
Probing Electron Tunneling Pathways:  Electrochemical Study of Rat Heart Cytochrome c 

and Its Mutant on Pyridine-Terminated SAMs 

 

By: J. J. Wei, Haiying Liu, K. Niki, E. Margoliash and D. H. Waldeck 

 

J. Wei, H.Y. Liu, K. Niki, E. Margoliash, and D. H. Waldeck, “Probing electron transfer 

pathway of cytochrome c and its mutant immobilized at surface” Journal of Physical Chemistry 

B, 2004, 108, 16912-16917. 

 

***© American Chemical Society. Reprinted with permission. No further reproduction is 

authorized without written permission from American Chemical Society. This version of 

the document is not the version of record. Figures and/or pictures may be missing from this 

format of the document. *** 

 

This document is the Accepted Manuscript version of a Published Work that appeared in 

final form in Journal of Physical Chemistry B, copyright © American Chemical Society 

after peer review and technical editing by the publisher. To access the final edited and 

published work see https://dx.doi.org/10.1021/jp048148i  

 

Abstract: 

 

The electron-transfer rates between gold electrodes and adsorbed cytochromes are compared for 

native cytochrome c and its mutant (K13A) using two different immobilization strategies. A 

recent study by Niki (Niki, K.; Hardy, W. R.; Hill, M. G.; Li, H.; Sprinkle, J. R.; Margoliash, E.; 

Fujita, K.; Tanimura, R.; Nakamura, N.; Ohno, H.; Richards, J. H.; Gray, H. B. J. Phys. Chem. B 

2003, 107, 9947) showed that the electron-transfer rate for a particular mutant cytochrome c 

(K13A) is orders of magnitude slower than the native form when electrostatically adsorbed on 

SAM-coated gold electrodes. The current study directly “links” the protein's heme unit to the 

SAM, thereby “short circuiting” the electron tunneling pathway. These findings demonstrate that 

the immobilization strategy can modify the electron-transfer rate by changing the tunneling 

pathway. 

 

Keywords: cytochrome c | electron tunneling pathway | protein | SAM-coated gold electrodes 

 

Article: 

 

  

http://libres.uncg.edu/ir/uncg/clist.aspx?id=14443
https://dx.doi.org/10.1021/jp048148i


Introduction 
 

The ability to self-assemble chemically well defined monolayer films on electrode surfaces has 

enabled electrochemical studies of biological molecules and promises to enable the investigation 

of redox-coupled biological machines. Current applications are limited by the electrical 

communication between the biological macromolecule and the electrode, however.1 A number of 

different strategies have been employed, such as facilitators, redox mediators, direct covalent 

linkage of the protein or enzyme to the electrode, and protein adsorption. Nevertheless, the 

control variables for electronic communication through monolayer films have not been clearly 

delineated. This work describes fundamental studies of the protein cytochrome c when it is 

adsorbed to monolayer-coated electrodes. A comparison of the new results reported here with 

earlier findings supports the electron tunneling pathway recently identified by Niki et al.2 for 

cytochrome c. 

 

A fundamental understanding of electron tunneling in organic and biological molecules has been 

developed over the past 15 years through a series of well-defined studies in homogeneous 

solutions. These studies have established that structural features of a molecule play an important 

role in determining electron tunneling rates. From studies in unimolecular organic 

supramolecules (composed of a donor unit, an acceptor unit, and a bridging unit), it is clear that 

the placement and connectivity of atoms determines the magnitude of the electronic coupling 

between donor and acceptor groups.3 For linear systems, the tunneling probability density flows 

mostly through the covalent linkages, whereas for systems with a molecular cleft, the preferred 

tunneling pathway(s) can proceed through noncovalent contacts.4 Early work in proteins made 

either simplified assumptions about the importance of covalent linkages, “the pathway 

model”,5 or totally ignored covalent linkages.6 Over time, these two, seemingly divergent, 

descriptions have evolved and were recently shown to be mathematically isomorphic.5a 

 

