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Abstract: 

This paper seeks to evaluate the performance of genetic algorithms (GA) as an alternative procedure for 

generating optimal or near-optimal solutions for location problems. The specific problems considered are the 

uncapacitated and capacitated fixed charge problems, the maximum covering problem, and competitive location 

models. We compare the performance of the GA-based heuristics developed against well-known heuristics from 

the literature, using a test base of publicly available data sets. 

 

Scope and purpose 

Genetic algorithms are a potentially powerful tool for solving large-scale combinatorial optimization problems. 

This paper explores the use of this category of algorithms for solving a wide class of location problems. The 

purpose is not to ―prove‖ that these algorithms are superior to procedures currently utilized to solve location 

problems, but rather to identify circumstances where such methods can be useful and viable as an 

alternative/superior heuristic solution method. 

 

Article: 

1. Introduction and motivation 

Deriving optimal and near-optimal solutions to location problems has fed the growth of the field of locational 

analysis over the past three decades (see Daskin [1], Drezner [2] and Mirchandani and Francis [3]). However, 

the major models in this area, namely, the Fixed Charge Location Model, the Covering Model in Non-

Competitive Location Theory and the Medianoid and Centroid Model from Competitive Location theory, are all 

NP-Hard, i.e. computationally difficult, combinatorial optimization problems. Hence, exact algorithms are 

computationally feasible for medium sized problems or for special cases (see Jacobsen [4], Krarup and Pruzan 

[5] and Hakimi [6]). As a result, much research effort has been devoted to devising heuristic solution 

procedures which run in reasonable computer time and yield solutions of acceptable quality. 

 

Genetic algorithms (GAs) are a family of randomized-search optimization heuristics, which are based on the 

biological process of natural selection (see Goldberg [7]). However, applications of GAs to location models 

have been relatively few. In the two papers by Beasley and Chu [8] and Lorena and de Souza-Lopez [9], the 

authors have focussed on the application of GAs to set covering problems. For location models as such, perhaps 

the earliest application of GAs was in Hosage and Goodchild [10] where they presented a GA implementation 

for the p-median model. Recently, Owen and Daskin [11 and 12] have used GAs to solve a complex model in 

strategic facility location. However, to the best of our knowledge, a comprehensive study on the comparative 

performance of GAs on location models has not been attempted before. This is particularly significant in view 

of the fact that GAs have proven to be very effective on non-convex optimization problems for which it is 

relatively easy to assess the quality of a given feasible solution but difficult to systematically improve solutions 

by deterministic iterative methods. Motivated by these considerations, this paper evaluates the performance of 

GAs on five representative models in Location Theory. From non-competitive location models, we have chosen 

the Uncapacitated and Capacitated Fixed Charge Problem (see [5] and [1]) and the Maximum Covering Model 

(see [1] and [3]). From competitive location, we have chosen the Medianoid and Centroid models [6]. In 
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selecting these models, we were guided by two considerations. First, the model had to be as general as possible. 

Hence the problem was choice of fixed charge location rather than the p-median one, since the former includes 

the latter as a special case. We chose the Maximum Covering Model over the p-cover model for the same 

reason. Second, we wanted models for which empirical work had been performed and reported on publicly 

available data sets. All the five models we chose satisfied these constraints. For each of these chosen models, 

we develop GAs and compare their performance against well-known heuristics from the literature using a test-

base of publicly available data sets. 

 

2. Genetic algorithms: an overview 

The concept of GAs was first proposed by Holland [13] and then described by Goldberg [7]. GAs are stochastic 

search techniques based on the mechanism of natural selection and natural genetics. GAs, differing from 

conventional search techniques, start with an initial set of solutions called a population. Each individual in the 

population is called a chromosome, and in our context, represent a solution to the problem at hand. A 

chromosome is a string of symbols; it is usually, but not necessarily, a binary bit string. The chromosomes 

evolve through successive iterations, called generations. During each generation, the chromosomes are 

evaluated, using some measures of fitness. To create the next generation, new chromosomes, called offspring, 

are formed by either (a) merging two chromosomes from the current generation using a crossover operation, or 

(b) modifying a chromosome using a mutation operator. A new generation is formed from this intermediate 

population by (a) selecting, according to the fitness values, some of the parents and offspring, and (b) rejecting 

others so as to keep the population size constant. Fitter chromosomes have higher probabilities of being selected. 

