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Abstract: 
This paper describes a project that was done for the Shad Valley Program, where it was required to assign 

students to seminars so as to maximize the satisfaction of the students with their assignments. We begin by 

describing the problem, its inputs and constraints. Two models are proposed to determine optimal assignments. 

The first model is based on the Capacitated Transportation Problem and a network formulation is proposed to 

solve it. The second model is a two phase model whose first phase involves solving a Bottleneck Capacitated 

Transportation Problem and the second phase solving a Capacitated Transportation Problem. A simple search 

algorithm is proposed that solves the second model. Implementation of these models is described and the results 

obtained are discussed. Extensions to the two models are also proposed.  

 

Article: 

1. INTRODUCTION 

This paper describes a problem that arose from consideration of scheduling students into seminars in the Shad 

Valley Program at a Canadian university. Shad Valley is a four week summer program in science, technology 

and entrepreneurship for gifted high school students that is offered in eight different universities in Canada 

every year. It has run for fourteen years in Canada, and for twelve at this university. Students are selected for 

high academic achievement in mathematics and science and demonstrated initiative, creativity, drive and 

leadership skills. Selected students pay a significant tuition fee, and the level of student satisfaction with the 

program is an important consideration. In each of the four weeks of the program, a number of labs and seminars 

(referred to as seminars in this paper) are made available to the students. Each student must be scheduled into 

one seminar for each week. There is a maximum enrolment limit for each seminar and, since many are offered 

on a volunteer basis, cancellation is not normally permitted. Students are given a short description of each 

seminar, and they indicate their preference for seminars by ranking the available seminars in each week. The 

schedule is then developed with the objective of, where possible, assigning each student to the seminars of his 

or her choice. 

 

Prior to the development of the system being discussed in the paper, the scheduling was done manually. Each 

week the students submitted a list of their first, second, and third choices for seminars. The program director 

then prepared the schedule week by week ensuring that all seminars are subscribed to and that maximum 

capacities are observed while attempting to assign students to their choice of seminars. Although the actual 

number may vary slightly from year to year, at the Shad Valley Program in this university, there are about 56 

students and 6 to 10 seminars each week. Hence this manual scheduling process, although reasonably feasible 

for the first week, becomes complicated in the second and subsequent weeks as it is necessary to balance the 

fairness of the assignments by considering whether students were given their first, second, third, or perhaps last 

choice of seminar in previous weeks. This led the staff at the Shad Valley Program to investigate possibilities 

for automating the scheduling system by modeling it mathematically. 
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Scheduling problems similar to the one at the Shad Valley Program have often been solved by using methods 

similar to the ones used for solving the classical transportation and assignment problems—see for example 

Mazzola and Neebe [1], Abara [2], Balachandran [3], Fisher and Jaikumar [4] and Ross and Soland [5] to name 

a few. Frequently the solution methods chosen for solving these models exploit the nice mathematical properties 

of the assignment and transportation problems. For a review of these problems, their properties and solution 

methods, the reader is referred to any of the standard texts on Linear Programming and/or Network Flows such 

as [12-15]. 

 

2. THE SHAD VALLEY MODEL 

In the Shad Valley Program at this university, there are usually about 40 seminars spread over 4 weeks and 

about 60 students have to be assigned to them. There are limits on the minimum and maximum enrolments 

possible. It is also required that each student be assigned to exactly one seminar every week. Prior to the 

scheduling, all students are informed about all the seminars and then asked to rank all the seminars according to 

individual preferences. The objective is to find an assignment of students to seminars over the duration of the 

program that maximizes the satisfaction of the students. 

 

2.1. Model parameters 

For the purposes of modeling, it was decided to assume the following as the parameters of the model to 

represent all the inputs to the problem: 

 

 i, j and k are indices to designate the students, seminars and the individual weeks respectively. 

 A total of N students are to be assigned to S seminars over the four weeks. 

 Ŝk represents the set of all seminars offered in week k, where k ∈ {1, 2, 3, 4} 

 sk represents the total number of seminars in week k − thus S = (s1 + s2 + s3 + s4). 

 The upper (respectively, lower) limit on the enrolment on the jth seminar offered in the kth week is 

denoted by Ujk (respectively, Ljk). 

 On a scale of 1 to 5, rijk is the rank given by the ith student to the jth seminar in the kth week. Note that 

the lower the value of rijk, the higher its preference is to him/her. 