With regard to a quantitative understanding of the electron tunneling mechanism, the 

understanding of heterogeneous electron-transfer reactions lags behind that of intramolecular and 

intermolecular electron-transfer reactions. Because the transferring electron proceeds from a 

delocalized state to a localized one (or vice versa) and a continuum of electrode states are 

available, one might expect the electron tunneling probability at electrodes to differ from that 

between two localized molecular states. Recent work on simple redox couples has demonstrated 

that through-bond electron tunneling dominates in some cases7 but in other cases tunneling via 

nonbonded contacts can be dominant.8 Niki et al.2 have recently studied different mutants of 

cytochrome c that were electrostatically adsorbed to carboxylate surfaces and found an unusual 

sensitivity for the presence of the protein's lysine-13 amino acid. The current work addresses 

whether this sensitivity arises from changes in the tunneling pathway for the adsorbed protein or 

from changes in the energetics of the protein. 

 

Niki, in a recent study, replaces the lysine units on the surface of the cytochrome c and studies 

the electron transfer rate under conditions where the protein is electrostatically adsorbed to the 

surface. Their work shows that the replacement of lysine-13 with an alanine changes the electron 

transfer rate by 5 orders of magnitude. When studying a related cytochrome mutant, which swaps 

the lysine-13 for a glutamic acid (at position 90) that is adjacent on the protein surface, they 

observed a similar decrease in the rate constant. Because the electrostatic binding should be 



similar for this latter mutant and the native system, this result suggests that the adsorption 

orientation is not solely responsible for the reduced rate constant. Furthermore, they showed that 

the replacement of lysine-72 or lysine-79 has little effect on the electron transfer rate, even 

though these are likely binding sites for the cytochrome to the surface.9 The proximity of the 

lysine-13 to the heme is discussed elsewhere.10 Using the cytochrome c crystal structure, one can 

estimate a physical through-space distance of 5.8 Å from the lysine to the heme and a through-

bond distance of about 20 Å. The current work explores this chemically modified system RC9-

K13A further to determine whether the reduced rate constant arises from a change in the 

protein's reorganization energy or is caused by a change in the electron tunneling probability. 

 

The electrochemical rate constant for the RC9-K13A mutant and the native rat cytochrome c was 

measured for two different SAM (self-assembled monolayer)-coated electrodes. In the first case, 

the electrodes were coated with COOH-terminated SAMs, and in the second case, they were 

coated with mixed SAMs composed of pyridine and alkane. In the first case, the findings are 

consistent with the earlier results of Niki et al.2 In the second case, however, the mutant and 

native cytochrome c have similar standard electron-transfer rate constants. This finding is 

consistent with adsorption of the protein to the SAM by axial coordination between the pyridine 

receptor and the protein's heme;11 both electrochemical11a and spectroscopic11b studies 

demonstrate that the pyridine receptor binds directly with the heme unit of the protein. In 

addition, the similarity in the rate constant between the mutant and native form shows that the 

primary difference between the two cases is the nature of the link between the protein and the 

electrode. 

 

Experimental Details 
 

Reagents and Materials. Water for the experiments was purified by using a Barnstead-

Nanopure system and had a resistivity of 18 MΩ·cm. All mercaptoalkanes were purchased from 

Aldrich and used without further purification. 4-Mercaptobenzoic acid (97%), 3-

mercaptopropionic acid (99%), 6-mercapto-1-hexanol, 11-bromo-1-undecanol (98%), 12-

mercapto-1-dodecanol (98+ %), 1-nonadecanol, isonicotinic acid (99%), and docosanedioic acid 

(85%) were purchased from Aldrich. All pyridine derivatives were synthesized in the manner 

reported earlier.11,12 

 

Cytochrome c (Sigma C 7752, from horse heart, minimum 95% based on a molecular weight of 

12 384) was purified using a cation-exchange column (CM-52, carboxymethyl-cellulose from 

Whatman) in a manner described previously.11,12 Rat cytochrome c (from rat heart, C7892, 95% 

based on a molecular weight of 12 132) was purchased from Sigma and used without 

purification. The preparation of RC9-K13A rat cytochrome c mutant was reported 

elsewhere.13 All cytochromes were stored under an argon atmosphere in a freezer until use. 

