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Abstract: 
 

The purpose of this study is to extend the literature by examining the effects of an acute bout of 
moderate to vigorous intensity aerobic exercise on the executive functions of planning and 
problem solving assessed using a Tower of London Task (TOL Task). Forty-two participants 

were randomly assigned into either exercise or control group, and performed the TOL Task, 
before and immediately following exercise or a control treatment. The exercise group performed 

30 min of exercise on a stationary cycle at moderate to vigorous intensity while the control group 
read for the same length of time. Results indicated that the exercise group achieved 
improvements in TOL Task scores reflecting the quality of planning and problem solving, but 

not in those reflecting rule adherence and performance speed. These findings indicate that an 
acute bout of aerobic exercise has facilitative effects on the executive functions of planning and 

problem solving. 
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Article: 

 
The relationship between acute exercise and cognition has been examined for over four decades 

(see review in Tomporowski & Ellis, 1986). Although previous empirical studies report 
inconsistent findings, narrative reviews generally support that participation in acute exercise is 

associated with improved performance of cognitive tasks performed following the exercise 
session (see reviews in Brisswalter, Collardeau, & Arcelin, 2002; McMorris & Graydon, 2000; 
Tomporowski, 2003; Tomporowski & Ellis, 1986), but that results are less consistent when the 

cognitive task is performed during the exercise session (Dietrich, 2006; Dietrich & Sparling, 
2004). This conclusion is supported by the results of a recent metaanalytic review in which 

Lambourne and Tomporowski (2010) reported that acute exercise benefits cognitive tasks 

http://libres.uncg.edu/ir/clist.aspx?id=1548


performed following the exercise session (ES= 0.20), but has a negative effect on cognitive tasks 
performed during exercise (ES = –0.14).  

Given the small but reliable average effect size for cognitive performance performed 
following acute exercise, researchers have recently begun to test the effects on particular 

cognitive tasks that might be expected to benefit most from a session of exercise. For example, 
recent studies have tested the effects on executive function as assessed by a variety of behavioral 
tasks (Chang & Etnier, 2009a, 2009b; Coles & Tomporowski, 2008; Pontifex, Hillman, Fernhall, 

Thompson, & Valentini, 2009; Sibley, Etnier, & Le Masurier, 2006; Tomporowski et al., 2005; 
Tomporowski & Ganio, 2006) or through neuroelectric measurements (Hillman, Snook, & 

Jerome, 2003; Kamijo et al., 2004). Importantly, the results of these studies are also mixed with 
some of these studies reporting larger effects (e.g., Chang and Etnier, 2009a, ES = 0.69; Pontifex 
et al., 2009, η2 = 0.73) than reported in the meta-analytic review (Etnier et al., 1997), and others 

failing to show an effect of acute exercise on executive function (Coles & Tomporowski, 2008; 
Tomporowski & Ganio, 2006). These inconsistent results for executive function tasks may 

reflect the fact that executive function is itself a broad construct and that exercise may 
differentially impact various aspects of executive function (Etnier & Chang, 2009). 

Executive function is considered to be a higher level or meta-cognitive function that 

controls a number of more fundamental underlying processes (Alvarez & Emory, 2006). 
Researchers have broadly defined executive function as cognitive abilities dealing with novelty, 

planning and acting on appropriate strategies for conducting performance (Rabbitt, 1997), 
abilities necessary to manage purposeful and goal-directed behavior (Salthouse, 2007), or 
activities such as volition, planning, purposeful behavior, and effective performance (Lezak, 

Howieson, Loring, Hannay, & Fischer, 2004). Etnier and Chang (2009) considered the various 
definitions of executive function and encouraged researchers interested in the effects of exercise 

on cognitive performance to be aware of the complexity of executive function when determining 
how to assess this cognitive construct in their research. In addition, they identified the 29 most 
frequently used measures of executive function based on neuropsychological reviews and 

clinical investigations; the top five were the Wisconsin Card Sorting Test (WCST), the Stroop 
Test, the Trail Making Test (TMT), Verbal Fluency, and the Tower of Hanoi/Tower of London 

Task (TOL Task). 
In the acute exercise literature, Pontifex et al. (2009) point out that researchers have 

primarily focused on executive function in the form of inhibition with a number of studies using 

the Stroop Test as their cognitive measure (Barella, Etnier, & Chang, 2010; Chang & Etnier, 
2009a, 2009b; Hogervorst, Riedel, Jeukendrup, & Jolles, 1996; Lichtman & Poser, 1983; Sibley 

et al., 2006) and others using the Eriksen flankers task (Hillman et al., 2009; Hillman et al., 
2003; Kamijo et al., 2009; Kamijo, Nishihira, Higashiura, & Kuroiwa, 2007; Stroth et al., 2009). 

Recently, researchers have begun to examine the effects of acute exercise on other 

aspects of executive function including switching as measured by the Task-Switching Test 
(Tomporowski, Davis, Lambourne, Gregoski, & Tkacz, 2008), inhibiting and updating as 

measured by the Random Number Generation Task (Audiffren, Tomporowski, & Zagrodnik, 
2009), and cognitive flexibility as measured by the Alternate Uses Test (Netz, Tomer, Axelrad, 
Argov, & Inbar, 2007). Some researchers have also examined the acute effect on executive 

function by measuring performance on the WCST (Dietrich & Sparling, 2004), which assesses 
switching, inhibition, updating, and selective attention, and the TMT (Chang & Etnier, 2009a), 

which assesses inhibition and cognitive flexibility. However, to our knowledge, the only study 
exploring the effects of exercise on planning is a chronic exercise intervention conducted with 



obese children (Davis et al., 2007), and no acute exercise study has tested the effects of exercise 
on planning ability or problem solving. Planning and problem solving are essential parts of daily 

life and have been recognized as main components of executive function (Banich, 2009; Lezak et 
al., 2004; Rabbitt, 1997). Given the evidence that acute exercise benefits many aspects of 

executive function, it is possible that it could also influence the specific executive function of 
planning. 

