANCOVA TABLE 

Variable Source SS df F p-value 
HR Time 1480.297 2.548 12.136 <.001 

 Group 2614.23 2 3.14 0.065 
 Group X Time 1044.162 5.095 3.451 0.008 
 Within Error 2860.351 53.574   

 Total 7999.04 63.217   
PEP Time 508.026 2.975 1.184 0.323 

 Group 811.424 2 0.476 0.628 
 Group X Time 1367.837 5.95 1.376 0.238 
 Within Error 8991.422 61.772   

 Total 11678.709 72.697   
ln-RMSSD Time 14.063 3.314 2.762 0.043 

 Group 3.898 2 0.48 0.625 
 Group X Time 6.664 6.628 0.654 0.701 
 Within Error 112.031 72.911   

 Total 136.656 84.853   
ln-SDNN Time 8.647 3.061 2.196 0.095 

 Group 3.794 2 0.63 0.542 
 Group X Time 5.265 6.123 0.669 0.678 
 Within Error 86.622 67.351   

 Total 104.328 78.535   
ln-HF Time 62.842 4 5.198 <.001 

 Group 27.199 2 0.817 0.455 
 Group X Time 14.877 8 0.615 0.763 
 Within Error 265.964 88   

 Total 370.882 102   
ln-LF Time 22.554 4 2.85 0.028 

 Group 25.945 2 1.622 0.22 
 Group X Time 15.678 8 0.99 0.449 
 Within Error 174.13 88   

  Total 238.307 102     
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APPENDIX C: UNADJUSTED PRECENTAGE BODY FAT ANOVA TABLE 

Variable Source SS df F p-value 
HR Time 33332.483 2.327 211.522 <0.001 

 Group 463.029 2 0.458 0.638 
 Group X Time 390.14 4.654 1.238 0.305 
 Within Error 3624.425 53.526   

 Total 37810.077 62.507   
PEP Time 21785.37 2.67 46.631 <.001 

 Group 2699.958 2 1.735 0.199 
 Group X Time 1330.989 5.341 1.424 0.225 
 Within Error 10745.272 61.418   

 Total 36561.589 71.429   
ln-RMSSD Time 69.006 3.323 13.125 <.001 

 Group 11.533 2 1.58 0.228 
 Group X Time 4.735 6.645 0.453 0.857 
 Within Error 120.097 76.42   

 Total 205.371 88.388   
ln-SDNN Time 53.799 2.987 13.439 <.001 

 Group 9.091 2 1.687 0.207 
 Group X Time 2.644 5.975 0.33 0.918 
 Within Error 92.071 68.709   

 Total 157.605 79.671   
ln-HF Time 364.656 4 27.519 <.001 

 Group 51.256 2 1.706 0.204 
 Group X Time 3.263 8 0.123 0.998 
 Within Error 304.776 92   

 Total 723.951 106   
ln-LF Time 235.06 4 28.1 <.001 

 Group 17.998 2 1.121 0.343 
 Group X Time 3.799 8 0.227 0.985 
 Within Error 192.395 92   

  Total 449.252 106     
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APPENDIX D: PRECENTAGE BODY FAT ADJUSTED FOR VO2PEAK ANCOVA TABLE 

Variable Source SS df F p-value 
HR Time 1532.384 2.421 9.528 <.001 

 Group 251.515 2 0.241 0.788 
 Group X Time 421.742 4.842 1.311 0.274 
 Within Error 3538.435 53.259   

 Total 5744.076 62.522   
PEP Time 322.014 2.755 0.679 0.556 

 Group 1111.12 2 0.692 0.511 
 Group X Time 804.917 5.51 0.849 0.53 
 Within Error 10431.741 60.615   

 Total 12669.792 70.88   
ln-RMSSD Time 21.448 2.801 4.553 0.007 

 Group 26.324 2 4.333 0.026 
 Group X Time 15.054 5.602 1.598 0.167 
 Within Error 103.641 61.623   

 Total 166.467 72.026   
ln-SDNN Time 12.601 2.671 3.313 0.031 

 Group 19.559 2 4.258 0.027 
 Group X Time 8.198 5.341 1.078 0.384 
 Within Error 83.69 58.753   

 Total 124.048 68.765   
ln-HF Time 72.986 4 6.141 <.001 

 Group 103.51 2 3.928 0.035 
 Group X Time 19.386 8 0.816 0.591 
 Within Error 261.456 88   

 Total 457.338 102   
ln-LF Time 22.245 4 2.656 0.038 

 Group 32.693 2 2.125 0.143 
 Group X Time 5.569 8 0.332 0.951 
 Within Error 184.24 88   

  Total 244.747 102     
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APPENDIX E: PERCENTAGE BODY FAT ADJUSTED FOR LEAN VO2PEAK ANCOVA 

TABLE 

Variable Source SS df F p-value 
HR Time 1294.313 2.424 8.193 <.001 

 Group 322.681 2 0.307 0.739 
 Group X Time 447.601 4.848 1.417 0.234 
 Within Error 3475.452 53.33   

 Total 5540.047 62.602   
PEP Time 241.286 2.763 0.508 0.663 

 Group 2348.096 2 1.466 0.252 
 Group X Time 1071.393 5.526 1.128 0.356 
 Within Error 10449.681 60.789   

 Total 14110.456 71.078   
ln-RMSSD Time 19.96 2.8 4.246 0.01 

 Group 19.025 2 3.109 0.065 
 Group X Time 8.32 5.6 0.885 0.427 
 Within Error 103.422 61.595   

 Total 150.727 71.995   
ln-SDNN Time 11.693 2.642 3.091 0.04 

 Group 13.506 2 2.92 0.075 
 Group X Time 5.296 5.296 0.7 0.633 
 Within Error 83.234 58.134   

 Total 113.729 68.072   
ln-HF Time 64.01 4 5.408 <.001 

 Group 71.507 2 2.67 0.092 
 Group X Time 5.663 8 0.239 0.982 
 Within Error 260.375 88   

 Total 401.555 102   
ln-LF Time 20.422 4 2.468 0.051 

 Group 20.484 2 1.33 0.285 
 Group X Time 5.64 8 0.341 0.948 
 Within Error 182.048 88   

  Total 228.594 102     
 