 

Electrode Preparation. Details of the preparation and characterization of the gold electrode can 

be found elsewhere.11 A brief outline of the procedure is given here. A gold wire (0.5-mm 

diameter, 99.99%) was cleaned by reflux in nitric acid (68−70%) at 130 °C for a few hours and 

then was washed with deionized water. The tip of the gold wire was heated and annealed in a gas 

flame to form a ball of about 0.06−0.12-cm2 surface area. 

 



Chemically modified electrodes were prepared by immersion in an ethanol or THF solution that 

contained 0.1 mM HS(CH2)nOOC(C5H4N) and 0.9 mM HS(CH2)n - 2CH3, where n specifies the 

methylene chain length. The electrode remained in this solution for 1 day to form the mixed 

SAM. The electrode was removed from the solution, rinsed with absolute ethanol (or THF) and 

then with the supporting buffer solution (20 mM phosphate buffer pH 7), and finally dried by a 

stream of argon gas. The electrode was characterized, as previously,11 and then immersed in a 

solution containing 100 μM cytochrome c and 20 mM phosphate buffer (purged with argon gas) 

for 30 to 60 min. This procedure immobilizes the cytochrome c on the SAM-coated electrode. 

 

The electrodes were rinsed with the supporting buffer solution and immersed in a three-electrode 

electrochemical cell that contained a buffer solution with no cytochrome c. Voltammetry was 

performed on these electrodes. 

 

Electrochemical Measurements. Electrochemical measurements were performed by using an 

EG&G PAR-283 potentiostat that was controlled by a PC computer running version 4.3 of 

PARC's 270 software and a GPIB board. The three-electrode cell was composed of a platinum 

spiral counter electrode, an Ag/AgCl (3 M NaCl) reference electrode, and the SAM-coated Au as 

a working electrode. The voltammetry measurements were performed in 20 mM phosphate 

buffer solution (pH of 7.0) under an argon atmosphere. The potentiostat applies a staircase 

waveform rather than a true analogue signal. For these experiments, the voltage increment was 

either 1 or 2 mV, and the scan rate ranged from tens of mV/s to 60 V/s. In each case, the current 

was sampled during the last one-fourth of the potential increment's time window, which is 

appropriate for a relatively high scan rate and proper kinetic analysis. 

 

The uncompensated resistance (Ru) in the 20 mM buffer solution during the voltammetry 

measurements can sometimes be important for the data analysis at high scan rates. The 

measured Ru in these studies ranges from 200 to 500 Ω depending on the distance between 

electrodes, the geometry, and the electrode areas. The calibrated peak potential in this work was 

corrected by the following equation 

 

 
 

where Ec(t) is the calibrated potential, Ea(t) is the applied (apparent) potential, and i(t) is the 

current of the voltammogram. An average resistance of Ru = 300 Ω was used. Because of the low 

currents in this study, the electron-transfer rate constants obtained both from the apparent and 

corrected peak potentials differ little. 

 

For an electron-transfer rate constant measurement by cyclic voltammetry, the method is limited 

in its time resolution by the rc characteristics of the electrode. With the small-diameter (ca. 1 

mm) gold ball electrodes used in this work, rate constants can be measured up to 10 000 s-1. 

 

Results 
 

The protein was adsorbed on the surface in two different ways (Figure 1). The case 1 method 

adsorbed the protein electrostatically to electrodes that were coated with a monolayer-thick film 

of carboxyl-terminated alkanethiols. This method is well established.14 The case 2 method 



adsorbed the protein onto mixed monolayer films composed of pyridine-terminated alkanethiols 

and alkanethiols. Previous work presents ac impedance, electrochemistry, and STM studies of 

the case 2 SAMs and the adsorbed protein.11 In both cases, the solution has a pH of 7 with 20 

mM phosphate buffer. 