 R is used to denote the set of all possible ranks—for example, if students rank all seminars on a scale of 

1 to 5, then R = {1, 2, 3, 4, 5}. 

 rmax is used to denote the largest element of R − for example when R = {l, 2, 3, 4, 5}, rmax = 5.  

Since the smallest element of R is always l, rmax also equals the cardinality of the set R. 

 

The first sub-problem is to develop a scheme for converting the rankings rijk to preference scores, which will be 

denoted by pijk. The experience of program staff has been that the satisfaction obtained from being assigned 

one's first choice is significantly higher than what is obtained from a second choice, which in turn, is far more 

preferable to a third choice. Thus it is necessary to devise the preference score function in a manner that 

represents this high utility for first choice over second, second over third and so on. This implies therefore that 

this function must separate rankings in a non-linear fashion, and consecutive rankings must map to significantly 

different preference scores. This scheme will have the effect of forcing more first choices into the optimal 

solutions, as will be shown in section 3. 

 

One function that is simple to program and does this effectively is given by 

 

pijk =               where a ≥ 2               (1) 

 

We would expect that, as long as a is number greater than 2, its precise value does not affect the quality of the 

assignments produced by the models we propose. This proved to be the case when comparing results for a equal 

to 2, 3, 4 and 5. Hence it was decided to use a value of two for a in the implementation. 

 



It is important to note that the decision to have the students simply rank their choices and then convert these 

rankings to powers of a was based on personal experience with the Shad Valley situation. This does not limit 

the application of this system to other scheduling problems of the same nature, since an appropriate scoring 

scheme which gives integer preference values can be adapted to the nature of the clients and their perceived 

preference for different assignments. Model 1, as described in section 2.2.1, provides a measure of how the best 

schedule which can be produced, given the constraints of the system, addresses the objective of global or 

overall satisfaction of the client body. Model 2 will then be used to modify this schedule by imposing 

Conditions on the level of individual satisfaction. Thus, as long as a scoring scheme can be devised that is a 

reasonable representation of the clients' preferences, the model will prove to be a useful decision support tool to 

managers of such programs. 

 

Similar to R, the set containing all possible values of the preference scores will be denoted by P. It is assumed 

that P is ordered and is equal to {p1, p2,…,      
} where {p1 ≤ p2 ≤ … ≤      

} Hence, in the example given 

above, where R = {1, 2, 3, 4, 5}, if we choose a = 2 and convert the {rijk}to {pijk} in accordance with (1), then P 

= {p1,p2,p3,•      
} = {2

4
,2

3
,2

2
, 2

1
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2.2. Model formulation 

Since this problem is similar to an assignment problem, it was decided to model this as a 0/1 Integer 

Programming problem. Thus the decision variables for the model were defined by xijk, where 

 

      
                                                 
                                                                               

                       

 

The basic constraints are those for minimum and maximum enrolment and the requirement that each student be 

assigned exactly one seminar each week. These, along with the binary constraint on xijk, can be expressed as: 

 

         

 

   

                                            

     

 ∈  

                                       

    ∈                                                                 

 

It is easy to see that (3.1), (3.2) and (3.3) are the constraints for the classical Capacitated Transportation 

Problem—hence it can be claimed that the constraint matrix defined by (3.1), (3.2) and (3.3) is totally 

unimodular. Since the upper and lower bounds (Ujk and Ljk) are integer-valued, the optimal solution to the LP 

relaxation of (3) will also be the optimal integer solution. Thus, the binary constraints (3.4) can be dropped and 

the integer problem solved without resorting to branch and bound methods. 

 

With decision variables as defined by (2) and constraints by (3), two different model formulations were 

considered for assigning students to seminars—these will be referred to as Model 1 and Model 2 respectively. 

Although it was Model 2 that was actually implemented, we shall also discuss Model 1 as this first model is 

also a part of the second one. 

 

2.2.1. Model 1: overall maximization. The first model that was considered was one which optimizes the overall 

satisfaction, i.e. total satisfaction of all the students. Overall satisfaction can be represented as the sum of all pijk, 

i.e. as 

 

          

     

 

 



Hence our first model optimizes overall satisfaction of all students with all the assignments over all the four 

weeks, and can be formulated as 

 

                  

 

   

 

   

 

   

 

subject to 

(3.1), (3.2), (3.3), (3.4)     (4) 

 

The model given by (4) is a Capacitated Transportation Problem. We have already argued that the constraint 

matrix of (4) is totally unimodular—hence (4) can be solved directly as a Linear Program to yield integer 

optimal solutions. However, there is a more efficient way of solving (4)—namely by formulating it as a 

Minimum Cost Network Flow problem and it is this network formulation that is described next. 