Planning requires modeling and anticipating the consequences of action before 

attempting to execute goals that require skill or strategy (Kaller, Rahm, Spreer, Mader, & 
Unterrainer, 2008; Unterrainer & Owen, 2006). Problem solving is defined as the identification 

of three essential features (Sternberg & Ben-Zeev, 2001): the initial state, the goal state, and the 
unobvious behavior that will allow the transformation from the initial state to the goal state. 
Specifically, to achieve success in a problem-solving task, one has to first create a mental 

representation of both the initial and goal states and then establish the actions needed to 
transform from the initial state to the goal state (Unterrainer & Owen, 2006). 

The TOL Task is a classical neuropsychological task that has been used frequently to 
measure planning and problem solving in both clinical and nonclinical populations (Banich, 
2009; Berg & Byrd, 2002; Berg, Byrd, McNamara, & Case, 2010; Kaller et al., 2008; 

Unterrainer et al., 2004). The TOL Task was originally developed to assess planning deficits in 
frontal lobe patients (Shallice, 1982) and was modified from the Tower of Hanoi to provide a 

greater variety of problems with different complexity levels. To perform the TOL Task 
effectively requires the identification and maintenance of goals and subgoals (Polk, Simen, 
Lewis, & Freedman, 2002) combined with a high level of programming and an ability to 

understand the effects of sequences of operations required to solve the problem 
(Dehaene & Changeux, 1997). 

Although recent research on the after-effects of acute exercise on cognitive performance 
has focused on executive function, Etnier and Chang (2009) point out that additional research in 
this area is necessary to further our understanding of the potential specificity of the relationship 

with regards to the various facets of executive function. Evidence supports a positive effect of 
acute exercise on executive function tasks performed following exercise, but the focus has been 

almost exclusively on measures reflective of inhibition. Given that planning and problem solving 
are aspects of executive function that are important for everyday functioning, the purpose of the 
current study was to examine the effect of acute exercise on planning and problem solving as 

assessed using the TOL Task. It was hypothesized that acute exercise would benefit TOL Task 
performance measures by improving the accuracy and efficiency of planning and decreasing rule 

breaking. 
 
Method 

 
Participants 

 
Forty-two right-handed college-age students (male: n = 13, mean age = 22.26 ± 1.94 years; 
female: N = 29, mean age = 21.97 ± 1.66) were recruited from the National Taiwan Sport 

University. Participants were instructed to complete a health history questionnaire, a 
demographic questionnaire, and the International Physical Activity Questionnaire (IPAQ). 

Inclusion criteria were assessed using the Physical Activity Readiness Questionnaire (PAR-Q) to 
ensure there were no potential risk factors for the participant to perform a single bout of aerobic 



exercise. These processes follow the guidelines of the American College of Sports Medicine 
(ACSM, 2010). The number of participants was based upon a power analysis using a 2 × 2 

mixed design with the effect size estimated from a study testing the effects of resistance exercise 
on executive function in middle-aged adults (effect size f = 0.31) (Chang & Etnier, 2009a), 

power = 0.8 and alpha at .05. The protocol was approved by the committee for institutional 
review board. 
 

Materials 
 

IPAQ.  The IPAQ was applied to assess participant’s amount of physical activity for 
descriptive purposes, to determine the initial exercise intensity level, and for consideration as a 
statistical covariate. It was developed as an international surveillance tool to measure physical 

activity level cross-nationally (Bauman et al., 2009; Craig et al., 2003) and the Taiwan version of 
the IPAQ has been established by Liou, Jwo, Yao, Chiang, and Huang (2008). Data from the 

IPAQ can be converted to metabolic equivalents (METs) based on frequency and duration of 
physical activity and using estimates of intensity, and MET-minutes per week are interpreted as 
representing low (< 600), moderate (600–1500), and high (>1500) levels of physical activity.. 

 
PAR-Q.  The PAR-Q consists of seven questions regarding the presence of conditions that 

would contraindicate exercise. Participants were only included when all of the questions were 
answered with no (ACSM, 2010). 
 

Exercise-Related Measures 
 

Heart Rate.  Heart rate (HR) was monitored by a HR monitor (Mode S 610i; Polar Electro, 
Finland), a short-range radio telemetry device, during the entire experimental process. The 
monitor consists of an elastic band that is strapped around the chest to hold a rubber pad (that 

contains the HR measuring device with the transmitter) in place just below the sternum. The 
participant’s HR is displayed on the face of the wristband receiver. Data displayed on the 

receiver is based upon 5-s HR averages. The examiner recorded HR at 1-min intervals through 
the treatment period. 
 

Heart Rate Reserve.  The use of heart rate reserve (HRR) is one of the recommended methods 
for establishing exercise intensity (ACSM, 2010). Heart rate reserve is calculated as maximal HR 

minus resting HR (Karvonen, Kentala, & Mustala, 1957). Maximal HR was estimated using an 
indirect formula: 206.9 – (0.67 × age) (Gellish et al., 2007). Then the target HR was calculated 
by multiplying HRR by the target intensity (as a percentage) and then adding back the resting 

HR. 
 

Ratings of Perceived Exertion.  The ratings of perceived exertion (RPE), developed by Borg 
(1998), provides a subjective rating of each individual’s perception of effort during exercise. The 
original Borg scale ranged from 6 to 20. RPE was recorded at 2-min intervals during the exercise 

session. 
 

