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Abstract: 

In this paper we consider a location-optimization problem where the classical uncapacitated 
facility location model is recast in a stochastic environment with several risk factors that make 
demand at each customer site probabilistic and correlated with demands at the other customer 
sites. Our primary contribution is to introduce a new solution methodology that adopts the mean–
variance approach, borrowed from the finance literature, to optimize the “Value-at-Risk” (VaR) 
measure in a location problem. Specifically, the objective of locating the facilities is to maximize 
the lower limit of future earnings based on a stated confidence level. We derive a nonlinear 
integer program whose solution gives the optimal locations for the p facilities under the new 
objective. We design a branch-and-bound algorithm that utilizes a second-order cone program 
(SOCP) solver as a subroutine. We also provide computational results that show excellent 
solution times on small to medium sized problems. 

Keywords: Facility location | Risk management | Second-order cone programming | Value-at-
Risk 

Article: 

1. Introduction 

Classical uncapacitated facility location and p-median location models (e.g., Hakimi [1], 
Erlenkotter [2], Körkel [3]; see Cornuejols et al. [4] for a review) study the problem of locating a 
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set of facilities to maximize the earnings for serving a set of markets with known demands. 
Because the demands in markets tend to change in relation to updated economic factors, in 
reality, at the time that an allocation decision is made, the future demands might not be known, 
except for their probability distributions. In this study, we consider a situation where a firm 
wishes to select facility locations that will serve a set of market points with uncertain and 
correlated demands. When facing uncertain demands, the objective function of classical p-
median models becomes a first-order moment approximation (i.e., expected value). Following 
the mean–variance approach in a finance application (Markowitz et al. [5]), we use both first- 
and second-order moments to analyze the distribution of future earnings. Therefore, rather than 
using a risk-neutral objective that simply maximizes the expected earnings, our model is able to 
manage the monetary risk in a p-median problem by optimizing the “Value-at-Risk” (VaR) 
measure of future earnings. More precisely, given that the earnings remain probabilistic at the 
time the allocation decision is made, our model aims to maximize the lower limit of future 
earnings based on a confidence level required by the decision maker. The confidence level is 
defined as the probability that a lower limit can be met or surpassed by future earnings. 

Making strategic decisions, such as facility location, may require a firm to commit resources in a 
manner that is costly to reverse. As a result, associated risk becomes an important concern when 
uncertainty is significant (Doherty [6]). The seminal work on using a mean–variance approach to 
optimize portfolios (Markowitz [7]), for which Harry Markowitz received the 1990 Nobel Prize 
in Economics, has inspired much research toward the systematic treatment of two often-
conflicting objectives: profit versus risk (see Steinbach [8] for a review). Analogous to using a 
financial portfolio to control risk, our intention is to use the allocation decision to influence the 
mean and standard deviation of future earnings. Nevertheless, conventional mean–variance 
models usually rely on an artificially defined utility function to describe the decision maker's 
preference under uncertainty; thus, the typical objective function is to maximize the expected 
utility (see Schoemaker [9] for a review), which, in a facility location model, would imply 
expected future earnings. Although it is theoretically sound to explain the behavior of individuals 
facing choices under risk, empirical support for the expected utility rationale has not been strong 
(see Tversky et al. [10] for a review). Even more severe limitations apply to using the utility 
function to explain the behavior at the organizational level. The mechanism through which utility 
is aggregated into a collective function for the organization has been open to wide speculation. 
The impossibility theorem (Arrow [11], Mas-Collell et al.[12], Chapter 21) even suggested that 
such a function might never be developed. 

To avoid the pitfalls related to expected utility objective, in this paper we describe the decision 
maker's objective with an explicit measure named Value-at-Risk (VaR). VaR is defined as the 
lower limit of future earnings at a given confidence level chosen by the decision maker. In a p-
median setting, we show that optimizing the VaR is equivalent to solving a bi-objective location 
problem (Daskin [13], Chapter 8) in which expected profit needs to be traded off with the 
standard deviation of future earnings. VaR has become one of the most important measures for 



managing risk in the financial industry (e.g., RiskMetrics [14]) as well as non-financial firms 
(Bodnar et al. [15]). The popularity of VaR is primarily related to a simple and easily understood 
representation of risk and value. For a comprehensive introduction to risk management and 
applications using VaR, we refer the reader to Jorion [16] and [17] and Duffie and Pan [18]. 