 

Problem (4) can be represented by a directed acyclic graph G in Fig. 1, where two sets of nodes {Vk, Wk} are 

defined for each week k. The set Vk consisting of nodes   
    

      
  represents the N students in the kth 

week—for example,   
  represents student 1 in week k. The set Wk consisting of nodes   

    
      

   

represents the sk seminars in the kth week—for example,   
  represents seminar 1 in week k. In addition, two 

special nodes are also defined − A and B, where A and B are assumed to be the source and sink nodes 

respectively and all other nodes in G are transshipment nodes. Note that the total number of nodes in G is 

therefore 4N + S + 2. 

 

 
 

The first set of arcs are added to G as follows: for each week k, consider the two sets Vk and Wk. From each 

node   
 , i = 1,..., N in Vk, an arc is drawn to all nodes   

 
, j = 1,...sk in Wk. On each such arc between   

  to   
 
, 

the lower (respectively, upper) bound on the flow is fixed at 0 (respectively, infinity) and the cost per unit of 

flow is fixed at −pijk. This step therefore adds NS arcs to G. 

 



The next set of arcs is added as follows: from each of the nodes   
 
, where j = 1,…, sk and k = 1,…, 4, an arc is 

drawn to the sink node B. On each of these arcs, the lower (respectively, upper) bound is fixed at Ljk 

(respectively, Ujk) and the cost of flow is fixed at 0. These bounds ensure that each seminar gets assigned to a 

number of students that is in keeping with its minimum and maximum enrolment requirements. This next set 

therefore adds 4N arcs to G. 

 

The third set of arcs is drawn from the source node A to each of the nodes   
 , for i = 1,…, N and k = 1,…,4. On 

each of these arcs, the lower and the upper bounds on flow are both fixed at 1 and the cost of flow is fixed at 0 

− thus ensuring that each student is assigned to only one seminar in each week. Hence this third set adds S arcs 

to G. The supply and demand at A and B is fixed at 4N respectively. The optimal solution to (4) can then be 

obtained by solving the Min Cost Flow problem on G and then equating the variables as: 

 

                                      
       

 
    

                                                                   
                           

 

Since G has O(N + S) nodes and O(NS) arcs, the algorithm given in Orlin [7] can be used to solve the above 

Min Cost Flow Problem in O(NS log(N + S)(NS + (N + S)log(N + S))) time. Thus this is the time taken to solve 

Model 1 to get optimal assignments. 

 

2.2.2. Model 2: two phase optimization. Whereas Model 1 maximizes overall satisfaction of the students with 

the final assignment of seminars, it is possible that it may do so at the cost of one or a few students who may be 

assigned to seminars that are very low on their preferences. Hence there was a need to guarantee in the 

formulation that no individual student is unfairly scheduled, which is important in this application since every 

student pays a significant fee to attend the Shad Valley Program. This concept of overall schedule optimization 

constrained by ensuring fairness to the individual student leads naturally to a formulation that seeks to protect 

every student from an unfair assignment. One such model that does so is given by the following. 

 

Max Min [pijkxijk] 

{ijk | xijk = 1} 

subject to (3.1), (3.2), (3.3), (3.4)       (6) 

 

It is easy to see that (6) is a Bottleneck Capacitated Transportation Problem (Garfinkel [8], Gabow and Tarjan 

[9], Mazzola and Neebe [1], Punnen and Nair [10]). The maximum objective function thus finds the schedule 

that maximizes the worst assignment given to any of the students over the four weeks—thus ensuring that no 

student is given an unfairly poor assignment when it is possible to obtain an assignment that is better for all 

students. Bottleneck problems such as (6) above usually have multiple optimal solutions. Hence it was decided 

to incorporate a second optimization phase in our model. In the first phase, (6) would be solved to obtain the 

optimal assignment—this optimal assignment guarantees that even the poorest seminar to student assignment is 

as good as possible. Then in the second phase it was decided to maximize the overall satisfaction of all students 

(as in Model 1), while guaranteeing that no student obtains an assignment whose preference score is worse than 

the bottleneck value obtained by solving (6) in the first phase. 