Exercise Protocol 



Exercise modality, intensity, and duration were considered for the acute exercise protocol. 
Aerobic exercise using a cycle ergometer was selected as the exercise modality. Exercise 

intensity was set at moderate to vigorous intensity for all participants. Based upon ACSM 
guidelines (ACSM, 2010), participants with different levels of physical activity behavior might 

experience the intensity of the exercise differently; therefore the exercise intensity was initially 
set between 50–70% HRR with the specific percentage of HRR based upon each participant’s 
physical activity level as assessed with the IPAQ (Bauman et al., 2009). 

Target HRR for participants with high, moderate, and low activity levels were set at 
approximately 70%, 60%, and 50% HRR, respectively. To confirm that all participants 

experienced this exercise stimulus as moderate to vigorous in intensity, RPE was recorded and 
used in conjunction with % HRR to guide adjustments to the exercise intensity. The entire 
exercise duration was 30 min and consisted of warming up for 5 min, exercising at 14–17 on the 

RPE scale for 20 min, and cooling down for 5 min. The speed was set at 70 rpm. Workload was 
increased by 15 W every 2 min in the warm-up and exercise stage until the participant reached 

his/her initial target HR. During the 20 min of exercise, exercise intensity was increased if RPE 
was lower than 14, but was held constant when RPE was between 14 and 17. The acute exercise 
protocol was designed based upon ACSM guidelines (ACSM, 2010). 

 
Tower of London Task 

 
Since Shallice developed the TOL Task, a variety of modified versions have been created such as 
the Tower of London-Drexel Task (TOLDX) (Culbertson, Moberg, Duda, Stern, & Weintraub, 

2004; Culbertson & Zillmer, 1998), the five-disc TOL Task (Ward & Allport, 1997), four-rod 
TOL Task (Kafer & Hunter, 1997), and the TOL-R Task (Schnirman, Welsh, & Retzlaff, 1998). 

For this study, the Tower of London-Drexel 2nd edition Task was used because of several 
advantages of this task. These include the elimination of the requirement to repeat trials for 
problems that were not successfully completed, the inclusion of problems that require six and 

seven moves to raise the “ceiling” of the measure, the provision of detailed instructions for 
administration and interpretation, and the existence of a comprehensive normative base for 

healthy controls from age 7 to more than 60 years (Culbertson et al., 2004; Culbertson & 
Zillmer, 2005). 

The TOL Task apparatus consists of two identical wooden boards (30 × 7 × 10 

cm) and two sets of three beads (blue, green, and red). Each board consists of three vertical pegs 
where the tallest peg (Peg 1) can hold three beads at most, the middle peg (Peg 2) can hold only 

two beads, and the shortest peg (Peg 3) can only hold one bead. One wooden board was used by 
the participant with the beads in a standard start configuration. Another wooden board was 
controlled by the examiner who demonstrated 10 test problems. The 10 test problems (adult 

version) have different difficulty levels which are identified by requiring a minimum number of 
moves from two to sevem (Figure 1). Participants were instructed to move beads from the start 

configuration to the goal/final configuration with as few moves as possible without violating 
either of the TOL Task rules. The possible rule violations were Rule Violation Type I: placing or 
trying to place more beads on a peg than it can physically support, and Rule Violation Type II: 

removing two beads from the peg at the same time. To effectively perform, participants must 
identify the goal configuration, consider possible subgoals that approach the goal configuration, 

and maintain the sequence of operations required to achieve the subgoals; therefore, planning 
and problem solving are tested. The administration of the TOL Task required 25–30 min.  



 
 
Figure 1 — An example Tower of London Task with start configuration and goal configuration 

with four and six moves.  
 

Seven TOL Task performance scores were computed (Berg et al., 2010): total move 
score, total correct score, rule violation score, time violation score, total initial time, total 
executive time, and total planning-solving time based upon the TOL Task technical manual 

(Culbertson & Zillmer, 2005). Past research has shown that over a 140-day period the test–retest 
reliabilities for the seven TOL Task are acceptable (r = 62–.81) for all tasks except rule 

violation(r = .28) (Culbertson et al., 2004).  
Total move score is the number of actual bead moves minus the minimum number of 

solution moves for each problem. When a participant exceeded 20 moves or a problem was not 

solved within 2 min, 20 moves was set as a maximal move score to avoid the inflation of total 
move scores and to limit frustration for the participants. Total correct score is the number of 

problems solved in which only the minimum number of moves was used. The rule violation 
score is the number of Type I and Type II rules violations. A time violation score was recorded 
when the participants failed to complete a problem within 1 mine (range from 1 to 10). Total 

initial time was measured by stopwatch by the examiner, and is defined as the summation of the 
time from the presentation of each goal problem by the examiner to the time when the participant 

initially lifted a bead off a peg (first move). Total execution time represents the time from the 
initiation of the first move to the completion or discontinuation of problem solving for each 
problem. Lastly, total planning-solving time is computed by the summing total initial time and 

total execution time. The suggested interpretations for the TOL Task performance scores are 
presented in Table 1. 



 
 
Procedure 

 
Participants came to the laboratory individually for two testing sessions. In Session 1, each 

participant was presented with a brief introduction to the experiment, was given an informed 
consent, and was asked to complete the PAR-Q, health history, demographic, and IPAQ 
questionnaires. Participants meeting the inclusion criteria were randomly assigned into either an 

aerobic exercise group or the control group. Height and weight were measured and participants 
were asked to put on the HR monitor. Resting HR was assessed after participants sat quietly in a 

comfortable chair in a dimly lit room for 20 min. 
In Session 2, each participant was given instructions and demonstrations on the TOL 

Task. The participant then performed 10 prescribed problems of the TOL Task as pretest data. 

