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Analyzing Data from Nonrandomized 
Group Studies
Jeremy W. Bray, William E. Schlenger, Gary A. Zarkin, 
and Deborah Galvin 

Abstract
Researchers evaluating prevention and early intervention programs must 
often rely on diverse study designs that assign groups to various study 
conditions (e.g., intervention versus control). Although the strongest 
designs randomly assign these groups to conditions, researchers 
frequently must use nonrandomized research designs in which 
assignments are made based on the characteristics of the groups. With 
nonrandomized group designs, little guidance is available on how best 
to analyze the data. We provide guidance on which techniques work 
best under different data conditions and make recommendations to 
researchers about how to choose among the various techniques when 
analyzing data from a pre-test/post-test nonrandomized study. We 
use data from the Center for Substance Abuse Prevention’s Workplace 
Managed Care initiative to compare the performance of the various 
methods commonly applied in quasi-experimental and group assignment 
designs. 
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Introduction
As policy makers demand more and better 
evidence on the effectiveness of specific policies or 
interventions that affect large numbers of individuals, 
researchers increasingly rely on study designs in 
which groups of individuals are assigned to study 
conditions. Although these studies have been well 
documented in education research where schools 
or classrooms are assigned to treatment or control 
conditions (e.g., Bryk & Raudenbush, 1988; Goldstein, 
1987), they are becoming more prevalent in other 
areas (e.g., Farquhar et al., 1990; Luepker, 1994; 
Carleton et al., 1995). Several authors have suggested 
analysis strategies for data from studies in which the 
groups are randomly assigned (Bryk & Raudenbush; 
Goldstein; Murray, 1998), but few address analysis 
issues related to nonrandom assignment, such as 
selection bias. 

Frequently, policy makers and researchers want 
to investigate interventions in settings in which 
randomized samples are not practical and in which 
groups of individuals must be assigned to study 
conditions. Examples of such quasi-experimental 
designs, so-called nonrandomized group designs 
(Murray, 1998), occur in a variety of prevention 
studies and workplace studies (e.g., Zarkin, Bray, 
Karuntzos, & Demiralp, 2001; Lapham, Chang, 
& Gregory, 2000; Ames, Grube, & Moore, 2000). 
Although these studies are appropriately criticized 
for having increased threats to validity relative to 
experimental designs, demands by policy makers 
and practitioners for “best practices” and other 
information on how interventions work in settings 
that prohibit randomization frequently result in the 
need to use nonrandomized group designs. 

Nonrandomized group designs pose two major data 
analysis challenges. First, they suffer from the same 
clustering problem that all group assignment studies 
face (Murray, 1998). If analysts do not appropriately 
address the clustering of individuals within groups, 
then they may underestimate standard errors, 
resulting in exaggerated statistical significance and 
false conclusions about the intervention’s effectiveness. 
Second, nonrandomized group designs suffer from 
the well-noted problem of bias created by nonrandom 
selection into the intervention and comparison 

conditions (Cook & Campbell, 1979; Heckman & 
Robb, 1985; Heckman & Hotz, 1989; Rosenbaum 
& Rubin, 1984). By not randomly assigning groups 
to the study conditions, investigators face a greater 
chance of having systematic preexisting differences 
in background characteristics between the study and 
comparison groups. As with all quasi-experimental 
designs, failure to address the potential for selection 
bias can lead to misleading estimates of the 
intervention effect and, again, false conclusions about 
the intervention’s effectiveness. 

In this methods report, we consider the analysis 
of data from nonrandomized group designs with a 
single pre-test and a single post-test. First, we provide 
a brief overview of the techniques commonly used 
to account for the clustering inherent in all group 
assignment designs. We also discuss the techniques 
used to address sample selection bias potentially 
created by nonrandom assignment. Next, we propose 
an adaptation of a method proposed by Heckman 
and Hotz (1989) to address individual self-selection 
for use in nonrandomized group designs, discuss its 
strengths and weaknesses, and provide guidelines 
that researchers can use when deciding on an analysis 
strategy. We then demonstrate the application of these 
guidelines using data from a workplace substance 
abuse prevention/early intervention study. 

Nonrandomized Group Studies
The nonrandomized group design is a quasi-
experimental design that assigns identifiable groups 
of individuals to the intervention or comparison 
condition in some nonrandom way (Murray, 1998). 
Researchers or program administrators often make 
study assignments based on characteristics of the 
groups for convenience (e.g., geographic location) or 
other pragmatic reasons, but perhaps equally as often 
the groups themselves (or some representative of the 
group, such as a principal or a worksite administrator) 
select their study condition. 

Regardless of the selection mechanism, we assume 
in this report that the individuals within the groups 
are the intended unit of analysis. For example, many 
worksite programs are delivered to an entire worksite, 
and administrators at the worksite decide whether the 
program will be offered at their particular worksite. In 
such a situation, researchers attempting to assess the 
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effect of the program on individual-level outcomes 
are faced with two key analysis issues: the clustering 
of individuals within groups and the potential for 
selection bias caused by the nonrandom assignment. 
Proper analysis of individual-level data from a 
nonrandomized group design requires awareness 
of and attention to both issues. Although analyses 
of group- or population-level outcomes may be of 
interest to many researchers and policy makers, we 
do not address those analyses in this paper. 

Clustered Data
The key feature that distinguishes a nonrandomized 
group design from other quasi-experimental designs 
is that identifiable groups of individuals, rather than 
the individuals themselves, are assigned to the study’s 
treatment conditions, but the individual remains the 
unit of interest. Identifiable groups are groups that 
were not constituted at random. Examples include 
schools, classrooms within schools, worksites, clinics, 
or even whole communities. Because these groups 
are not constituted at random, their members usually 
share one or more traits in common. 

Typically, some of these traits, such as geographic 
location, socioeconomic status, or employee benefit 
structures, are measured in the study and therefore 
can be accounted for in the analysis. Because of 
pragmatic and other limitations, however, many 
more traits remain unmeasured, such as a common 
workplace culture or a shared work ethic, and 
therefore cannot be analyzed directly. The net effect 
of these shared traits is that an individual is more 
like other individuals within his or her group than 
individuals outside of his or her group. In other 
words, individuals are clustered within groups, and 
that clustering induces a correlation among the 
individuals within a group known as intra-cluster 
correlation. 