After several generations, the best solution converges, which hopefully represents the optimum or suboptimal 

solution to the problem. Let P(t) and C(t) be parents and offspring in current generation t; the general structure 

of GAs is illustrated in Fig. 1 and described as follows: 

 

 
Fig. 1. The general structure of genetic algorithms. 

 

Step 1: Set t ≔ 0. 

Step 2: Generate initial population, P(t). 



Step 3: Evaluate P(t) to create fitness values. 

Step 4: While (not termination condition) do. 

Step 5: Recombine P(t) to yield C(t), selecting from P(t) according to the fitness values. 

Step 6: Evaluate C(t). 

Step 7: Generate P(t + 1) from P(t) and C(t). 

Step 8: Set t ≔ t + 1. 

Step 9: End. 

Step 10: Stop.  

 

We used two termination criteria in implementing the above generic GA. This basic algorithm was executed 

until one of the following happened: either the GA ―converged‖ (i.e., improvements in objective function value 

fell below tolerance limit of 10
−5

) or it had been executed for a pre-specified number of interventions. The 

reader is referred to references [7 and 14] and Reeves [15] for a more detailed coverage of GAs. 

 

3. GA-based heuristics for location problems that we studied 

The basic GA scheme permits a wide variety of ways of implementing a GA-based heuristic, and exploring 

these has produced a large body of scientific literature. In this section, we shall describe in brief the major 

modifications that we made to the basic GA, and the criteria adopted from the literature to obtain a suitable GA-

based heuristic for the location problems we considered. This is intended only to be a brief overview; the reader 

is referred to [16] for complete details. 

 

3.1. Representation scheme 

The first step in designing a genetic algorithm for a particular problem is to devise a suitable representation 

scheme. The representation scheme developed was a nf-bit binary string as the chromosome structure, where nf 

is the number of potential facility sites. A value of 1 for the ith bit implies that a facility is located in the ith site. 

The binary representation of an individual's chromosome (solution) is illustrated in Fig. 2. 

 

 
Fig. 2. Example of binary representation for location problems. 

 

The network illustrated in Fig. 2 has four potential facility sites. The case (a) represents the situation when only 

two facilities are located in potential sites one and four and case (b) illustrates the situation when facilities are 

located in all of the possible facility sites. The respective binary representations for cases (a) and (b) is also 

shown in the same figure. 

 

 



3.2. Fitness function 

The fitness function in a GA is a measure of goodness of a solution to the objective function. In our modified 

GA, the fitness of an individual is directly related to its objective function value. 

 

3.2.1. Fitness function of the uncapacitated fixed charge problem 

The objective function of the uncapacitated fixed charge location problem can be formulated as follows: 

 

                  

   

 

 

where 

 

    
                                     
                                                    

  

Yij = fraction of demand at node i that is served by a facility at node j, 

fj = fixed cost of locating at candidate site j, 

hi = demand at node i, 

dij = distance from demand node i to candidate location j, 

c = cost per unit distance per unit demand. 

 

The fitness of an individual can be calculated by evaluating the two components of the objective function (fixed 

facility cost and transportation cost) and then adding them. 

 

The fixed facility cost for solution i is calculated by 

 

           

 

   

 

 

where sij is the value of the jth bit in the string corresponding to the ith individual. In order to evaluate the 

transportation cost, we first find the set of open facilities given the current solution. Next, since the facilities are 

uncapacitated, we compute the respective minimum transportation cost by assigning each demand node to the 

nearest open facility. 

 

3.2.2. Fitness function of the capacitated fixed charge problem 

The objective function of the uncapacitated fixed charge problem is identical to the UFC problem. The fixed 

facility cost is calculated exactly as in the UFC problem. In order to calculate the transportation cost, we note 

that if we are given a set of facilities that are feasible in the sense that the total capacity of these facilities 

exceeds the total demand, the problem of assigning the demands to the facilities becomes a transportation 

problem which can be solved using special algorithms such as transportation simplex method. When the 

capacity of the facilities is less than the total demand, the current solution is not feasible and a penalty value is 

assigned to the fitness of the individual. We assigned a numerical value considerably larger than any possible 

objective function value corresponding to the current population of individuals. 