Participants in the aerobic exercise group then performed an acute cycling ergometer protocol, 
while participants in the control group were asked to read materials related to aerobic exercise 

for a period of time that was similar to the entire exercise duration. Following their respective 
treatments, participants were asked to conduct the TOL Task again as posttest data. Heart rate 
was measured throughout the pretest, during the treatment condition, and at the posttest. Pretest 

HR was identified as HR immediately before the treatment condition began. Maximal HR during 
treatment was the highest HR during the treatment period. Average HR was the average across 

the 20-min exercise bout for the exercisers and was the average across the treatment period for 
the control participants. Posttest HR was identified as HR after cooldown for the exercisers and 
at the end of the treatment period for the control participants. For both groups, this was 

immediately before performing the TOL Task. In total, both sessions lasted approximately 1 hr 
and 30 min, and after completion participants were given 15 U.S. dollars for compensation and 

briefed on the purpose of the experiment. 
 
Statistical Analyses 

 

This was a mixed randomized controlled trial design with group and time as independent 

variables. To ensure that the control and exercise groups were equivalent on potential confounds, 
independent samples t tests were used to compare demographic data between the two groups. To 
test the exercise intensity manipulation, a mixed 2 (group: exercise vs. control) × 3 (time: pretest 



HR, average HR, posttest HR) analysis of variance (ANOVA) was conducted for HR. Then, to 
test the effect of exercise on executive function, analyses of seven TOL Task performance scores 

were conducted using 2 (group: exercise vs. control) × 2 (time: pretest vs. posttest) mixed 
ANOVAs. An alpha of 0.05 was used as the level of statistical significance; however, Bonferroni 

adjustments were made to control for the experimentwise inflation of alpha. For all ANOVAs, 
significant interaction effects were followed up with tests of simple effects which were then 
followed up with Fisher’s least significant difference post hoc tests if needed. Effect sizes (ES) 

using Cohen’s d (the mean difference of the groups divided by the pooled standard deviation) 
and partial eta-square (η2p) were reported for main effects and significant interactions. 

 
Results 

 

Potential Confounds 
 

There were no significant differences (p > .05) between the groups in age, education, height, 
weight, BMI, IPAQ, or resting HR. Means, standard deviations, and the t test values for 
participant demographic information are presented in Table 2. 

 
Manipulation Check 

 
Results of the 2 × 3 mixed ANOVA for HR revealed that there were significant main effects for 
group, F(1, 40) = 239.52, p < .001, η2p = .86, and time, F(2, 80) =346.35, p < .001, η2p = .90, 

and a significant interaction of group × time, F(2, 80) = 377.18, p < .001, η2p = .90. 
Given that there was a significant interaction effect, follow-up simple effects were used 

to decompose the interaction of group × time. A significant effect for time was found for the 
exercise group, F(2, 38) = 4578.17, p < .001, η2p = .96, but not for the control group, F(2, 42) = 
2.30, p > .05. For the exercise group, pretest HR was significantly lower than average HR which 

was significantly higher than posttest HR. In addition, posttest HR was significantly higher than 
pretest HR. Moreover, the simple effects also showed that average HR, F(1, 40) = 64 733.46, p < 

.001, and posttest HR, F(1, 40) = 17 474.08, p < .001, were significantly higher for the exercise 
group than the control group (Figure 2). No significant differences between groups were 
observed for pretest HR, F(1, 40) = 4.37, p > .05. 



 
During the treatment, %HRR was 69% for the exercise group and 7% for the control 

group. For the exercise group, the average highest RPE was 16.3 and the overall average RPE 

was 15.2. Additional descriptive statistics for the exercise manipulation check are presented in 
Table 3.  



 
 
TOL Task Performance Scores  

 
Descriptive statistics of TOL performance scores are presented in Table 4. For total move score, 

a 2 × 2 mixed ANOVA revealed that there was a significant main effect for time, F(1, 40) = 
17.64, p < .001, η2 p = .31, but not for group, F(1, 40) = 0.70, p > .05. There was a significant 
interaction of group by time, F(1, 40) = 6.77, p = .01, η2 p = .15. Follow-up simple effects 

showed that total move score decreased significantly from pretest to posttest for the exercise 
group, F(1, 21) = 26.39, p < .01, η2 p = .58, whereas no significant change from pretest to 

posttest was found for the control group, suggesting exercise benefits total move score (Figure 
3a).  

Similar findings were observed for total correct score, where there was a significant main 

effect for time, F(1, 40) = 31.34, p < .001, η2 p = .44, but no main effect for group, F(1, 40) = 
0.10, p = .75. A significant interaction of group × time, F(1, 40) = 6.31, p = .02, η2 p = .14, was 

revealed. Follow-up simple effects showed that the total correct score increased significantly 
from pretest to posttest for the exercise group, F(1, 19) = 48.06, p < .01, η2 p = .72, whereas no 
significant difference was found in the control group, suggesting exercise benefits total correct 

score (Figure 3b). 
 



 
 



 
 
 

 



For the rule violation score, no significant results emerged. For the time violation score, 
there was only a main effect for time, F(1, 40) = 6.67, p < .05, η2p =.14, with fewer time 

violations occurring at the posttest. 
For TOL Task time-related variables (total initial time, total executive time, and total 

planning-solving time), there were only main effects for time, F(1, 40) = 6.69, p < .05, η2p = .14; 
F(1, 40) = 28.04, p < .001, η2p = .41; and F(1, 40) = 30.39, p < .001, η2p = .43, respectively. 
Shorter times were recorded at the posttest than at the pretest for all measures. However, the 

main effects for group and the interaction of group by time were not significant for any of these 
variables. 