To see this more clearly, consider estimating the effect 
of an intervention using the following regression 
equation for some outcome Y from a group 
nonrandomized study with a single pre-test and a 
single post-test:

  Yijt = α + Xijtβ + δdjt + Uijt , (1)

where i indexes individuals, j indexes groups, and t 
indexes pre-intervention (t = 1) and post-intervention 
(t = 2). α is the regression intercept (which is also the 
conditional mean of Y), Xijt is a vector of observed 
characteristics that influence Y, and β is a vector of 
slopes associated with the variables in Xijt. Not all of 
the variables in Xijt must necessarily vary at all three 
levels. Some may be time-constant characteristics 
of the individual, such as race, whereas others may 
be characteristics of the group, such as geographic 
location. Uijt is the error term. djt is an indicator 
variable that equals 1 if group j was exposed to 
the intervention in period t and 0 otherwise. The 
intervention effect is captured by the coefficient 
on djt, δ, and reflects the effect of the group-level 
intervention on the individual-level outcome Y. 

Equation 1 is the regression equation equivalent 
of the ANCOVA (analysis of covariance) model 
suggested by Reichardt (1979) and adapted for the 
nonrandomized group design. It follows from the 
repeated measures ANOVA (analysis of variance) 
tradition. By using the pre-test response as an 
outcome, it uses the pre-test observations on the 
intervention condition as an additional control group. 
The use of the pre-test response as a control variable 
is discussed below. 

If Uijt is independently distributed across all 
individuals (i), groups (j), and time periods (t), then 
simple ordinary least squares (OLS) regression is the 
appropriate estimation method. However, similarities 
among individuals within a group are likely to cause 
some degree of intra-cluster correlation. Similarly, we 
can posit events and conditions that make individuals 
similar within a time period and therefore cause 
clustering within a time period. We can incorporate 
these and other levels of clustering into our model by 
decomposing Uijt into various components. 

For example, consider the following decomposition:

  Uijt = εi + ζj + ηt + μjt + νijt , (2)

where εi is a random variable that is specific to 
individual i and is constant over time. It reflects traits 
specific to an individual that induce a correlation 
within the observations on a specific individual 
over time. Similarly, ζ j is a random variable that is 
specific to group j and reflects the shared traits of the 
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individuals within group j. It therefore captures the 
correlation across individuals within a group. ηt is a 
random variable specific to time period t and captures 
the correlation across all observations occurring 
in time period t. μjt is a random variable that is 
specific to group j and time period t and captures the 
correlation among observations within a group-time 
period combination. νijt is a random variable that is 
unique to each person and time period and therefore 
represents an independent and identically distributed 
(iid) random error term. 

Sandwich Variance Estimators
One common method of dealing with intra-cluster 
correlation is the sandwich variance estimator (Huber, 
1967; White, 1980; Liang & Zeger, 1986). Sandwich 
variance estimators are an ex post correction to the 
variance-covariance matrix and have a variety of 
names, including Huber, White, and generalized 
estimating equations (for a review of the use of 
sandwich variance estimators, see Norton, Bieler, 
Ennet, & Zarkin, 1996). Sandwich estimators are most 
often used to correct for clustering at the group level 
(ζ j), but they are increasingly being used to handle 
clustering at other levels. 

The main advantage of sandwich variance estimators 
is that they are easily obtained in many statistical 
software packages (e.g., SAS, Stata, SUDAAN), and 
they can correct for multiple levels of clustering 
provided all clusters are nested (e.g., students within 
classes within schools; see Williams, 2000). A key 
disadvantage of sandwich variance estimators is that 
Monte Carlo evidence suggests that they may not 
perform well with a small number of clusters (Murray, 
Hannan, & Baker, 1996), although the Stata cluster 
option uses a finite sample correction that makes it 
more appropriate for samples with a small number 
of clusters (StataCorp, 2005). Another limitation 
that arises in an ANOVA context is that the sandwich 
variance estimator does not alter traditional ANOVA 
sums of squares and so will not correct for clustering 
when used in a traditional ANOVA framework 
(StataCorp). Finally, sandwich variance estimates 
cannot correct for clustering that is not nested such as 
clustering within group (ζ j), time (ηt), and group by 
time (μjt).

Random Effects Models
Another common method of dealing with intra-
cluster correlation is the use of random effects or 
mixed models (see Murray, 1998). In a random 
effects model, the various components of the error 
term are modeled as independently distributed 
random effects. By explicitly modeling the different 
error components, the random effects model 
efficiently handles many different levels of clustering. 
Identification of the random effects parameters, 
however, is achieved primarily through the 
assumption that the random effects are not correlated 
with the other variables in the model (i.e., Xijt and 
djt). This assumption is often called the “orthogonality 
assumption” or the “strong ignorability assumption.” 

As discussed in detail later, the orthogonality 
assumption is problematic under likely and 
plausible circumstances associated with nonrandom 
assignment. If it is violated, it can bias the estimated 
intervention effect. In particular, group self-
selection into the intervention condition may 
cause a correlation between djt and one or more of 
the random effects, thus violating the identifying 
assumption of the random effects model and yielding 
an inconsistent estimate of the treatment effect 
(Greene, 1997). Random effects or mixed models are 
becoming more widely implemented in statistical 
packages. Examples include SAS’s proc mixed and 
proc glimmix procedures (SAS, 2002-2004) and Stata’s 
xtmixed command (StataCorp, 2005). 

Selection Bias
Selection bias arises when underlying differences 
in the outcome exist between the comparison 
and intervention groups that are not caused by 
the intervention. As discussed by Heckman and 
Hotz (1989), fundamentally two types of selection 
processes can cause bias: selection on measured 
characteristics (called “selection on observables” by 
Heckman and Hotz) and selection on unmeasured 
characteristics (called “selection on unobservables” by 
Heckman and Hotz). 

Selection on measured characteristics occurs when 
differences exist in measured characteristics between 
the comparison and intervention groups that are 
correlated with the outcome of the intervention 
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(e.g., age, race, or sex). Selection on unmeasured 
characteristics occurs when differences exist in 
unmeasured characteristics between the comparison 
and intervention groups that are correlated with 
the outcome of the intervention (e.g., motivation or 
innate ability). The term “unobservables” is used by 
Heckman and Hotz to describe any characteristic that 
analysts cannot explicitly control for through some 
measured variable or proxy. It does not necessarily 
imply selection on a latent construct unless that 
construct remains unmeasured. 

To see both types of selection, consider the following 
model of the study assignment process (for other 
papers that use a similar presentation of selection 
bias, see Heckman and Hotz, 1989, or Heckman and 
Robb, 1985):

  djt = 1 iff Ij = Zjγ + Vj > 0 and t = 2  (3)

  djt = 0 otherwise

where Zj is a vector of measured group-level 
characteristics that determine the group’s decision 
to participate in the intervention, Vj is an error 
term, and Equations 1 and 2 still describe the study 
outcome and its error distribution. 