 

Thus the model chosen had two phases. In Phase 1, (6) would be solved to obtain an optimal assignment with 

respect to the bottleneck preference score in the assignment. Assume that this optimal assignment obtained in 

the first phase is X
*
 and that the preference score     in P is the bottleneck preference score in X

*
 (i.e. of all 

seminar to student assignments in X
*
, the least preferred assignment is the one with     as the preference score). 

Then in the second phase of the model, we solve the following problem: 

 

               

 

   

 

   

 

   

 



subject to       (7) 

 

(3.1), (3.2), (3.3), (3.4), and 

 

     −                                                        
 

The additional constraint (7.1) ensure that if xijk = 1 for any i,j,k in the solution, then pijk is at least as large as 

   . This implies that no assignment in the second phase will have a preference score that is worse than the 

bottleneck value of     that was found in the first phase. Thus it is this constraint that ensures that even when 

the overall student satisfaction is being maximized in the second phase, the worst assignments given to any 

student is kept as high as possible (at the bottleneck value). 

 

The difference between the two models proposed is best illustrated with the following example. Consider the 

problem where three students (A, B and C, respectively) have to be assigned to three seminars (I, II and III, 

respectively) over one week. The upper and lower bound on enrolment in every seminar is assumed to be 1 and 

2 respectively, and the rankings (on a scale of 1 to 3) given by the three students to the three seminars are given 

in Table 1. 

 

Using a value of a = 2 in (1), this problem was solved using both Models 1 and 2—the results are shown in 

Table 2. 

 

As can be seen from the results, Model 1 has a higher value of overall satisfaction than Model 2. However, the 

higher overall satisfaction value obtained from Model 1 is at the expense of a very poor assignment to one 

single student, namely, C, who is given his/her third choice (seminar HI). Model 2, on the other hand, has a total 

satisfaction that is only marginally less than that of Model 1, but guarantees that all students are given at least 

their second choices. Thus, by compromising slightly on the total satisfaction, Model 2 produces a schedule 

which would probably be more acceptable to all the students, and hence, preferable from a managerial 

standpoint. 

 

 
 

Rather than solve (6) and (7) directly in the actual implementation of the model, a search algorithm was chosen 

that solved both phases of the model simultaneously in each iteration. This search algorithm is based on the 

following idea: At each iteration of the algorithm, a target preference score is chosen from P. Then it is checked 

to see if it is possible to obtain an assignment with all students being assigned to seminars whose preference is 

at least as high as the target preference score in this iteration. If so, then this is repeated with a higher target 

preference score at the next iteration. 

 

To illustrate further, consider the first iteration of the algorithm, where pi is chosen as the target preference 

score from P. Then a new set of preferences {    
 } is defined where 

 

    
    

    

− 
 
          

         
                                                       

 

Next problem (4) in Model 1 is solved with these new set of preferences     
 —i.e. the following problem is 

solved: 



              
      

 

   

 

   

 

   

 

subject to 

(3.1), (3.2), (3.3), (3.4)     (9) 

 

 
 

Since (9) is similar to (4) in Model 1, it can be solved either as a Linear Program or by formulating as a Min 

Cost Flow Problem. If the optimal objective function value of (9) is found to be positive, then we say that the 

optimal assignment given by (9) in the current iteration is feasible, since this optimal assignment obtained by 

solving (9) maximizes overall satisfaction while ensuring that every student is assigned to seminars with 



preference score at least equal to the target bottleneck preference score p1. If, however, the optimal solution to 

(9) is negative, then it can be claimed that it is not possible to obtain an assignment where all students are 

ensured seminar assignments whose preferences are at least p1, which implies that the entire problem (4) is 

unfeasible. If a feasible assignment is obtained, this process is repeated in the next iteration with the next higher 

preference score in P (i.e. p2) as the target preference score. The algorithm stops either when an infeasible 

assignment is obtained for the first time or if we have been able to obtain a feasible assignment with the highest 

preference score possible, i.e.      
. A formal description of this algorithm appears in the appendix. 

 

Solving (9) can be done in O(NS log(N + S)(NS + (N + S)log(N + S))), since it is equivalent to solving Model 1. 

Since the cardinality of the set P is rmax, (9) will have to be solved at most rmax times. Thus the time taken to 

solve Model 2 using this search algorithm is O(rmaxNS log(N + S)(NS + (N + S)log(N + S))). 