Quite naturally, different stochastic location models require different risk measures for their 
objective functions. Our model considers the uncapacitated facility location setting. Such 
problems with stochastic weights were first introduced by Frank [19] and [20], which consider 
only the single facility allocation decision. As a result, the risk measure adopted in this paper is 
associated with the uncertainty of overall future earnings. In stochastic facility location models 
such as covering and center problems, the risk measures are usually associated with the worst 
service quality among demand points. For example, in a center problem with probabilistic 
weights, Berman et al. [21] propose a model that minimizes the maximum weighted distance 
between a facility and demand points exceeding a given target. Snyder and Daskin [22]propose a 
location model that considers the situation where the reliability of each facility is stochastic and 
the objective function needs to consider the potential failure of certain facilities. When facility 
capacity is limited, location problems with stochastic demand and congestion (LPSDC) usually 
incorporate Queuing Theory to model the timing and actual demand generated by each location, 
as well as a possible loss of demand due to that facility's inability to provide adequate service 
(Berman et al. [23]). An extensive review of other capacitated stochastic location models can be 
found in Berman and Krass [24]. The assumption of uncapacitated facility is appropriate when 
demand can be served without specialized servers and when the replenishment of supply is 
frequent (e.g., a shopping center or grocery store). 

Generally, there are two major complexities when solving median problems with correlated 
demands, such as the one considered in this paper. The first is associated with calculating 
correlation coefficients with a large number of demand points. In the recent finance literature, 
most approaches to calculating VaR assume a joint normal distribution of the underlying risk 
factors instead of calculating the tedious joint variance of demands from exhaustive historical 
data (Simons [25], Stambaugh [26], Pritsker [27], Alexander and Baptista [28]). In this paper, we 
replace the traditional variance–covariance matrix approach with one that involves systematic 
and nonsystematic risk factors. 

The second complexity is attributed to the nonlinear nature of optimizing a quadratic function 
related to variance. Usually, simplification of demand correlation is necessary for the multi-
facility version of location problems. For example, in their model of optimizing the location 
of p distribution centers (DCs), Shen et al.[29] assume that the random demands among nodes 
are independent and the variance of demand at each node is in a constant proportion of the mean 
of demand. However, in our paper we utilize concepts from nonlinear programming to exactly 
solve our combinatorial model. In particular, we formulate the p-median problem under the VaR 
objective as a nonlinear integer program. To solve this optimization problem, we design a 



branch-and-bound algorithm that utilizes a second-order cone program (SOCP) (e.g., see 
Alizadeh and Goldfarb [30]) solver as a subroutine. SOCPs are a generalization of linear 
programming that are solvable in polynomial time by interior point methods (e.g., see 
Renegar [31]). Thus, our model allows a decision maker, who is interested in solving a p-median 
model, a feasible way to manage the profit uncertainty when the demands at the nodes are 
stochastic and correlated. 

Outline: The paper is organized as follows. Section 2 introduces notation, models random 
demand with a set of risk factors, and describes the objective function. In Section 3, we 
summarize SOCPs and show how they can be used to solve the p-median problem under the VaR 
objective. Section 4 presents the computational results to evaluate the performance of our 
algorithm. Conclusions and recommendations are addressed in Section 5. 

2. Model formulation 

In keeping with the p  -median problem, we assume that the market is given by a graph G=(N,A), 
whereN={1,2,…,n} represents the set of nodes (the demand points) and A=(i,j) represents the set 
of arcs with i,j∈N. The decision maker seeks to locate p   (where p⩽n) facilities and these 
locations are to be chosen from the entire set of nodes N. 