Equation 3 describes the outcome of the decision 
process that led the group to participate in the 
intervention; therefore, it determines djt. Because 
the decision to participate in the intervention is 
determined in part by the characteristics of the group 
(e.g., the school, classroom, or worksite), it is possible 
and even likely that djt is correlated with the Equation 
1 error term, Uijt. Selection bias occurs when a 
correlation between djt and Uijt causes estimates of δ 
to be biased. 

If the correlation between Uijt and djt arises because 
of a correlation between Zj and Uijt, then the 
selection is said to be on measured characteristics. If 
the correlation between djt and Uijt arises because of 
a correlation between Vj and Uijt, then the selection is 
on unmeasured characteristics. Correcting for either 
type of selection bias relies on strong assumptions 
about the causes of the bias; therefore, no method 
can completely eliminate the possibility that bias 
still exists. The methods discussed below control for 
selection bias only to the extent that the assumptions 
made by each method are valid. 

Selection on Measured Characteristics
Correcting for selection on observed characteristics 
in a nonrandomized group study is relatively 
straightforward and relies on methods developed for 
more traditional quasi-experimental designs. The 
analyst simply includes controls for Zj in Equation 1. 
Heckman and Hotz (1989) and Heckman and Robb 
(1985) discuss several ways of controlling for Zj, 
which they refer to as control functions. A thorough 
understanding of the selection process can greatly 
inform the choice of variables to include in Zj and 
the way in which Zj enters Equation 1. In addition 
to nonlinear specifications such as quadratic or 
cubic forms, hierarchical linear models (Bryk 
and Raudenbush, 1988) may also be appropriate 
if elements of Zj are thought to moderate the 
relationship between the outcome and elements 
of Xijt. 

The simplest control function is to include Zj as a 
regressor in Equation 1 (also referred to as the “linear 
control function” by Barnow, Cain, and Goldberger, 
1980), but other commonly used control functions 
include the propensity score method (Rosenbaum 
& Rubin, 1984). Although some authors refer to the 
propensity score method as a “control function” (e.g., 
Heckman and Hotz), propensity score methods do 
not simply include the propensity score as a regressor 
in Equation 1. Instead, most authors recommend 
matching intervention and comparison samples on 
the propensity score in some way, thus representing 
a nonparametric control function. For more 
information on the current use of propensity score 
methods, see Ichimura and Taber (2001) and the 
references contained therein. 

One of the more common choices for Zj involves 
using the pre-test response as a control variable. This 
approach is most useful when selection is determined 
solely on the basis of the pre-test response (i.e., Zj is 
identically equal to Yijt , t =1). If the selection process 
does not depend solely on the pre-test response, 
then the use of the pre-test as a control variable may 
not fully correct for selection bias. Furthermore, as 
discussed by Reichardt (1979), measurement error 
in the pre-test response also limits the ability of this 
approach to control for selection bias. 
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Selection On Unmeasured Characteristics
Correcting for selection on unmeasured 
characteristics is more complicated. Given the 
extensive literature in multiple disciplines on 
correcting for selection bias in quasi-experimental 
studies, we do not provide a comprehensive review 
of all possible methods. Rather, we provide an 
introduction to the methods that are most likely to be 
appropriate for group nonrandomized designs. 

Specifically, we assume that researchers are analyzing 
data from studies with a relatively small number of 
groups and that they have only one pre- and only 
one post-intervention time point on each group. 
Although this assumed data structure dictates 
the specific methods available to researchers, the 
concepts we discuss are more broadly applicable to 
data with multiple time points or longitudinal data 
on individuals. Generally speaking, two broad classes 
of methods are designed to correct for selection on 
unmeasured characteristics used in more traditional 
quasi-experimental designs: those that model the 
selection process and those that do not. 

Techniques that model the selection process
Approaches that model the selection process estimate 
Equation 3 in a way that allows or corrects for the 
correlation between Vj and Uijt. For example, many 
Heckman sample selection techniques assume that Vj 
and Uijt follow a joint normal distribution (Heckman, 
1979). Using this assumption, they correct for the 
selection bias either by jointly estimating Equations 
1 and 3 or by including an additional variable in 
Equation 1 that captures the effects of the selection 
process. Instrumental variables (IV) approaches use 
Equation 3 to predict djt as a function of variables 
that are not correlated with Uijt and then use this 
predicted value in place of the actual djt when 
estimating Equation 1 (Heckman, 1997; Newhouse 
& McClellan, 1998). By construction, the predicted 
value is uncorrelated with Uijt but highly correlated 
with djt and so gives an unbiased estimate of δ. 

Although techniques that model the selection process 
can be quite effective, they have two key limitations 
that often prevent analysts from using them with 
data from nonrandomized group studies. First, they 
almost universally rely on variables that appear in Zj 

but not in Xijt (i.e., variables that explain the selection 
into the intervention group but that do not influence 
the outcome, so-called identifying instruments) to 
help identify the effect of the intervention. Without 
these variables, most techniques that model the 
selection process perform poorly. Unfortunately, these 
variables are often difficult to identify and measure 
given the strong assumption that a given variable 
affects the selection process but not the outcome. 
Second, techniques that estimate the selection process 
require enough groups (typically greater than 30 
per study condition) to estimate Equation 3 reliably. 
Because few nonrandomized group studies meet these 
data requirements, we do not discuss these techniques 
further but refer interested readers to the previously 
referenced literature. 

Techniques that do not model the selection process
Techniques that do not model the selection process 
correct for selection bias by relying on assumptions 
about the nature of the unobserved factors causing 
the selection bias. Importantly, these techniques 
correct for selection bias only to the extent that their 
underlying assumptions are valid. Most commonly, 
they assume that Uijt and Vj share a common 
component that causes a correlation between the 
two (Heckman and Hotz, 1989; Heckman and Robb, 
1985). For example, suppose Uijt has the form given in 
Equation 2, and Vj has the following form: 

  Vj = ζ j + vj ,  (4)

where vj is a random variable that is unique to each 
group and therefore represents an iid random error 
term. 

Under this assumption, the selection bias is caused 
by ζ j and can be eliminated by controlling for ζ j 
in Equation 1. One way of controlling for ζ j is by 
using a differences-in-differences (DD) estimator 
(also referred to as gain score analysis; Cook and 
Campbell, 1979). DD estimators eliminate ζ j from 
Uijt by subtracting the baseline value of Yjt from the 
follow-up value, creating a difference value. Because 
ζ j is assumed to be constant over time, it is the same 
in both the baseline and follow-up values and is 
therefore eliminated by the differencing. The average 
difference in the intervention group is then compared 
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with the average difference in the comparison group 
to determine the intervention effect. 