 
Discussion 

 

Recent research focused on the influence of acute exercise on executive function following acute 
exercise has generally shown that there is a positive effect for measures of inhibition. However, 

only a few studies have explored the effects on other aspects of executive function, and no study 
has examined the effect for measures of planning and problem solving. The present study was 
designed to examine the effect of acute aerobic exercise on planning and problem solving, as 

measured by the TOL Task. 
The exercise manipulation check indicated that participants were exercising at a moderate 

to vigorous intensity (69% HRR). Thus, results indicated that after participating in a single 
session of moderate to vigorous aerobic exercise, participants in the exercise group had 
significantly lower total move scores and significantly greater total correct move scores than 

participants in the control group, which indicated improvements in planning and problem 
solving. However, there were no significant differences between the two groups on violation and 

time-related scores from the TOL Task, indicating that acute aerobic exercise had no influence 
on speed of performance or on errors with respect to the rules of the task. These results suggest 
that the benefits of acute exercise for planning and problem solving are evident in the quality of 

the planning and problem solving and are not a result of a speed-accuracy trade-off. In other 
words, because the number of errors did not increase and the speed of performance was 

equivalent, exercisers improved performance without sacrificing accuracy and without simply 
speeding up their performance. 

The TOL Task is a well-established and widely used neuropsychological test of planning 

ability with multiple subcomponent assessments (Unterrainer et al., 2004). Total move score is 
the primary measure of planning, a main aspect of executive function (Culbertson & Zillmer, 

2005), and is described as indicative of problem-solving efficiency (Berg & Byrd, 2002). It also 
reflects the quality of conducting planning (Culbertson & Zillmer, 2005). Specifically, the 
planning and problem solving required to accomplish the TOL Task involve processes that 

transform current mental representations to goal states through the generation and consideration 
of multiple potential approaches. Therefore, efficiently solving the problems with fewer total 

moves after acute exercise reflects efficiency in recognizing both initial and goal states, 
anticipating future events, and storing representations of intermediate states that can guide 
movements from the initial to the goal state. 

The benefits of acute exercise for specific aspects of cognition might be reflective of the 
activation of specific brain regions. In particular, performance of the TOL task appears to be 

reliant on activation in the frontal area. Lazeron et al. (2000) compared brain images during 
performance of an adapted TOL Task condition and a control condition and found that 



participants performing the TOL Task activated frontal structures bilaterally in the middle frontal 
gyrus and in part of the inferior frontal sulcus. In addition, fMRI studies have consistently 

reported that the processes required to perform the TOL Task involve the prefrontal lobe, 
particularly the dorsolateral frontal region (Lazeron et al., 2000; Newman, Greco, & Lee, 2009; 

van den Heuvel et al., 2003). Given that acute exercise resulted in an improvement in total move 
scores in this study, evidence of an association between acute exercise and frontal activity would 
suggest then this as a possible mechanism of the effects. This view has been supported by recent 

findings using multichannel functional near-infrared spectroscopy; acute moderate exercise is 
linked to better executive function performance and more activation in left dorsolateral prefrontal 

cortex, suggesting that the dorsolateral prefrontal cortex is a likely neural substrate underlying 
acute exercise and executive function (Yanagisawa et al., 2010).  

The total correct score represents the number of test problems completed within the 

minimum number of moves expected (Berg & Byrd, 2002). Culbertson and Zillmer (2005) 
indicated that total correct score is a measure that is linked to working memory. The difficulty of 

TOL problems is gauged by the number of moves required to solve the problem. Thus, because 
the total correct score is indicative of the ability to solve more of the difficult problems, a higher 
score represents being more able to request or maintain the configurations of goals and subgoals 

necessary to solve the problem. To solve the problems successfully, participants need to 
formulate, retain, and implement plans as well as to revise the plans online; these are main 

characteristics of working memory. The association between TOL and working memory is also 
supported by other research (Asato, Sweeney, & Luna, 2006; Culbertson et al., 2004). 

Thus, the findings with regard to total correct score suggest that acute exercise might also 

benefit executive function by improving working memory in addition to benefiting planning and 
problem solving. This finding is consistent with previous research in which shorter reaction 

times during a working memory task (e.g., modified Sternberg task) were found for an acute 
aerobic exercise group, but not for acute resistance exercise and control groups (Pontifex et al., 
2009). However, there are some studies that have not demonstrated beneficial effects for acute 

exercise on working memory. Using a free-recall memory test, Coles and Tomporowski (2008) 
indicated that 40 min of moderate aerobic exercise facilitated long-term memory, but had no 

influence on working memory or short-term memory. The variety of the study designs with 
regard to factors such as exercise modality, duration, and intensity and measures of working 
memory might explain the disparate findings. 

Several hypotheses have been proposed to explain how acute exercise affects executive 
function. Using electroencephalographic (EEG) measures of spectral activity, Kubitz and 

Pothakos (1997) found that following acute aerobic exercise, participants in an exercise group 
had higher alpha and lower beta activity suggesting an increase in neuronal synchrony that was 
interpreted as being indicative of increased efficiency of cognitive functioning. Hillman et al. 

(2003) used EEG to examine event-related potentials during performance of an executive control 
task that was performed following an acute exercise session. Results indicated that acute exercise 

induced larger P3 amplitude and shorter P3 latency which was interpreted as suggesting that 
exercise benefits executive function via increasing allocation of neuroelectric resources and 
improvements in stimulus classification speed. 