 

3.2.3. Fitness function of the maximum covering problem 

The fitness function value of each possible solution to the MC problem is calculated by finding the set of open 

facilities belonging to the solution being evaluated and adding the demands that are covered by these facilities. 

Care must be taken in order to avoid demands being counted several times since one demand point might be 

covered by several facilities at the same time. 

 

 



3.2.4. Fitness function of the medianoid and centroid problem 

Medianoid problem: The fitness of each possible solution to this problem is calculated by finding the market 

share of the set of open facilities belonging in this case to the follower. The market share is found by assigning 

each demand node to the nearest open facility and adding only those demands falling into the set of facilities of 

the follower. 

 

Centroid problem: The (r |p)-centroid problem is essentially a minmax problem faced by the player (the leader). 

For every candidate solution considered by the leader, it is necessary to compute or approximate the follower's 

best response, and this requires either solving a (r | Xp)-medianoid problem or estimating an approximate 

response through the greedy algorithm described in Benati and Laporte [17]. The total value of the demands 

minus the demands covered by the follower is the fitness of the individual being evaluated. 

 

3.3. Parents selection-procedure 

We will now address the issue of selection of parents, i.e., solutions chosen for crossover. For this we chose the 

Binary Tournament Selection Method (see Beasley and Chu [8]) because (i) it can be implemented very 

efficiently, and (ii) in Beasley and Chu [8] it has been shown that this method gives solutions whose quality 

compare favorably to the ones produced by other methods. 

 

3.4. Crossover operator 

We chose the crossover operator fitness-based fusion proposed in Beasley and Chu [8]. This operator is more 

capable of generating new solutions when two parent solutions are similar in structure than the one-point 

crossover operator, since it focuses on the differences in the two structures. However, the possibility of getting 

an offspring identical to one of its parents still remains. As a result of this problem, the following modification 

was made to the overall crossover operator. 

 

Step 1: Select parents P1 and P2. 

Step 2: Apply the fusion operator to obtain an offspring (C1) 

Step 3: Compare Child C1 with its parents. If it is not identical to either then go to Step 5. Otherwise go to step 4. 

Step 4: Apply mutation to the parent with the lesser fitness. 

Step 5: Stop. 

 

3.5. Mutation operator 

Mutation is a process that reverses the structure of a chromosome and hence produces albinos, i.e., individuals 

with different chromosome properties from the majority in a population. Mutation serves as a policy to prevent 

solutions from being trapped in local optima and is considered as a secondary mechanism in the operation of 

genetic algorithms. In this work, the mutation operator works by selecting randomly one of the open facilities 

and moving this to another site. The new site is also picked randomly from the set of empty possible places to 

locate facilities. 

 

Mutation rate (probability) is usually set to a very low level. However, different references [8 and 14] have 

found that a higher mutation rate is necessary when the GA has converged. In order to alter the mutation rate 

when the GA is in progress, Beasley and Chu [8] made use of a variable mutation rate rather than a fixed one 

and this variable rate depends on the rate at which the GA converges. The approach employed here uses 

mutation during the progress of the GA and the crossover operator is substituted by the mutation operator in 

those cases when the offspring is identical to one of its parents. 

 

3.6. Replacement population method 

Once new child solutions have been constructed through the GA operators, the child solutions will replace ―less 

fit‖ members of the population. The average fitness of the population will improve if the child solutions have 

better fitnesses than those of the solutions being replaced. This type of method is called ―incremental 

replacement‖. Another commonly used method is the ―generational replacement‖, which generates a new 

population of children and replaces the whole parent population (see Beasley et al. [18]). 



In our GA, we used the incremental replacement method. Using this method, the best solutions are always in the 

population and the newly created solutions are immediately available for selection and reproduction. Note that 

when replacing a solution, care must be taken to prevent excessive copies of a solution from entering the 

population. Allowing too many duplicate solutions to exist in the population may be undesirable because a 

population could come to consist of identical solutions, thus severely limiting the GAs ability to generate new 

solutions. 