DD estimators can control for a wide variety of 
selection mechanisms (e.g., selection decisions 
made by the managers of a workgroup) as long as no 
observational distinction exists between the selection 
mechanism and the study condition of the group. 
However, DD estimators cannot distinguish one 
selection mechanism from another. If understanding 
the decision process that led a group to the observed 
study assignment is important, then model-based 
techniques for addressing sample selection are more 
appropriate. These techniques allow the analyst to 
model explicitly the decision process, but they require 
sufficient numbers of groups to make such modeling 
efforts valid. Of course, the extent to which DD 
estimators control for selection bias depends critically 
on the extent to which the underlying assumptions 
are valid. 

DD estimators are often implemented in a linear 
regression framework by including indicator variables 
for the study condition and for the post-treatment 
period, resulting in the following regression equation: 

 Yijt = α + Xijtβ + γ1CONDj + γ2POSTt + (5) 
 δdjt + Uijt ,  

where CONDj is an indicator variable that 
equals 1 if group j is in the intervention condition 
and 0 otherwise, POSTt is an indicator variable that 
equals 1 if the measurement is from the follow-up 
and 0 otherwise, and γ1 and γ2 are coefficients to be 
estimated. The intervention effect is still captured 
by δ. When using DD estimators with nonlinear 
models, such as logistic regression, Equation 5 is still 
appropriate. However, using the difference between 
the follow-up and baseline observations is not 
appropriate when using nonlinear models. 

A similar non-model-based approach is an adaptation 
of the individual-level fixed effects technique 
recommended by several authors (e.g., Heckman 
& Hotz, 1989; Hsiao, 1986; Baltagi, 1995)—the use 
of group-level fixed effects. This method estimates 
ζ  j by including a set of group-specific indicator 
variables (a separate indicator for each group), 
which allows a correlation between ζ  j and djt. The 
associated parameters are often called fixed effects 

and are identified by the variation across the groups. 
Because all variation between the groups is captured 
by the fixed effects, this method relies solely on the 
variation within groups to identify the treatment 
effect. Because the study conditions are assigned at 
the group level (i.e., groups are nested within study 
conditions), the main study condition effect (CONDj 
in Equation 5) cannot be separately identified 
from the group effects and so cannot be included 
in the model. The intervention effect is identified 
using the variation from the pre- to post-treatment 
observations within a group and so can be estimated 
if there are repeated observations on groups. 

For linear models, fixed effects and DD methods are 
numerically identical and produce exactly the same 
estimate of the intervention effect, δ, if the data are 
balanced (i.e., the number of observations is the same 
in each time period) and if a post-treatment indicator 
is included in the fixed effects model. Fixed effects 
in nonlinear models, such as logistic regression, 
will produce similar but not identical treatment 
effect estimates as Equation 5 and require special 
estimation methods (e.g., conditional maximum 
likelihood) if the number of observations per group is 
small (i.e., less than 30). For a discussion of methods 
to estimate nonlinear fixed effects models with a 
small number of groups, see Hsiao (1986) or Baltagi 
(1995). Other non-model-based approaches include 
the random growth model (Heckman & Hotz, 1989), 
which assumes that Uijt and Vj contain a shared 
component that changes linearly over time. 

The group fixed effects are perfectly collinear with all 
time-invariant characteristic of the groups (Baltagi, 
1995), including ζ   j , and they therefore correct for 
the clustering within groups caused by ζ  j and for 
selection that results from time-invariant group-level 
characteristics. When the fixed effect method is used 
to correct for clustering, some authors have criticized 
it as overstating the true statistical significance of the 
intervention effect (i.e., inflated Type I error rates), 
which leads to invalid inferences about the true effect 
of the intervention (Murray, 1997; Zucker, 1990). 
This problem occurs in at least the following two 
situations.

The first situation occurs in a group randomized 
design without repeated measures; that is a post-
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only design that involves only one observation per 
individual. Because the fixed effect model identifies 
the intervention effect only from the within-group 
variation, it cannot identify a unique intervention 
effect if no within-group variation occurs in the 
intervention condition. Some estimation techniques 
(e.g., traditional ANOVA) will provide estimates of 
an intervention effect in this case (Zucker, 1990), 
but these estimates are fundamentally unidentified 
as an intervention effect and therefore yield invalid 
inferences about the true intervention effect. In a 
post-only, group assignment design, the treatment 
effect is perfectly collinear with the group-level fixed 
effects. 

The common approach to dealing with perfect 
collinearity in regression methods is to drop one of 
the collinear variables. This solution shows clearly 
that the intervention effect cannot be distinguished 
from group effects in a post-only, group assignment 
design. Traditional ANOVA methods, however, solve 
the perfect collinearity by imposing a constraint 
on the estimated coefficients—specifically, that the 
coefficients associated with the collinear variables 
sum to zero. This constraint causes the ANOVA 
intercept to reflect the overall mean of the data across 
all observations, and all other indicator variables 
capture differences from this mean. Thus, the 
traditional ANOVA in a post-only design will provide 
F-tests for both group-level fixed effects and for the 
intervention effect, even though the data cannot 
uniquely distinguish one from the other.

The second situation in which group-level fixed 
effects will cause inflated Type I error rates is when 
fixed effects are used to adjust for only one level 
of clustering, leaving other levels of clustering 
unaddressed. This problem arises in multiple-
time-point studies in which investigators use fixed 
effects to control for group-level clustering without 
addressing other possible sources of clustering, such 
as group-by-time clustering (i.e., μjt in Equation 2). A 
common reason for omitting controls for group-by-
time clustering is that the repeated measures ANOVA 
tradition views this term as the interaction between 
a group effect and a time effect. Thus, if both group 
and time are treated as fixed, as they are in the fixed 
effect specification of Equation 1, then the group-by-

time term should also be fixed. Of course, one cannot 
treat group-by-time as fixed and simultaneously 
estimate the treatment effect in Equation 1 because 
of perfect collinearity (a subset of the group-by-time 
fixed effects can be summed to yield the treatment 
indicator). Thus, the repeated measures, group-by-
time clustering component is omitted completely. 
The result is a potentially mis-specified model that 
underestimates the standard error of δ and therefore 
inflates the Type I error rate. 