2.1. Modeling stochastic demands with risk factors 

We model the demand correlations by using a set of risk factors. Let Di be the random demand 
originating from node i=1,2,…,n. We assume that Di is represented by a mean given by  plus a 
random component Δi, where E[Δi]=0: 

equation(1) 

 

In order to understand what determines the composition of Δi, we now introduce the concept of 
systematic and nonsystematic risk factors. A systematic risk factor is one that affects the 
demands of a large number of nodes. To understand this better, let us assume that the firm in 
question is a grocery firm that wishes to locate p DCs to serve the customers in G (see Table 1). 
At the time the DC allocation decision needs to be made, the grocery chain faces several 
uncertainties that may affect the demands on a large scale. For example, one uncertain factor 
could be the chain's ongoing plan to cooperate with a coffee chain to provide express service for 
customers. If this plan goes well, it may increase node demands, depending on local 
demographic characteristics. A second factor could be the chain's decision to expand product 
lines to include certain domestic appliances in some stores. A third possible factor could be the 
potential movement of competing grocery chains. For example, competitors might enter or exit 
certain regions in the future and affect the demands in those regions accordingly. A fourth factor 
could be about general economic conditions, such as gross domestic productivity (GDP) and the 



unemployment rate. Because systematic risk factors often have market-wide effects, they are also 
called market risk in the financial literature. In contrast, an unsystematic risk factor could be one 
that affects only one node. For instance, local demand may be affected by local zoning by-laws 
and population changes. Because nonsystematic risk factors represent the independent part of 
uncertainty of each node, it often has a much smaller influence on the demand uncertainty than 
the systematic ones. 

Table 1. Systematic and nonsystematic risk factors of demands (a grocery chain example) 

Type Risk factor (Vi or Sk) Influence Data needed for estimation 

of vi or  

Systematic Benefit from strategic 
alliance with a coffee 
chain 

Demography segmented 
by age, gender, etc. 

Linear combination of 
demographic data at each 
node 

Systematic Plan to expand product 
lines in certain stores 

Market position and 
shopping traffic at 
participating stores 

Conduct market survey and 
consumer behavior analysis 

Systematic Impact of competitor's 
movement 

Geographic regions 
where competitors plan 
to enter/exit 

Competitors’ potential sites 
and market strategy at each 
area 

Systematic U.S./Canadian 
economy in the future 

Demography segmented 
by job type and 
household income 

GDP, unemployment rate, 
inflation, demographic data 
at each node 

Nonsystematic Local zoning or 
population growth 

Number of local 
residents 

Historical data; local 
manager's assessment 

 

Assume that there are K   (K=4 in Table 1) systematic risk factors that apply to each demand 
node. Each systematic risk factor is denoted by Sk, k=1,…,K. In addition, we let Vi represent the 
nonsystematic risk factor at node i  . To make the model tractable, for each node i  , we assume 
that each risk factor Vi or Sk is a normal random variable. For each risk factor, the 

coefficient vi or  represents the weight of random variable Vi or Sk, respectively, in the 
demand Di. Once again, without loss of generality, we assume thatVi and Sk have zero mean and 
unit variance (i.e. var(Vi)=var(Sk)=1). For the systematic risk factorSk, we allow the 

coefficient  to be a real number because the demands at the various nodes may have positive or 
negative correlations among them. Similarly, for the random variable Vi, we let the 
coefficient vibe any real number. As a result, the distribution functions of Di can be completely 



described by the weightsvi and  . In practice, the estimation of the risk factor 

weights vi and  is achieved by using combinations of demographic data and market 
intelligence. Table 1 summarizes the characteristics of each risk factor, the scope of each factor's 

influence, and the relevant information for estimating vi and . 

Since we have assumed that the risk factors Vi and Sk are normally distributed (with zero mean 
and unit variance) random variables, this permits demand value at node i   to be negative. In 
order to assure positive demand, we require truncation on the lower tail. With the definitions and 
examples above, we have implicitly defined Δi. We next explicitly give a functional form for Δi, 
which we accomplish by restating Eq. (1), which represents demand Di at node i, as the 
following nonnegative random variable: 

equation(2) 

 

However, in an application under a similar mean–standard deviation framework, Carr and 
Lovejoy [32]assume that all demands are normally distributed and demonstrate that explicitly 
dealing with the lower truncation complicates the analysis but with little gain in accuracy or 
insight. This is further corroborated in Petruzzi and Dada [33], who remark that if  is large 
relative to the variance of Δi, unbounded probability distributions such as the normal distribution 
provide adequate approximations. Therefore, to keep our model tractable and to focus on 
exploring managerial insight, in the rest of the paper we will adopt the same assumption made by 
Carr and Lovejoy [32]. In other words, we will assume that the effect of truncating the demand 
distribution below zero is sufficiently small and hence Eq. (2) will be approximated as  and a 
weighted sum of risk factors Vi and Sk: 

equation(3) 

 

While the transition from Eq. (2) to (3) might seem drastic (since we still implicitly 
assume Di⩾0), we argue that a reliable estimation of the risk factor weights vi and sk from real 
data will give a model that results in realistic (nonnegative) demands. In any case, any negative 
demands can easily be rounded up to zero in an actual implementation. 