Despite acute exercise benefiting total move score and total correct score, significant 
results were not observed in violation- and speed-related TOL Task scores. In terms of rule 

violation and time violation scores, Culbertson and Zillmer (2005) indicated that normal adults 
rarely commit these violations, suggesting the presence of a probable floor effect. In addition, 



with such low violation scores (rule = 0.32; time = 0.31), it is also reasonable to anticipate the 
relative stability of violation scores between the groups. Lastly, the low reliability of the rule 

violation score (Culbertson et al., 2004), could explain why exercise was not found to affect this 
measure. With respect to the total initial time, total execution time, and total planning-solving 

time, effects of the exercise were not evidenced on any of these speed-related TOL Task scores. 
One potential explanation is that time-related scores might be independent of the move- and 
correct-related scores. Phillips, Wynn, McPherson, and Gilhooly (2001) indicated that time-

related scores do not result in higher accuracy of TOL performance. However, it is also arguable 
that the effect of acute exercise on subaspects of planning and problem solving might be affected 

disproportionately. 
Given that this is the first study to explore the effects of acute exercise on the executive 

function subcomponents of planning and problem solving and the positive findings observed, 

further research in this area is encouraged and warranted. In particular, we recommend that 
future researchers consider the following limitations of this study and suggestions for future 

research. In this study, we controlled exercise intensity using RPE as the guide and selected a 
range of 14–17, thus relying more on the participant’s perception of the exercise intensity than 
the absolute intensity. Future research should be designed to further our understanding of the 

potentially different effects of perceived exercise intensity and absolute exercise intensity on the 
effects of acute exercise on subsequent cognitive performance. In addition, this particular 

intensity range was selected based upon conclusions from previous reviews that moderate 
intensity exercise benefits cognitive performance and based upon public health recommendations 
that people exercise at moderate to vigorous intensity. Recent research has begun to focus on 

ventilatory threshold as an important intensity level relative to the effects of acute exercise on 
subsequent cognitive performance (Del Giorno, Hall, O’Leary, Bixby, & Miller, 2010; Ferris, 

Williams, & Shen, 2007) and this may be an important direction for future research relative to 
understanding dose-response relationships between exercise intensity and planning and problem 
solving after exercise. In addition, although the TOL Task has been considered predominately a 

task of planning and problem solving (Unterrainer et al., 2004), others have suggested that the 
TOL Task also taps the executive functions of working memory and inhibition (Welsh, Satterlee-

Cartmell, & Stine, 1999; Zook, Davalos, DeLosh, & Davis, 2004) and total correct has been 
specifically implicated as a measure of working memory (Culbertson & Zillmer, 2005). Future 
research should consider using other tasks that might be even more purely indicative of planning 

and problem solving to further explore the relationship. Lastly, these results support the 
recommendation by Etnier and Chang (2009) that researchers interested in the effects of acute 

exercise on executive function should use multiple tasks including those commonly used in 
exercise and cognition research and neuropsychological tests of assessing planning and problem 
solving 

In conclusion, the current study demonstrates that a single bout of moderate to vigorous 
intensity aerobic exercise benefits the executive functions of planning and problem solving 

performed after the exercise. More specifically, rather than resulting in general improvements for 
all measures derived from the TOL Task, acute exercise was found to have benefits for scores 
related to efficiency and accuracy of planning and problem solving rather scores related to 

violation and speed related performances.  
 

 
 



Acknowledgments  

 

The research was supported by a part of grant from the National Science Council in Taiwan 
(NSC 98-2410-H-179-001). We gratefully acknowledge all participants for the time they spent in 

performing the study as well as the anonymous reviewers for their thoughtful and helpful 
comments regarding the manuscript.  
 

References  

 

Alvarez, J.A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic 
review. Neuropsychology Review, 16(1), 17–42.  

American College of Sports Medicine. (2010). ACSM’s Guidelines for Exercise Testing and 

Prescription (8th ed.). New York: Lippincott Williams & Wilkins.  
Asato, M.R., Sweeney, J.A., & Luna, B. (2006). Cognitive processes in the development of TOL 

performance. Neuropsychologia, 44(12), 2259–2269.  
Audiffren, M., Tomporowski, P.D., & Zagrodnik, J. (2009). Acute aerobic exercise and 

information processing: Modulation of executive control in a Random Number 

Generation task. Acta Psychologica, 132(1), 85–95.  
Banich, M.T. (2009). Executive function: The search for an integrated account. Current 

Directions in Psychological Science, 18(2), 89–94.  
Barella, L.A., Etnier, J.L., & Chang, Y.K. (2010). The immediate and delayed effects of an acute 

bout of exercise on cognitive performance of healthy older adults. Journal of Aging and 

Physical Activity, 18(1), 87–98.  
Bauman, A., Bull, F., Chey, T., Craig, C.L., Ainsworth, B.E., Sallis, J.F., . . . The IPS Group. 

(2009). The international prevalence study on physical activity: Results from 20 
countries. International Journal of Behavioral Nutrition and Physical Activity, 6(21), 1–
11.  

Berg, W.K., & Byrd, D. (2002). The Tower of London spatial problem-solving task: Enhancing 
clinical and research implementation. Journal of Clinical and Experimental 

Neuropsychology, 24(5), 586–604.  
Berg, W.K., Byrd, D.L., McNamara, J.P.H., & Case, K. (2010). Deconstructing the tower: 

Parameters and predictors of problem difficulty on the Tower of London task. Brain and 

Cognition, 72(3), 472–482.  
Borg, G.A. (1998). Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics. 

Brisswalter, J., Collardeau, M., & Arcelin, R. (2002). Effects of acute physical exercise 
characteristics on cognitive performance. Sports Medicine (Auckland, N.Z.), 32(9), 555–
566.  

Chang, Y.K., & Etnier, J.L. (2009a). Effects of an acute bout of localized resistance exercise on 
cognitive performance in middle-aged adults: A randomized controlled trial study. 

Psychology of Sport and Exercise, 10(1), 19–24.  
Chang, Y.K., & Etnier, J.L. (2009b). Exploring the dose-response relationship between 

resistance exercise intensity and cognitive function. Journal of Sport & Exercise 

Psychology, 31(5), 640–656. 
Coles, K., & Tomporowski, P.D. (2008). Effects of acute exercise on executive processing, 

short-term and long-term memory. Journal of Sports Sciences, 26(3), 333–344. 
Craig, C. l., Marshall, A. L., Sjostrom, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E.,… 



Oja, P. (2003). International physical activity questionnaire:12-country reliability and 
validity. Medicine and Science in Sports and Exercise, 35(8), 1381–1395. 