Techniques such as fixed effects models that do 
not model the selection process have at least two 
limitations worth noting. First, these techniques may 
limit the external validity of the parameter estimates 
because they are usually conditional on the analysis 
sample in some way. When these techniques are 
used, the results can in principle be generalized to the 
full population only to the extent that the theory or 
logic model relating the intervention to the outcome 
is correct. If δ is a true theoretical parameter, then 
any unbiased estimate of it is generalizable, but if 
Equation 1 is only loosely based on theory, then the 
external validity of estimates from techniques that 
do not model the selection process may be greatly 
limited. 

A second limitation is that these techniques may only 
partially handle selection bias. For example, group-
level fixed effects techniques control only for selection 
bias that is caused by unobserved group-level factors 
that do not vary over time. Although other techniques 
are available that relax this constraint (Heckman and 
Hotz, 1989; Heckman and Robb, 1985), the ability 
of researchers to use these other methods depends 
critically on the structure of the data available to 
them. If multiple time points or longitudinal data on 
individuals are available, then the number of possible 
error components that can be identified greatly 
increases, as does the ability of the researchers to 
control for them. Nonetheless, all non-model-based 
approaches to dealing with selection bias rely on 
assumptions about the cause of the selection bias. If 
these assumptions are incorrect, or if they capture 
only some of the factors that may cause selection 
bias, then techniques that do not model the selection 
process may yield misleading results. 
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Selecting the Appropriate Technique
We have presented several estimation techniques that 
analysts might use to estimate intervention effects 
using data from a nonrandomized group study. These 
range from the naïve linear model represented by 
Equation 1, to Equation 1 with clustering corrections, 
to the DD model presented in Equation 5, to the use 
of group-level fixed effects. Given such an array of 
possible analysis techniques, how should an analyst 
choose among them? 

In the following sections, we present a model 
selection procedure that has a long history in the 
econometrics field (e.g., Heckman and Hotz, 1989; 
Heckman and Robb, 1985). The basic approach of 
the procedure is to relax progressively and then test 
the identifying assumptions of each model. If a more 
restrictive model differs significantly from a less 
restrictive model, then the less restrictive model is 
preferred. 

For example, the random effects model imposes 
orthogonality assumptions that the fixed effects 
model relaxes. The Hausman test discussed below 
explicitly tests the validity of this assumption by 
comparing the random effects coefficients to the 
fixed effects coefficients. If the two sets of coefficients 
differ significantly, then the fixed effects model is 
unambiguously preferred because the identifying 
orthogonality assumption of the random effects 
model has been rejected. In addition to the Hausman 
test, Heckman and Hotz present a variety of 
alternative testing procedures that analysts can adapt 
for use with group assignment data. Most of these 
procedures require the use of additional data, such 
as multiple preintervention time points. Because we 
have assumed throughout the paper that the analyst 
does not have such data available, we do not discuss 
these tests. However, if such data are available, then 
we refer readers to both Heckman and Hotz and 
Heckman and Robb for details on alternative testing 
procedures. 

To begin the model selection procedure, analysts 
should write down the regression equation that 
arises from the theory or logic model that relates 
the intervention to the outcome (i.e., Equation 1). 
Next, analysts should add an error component for 

every level of identifiable clustering that occurs in 
the data (i.e., Equation 2). They should then estimate 
this model using a mixed or random effects model to 
control for each of the clustering terms. This model, 
which assumes no correlation between clustering 
terms and the intervention indicator, serves as the 
base model against which to compare estimates from 
models that control for selection bias. 

The Hausman Test
After estimating the base model, analysts should allow 
for a correlation between the error components and 
the intervention indicator by estimating a DD model 
(i.e., Equation 5) using a mixed model to control for 
the error terms previously identified. The results of 
this model can then be compared with those from the 
random effects base model previously estimated using 
a Hausman test (Hausman, 1978; Greene, 1997). The 
test is named after economist Jerry Hausman, who 
proved that the variance of the difference between 
two unbiased estimates of the same parameter is equal 
to the difference in the variances of the two estimates 
when one estimate is efficient and the other is not. 
Under the assumptions of the random effects model, 
both the random effects and the DD estimators are 
unbiased, but only the random effects estimator is 
efficient. 

Thus, the Hausman test statistic for a significant 
difference between the two estimates is calculated as 

  , (6)

where δDD is the estimate of the intervention 
effect from the DD model, δRE is the estimate 
of the intervention effect from the base random 
effects model, SE(δDD) is the standard error of the 
intervention effect from the DD model, and SE(δRE) 
is the standard error of the intervention effect from 
the base random effects model. The test statistic z is 
distributed standard normal, and so the difference 
in the estimates is significant if z exceeds standard 
critical values (i.e., 1.96 for a two-tailed significance 
level of 0.05). The Hausman test is a low-power test, 
however, so researchers should consider p values 
of 0.10 or even 0.15 as statistically significant when 
making inferences based on results of the test. To test 
multiple coefficients simultaneously, as in a study with 
more than one intervention condition, use a vector 
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of coefficients and the variance-covariance matrix to 
compute a χ2 test statistic (see Greene, 1997). 

If the two estimates do not differ significantly, then 
the base random effects model is preferred because 
it yields more precise estimates of the intervention 
effect. If the DD estimate is significantly different 
from the base random effects model estimate, then the 
random effects assumption of no correlation between 
the error terms and the intervention indicator is 
probably violated. Thus, the DD estimate is preferred 
because it relaxes that assumption. 

Next, analysts should estimate a group-level fixed 
effects model by including indicator variables for 
the groups and a pre-post indicator in Equation 1, 
while still estimating Equation 1 with a mixed model 
to account for all clustering other than group-level 
clustering. The resulting estimate of the intervention 
effect should then be compared with the DD model 
estimate using a Hausman test, calculated as follows: 

  , (7) 

where δFE is the estimate of the intervention effect 
from the fixed effects model, SE(δFE) is the standard 
error of the intervention effect from the fixed effects 
model, and all other terms are as defined previously. 
If the estimates do not differ significantly, then the 
DD estimate is preferred, again because it yields a 
more precise estimate of the intervention effect. If a 
significant difference does exist, then the DD model 
may not have fully corrected the selection bias and the 
fixed effects estimate is preferred. 

Importantly, analysts should estimate and test all 
models before deciding on a final estimate of the 
intervention effect. All models provide information 
and all make assumptions that may be violated. 
Analysts should estimate all models and consider all 
available information when making inferences about 
the effectiveness of the intervention. 

Empirical Example
Data for this example come from the Workplace 
Managed Care (WMC) Program. The WMC Program, 
funded by SAMHSA’s Center for Substance Abuse 
Prevention (CSAP), was a 3 year, multiprotocol, 
multipopulation cooperative agreement program 
designed to generate a broad understanding of the 
nature and scope of substance abuse prevention 
and early intervention efforts of workplaces in 
collaboration with their health care providers, 
employee assistance programs, health/wellness 
programs, human resources, unions, and security. 
The intent of the WMC Program was also to increase 
understanding of how these programs function for a 
variety of populations of employees and their families 
within a variety of contexts. 