 

3.7. Population size 

One of the most obvious questions relating to GA performance is how it is influenced by population size. In 

principle, it is clear that small populations run the risk of seriously under-covering the solution space, while 

large populations incur severe computational penalties. The experimental work by Alander [19] suggests that a 

value between n and 2n is optimal for the problem type considered, where n is the length of a chromosome. We 

chose a value of n and in our situation the length of a chromosome coincided with the number of possible 

facility sites. 

 

3.8. Algorithm 

 

Thus, the GA that we implemented can be described algorithmically as follows: 

 

Step 1: Set t ≔ 0. 

Step 2: Generate initial population, P(t) randomly. 

Step 3: Evaluate each of the strings in P(t) according to the kind of problem being solved. 

Step 4: While (number of generations ≤ maximum value) or (improvement in objective function value ≤ 10
-5

) 

do. 

Step 5: Set t ≔ t + 1. 

Step 6: Select two solutions P1 and P2 from the population using binary tournament selection. 

Step 7: Apply genetic operators to strings P1 and P2. 

If Crossover: Combine P1 and P2 to form a offspring O1 using the fusion crossover 

operator. If O1 is identical to any of its parents, then apply mutation 

operator to the parent with the best fitness. 

If Mutation: Apply mutation operator to the parent with the best fitness to form a offspring O1. 

Step 8: Repeat steps 6 and 7 until a new set of children is created which is of same size as the parent population. 

Step 9: Evaluate this new child set according to the kind of problem being solved. 

Step 10: Utilize the incremental replacement method to create P(t) from the parent population and set of 

children. 

 

4. Computational results 

The heuristics were coded in FORTRAN 90 and executed on a PC COMPAQ Presario 4716. Initial tests of 

comparison between a Sun Sparc workstation and the PC showed the latter to be faster. This PC was equipped 

with 32 MB of RAM and a Intel Pentium microprocessor running at 200 MHz. Two different tests were applied 

to each heuristic. First, the performance of the heuristic was compared against that of other heuristics achieved 

in the past. Second, in order to see the characteristics of convergence of each heuristic proposed and its 

performance on real-life problems, each heuristic was used to solve a real-world problem. This real-world 

problem is a network that models Amherst, a suburb of Buffalo, New York. This network has 84 potential 

facility sites and 459 demand nodes. 

 

The GA-based heuristics were run on each problem multiple times since GAs are stochastic and therefore yield 

different searches and potentially different results, for each random number seed used. Ten different seeds were 

selected to create 10 genetic runs for each problem. These 10 runs tested the dependence of the method on the 

seed selected, both in terms of solution quality and search effort. When the solution quality showed little 

sensitivity to the choice of the initial seed, we considered the GA to be ―robust‖. 
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4.1. Uncapacitated fixed charge problem 

For the UFC problem, 15 problems were solved. For all of these test problems, the optimal solution is known. 

These test problem sets are publicly available electronically from http://mscmga.ms.ic.ac.uk/info.html. The 

results obtained were compared in terms of solution quality and solution time to those obtained by the 

Lagrangean heuristic implemented by Beasley [20]. Beasley's heuristic was selected since the computational 

experience reported shows that it is robust and efficient. In addition, the performance of these heuristics on 

these publicly available data sets is also well documented. 

 

Table 1 summarizes the experimental results on the set of test problems. In this table, we list the problem name, 

the number of potential facilities (nf), the number of demand sites (nd), the optimal solution value, the 

percentage of times that the GA-based heuristic reached the optimal value, the average CPU solution time, the 

percentage of deviation from optimal for the best solution found by the Lagrangean heuristic, and the 

computation time for the Lagrangean heuristic. 

 

Table 1. Comparison between the GA and the Lagrangean heuristic for the UFC problem 

 
 

The following remarks can be made regarding the results illustrated in Table 1. 

 The GA-based heuristic reached the optimal solution for all 150 problems unlike the Lagrangean 

heuristic which failed to find the optimal solution for the last problem C. The solution obtained by the 

Lagrangean heuristic was 0.033% above the optimal. 