Culbertson, W.C., Moberg, P.J., Duda, J.E., Stern, M.B., & Weintraub, D. (2004). Assessing the 
executive function deficits of patients with Parkinson’s disease: Utility of the Tower of 

London-Drexel. Assessment, 11(1), 27–39. 
Culbertson, W.C., & Zillmer, E.A. (1998). The Tower of LondonDX: A standardized approach 

to assessing executive functioning in children. Archives of Clinical Neuropsychology, 

13(3), 285–301. 
Culbertson, W.C., & Zillmer, E.A. (2005). Tower of London Drexel University: 2nd Edition 

(TOLDX). Multi-Health Systems, Inc. 
Davis, C.L., Tomporowski, P.D., Boyle, C.A., Waller, J.L., Miller, P.H., Naglieri, J.A., et al. 

(2007). Effects of aerobic exercise on overweight children’s cognitive functioning: A 

randomized controlled trial. Research Quarterly for Exercise and Sport, 78(5), 510–519. 
Dehaene, S., & Changeux, J.P. (1997). A hierarchical neuronal network for planning behavior. 

Proceedings of the National Academy of Sciences of the United States of America, 
94, 13293–13298. 

Del Giorno, J.M., Hall, E.E., O’Leary, K.C., Bixby, W.R., & Miller, P.C. (2010). Cognitive 

function during acute exercise: A test of the transient hypofrontality theory. Journal of 
Sport & Exercise Psychology, 32(3), 312–323. 

Dietrich, A. (2006). Transient hypofrontality as a mechanism for the psychological effects of 
exercise. Psychiatry Research, 145(1), 79–83. 

Dietrich, A., & Sparling, P.B. (2004). Endurance exercise selectively impairs 

prefrontaldependent cognition. Brain and Cognition, 55, 516–524. 
Etnier, J.L., & Chang, Y.K. (2009). The effect of physical activity on executive function: A brief 

commentary on definitions, measurement issues, and the current state of the literature. 
Journal of Sport & Exercise Psychology, 31(4), 469–483. 

Etnier, J.L., Salazar, W., Landers, D.M., Petruzzello, S.J., Han, M., & Nowell, P. (1997). The 

influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. 
Journal of Sport & Exercise Psychology, 19, 249–277. 

Ferris, L.T., Williams, J.S., & Shen, C.L. (2007). The effect of acute exercise on serum brain-
derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports 
and Exercise, 39(4), 728–734. 

Gellish, R.L., Goslin, B.R., Olson, R.E., McDonald, A., Russi, G.D., & Moudgil, V.K. (2007). 
Longitudinal modeling of the relationship between age and maximal heart rate. Medicine 

and Science in Sports and Exercise, 39(5), 822–829. 
Hillman, C.H., Pontifex, M.B., Raine, L.B., Castelli, D.M., Hall, E.E., & Kramer, A.F. (2009). 

The effect of acute treadmill walking on cognitive control and academic achievement in 

preadolescent children. Neuroscience, 159(3), 1044–1054. 
Hillman, C.H., Snook, E.M., & Jerome, G.J. (2003). Acute cardiovascular exercise and executive 

control function. International Journal of Psychophysiology, 48(3), 307–314. 
Hogervorst, E., Riedel, W., Jeukendrup, A., & Jolles, J. (1996). Cognitive performance after 

strenuous physical exercise. Perceptual and Motor Skills, 83, 479–488. 

Kafer, K.L., & Hunter, M. (1997). On testing the face validity of planning/problem-solving tasks 
in a normal population. Journal of the International Neuropsychological Society, 

3(2), 108–119. 



Kaller, C.P., Rahm, B., Spreer, J., Mader, I., & Unterrainer, J.M. (2008). Thinking around the 
corner: The development of planning abilities. Brain and Cognition, 67(3), 360–370. 

Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects 
of aerobic exercise on cognitive function in older adults. The Journals of Gerontology. 

Series B, Psychological Sciences and Social Sciences, 64(3), 356–363. 
Kamijo, K., Nishihira, Y., Hatta, A., Kaneda, T., Wasaka, T., Kida, T., et al. (2004). Differential 

influences of exercise intensity on information processing in the central nervous system. 

European Journal of Applied Physiology, 92, 305–311. 
Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of 

exercise intensity and task difficulty on human cognitive processing. International 
Journal of Psychophysiology, 65(2), 114–121. 

Karvonen, M.J., Kentala, E., & Mustala, O. (1957). The effects of training on heart rate: A 

longitudinal study. Annales Medicinae Experimentalis et Biologiae Fenniae, 35(3), 307–
315. 

Kubitz, K., & Pothakos, K. (1997). Does aerobic exercise decrease brain activation? Journal of 
Sport & Exercise Psychology, 19, 291–301. 

Lambourne, K., & Tomporowski, P.D. (2010). The effect of exercise-induced arousal on 

cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12–24. 
Lazeron, R.H., Rombouts, S.A., Machielsen, W.C., Scheltens, P., Witter, M.P., Uylings, H.B., et 

al. (2000). Visualizing brain activation during planning: The tower of London test 
adapted for functional MR imaging. AJNR. American Journal of Neuroradiology,21(8), 
1407–1414. 

Lezak, M.D., Howieson, D.B., Loring, D.W., Hannay, H.J., & Fischer, J.S. (2004). 
Neuropsychological assessment. New York: Oxford University Press. 

Lichtman, S., & Poser, E.G. (1983). The effects of exercise on mood and cognitive functioning. 
Journal of Psychosomatic Research, 27, 43–52. 