The WMC Program began in September 1997 with 
the award of nine cooperative agreements and a 
Coordinating Center contract. The participating 
grantees and their collaborating worksites studied 
a variety of existing prevention/early intervention 
strategies targeted toward reducing the incidence and 
prevalence of alcohol and drug use among employees 
and their families. The prevention/early intervention 
strategies included health risk assessments, enhanced 
drug-free workplace programs, drug testing, 
employee assistance programs, health wellness/
promotion, peer interventions, and parent training. 

Because the interventions studied were within 
existing workplace environments, randomization of 
study groups was impractical for most of the grantees. 
Furthermore, many of the prevention programs 
were implemented at the worksite level, not at the 
individual level. Thus, most of the nine grantees had 
nonrandomized group designs. 

Data
To illustrate the analytic methods described above, 
we use data from one of the nine WMC grantees and 
its participating corporate partner. We performed 
the analyses presented in this report to illustrate the 
methods described above, and the analyses should 
not be interpreted as definitive estimates of the effect 
of the intervention being examined. In particular, we 
posit no specific logic model linking the intervention 
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to the outcome. Interested readers are referred to 
Blank, Walsh, and Cangianelli (2002) for a more 
detailed analysis of the example intervention. 

The selected firm is a manufacturing company 
specializing in the production of a wide variety 
of engineered products. The company employs 
approximately 1,300 individuals in sites located in 
seven states. The WMC grantee evaluated the effects 
of varying rates of random drug testing on a variety 
of substance abuse and workplace outcomes. The 
grantee planned to implement random drug testing 
at the various intervention sites at annual rates of 
100, 200, and 400 percent (i.e., annual, semiannual, 
or quarterly testing of all employees), but because 
of business and environmental factors beyond the 
grantee’s control, the actual rate of drug testing in 
each of the participating worksites was determined 
by worksite administrators and was lower than 
intended. 

To evaluate the effects of drug testing on various 
outcomes, surveys were conducted at eight study 
worksites. All employees in each worksite were asked 
to complete a short survey that collected data on 
basic demographics and perceptions about drug and 
alcohol use. These anonymous employee surveys 
were administered in two waves approximately 1 year 
apart, and the annual rate of drug testing in the year 
before the survey was obtained from administrative 
records. Worksite-level survey response rates ranged 
from 80 percent to 95 percent. 

The workplace outcome analyzed in this study 
is whether the respondent thought drug use 
is a problem in his or her plant or office. The 
demographic covariates in the analysis were age, sex, 
and race. For the purposes of this analysis, we created 
two measures of the intervention. The first was a 
worksite-level intervention indicator that equaled 
1 if the site increased the rate of drug testing from 
the first survey wave to the second and 0 otherwise. 
The second intervention measure was the actual 
continuous annual drug testing rate at each site. 
Because the surveys were anonymous, individual 
employees could not be tracked from one survey 
wave to the next, and the two survey waves are 
treated as independent cross-sections. The analysis 
data contained 1,039 observations.

Methods
We begin by estimating the following model with no 
clustering or selection corrections:

 Prob(Yijt = 1) = f(α + Xijtβ + δdjt + Uijt), (8)

where Yijt is an indicator variable that equals 1 if 
respondent i in worksite j reported believing at wave 
t that drug use was a problem in his or her worksite. 
Xijt is a vector of demographic variables that includes 
age, gender, and race. To demonstrate the various 
methods to correct for clustered data and selection 
bias, we estimate two variants of Equation 8: one with 
the dichotomous treatment indicator and one with 
the continuous dose variable described above. 

In all models, Equation 8 is estimated as a logit 
model. For each intervention measure, we estimate 
Equation 8 five times (for a total of 10 estimations). 
First, we estimate Equation 8 as an ordinary logit 
model with no corrections for either clustering or 
sample selection—the logit analog of Equation 1. 
Second, we estimate it using sandwich standard 
errors to correct for clustering at the worksite level. 
Third, we estimate it as a random effects logit model 
in which we include a worksite and a worksite-by-
time random effect to control for both levels of 
clustering simultaneously. Fourth, we estimate it as 
a DD logit model including the condition and time 
main effects as fixed effects and including a worksite 
and a worksite-by-time random effect—the logit 
analog of Equation 5. Finally, we estimate it as a logit 
model with worksite and time fixed effects and with a 
worksite-by-time random effect. 

Results
Table 1 presents the means and standard deviations 
of the variables used in the analysis, by survey wave. 
The dependent variable is an indicator for whether 
the individual thinks illegal drug use is a problem 
at the worksite. In wave 1, just over 17 percent of 
respondents thought drug use was a problem. In 
wave 2, that percentage dropped slightly to just over 
16 percent of respondents. In wave 2, approximately 
44 percent of respondents worked in a worksite 
that increased the drug testing rate from wave 1 
to wave 2. The average annual rate of drug testing 
faced by respondents was 92 percent in wave 1 
and 129 percent in wave 2. An annual rate greater 
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than 100 percent indicates that, on average, every 
employee was tested at least once in the year and 
some employees were tested more than once. 

The demographic characteristics of the worksites 
remained relatively stable over the two survey waves. 
Not surprisingly, the worksite populations became 
slightly older, with the percentage of the population 
in the age categories 18 to 25 and 26 to 35 declining 
from wave 1 to wave 2, and the percentage in the 
categories 36 to 50 and over 50 increasing. The 
education level of the population dropped slightly, 
with a lower percentage of respondents having 

completed college or a trade or technical school in 
wave 2 than in wave 1. Finally, the prevalence of 
union membership increased substantially, from just 
under 40 percent in wave 1 to just over 50 percent in 
wave 2. 

Table 2 presents results for the models using a 
dichotomous intervention indicator. The first column 
presents results from the ordinary logit model; the 
second column presents results from a logit with 
sandwich variance estimator standard errors; the 
third column presents results from a model that 
includes worksite and worksite-by-time random 
effects; the fourth column presents results from the 
DD mixed logit model; and the last column presents 
results from a model that includes an indicator for 
the survey wave, worksite-level fixed effects, and 
worksite-by-time random effects. Results for model 1 
were obtained using SAS proc logistic, and all other 
results were obtained using the SAS glimmix macro 
(SAS proc glimmix had not yet been released when 
the analyses were performed). 