 The average running times of the GA heuristic are lower than those presented by the Lagrangean 

heuristic when ―small-sized‖ problems were solved. The opposite situation is observed when ―large-

sized‖ problems were tackled by both heuristics. However, this observation should be viewed with 

caution in light of the fact that (i) the hardware used by the Lagrangean heuristics was different, and (ii) 

location problems are usually strategic and are not solved repeatedly. 

 

The GA-based heuristic was also used to solve a UFC problem for the real-life Amherst network described 

earlier. In this case, the cost of building a facility in the region modeled had to be assumed. Borrowing from 

Daskin [1], current statistics about the construction business around this area were consulted and a value of US 

$81,725 per facility was used. Table 2 illustrates the experimental results when 10 different seeds were selected 

to create 10 genetic runs of the same problem. The algorithm reached the same objective function value in all of 

the instances. These results indicate that GA-based heuristics are robust. 

 

 



Table 2. Results of GA for the UFC problem, for the Amherst problem 

 
 

4.2. Capacitated fixed charge problem 

For the CFC problem, 26 problems also taken from the web site http://mscmga.ms.ic.ac.uk/info.html were 

solved. For all of these test problems, the optimal solutions are available at this web site. Our experimentation 

revealed that while the GA heuristic was able to reach the optimal solution in all cases but one, the 

computational times were excessively large. In fact, the solution times were so high that only five seeds were 

used for each run. As a result of this unsatisfactory performance, we did not pursue this avenue further. The 

reader is referred to Jaramillo [16] for details. 

 

4.3. Maximum covering problem 

Two sets of data were used to test the GA-based heuristic. The first was obtained from the literature. This 

problem corresponds to the 88-cities problem defined by Daskin [1]. The 88 cities selected in this problem are 

the 50 most populous ones in the lower states according to the 1990 Population and Housing Census as well as 

capitals of the lower 48 states. The second data set was obtained by modifying the one from the literature. This 

modified data set is a 150-node network obtained by adding 62 new nodes to the 88-cities problem and 

generating distances and demands randomly. The results obtained were compared to those obtained using the 

program referenced in this paper as SITATION which comes with a location theory text by Daskin [1]. 

SITATION uses a Lagrangean heuristic followed by a substitution procedure. This substitution procedure takes 

a given solution and attempts to improve it using a greedy heuristic — for details refer to Daskin [1]. In order to 

make the comparison unbiased, we implemented the substitution procedure after the GA heuristic as well. 

Detailed computational results are shown in Table 3. In this table, we list the problem name, the number of 

potential facilities (nf), the number of facilities to be located (Xp), the distance beyond which a demand is 

considered uncovered (coverage distance), the percentage of the total population covered (best solution), the 

percentage of times that the GA-based heuristic reached the best solution value, the percentage of deviation 

from the best solution for the worst answer found by the GA-based heuristic, the average CPU solution time, the 

percentage of deviation from the best solution for the best answer found by the Lagrangean heuristic, and the 

computation time for the Lagrangean heuristic. The optimal solutions to these problems were not identified. 

Consequently, the best solution value is defined as the best solution found between the two heuristics. The 

conclusion we can draw from these results is that the GA method appears to give results that are at least as good 

as the Lagrangean method, though it does take significantly more computational effort in doing so. The 

improvement in results will be significant in applications where large budgets were involved (e.g., 0.05% of 

$500 M is significant). It is also noted that these results are a representative set from a sample of runs. More 

details can be found in Jaramillo [16]. 

 

 

 

 

 

 



Table 3. Comparison between the GA followed by substitution and the Lagrangean heuristic followed by 

substitution 

  

As we can conclude from Table 3, the GA heuristic follow by substitution to solve the MC problem is relatively 

expensive computationally when compared with the Lagrangean heuristic. However, the quality of the solutions 

found by the GA Heuristic is better. The GA heuristic with the substitution procedure found the best solution in 

all of the 200 trials. On the other hand, the Lagrangean heuristic with substitution failed to find the best known 

solution in two out of 20 problems. 

 

Table 4 illustrates the results when the GA-based heuristic (with substitution) was used to solve a real-life MC 

problem using the Amherst network. Once again, the results indicate a high degree of robustness. The results 

are relevant since using the substitution procedure appears to always make the GA method superior to the 

Lagrangean heuristic with substitution. It is, therefore, recommended that the GA-based heuristic be followed 

by the substitution procedure. Again, the results are a representative set from a sample of runs, with details 

found in Jaramillo [16]. 