 

 
 

Cyclic Voltammetry and Electron-Transfer Rate Constant. Rat heart cytochrome c and 

mutant K13A were immobilized on gold electrodes that were modified using the pyridine 

receptors. The adsorbed cytochrome c's redox response was studied by using cyclic voltammetry 

over the potential range from −0.8 to 0.4 V. A signature for the immobilization of the protein by 

the pyridine is a negative shift of its redox potential. (For horse heart cytochrome c, it shifts to 

−0.172 V versus Ag/AgCl.) This value is indicative of the replacement of the heme's axial 



methionine ligand with the pyridine under conditions that do not unfold the entire redox 

center.10,11 

 

Figure 2 shows representative cyclic voltammograms of native rat heart cytochrome c (panel A) 

and the mutant (panel B) immobilized on a gold electrode with C20OOC-Py/C19 alkanethiol 

mixed SAMs. The data present well-defined peaks with a formal potential at −0.147 ± 0.006 V 

for native cytochrome c and at −0.146 ± 0.011 V for the mutant cytochrome c. These data also 

show the increase in peak separation with the increase in voltage scan rate. The Supporting 

Information shows the linear relationship between the peak current (Ip) and scan rate (v). This 

latter dependence confirms that the protein is adsorbed on the electrode surface rather than 

diffusing in solution. 

 

The rate constant was determined by fitting the peak potential shift as a function of the scan rate 

to the classical Marcus theory in the manner described previously.11,15 In this analysis, a 

reorganization energy of 0.58 eV was applied to obtain the standard electron-transfer rate 

constant (vide infra) under the assumption that the reaction's symmetry factor is 0.5. Simulations 

of the cyclic voltammograms indicate that symmetry factors of 0.46 for mutant K13A and 0.41 

for native rat cytochrome c are more appropriate; however, the comparisons between data sets is 

facilitated by approximating the symmetry factor with the value 0.5. This choice does not affect 

the reported rate constants very strongly. For example, the mutant's anodic electron-transfer rate 

constant is 0.63 s-1, and its cathodic electron-transfer rate constant is 0.60 s-1 when using a 

symmetry factor of 0.46. These rate constants are very close to the 0.62-s-1 value obtained from 

the factor 0.5. 

 

The standard heterogeneous rate constants k0
et for the different systems of the native 

cytochrome c and mutant are summarized in Table 1. These data are in good agreement with the 

findings of earlier work.2,10,18 

 

 
 



 
 

Reorganization-Energy Measurement. In principle, the reorganization energy of 

cytochrome cand the mutant can be obtained by fitting the peak shift with voltage scan rate to 

the Marcus model. In practice, one must access high voltage scan rates so that significant 

overvoltage is probed.16 By studying thick films, thereby slowing the electron-transfer rate, and 

accessing higher scan rates, the reorganization energy for the pyridine-immobilized protein was 

probed. Figure 3A shows data for the peak shift versus the voltage scan rate of the native rat 

cytochrome cimmobilized on a C20Py/C19 mixed film. At slow enough scan rates, the peak 

separation should go to zero. Because of the signal-to-noise ratio, this limit was not reached for 

the C20Py films; however, very small peak separations were found for the shorter alkanethiols 

(e.g., 5 mV for C12Py/C11; see ref 18 and Supporting Information). Figure 3B shows how the 

voltammogram width changes with scan rate. At slow scan rates, where the voltammogram is 

reversible, the width should be 91 mV, and it increases as the scan rate makes the electron-

transfer process more irreversible. Note that high scan rates show that the reduction wave is 

broadened, as compared to the oxidation wave. This feature may reflect the importance of 

conformational changes at higher scan rates.11b 

 

Three different fits, corresponding to λ values of 0.3, 0.58, and 0.9 eV, of the Marcus model to 

the data in Figure 3A are shown. The best fit occurs for λ = 0.58 eV and a standard electron-

transfer rate constant of k0 = 0.62 s-1. By using this analysis, the reorganization energy of both 

native rat cytochrome c and mutant K13A cytochrome c can be determined. These results are 

summarized in Table 2. Average reorganization energies of 0.6 eV for mutant K13A and 0.6 eV 

for native cytochrome c are obtained. These reorganization energies are similar to those reported 

for native cytochrome c in solution.17 The error in determining the reorganization energy is 

between 0.1 and 0.2 eV; see Supporting Information for quantitative details. 