Looking first at the estimated intervention effect 
from row 1, column 1, the ordinary logit model finds 
a significant intervention effect of 0.575 (odds ratio 
[OR] = 1.78), suggesting that increasing the annual 
drug testing rate increases employees’ likelihood 
of perceiving a drug problem at the worksite. 
Accounting for clustering within worksites using the 
sandwich variance estimator makes this same effect 
insignificant by increasing its standard error. Recall 
that the sandwich variance estimator is an ex post 
correction that does not affect point estimates. 

When worksite and worksite-by-time random effects 
are included, the estimated intervention effect is  
– 0.927 (OR = 0.40) and insignificant. Note the change 
in sign of the estimated intervention effect. If the 
assumption of no correlation between the random 
effects and the intervention indicator in column 3 had 
been correct, then the estimated intervention effect 
from columns 1 and 2 would have been approximately 
the same as the effect in column 3. Instead, the sign 
change indicates that the assumptions of the random 
effects model are violated. 

Table 1: Means of analysis variables

Analysis	Variables Wave	1		
(N	=	508)

Wave	2		
(N	=	496)

Thinks illegal drug use 
is a problem at the 
worksite

0.171  
(0.377)

0.161  
(0.368)

Worksite increased rate 
of drug testing

— 0.435 (0.496)

Continuous drug testing 
rate

0.919  
(0.744)

1.292  
(1.084)

Age

 18 to 25 0.079  
(0.270)

0.071  
(0.256)

 26 to 35 0.226  
(0.419)

0.183  
(0.387)

 36 to 50 0.392  
(0.489)

0.419  
(0.494)

 Over 50 0.303  
(0.460)

0.327  
(0.469)

Education

 Less than high school 0.063  
(0.243)

0.071  
(0.256)

 Completed high 
school

0.579  
(0.494)

0.655  
(0.476)

 Completed college 0.232  
(0.423)

0.192  
(0.394)

 Trade or technical 
school

0.126  
(0.332)

0.083  
(0.276)

Male 0.762  
(0.426)

0.748  
(0.435)

Married 0.659  
(0.474)

0.653  
(0.476)

Minority 0.142  
(0.349)

0.157  
(0.364)

Union member 0.398  
(0.490)

0.506  
(0.500)

Note: Standard deviations in parentheses.
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Table 2: Logit estimates for dichotomous intervention measure

Clustering	Adjustment Selection	Corrections

Analysis	Variables Ordinary	Logit Sandwich	Variance Random	Effects 		DD Fixed	Effects

Increased drug testing rate 0.575***
(0.199)

0.575
(0.389)

–0.927
(0.572)

–1.692**
(0.806)

–1.793**
(0.868)

Age (18 to 25 age group is reference category)

 26 to 35 –0.078
(0.343)

–0.078
(0.416)

0.287
(0.355)

0.277
(0.358)

0.316
(0.363)

 36 to 50 –0.507
(0.336)

–0.507
(0.454)

0.163
(0.348)

0.172
(0.352)

0.211
(0.356)

 Over 50 –0.207
(0.343)

–0.207
(0.310)

0.658*
(0.360)

0.689*
(0.364)

0.721*
(0.368)

Education (Completed high school is reference category)

 Less than high school –0.190
(0.351)

–0.190
(0.278)

–0.079
(0.368)

–0.092
(0.370)

–0.079
(0.376)

 Completed college –0.377 
(0.249)

–0.377
(0.353)

–0.106
(0.267)

–0.072
(0.268)

–0.062
(0.274)

 Trade or technical school –0.519
(0.330)

–0.519
(0.401)

–0.279
(0.339)

–0.272
(0.343)

–0.266
(0.346)

Male 0.265
(0.220)

0.265
(0.436)

0.083
(0.234)

0.068
(0.236)

0.051
(0.240)

Married 0.375*
(0.199)

0.375*
(0.193)

0.364*
(0.203)

0.374*
(0.205)

0.369*
(0.207)

Minority 0.476**
(0.230)

0.476**
(0.241)

0.947***
(0.271)

0.981***
(0.271)

0.988***
(0.281)

Union member –0.137
(0.190)

–0.137
(0.331)

–0.546**
(0.239)

–0.504**
(0.239)

–0.565**
(0.246)

Intervention worksite — — — 2.345***
(0.783)

—

Wave 2 survey — — — 0.474
(0.532)

0.487
(0.576)

Intercept –1.832***
(0.353)

–1.832**
(0.749)

–2.601***
(0.613)

–3.588***
(0.637)

–0.366
(0.675)

*p < 0.10, **p < 0.05, ***p < 0.01

Note: Standard errors in parentheses.

Column 4 includes the condition and time main 
effects found in the DD model. Here we find a 
significant intervention effect of –1.692 (OR = 0.18). 
A Hausman test shows that the estimated intervention 
effect from column 3 is marginally significantly 
different from that in column 4 (z = –1.35, p = 0.09). 
Finally, column 5 replaces the intervention site main 
effect with a set of worksite fixed effects (a separate 
indicator for each worksite), which are not presented 
in Table 2 but are available upon request. The model 

in column 5 yields a significant intervention effect of 
–1.793 (OR = 0.17), which is approximately the same 
as that found in column 4. Note, however, that the 
standard error of the intervention effect in column 
5 is larger than that in column 4. A Hausman test 
reveals that the difference in the two estimates is 
statistically insignificant (z = –0.31, p = 0.38), and so 
the column 4 estimate is preferred. 



1�  Bray et al., 2008  RTI Press

Table 3 presents results from the models that use 
the continuous drug testing rate as the measure 
of the intervention. Columns 1 through 5 use the 
same corrections for clustering and selection on 
unobservables as their counterparts in Table 2. We 
see in row 1 that the ordinary logit yields a significant 
effect of the drug testing rate of 0.593 (OR = 1.81). 
Correcting for clustering on the worksite using the 
sandwich variance estimator increases the standard 
error somewhat but does not make the estimated effect 
insignificant.