Liou, Y.M., Jwo, C.J.C., Yao, K.G., Chiang, L.C., & Huang, L.H. (2008). Selection of 

appropriate Chinese terms to represent intensity and types of physical activity terms for 
use in the Taiwan version of IPAQ. Journal of Nursing Research, 16(4), 252–263. 

McMorris, T., & Graydon, J. (2000). The effect of incremental exercise on cognitive 
performance. International Journal of Sport Psychology, 31, 66–81. 

Netz, Y., Tomer, R., Axelrad, S., Argov, E., & Inbar, O. (2007). The effect of a single aerobic 

training session on cognitive flexibility in late middle-aged adults. International Journal 
of Sports Medicine, 28(1), 82–87. 

Newman, S.D., Greco, J.A., & Lee, D. (2009). An fMRI study of the Tower of London: A look 
at problem structure differences. Brain Research, 1286, 123–132. 

Phillips, L.H., Wynn, V.E., McPherson, S., & Gilhooly, K.J. (2001). Mental planning and the 

Tower of London task. The Quarterly Journal of Experimental Psychology. Section A. 
Human Experimental Psychology, 54(2), 579–597. 

Polk, T.A., Simen, P., Lewis, R.L., & Freedman, E. (2002). A computational approach to control 
in complex cognition. Brain Research. Cognitive Brain Research, 15(1), 71–83. 

Pontifex, M.B., Hillman, C.H., Fernhall, B., Thompson, K.M., & Valentini, T.A. (2009). The 

effect of acute aerobic and resistance exercise on working memory. Medicine and 
Science in Sports and Exercise, 41, 927–934. 



Rabbitt, P. (1997). Introduction: Methodologies and models in the study of executive function. In 
P. Rabbitt (Ed.), Methodology of frontal and executive function (pp. 1–38). Hove, UK: 

Psychology Press. 
Salthouse, T.A. (2007). Exercise and mental resources: Methodological problems. In W.W. 

Spirduso, L.W. Poon, & W. Chodzko-Zajko (Eds.), Aging, exercise, and cognition series: 
Exercise and its mediating effects on cognition (Vol. 2, pp. 111–118). Champaign, IL: 
Human Kinetics. 

Schnirman, G.M., Welsh, M.C., & Retzlaff, P.D. (1998). Development of the Tower of London-
Revised. Assessment, 5(4), 355–360. 

Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal 
Society of London. Series B, Biological Sciences, 298, 199–209. 

Sibley, B.A., Etnier, J.L., & Le Masurier, G.C. (2006). Effects of an acute bout of exercise on 

cognitive aspects of Stroop performance. Journal of Sport & Exercise Psychology, 28, 
285–299. 

Sternberg, R.J., & Ben-Zeev, T. (2001). Complex cognition: The psychology of human thought. 
New York: Oxford University Press. 

Stroth, S., Kubesch, S., Dieterle, K., Ruchsow, M., Heim, R., & Kiefer, M. (2009). Physical 

fitness, but not acute exercise modulates event-related potential indices for executive 
control in healthy adolescents. Brain Research, 1269, 114–124. 

Tomporowski, P.D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 
112, 297–324. 

Tomporowski, P.D., Cureton, K., Armstrong, L.E., Kane, G.M., Sparling, P.B., & 

MillardStafford, M. (2005). Short-term effects of aerobic exercise on executive processes 
and emotional reactivity. International Journal of Sport and Exercise Psychology, 3, 131–

146. 
Tomporowski, P.D., Davis, C.L., Lambourne, K., Gregoski, M., & Tkacz, J. (2008). Task 

switching in overweight children: Effects of acute exercise and age. Journal of Sport & 

Exercise Psychology, 30(5), 497–511. 
Tomporowski, P.D., & Ellis, N.R. (1986). Effects of exercise on cognitive processes: A review. 

Psychological Bulletin, 99(3), 338–346. 
Tomporowski, P.D., & Ganio, M.S. (2006). Short-term effects of aerobic exercise on executive 

processing, memory, and emotional reactivity. International Journal of Sport and 

Exercise Psychology, 4(1), 57–72. 
Unterrainer, J.M., & Owen, A.M. (2006). Planning and problem solving: From neuropsychology 

to functional neuroimaging. Journal of Physiology, Paris, 99(4-6), 308–317. 
Unterrainer, J.M., Rahm, B., Kaller, C.P., Leonhart, R., Quiske, K., Hoppe-Seyler, K., et al. 

(2004). Planning abilities and the Tower of London: Is this task measuring a discrete 

cognitive function? Journal of Clinical and Experimental Neuropsychology, 26(6), 846–
856. 

Van den Heuvel, O.A., Groenewegen, H.J., Barkhof, F., Lazeron, R.H., van Dyck, R., & 
Veltman, D.J. (2003). Frontostriatal system in planning complexity: A parametric 
functional magnetic resonance version of Tower of London task. NeuroImage, 18(2), 

367–374. 
Ward, G., & Allport, A. (1997). Planning and problem-solving using the five-disc Tower of 

London task. The Quarterly Journal of Experimental Psychology, 50A, 49–78. 



Welsh, M.C., Satterlee-Cartmell, T., & Stine, M. (1999). Towers of Hanoi and London: 
Contribution of working memory and inhibition to performance. Brain and Cognition, 

41(2), 231–242. 
Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y., et al. (2010). Acute 

moderate exercise elicits increased dorsolateral prefrontal activation and improves 
cognitive performance with Stroop Test. NeuroImage, 50(4), 1702–1710. 

Zook, N.A., Davalos, D.B., DeLosh, E.L., & Davis, H.P. (2004). Working memory, inhibition, 

and fluid intelligence as predictors of performance on Tower of Hanoi and London tasks. 
Brain and Cognition, 56(3), 286–292. 