The covariance between the demands of two nodes can therefore be derived as follows: 

equation(4) 



 

2.2. Formulation of the objective function and the constraints 

Having developed the risk-factor based approach for modeling stochastic demands, we now turn 
our attention to the formulation of the objective function and the constraints. All matrices and 
vectors will appear in boldface type. Assume that the decision maker needs to locate p   facilities 
and the fixed cost of establishing a facility at node i   is a constant fi. We further assume there is 
no capacity constraint on the demand served by a facility. Once the p   facilities have been 
located, each of the n   nodes will get its shipments from the least costly facility. We let lij denote 
the smallest cost of transporting a unit good between any two nodes i,j∈N. For example, lij can 
be defined as the shortest path between nodes i   and j  , which can be easily calculated using 
Dijkstra's algorithm. We let ri denote the unit sale price at node i  . Given such an allocation 
decision, in accordance with the standard notation of the p  -median problem, we 
letyj, j=1,…,m be a binary variable that is defined as follows: yj=1 if a facility is located at 
site j   and yj=0otherwise. Let y be a vector of the yj variables. Similarly, xij is defined as 
follows: xij=1 if node i   is served by a facility at site j   and xij=0 otherwise. 

We use an n×n matrix X={xij} as an allocation matrix to represent an allocation decision 
of p   facilities. One can see that an allocation matrix X, with entries of zeros and ones, shall 
have exactly p   nonzero columns and have one nonzero entry in each row. Hence, if we 
let Πi(X) represent the profit contributed by node i under this given allocation decision, assuming 
a facility is located at node i, then 

equation(5) 

 

Finally, incorporating the y decisions, we let Π(X,y) denote the sum of profits from all nodes and 
it can be seen that 

equation(6) 

 

Given that the demand Di is approximated by a normal random variable as in Eq. (4), Π(X,y) can 
then be represented as a multivariate normal random variable. The mean and standard deviation 
of the overall profit can be computed as 

equation(7) 



 

and 

equation(8) 

 

We now discuss the VaR approach, where the objective is to maximize the lower limit of future 
earnings based on a stated confidence level. Fixing the variables xij and yj for all i,j, the VaR 
objective is to find the largest value of π such that P[Π⩽π]⩽ε, for some given confidence level ε: 

equation(9) 

 

Since the profit Π is a normal random variable with mean E[Π] and standard deviation STD[Π], 
we can perform the following analysis, where Z   is a standard normal random variable (zero 
mean, unit variance) andΦ(·) is the distribution function of a standard normal random variable: 

  

Therefore, π*=E[Π]+Φ-1(ε)STD[Π]. Our VaR p  -median problem is concerned with the location 
of facilities and allocations of demands in order to maximize the value of π*. Consequently, our 
VaR p-median problem is formulated as follows: 

equation(10) 



 

For the remainder of the paper, we assume that  so that Φ-1(ε)⩽0, a necessary requirement 

for our solution approach. If  and the integer constraints are relaxed, Problem 10 is a convex 

optimization problem. If , the convexity is lost. 

3. A solution procedure 

3.1. Second-order cone programs 

If z=(z1,…,zd) is a d  -dimensional vector of variables, the following mathematical program is an 
SOCP: 

equation(11) 

 

where f, bi, ci are real-valued vectors, di is a real number, and Ai are real-valued matrices of 
appropriate dimensions. The norm in the constraints is the standard Euclidean norm:  . 
A property of SOCPs that is useful for our analysis is that they can be solved efficiently (both 
theoretically and practically) via interior point algorithms; see Renegar [31] for an introduction 
to appropriate algorithms. 