As in Table 2, including worksite and worksite-by-
time random effects causes our point estimate in 
Table 3 (first row) to become negative, but it is now 
insignificant. Including the design main effects to 
control for selection on unmeasured characteristics via 
a DD model increases the magnitude of the estimated 
effect (i.e., it becomes more negative) to –0.777 
(OR = 0.46), but the effect remains insignificant. A 
Hausman test shows that the difference between the 
column 3 and the column 4 estimates in Table 3 is 
significant (z = –2.09, p = 0.02), suggesting that the 

Table 3: Logit estimates for continuous intervention measure

Clustering	Adjustment Selection	Corrections

Analysis	Variables Ordinary	Logit Sandwich	Variance Random	Effects DD Fixed	Effects

Continuous drug testing rate 0.593*** 
(0.100)

0.593*** 
(0.158)

–0.411 
(0.442)

–0.777
(0.476)

–1.308**
(0.641)

Age (18 to 25 age group is reference category)

 26 to 35 –0.043
(0.346)

–0.043 
(0.379)

0.290
(0.355)

0.293
(0.358)

0.315
(0.363)

 36 to 50 –0.343
(0.339)

–0.343
(0.397)

0.162
(0.348)

0.185
(0.351)

0.209
(0.356)

 Over 50 0.025
(0.347)

0.025
(0.221)

0.652*
(0.359)

0.693*
(0.364)

0.718* 
(0.368)

Education (Completed high school is reference category)

 Less than high school –0.306
(0.354)

–0.306
(0.263)

–0.065
(0.367)

–0.063
(0.370)

–0.062
(0.375)

 Completed college –0.196
(0.253)

–0.196
(0.391)

–0.102
(0.267)

–0.078
(0.269)

–0.057
(0.274)

 Trade or technical school –0.380
(0.335)

–0.380 
(0.442)

–0.268 
(0.339)

–0.262
(0.342)

–0.259
(0.345)

Male 0.260
(0.223)

0.260 
(0.428)

0.088
(0.234)

0.07 
(0.236)

0.053
(0.239)

Married 0.368*
(0.201)

0.368* 
(0.197)

0.363*
(0.203)

0.370*
(0.204)

0.370*
(0.207)

Minority  0.419*
(0.232)

0.420***
(0.147)

0.947*** 
(0.271)

    0.991*** 
(0.273)

    0.984*** 
(0.279)

Union member –0.080
(0.191)

–0.080 
(0.213)

–0.561**
(0.239)

–0.537**
(0.240)

–0.564** 
(0.245)

Intervention worksite — — — 2.466** 
(0.987)

—

Wave 2 survey — — — –0.064 
(0.402)

0.039
(0.446)

Intercept –2.640***
(0.394)

–2.640***
(0.550)

–2.346***
(0.782)

–2.892***
(0.697)

1.798
(1.437)

*p < 0.10, **p < 0.05, ***p < 0.01

Note: Standard errors in parentheses. 
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column 4 estimate is preferred over the column 3 
estimate. Including worksite-level fixed effects, as 
in column 5, however, causes the estimated effect to 
become significant at –1.308 (OR = 0.27). As in Table 
2, estimates for the worksite-level fixed effects are not 
presented but are available upon request. 

A Hausman test shows that the difference between 
the column 4 and column 5 estimates is insignificant 
at the 0.10 level but significant at the 0.15 level 
(z = –1.23, p = 0.11). Although not a definitive 
rejection of the column 4 estimate, the low power 
of the Hausman test and the relatively substantial 
change in the magnitude of the estimated effect 
suggest that the column 5 estimates should be 
considered when making inferences about the 
estimated intervention effect. 

Discussion
The demand for the study of interventions that are 
implemented in real-world settings has resulted 
in more nonrandomized group studies’ being 
performed. A nonrandomized group study is a 
quasi-experimental study in which identifiable 
groups of individuals are assigned to the intervention 
and comparison groups in a systematic way. These 
designs have two major analysis challenges: clustered 
data and potential selection bias. Previous literature 
has identified a variety of methods for dealing with 
clustered data, including ex post corrections to the 
estimated variances, random effects models, and 
fixed effects models. 

Several options are also available to correct for 
sample selection bias. If the selection is on measured 
characteristics, then researchers can simply 
include measures of the observed characteristics 
in their analyses. If selection is on unmeasured 
characteristics, then researchers need more 
complicated corrections, such as the Heckman 
model or IV techniques that estimate the selection 
process, or DD or fixed effects methods that do 
not estimate the selection process. Unfortunately, 
previous literature provides little guidance about 
analysis methods for researchers analyzing data from 
nonrandomized group studies. 

We examined various methods for analyzing data 
from nonrandomized group studies. Many of the 
standard methods for addressing clustered data 
can be readily applied to nonrandomized group 
studies. Similarly, many of the methods for correcting 
for selection on unobserved characteristics can 
also be applied to nonrandomized group trial data. 
Techniques that estimate the selection process, 
however, require a sufficient number of groups 
(typically greater than 30) to model the group-level 
decision to participate in the intervention. Because 
many nonrandomized group trials have relatively 
few groups, these approaches may not be appropriate 
in many cases. Techniques that do not estimate the 
selection process, however, can be used whenever the 
researcher has access to both pre- and post-treatment 
data. 

We used data from SAMHSA’s WMC Program to 
explore the estimated intervention effect using 
various estimation methods. We found that both 
clustering and sample selection corrections have 
substantial impacts on quantitative and qualitative 
conclusions about the effects of an intervention. In 
particular, we found that the estimated intervention 
effect can switch from positive and significant to 
negative and significant when both clustering and 
sample selection are addressed. 

Based on these analyses, we propose the following 
recommendations to researchers analyzing 
nonrandomized group trial data. First, use random 
effects to account for all levels of identifiable 
clustering. Second, estimate DD models with random 
effects to account for clustering, and compare the 
results with those from the simple random effects 
model using a Hausman test. If the DD model does 
not yield significantly different estimates, then the 
simple random effects model is preferred. If the DD 
model does yield significantly different results, then it 
is preferred.

Finally, estimate a group-level fixed effects model 
(controlling for clustering at any level other than the 
group with random effects) and compare the results 
with the DD results using a Hausman test. If the fixed 
effects model does not yield significantly different 
estimates from the DD model, then the DD model 
is preferred. Otherwise, the fixed effects model is 
preferred.
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Based on our empirical results, group-level fixed 
effects appear to be especially important in the 
presence of a continuous measure of the intervention, 
such as a continuous dose variable. For both 
continuous and discrete outcomes, all our proposed 
analyses can be easily performed in standard 
statistical software packages, such as SAS (using proc 
mixed or proc glimmix) or Stata (using xtmixed). 

Although the methods proposed here will greatly 
improve researchers’ ability to draw inferences 
from nonrandomized group trial data, as with any 

quasi-experimental design a causal interpretation 
must ultimately depend on the validity of the 
underlying theory or logic model that links the 
intervention to the outcome. No empirical strategy 
can alleviate concerns about the plausibility of an 
estimated intervention effect that arise from doubts 
about the underlying theory. However, strong 
empirical methods can help to eliminate competing 
explanations for the reasons an effect might be found. 
Thus, such methods can bolster theoretical arguments 
about the causal nature of any such intervention 
effect. 
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