 

However, the above time complexity bound can be reduced on the basis of the following observation: If at any 

iteration of the algorithm above a feasible assignment can be obtained with the target preference score of that 

iteration, then it can be concluded that the optimal bottleneck preference score [i.e. the solution to (6)] is higher 

than the target preference score under consideration at this iteration. Hence the search process of this algorithm 

can be made more efficient by conducting a binary search on all elements of P that will ensure that (9) does not 

have to be solved more than (log rmax) times. Thus by using this binary search, the time complexity bound for 

solving Model 2 can be reduced to O(log rmaxNS log(N + S)(NS + (N + S)log(N + S))). 

 

3. IMPLEMENTATION AND EMPIRICAL RESULTS 

3.1. Shad Valley 1993 

The two models were piloted at the 1993 Shad Valley program at this university. There were 56 students (i.e. N 

was equal to 56) to be assigned to 33 seminars over the four weeks (i.e. S was equal to 33)−8 seminars in weeks 

1, 3, and 4 (i.e. n1 = n3 = n4 = 8), and 9 seminars in week 2 (i.e. n2 = 9). Students were asked to rank these 

seminars on a scale of 1−9 with 1 being the highest and 9 being the lowest preference given to any seminar. 

Table 3 shows all the seminars over the four weeks and the number of students that chose this seminar as their 

1st, 2nd, 3rd choices, etc. 

 

Note that for convenience of programming, it was assumed that there are 10 seminars each week and the 

maximum enrolment of a seminar was fixed at 0 for a non-existent seminar. As mentioned before, it was 

decided to convert these rankings into preference scores, using equation (1) with a = 2. Maximum and 

minimum enrolment requirements were determined for each seminar. The system was solved using an IBM 

compatible Personal Computer (80486), 50 MHz, 16 Mb RAM. The package UNDO, Version 5.0 was used to 

solve all the Linear Programs that were involved and solution times were less than 10 s for each run. Although 

we have only discussed relevant results in this paper, a complete set of all inputs and outputs is available from 

the authors for the interested reader. 

 

Model 1 was used first to obtain the weekly assignments the results are shown in Table 4. The schedule 

produced was deemed to be reasonable by the staff at the Shad Valley Program, but it had the flaw that one 

student's schedule was sacrificed to the objective of maximizing the overall satisfaction. Results from this 

model showed that this student was assigned his fifth choice of seminar in the third week (Table 4, Student 

number 30). Hence it was decided to try Model 2 as it was expected that this schedule would be unsatisfactory 

to this individual student and that in turn may reflect negatively upon the overall good quality of service of the 

program. 

 

Model 2 was chosen next to obtain the weekly assignments. The model was solved parametrically as described 

by the algorithm in the appendix and the results appear in Table 5. For clarity, the steps followed by the 

algorithm are also outlined below: 

 

 

 



Step 1. Choose q = 2. 

Step 2.  Using the Model 1 LP, replace all objective function coefficients which are less than or equal to 

256 (2
8
) with — 999,999. 

Step 3. Solve the LP (11). 

Step 4. Result: objective value < 0, thus infeasible. 

Step 5. Choose q = 4. 

Step 6. Replace all objective function coefficients which are less than or equal to 64 (26). 

Step 7. Solve the LP (11). 

Step 8. Result: objective value > 0, therefore feasible. 

Step 9. Choose q = 3. 

Step 10. Replace all objective function efficients which are less than or equal to 128 (25). 

Step 11. Solve the LP (11). 

Step 12. Result: objective value > 0, therefore feasible. 

Step 13. Algorithm over: solution gives no assignment worse than the third choice. The output is 

displayed in Table 5. 

 

 
 

Using this model it was possible to obtain an assignment where the worst choice obtained by any student was 

his/her third choice—and the overall satisfaction of this assignment was not significantly worse than that of the 

one obtained by using Model 1. Hence it was this assignment, obtained from Model 2, that was chosen by the 

staff at the Shad Valley Program. 

 

An additional benefit was gained from conducting sensitivity analysis on the Linear Program that is found at the 

final iteration in Model H. Shadow prices
*
 were used to determine which of the seminars should be targeted for 

an increase or decrease in maximum or minimum enrolments. This information allowed us to identify several 

seminars for which an increase or decrease in their enrolment requirements would significantly improve the 

quality of the program. This information was passed on to the staff of the Shad Valley Program for deciding the 

enrolments of these seminars the next year. 