3.2. Application of SOCPs to the VaR p-median problem 

Next, we show how a SOCP can be used in computing a solution to our VaR p  -median 
problem (10). We let the variable vector z=(z1,…,zd) contain all 
variables yj and xij (i.e., d=n2+n). In particular, 

z=(y1,…,yn,x11,…,x1n,x21,…,x2n,x31,…,xnn); 

we denote this correspondence concisely as z=(y,X). The expected profit can be written as 

equation(12) 



E[Π(X,y)]=ν′z, 

where ν is a vector whose elements are derived from Eq. (7). Likewise, the standard deviation of 
the profit can be written as 

equation(13) 

 

where Σ is the covariance matrix derived from Eq. (8). More specifically, using the 

shorthand z=(y,X), note that the profit function Π can be written as  , where 
the Wi are random variables that can be identified from Eq. (6). 
Consequently, Σij=cov(Wi,Wj) and Σii=var(Wi). Detailed derivations of ν and Σ are given 
in Section 4. Let 

equation(14) 

 

denote the feasible region of a linear programming relaxation of the classic p  -median problem. 
Therefore, the VaR p  -median problem (10) can be written as 

equation(15) 

 

A relaxation of formulation (15) can be obtained by removing the binary variable condition: 

equation(16) 

 

By introducing an extra variable w  , we see that the relaxation (16) can be rewritten as 

equation(17) 

 

 



an SOCP, since , assuming the square root of the covariance matrix exists. Note 
that, by definition, the covariance matrix Σ is positive semidefinite (i.e., for 
any z, z′Σz=var(Π(z))⩾0). Since Σ is a symmetric matrix, it has real eigenvalues λi, i=1,…,d, 
and d   mutually orthogonal real (column) eigenvectors ei, i=1,…,d. Furthermore, we can 

write . We show the existence of the square root matrix by writing 

 . Finally, note that if , the inequality of the first constraint of 
formulation (17) would have been inverted and the problem would no longer be an SOCP. 

3.3. A branch-and-bound algorithm to solve the VaR p-median problem 

In this section we assume that the VaR p  -median problem (10) is feasible. Let OPT   denote the 
value of problem (10) and K={0,1}n2+n denote the set of possible integer solutions. 
If Z={z|zi∈{0,1},i∈I,z∈Y}, for some continuous set Y  , let R(Z)={z|0⩽zi⩽1,i∈I,z∈Y} denote the 
set that relaxes the binary constraints of Z  . Define 

equation(18) 

 

and let OPT(Z) denote its optimal value. Note that OPT({0,1}n2+n)=OPT and OPT(R(Z)) is a 
SOCP for any set Z⊆[0,1]n2+n. The branch-and-bound algorithm BB for solving the VaR p-
median problem is as follows. 

BB: 

• Initialization: 

(1)Set the initial queueQ={K}. 

(2)Find an initial lower bound1LforOPT. 

• Loop: 

(1)If Q  is empty, stop. The current value inz*is optimal. 

(2)Choose the first elementZ  of the queueQ  and remove it. IfOPT(R(Z))⩽Lor ifOPT(R(Z))is 
infeasible, go to step 1. 

(3)If the solution toOPT(R(Z))is integer, setz*to be this solution and setL=OPT(R(Z)). Go to step 
1. 



(4) Find the smallest indexi  such thatziis not integer. InsertZ1=Z∩{zi=0}andZ2=Z∩{zi=1}into 
the queueQ. Go to step 1. 

Remarks. 

Since we assumed the VaR p-median problem is feasible, the branch-and-bound algorithm is 
guaranteed to find the optimal solution. Note that there is also an implicit degree of freedom in 
managing the queue Q. Different policies, such as FIFO and LIFO, will lead to different 
exploration strategies of the underlying tree, such as depth-first or breath-first. 

4. Computational study 

We implement BB in MATLAB [34]. More specifically, we modify the 
MATLAB bintprog2 procedure to utilize the Disciplined Convex Programming [35] package to 
solve the SOCP relaxations. Our implementation of BButilizes the default options for bintprog: 
The branching strategy is to choose the variable with the maximum infeasibility (i.e., the variable 
with value closest to 0.5) and the node search strategy is to choose the node with the lowest 
bound on the objective function. 