 

Table 4. Results of Amherst data set (GA heuristic followed by substitution procedure) 

 
 

4.4. Competitive location problems 

Even though there are several heuristics reported in the literature to solve the medianoid and centroid problem, 

the computational experience and the test problems available are still very restricted. For example, although 

Benati and Laporte [17] have a good heuristic for competitive location models, their data sets are not available 

for direct comparison or benchmarking. Consequently, we used the well-known 55-node Swain network [21] 

utilized by Serra and ReVelle [22] and developed two additional test problems based on this network. The size 

of these two problems was limited to 30 and 37 nodes in order to find the optimal objective function value by 

enumerating all possible solutions. 



4.4.1. Medianoid problem 

Table 5 summarizes the experimental results on the set of the test problems. In this table, we list the problem 

name, the number of demand sites (nd), the number of potential facilities (nf), the number of existing facilities 

(Xp), the number of facilities to be located by the follower (Yr), the optimal solution value, which corresponds to 

the demand attracted by the new facilities (follower), the percentage of times that the GA-based heuristic 

reached the optimal value, and the average CPU solution time. These results show that the GA-based heuristic 

found the optimal solution for all 40 trials solved. This heuristic is also notably efficient in terms of execution 

time. 

 

Table 5. Solutions obtained with the GA and an exact algorithm 

 
 

Table 6 illustrates the results when the GA-based heuristic was used to solve a real-life medianoid problem 

using the Amherst data set. In this table, we list the case name, the number of demand sites (nd), the number of 

potential facilities (nf), the number of existing facilities (Xp), the number of facilities to be located (Yr), the best 

solution value, which coincides with the demand attracted by the new facilities (follower), the percentage of 

times that the GA-based heuristic reached the best solution value, the percentage of deviation from the best 

solution for the worst answer found by the GA-based heuristic, and the average CPU solution time. These 

results show that the GA-based heuristic gave the same answer 31 times out of 40, and the maximum difference 

between the worse solution and the best one was only 0.5% of the total demand. These results indicate a high 

degree of robustness. It must be pointed however that such large-scale medianoid problems could also be solved 

using a commercial solver and Revelle's integer programming for mutations [15]. 

 

Table 6. Results for Amherst data set 

 
 

4.4.2. Centroid problem 

As is evident from the problem description, the centroid problem necessitates the repeated solving of associated 

medianoid problems. These medianoid problems may be solved using either the greedy algorithm suggested by 

Benati and Laporte [17] or by using the GA heuristic we developed in the earlier section. This gives rise to two 

different GAs for the centroid problem itself. The variant in which the greedy algorithm is used as a subroutine 

to solve the medianoid problems is referred by us as the GA Greedy heuristic. On the other hand, if the GA 

heuristic of the previous section is used, the resulting procedure will be referred to as the regular GA heuristic 

for the centroid problem. Our initial experimentation reveals that, the GA greedy heuristic is as good as the 

regular GA heuristic in terms of quality of solutions. However, in terms of running time, the GA greedy 

heuristic was about six times faster than the GA one. Given this empirical finding, we performed the remaining 

evaluations using only the GA greedy heuristic. 



Table 7 illustrates the results obtained when the GA greedy heuristic and the one developed by Serra and 

ReVelle [22] were used to solve the same centroid problem on the 55-node Swain network [21]. In this table, 

we list the number of facilities to be located by the leader (Xp), the number of facilities to be located by the 

follower (Yr), the lowest, average and highest final capture (absolute) obtained by the leader after ten runs, and 

the average CPU solution time. 

 

Table 7. GA greedy heuristic against Serra and ReVelle's heuristic 

 
 

The following remarks can be made regarding the results illustrated in Table 7. 

 The GA greedy heuristic is notably more efficient than the Serra and ReVelle's heuristic in terms of 

execution time. 

 The GA greedy heuristic improved by 0.3% the best solution found by Serra and ReVelle's heuristic 

when the leader and the follower located seven facilities, respectively. The solution of 1621 was found 

when the leader located its facilities on the sites 4, 5, 7, 10, 22, 36 and 38. 