 



 
 

Distance Dependence of Electron Transfer. The protein's electron-transfer rate constant was 

measured as a function of distance from the electrode surface. The distance between the protein 

and the electrode was systematically varied by changing the thickness of the SAM. Figure 

4presents the distance dependence of the measured electron-transfer rate constant of rat heart 

cytochrome c and the K13A mutant immobilized on pyridine systems. The data are similar to the 

results obtained earlier for horse heart cytochrome c (also shown).11,18 Data are also shown for 

the proteins adsorbed on carboxylate-terminated monolayers.2 

 

 
 

For the pyridine-terminated films (open symbols), the native rat cytochrome c and the K13A 

cytochrome c rate constants are within 15% of each other, and they show a qualitatively similar 

dependence on the SAM thickness. The data display a plateau region at short donor−acceptor 

separations, which demonstrates that the two proteins have similar rate constants in this solvent-

controlled regime.10,18 At large separations, the electron-transfer rate constant displays an 



exponential dependence on the charge-transfer distance with decay coefficients of 1.12 per 

methylene for the native cytochrome and 1.16 per methylene for the mutant (dashed line). This 

distance dependence is similar to that found in other tunneling studies with saturated 

hydrocarbons and is a signature of nonadiabatic electron transfer. For a more detailed discussion 

and analysis of the electron transfer in these two regimes, (plateau region and tunneling region) 

see refs 10 and 18. 

 

In contrast to the SAMs with pyridine receptors, the carboxyl-terminated monolayers display 

different rate constants for the native and mutant forms of cytochrome c. At low film thickness, 

the native cytochrome c approaches the limiting (plateau) value19 observed for the pyridine-

tethered protein. In contrast, the mutant cytochrome c never reaches this value, and its rate 

constant is consistently lower (by orders of magnitude) than that of the native cytochrome. 

Although the data for the mutant form appears to fall off exponentially with distance, no fit is 

shown through the data because of the few number of points.20 This observation agrees with the 

findings reported earlier.2 

 

Discussion 
 

The data clearly show that the method of binding cytochrome c to the monolayer film can be 

used to modify the electron-transfer rate constant by changing the electron-tunneling pathway. 

For the electrostatic binding mode (case 1), the electron-transfer rate constant of the native 

cytochrome c differs by 5 orders of magnitude from that found for the K13A mutant. In this 

protein assembly, the outer surface of the protein contacts the outer surface of the SAM so that 

electrons must tunnel through a portion of the protein's peptide chain to reach the redox center. 

In contrast, the immobilization of cytochrome c by direct linkage of the protein's heme unit with 

the SAM's pyridine receptor has similar rate constants for the mutant and the native protein. This 

similarity results because the electron-tunneling pathway along the alkane tether of the pyridinal 

receptor is the same in these two cases. Furthermore, the dependence of this electron-transfer rate 

constant on the length of the alkane tether is qualitatively similar to that found for horse heart 

cytochrome c, even though the apparent redox potentials differ by 25 mV. 

 

The reorganization energy of the cytochrome c could be determined for the slower electron-

transfer rate constants. In these cases, the reorganization energy was found to be about 0.6 eV 

and to vary little between the mutant and native forms or the method of immobilization. In fact, 

this value of the reorganization energy is similar to that reported for cytochrome c in free 

solution.17The similarity of the reorganization energies for the mutant and native forms, when 

pyridine ligated, suggests that the mutation has little impact on the reorganization energy. 

Surprisingly, the pyridine-ligated native form has a reorganization energy similar to that found 

for the native form when not ligated, implying that the pyridine ligation does not strongly modify 

or control the reorganization energy. This observation is consistent with other studies that 

conclude that the reorganization energy in cytochrome c is primarily “outer sphere” and arises 

from small contributions of many different protein and solvent modes.21 Although the error in 

the reorganization energy could be as high as 0.2 eV, such a difference would change the 

standard rate constant by less than 1 order of magnitude, as compared to the 4 to 5 orders of 

magnitude difference between the two immobilizations of the mutant protein. These findings 



argue against an energy effect causing the dramatic decrease in the rate constant for lysine-13 

when it is adsorbed onto carboxylate films. 

 

These studies support the conclusion that the reduced electron-transfer rate constant for the 

K13A mutant adsorbed on carboxylate films results from the blocking of an efficient electron-

tunneling pathway. When adsorbed onto carboxylate films, the electron must tunnel through the 

protein to reach the heme. When adsorbed through the pyridine receptors, the electron tunnels 

through the artificial tether and is not impacted by changes in the native protein's electron-

transfer pathways. 
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