4.1. Experimental design 

Recall that the aggregate vector of variables z is defined as 

z=(y1,…,yn,x11,…,x1n,x21,…,x2n,x31,…,xnn). 

We also give equations for the mean and variance of the profit, with slightly different indexing: 

equation(19) 

 

and 

equation(20) 

  

It is clear that 

equation(21) 

 



Similarly, we can derive the coefficients of the covariance matrix to be 

equation(22) 

 

We generate the data for our simulation study in the following manner. We let the facility 
location fixed costsfi,∀i be uniformly distributed in the interval [1000,1200]. Similarly, the 
average node demands   are uniformly distributed in the interval [200,300]. The 
revenues ri,∀i are uniformly distributed in [50,100] and the loads lij,∀i,j are independently 
uniformly distributed in the interval [20,60]; note that we do not assume symmetric loads. 

Finally, we similarly model the risk factors: we set K=4 and let  and vi,∀i be 
independently uniformly distributed in [5,10]. 

We vary n   and the confidence level ε; in particular, we let n∈{5,10,15} and ε∈{0.01,0.05,0.10}. 
We let p=n/5. For each combination of n   and ε, we perform 10 simulations and record the 
average VaR objective function value and the average time required to solve the problem, in 
seconds. 

Table 2 tabulates the results of our computational experiment. We notice that for small values 
of n   and realistic confidence levels ε, our algorithm computes the exact solution very quickly. 
An interesting observation for the n=15 case is that the computation time increases significantly 
as the confidence level εis decreased; this behavior was not present for the other values 
of n studied. 

Table 2. For each combination of n   and ε, we record the following data points: average 
objective function value, average time in s required to calculate solution 

 n=5 n=10 n=15 
ε=0.01 (21,356; 0.72 s) (30,589; 8.45 s) (21,075; 76.83 s) 
ε=0.05 (26,088; 0.83 s) (53,366; 4.41 s) (61,018; 25.93 s) 
ε=0.10 (25,799; 0.79 s) (56,461; 9.12 s) (78,999; 7.68 s) 
The averages are taken over 10 simulations. 

We next briefly mention the time required by our branch-and-bound algorithm for larger values 
of n   forε=0.10; we report the performance of a single simulation run. For n=20, our algorithm 
output a cost of 55,680, which took 7.27 min. For n=25, our algorithm output a cost of 51,226, 
which took 47.67 min. For larger values of n  , our simulation setup resulted in infeasible 
problem instances. In order to test our algorithm for larger values of n   (for ε=0.10), we instead 
generated the covariance matrix as 



Σ=Λ′Λ, 

where Λ is an (n2+n)×(n2+n) matrix whose elements are i.i.d. realizations of the standard normal 
distribution; this design results in a positive semidefinite matrix Σ, which is necessary for a 
covariance matrix. We again report the performance of a single simulation run. 
For n∈{30,35,40}, our algorithm successfully converged in 9.25, 43.51 min and 1.76 h, 
respectively. Therefore, these computational results encourage the application of our algorithm 
in practice. 

Further modifications of our algorithm are also possible to create a more efficient solution 
approach tailored to specific applications, especially for larger values of n  . In particular, more 
sophisticated branching strategies can be implemented to take advantage of problem structure 
and the sparsity of the covariance matrix Σ might also be exploited. However, detailed 
algorithmic analyses of this type are outside the scope of this paper. 

5. Conclusion 

In this paper, we have developed and examined a new algorithm for solving the p-median 
problem when the demands are probabilistic and correlated. The best allocation decision was 
selected by balancing two often-conflicting objectives: profit and associated uncertainty. We 
utilized concepts from nonlinear programming to design a branch-and-bound algorithm to solve 
the problem exactly. The results presented in this paper open up a number of new applications in 
location analysis. One such possibility is the connection between location decision and financial 
risk control, which is an application currently dominated only by financial researchers. Due to 
the strategic nature of location selection, the commitment of facility sites could have significant 
impact on a firm's financial uncertainty. Therefore, it is apparent that our model has the potential 
to improve corporate financial planning if the decision maker has the objective of profit 
maximization, but also has concerns about risk control. Another natural extension is to 
investigate the capacitated models in which capacity investment needs to include financial risk 
control when making decisions. 
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