                                                

* The shadow price for a maximum attendance constraint indicates the level of improvement that would be 

attained by increasing the maximum attendance for that seminar. The shadow price for a minimum constraint 

(which will be negative in this formulation) indicates the level of improvement which would be attained by 

decreasing the minimum attendance for that seminar. 



 

 
 

Both students and staff benefited from the use of this model. In comparison to the manual procedure of 1992, 

the system was a time-saving in scheduling effort for the program director. Students were assured that the best 

possible schedule has been produced for them. Although there are no direct measures of student satisfaction 

which measure the differences between the 2 years, it was felt that the existence of a proper modeling system 

significantly increased the credibility of the scheduling process. For this reason, it is fair to state that student 

satisfaction was greater in 1993 than in 1992. 

 

 
 

 

3.2. Shad Valley 1994 

In 1994, a different individual was placed in temporary charge of the program administration because of ill 

health of the previous director. It was this person's decision not to use the scheduling system, but to revert to the 



manual method as described in section 1. This has provided a set of data for which we can compare the 

manually achieved results with the schedule that could have been produced using the system described in this 

paper. 

 

The results of the manually produced schedule for 1994 is shown in Table 6. 

 

 
 

 
 

The numbers of seminar offerings in weeks one to four were, respectively, 5, 7, 5 and 6. Thus, rmax was set to 

seven (7), and P = {128, 64, 32, 16, 8, 4, 2}. For purposes of comparison, the objective value of 24,392 was 

calculated using these preference scores. Next, Model I was applied, and the resulting schedule is shown in 

Table 7. 

 



Here, the objective function value attained is 25,824, representing a significant improvement over the results 

attained by manual methods. Finally, Model 2 was applied. The schedule resulting from Model 2, which 

reduced the worst assignment from 4 (students 22 and 23) to 3, is shown in Table 8. 

 

This shows that the "cost" of imposing the additional constraints of Model 2 resulted in an objective function 

value of 25,728, which is 96 less than that of Model 1, but still greater than that attained by manual scheduling. 

 

The system produced a schedule which was better in the global sense (an increase of 1428 in objective value). 

This clearly demonstrates the advantages of this system over manual scheduling. 

 

3.3. Implementation issues 

The system has minimal requirements for software and hardware (Lindo or other LP Solver, Basic Interpreter 

on PC 386 with 4 MB Ram). The programs are easily adapted to varying numbers of seminars and students by 

changing a set of parameters used in the programs. All inputs to the LP solver are produced automatically by 

BASIC programs, thus no special knowledge of linear or integer programming is required. All that the program 

administrator is required to do is prepare an ASCH file containing student names, and a file listing seminar 

offerings and their minimum and maximum enrolments—such files would normally be prepared in any case to 

support other program administration functions. The students can enter their rankings in a spreadsheet, which is 

then exported to a flat file, or the rankings can be submitted in other forms and entered by program staff. The 

programs automatically produce a listing of assignments for each student, and a seminar enrolment report 

showing, for each seminar, the names of students thus assigned. The execution time for the system is minimal, 

making its adoption even more attractive. 

 

Thus, the additional costs incurred for implementing the system are limited to the acquisition of an LP solver. 

No additional staffing is required, and control and use of the system remains with the program staff. 

 

4. CONCLUSIONS AND EXTENSIONS 

As mentioned in the introduction, this project was initiated by the Shad Valley staff to automate their manual 

scheduling system, which, given the size of the program, was found unwieldy and cumbersome. Our main 

conclusions from the study could be summarized as follows: 

 

1. Automating the scheduling system had numerous advantages over the old manual system of scheduling. 

Not only does automation guarantee consistency in the schedules, but it also produces them much faster, 

thereby allowing the administrators of the Shad Valley Program to concentrate on other important 

administrative matters. Further, unanticipated changes such as seminars canceled on short notices or 

students not being able to attend due to sudden illness, etc. are not uncommon when running a program of 

this size and for such duration. Automating the system allows such changes to be accommodated very 

easily, something that is difficult with a manual system. 

2. Another major conclusion from our study was that Model 2 is preferable to Model 1 as a scheduling 

system. Whereas Model 1 concentrates only on maximizing the total student satisfaction, it can (and did) 

result in very poor assignments to one or a few students. On the other hand, Model 2 ensures that individual 

student satisfaction is given first priority—by ensuring that the worst assignments given to any student is as 

good as possible. Only when that has been ensured, does the model attempt to maximize overall student 

satisfaction. Our experience showed that the overall satisfaction with the schedules produced by Model 2 

compared quite favorably with that of the schedules produced from Model 1 and in addition, Model 2 

prevented any student from getting an unfair assignment. Further, for the problem sizes encountered in our 

current and anticipated implementations, Model 2 could be solved easily on a personal computer. Thus, we 

concluded that Model 2 was the better of the two models. 

3. The study of the shadow prices of the enrolment constraints gave useful information about which seminars 

were extremely popular (or unpopular) with the students. It was recommended that these seminars be 

targeted for a corresponding increase or decrease of the enrolment requirements when they are offered the 

next year. It is also possible, depending on time constraints, that the shadow price information might be 



used to negotiate an immediate increase or decrease in enrolment. Then, the models could be re-run to 

produce an improved schedule. 

 

Future work on this topic can examine various enhancements to the models described in this paper. The most 

important of these proposed enhancements is to study the effect of using Models 1 and 2 to obtain assignments 

on a week to week basis rather than obtaining the entire schedule for all the four weeks all at once, as in the 

current implementation. The obvious disadvantage of this approach of week to week scheduling is that it 

reduces the solution space of the Linear Programs and hence week to week scheduling may not obtain schedules 

that are as good as the ones obtained in the current implementation. However, week to week scheduling has 

some other advantages in terms of increased flexibility. With week to week scheduling, seminars may be added 

or dropped during the program. Furthermore, for larger systems it may be advantageous to solve four smaller 

sub-problems—although in the current implementation, running times were all less than 10 s and this was not a 

problem. Another disadvantage is that if duplicate offerings of the same seminar are made in different weeks 

(because the demand for a seminar was high)—it is easy to deal with duplicate seminar offerings when the 

schedules are obtained separately for each week. Again, this problem of duplicate seminar offerings did not 

occur in the current implementation. If this were to occur, the model could be modified to explicitly include 

duplicate seminar constraints. These constraints take the form 

 

            

              

                                                         

 

for each set of duplicate seminars. Thus each pair of duplicate seminars add N constraints to the system. This 

would destroy the unimodular structure of the constraint matrix. Testing on a hypothetical set of three duplicate 

seminars in the 1993 data showed that Model 1, augmented with the 168 additional constraints, was solved in 8 

s. In this case, the solution to the LP relaxation was integer. In general, this cannot be expected to be the case. 

However, since all variable coefficients in constraints (10) are 1, the addition of a small number of constraints 

of type (10) does not totally destroy the strong network structure of the system. Thus, it would seem feasible to 

explicitly include these constraints to produce a correct four week schedule with a minimum of computational 

penalty added by the branch and bound tree. 
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Appendix 

Algorithm For Model 2 

 

begin 

1. Choose q = 1; /*q is the index of the target preference score at any iteration. Hence we begin with q = l, i.e. 

with the lowest preference score   
   

2. While (q ≤ rmax) do 

2.1 Modify each {pijk} to a new set {    
 } as follows: if (pijk ≥ pq) then set     

  = pijk; else if (pijk < pq) then 

set     
  = −∞; 

2.2 Now solve the following modified problem either directly as a Linear Program or by formulating as a 

Min Cost Flow problem. 

 

              
     

 

   

 

   

 

   

 

subject to 

(3.1), (3.2), (3.3), (3.4) (Al) 

 

2.3 If (optimal solution to (11) is positive) 

then ence a feasible assignment has 

 

{ 

Store all the values of xijk; 

q = q + 1; 

 

} end if  

 

2.4 If (the optimal solution to (11) is negative) 

then  
 

{ 

If (q = 1) then  

/*hence a feasible assignment has been found with 

pq as the target bottleneck pref. score */ 

 

 

/* in the next iteration, try the next larger 

preference score in P as the target bottleneck 

preference score */ 

 

/* indicates that no feasible assignment can be 

found with pq as target bottleneck pref. score *l 

 

/* indicates that no feasible assignment could be 

found even with pl as the target and hence problem 

is infeasible */ 

 

 

{ 

Output: "The Given Problem Is Infeasible" 



} end if 

else 

Output: pq−i is the optimal bottleneck preference score—i.e. the one that would be found by 

solving (6), and hence the solution to Phase 1 of the model. xijk, is the optimal assignment, i.e. the solution to 

Phase 2 of the model. 

} end else 

Stop 

} end if 

} end while 

end♦ 