 In comparison with the Serra and ReVelle's heuristic, the GA greedy heuristic obtained better or equal 

mean solutions in seven out of nine problems. 

 

Table 8 illustrates the results when the GA-based heuristic was used to solve a real-life centroid problem using 

the Amherst data set. Four different problems were constructed modifying the number of facilities to be located 

by the leader and follower, respectively (5, 10, 15, 20). Each problem was solved five times in order to observe 

the capacity of the heuristic to arrive at the same solutions. These results indicate a high degree of robustness 

since the highest deviation of the demand taken by the leader corresponds to 0.46% of the total demand. Further, 

to the best of our knowledge, this is the largest size application of the Centroid Model reported in the literature. 

 

Table 8. Results for the centroid problem-using Amherst data 

 
 

4.5. GA operators 

Mutation rate is usually set to a very low level as mentioned in Section 3.5. However, the GA developed to 

solve location problems uses a dynamic mutation rate. Fig. 3 illustrates the mutation rate observed when the GA 

heuristic solved one of the problems reported in the previous sections. It can be seen that at the beginning the 

crossover operator is mainly responsible for the search. As the GA progresses, the mutation rate becomes more 

productive and so the crossover rate decreases. It is noted here that, in most cases, by the time this change 



occurs (i.e., the mutation rate becomes more productive) the GA has already achieved very decent solution 

quality. So even though the mutation rate becomes more productive, the improvement in solution quality from 

this point on is marginal. 

 

 
Fig. 3. Crossover and mutation rate. 

 

Fig. 4 illustrates one of the advantages of the replacement population method adopted in our GA. In this case, 

when the GA heuristic stops, we have available not only the best solution but also a set of different good 

solutions, all of them with just a modest percentage away from the best solution. 

 

 
Fig. 4. Evolution of the population. 

 

Finally, we present the results of another test that we ran in order to investigate the rate of improvement of the 

objective function value while using GA. For this, UFC problems were chosen from the same publicly available 

data set mentioned in the paper, where optimal objective function values are also given for each problem. We 

ran our GAs for each of these problems under two separate termination criteria: run until the optimal solution 

was obtained or, stop when within 1% of the optimal. The results are shown in Table 9. In this table, we list the 

problem name, the average running time when only optimal solutions were accepted, the average running time 

when solutions are within 1% of optimal solution were allowed, and the percentage of time's reduction when the 

second policy was adopted. These results indicate that the GA heuristic developed spends about 50% of its total 

consuming time trying to improve solutions that are already 1% or less over the optimal solution. 

 

 

 

 



Table 9. GAs running time 

 
 

5. Conclusions and further research 

This paper represents the first attempt to apply the technique of GAs to solve a comprehensive set of problems 

in location theory. The five representative location models that were chosen are the fixed charge location 

problem (uncapacitated and capacitated version) and the maximum covering problem from non-competitive 

location theory and the centroid and medianoid models from competitive location theory. Our criteria in 

choosing these models were (i) ensure that they were as general as possible, (ii) well-known heuristics were 

publicly available for solving them, and or (iii) performance of these heuristics on publicly available data sets 

was well documented. GAs were developed for each of these models and tested extensively on readily available 

hardware for benchmarking. 

 

The primary conclusion from our study is that GAs demonstrate a mixed performance in solving these four 

classical location models above. Overall, our testing shows that for the first three models, GAs tend to take a lot 

more time than specialized heuristics. However, the up-side is that the solutions that the GAs produce are no 

worse than and in fact, sometimes superior to the ones produced by these other methods that are available in the 

literature. As for excessive computational times, they may be rationalized in view of the fact that locational 

decisions by firms are mostly strategic in nature; hence, in almost every application, location models do not 

need to be solved on a repeated basis. The other encouraging feature about GAs is that our limited testing on the 

UFC reveals that they quickly evolve to give a ―good‖ solution; however, having obtained a good solution, GAs 

spend an excessive amount of time in getting marginal improvements. When it comes to capacitated fixed 

charge models, our finding is that GAs perform very poorly and should not be adopted. 

 

As for competitive location models, GAs seem to perform well with regards to both computation time and 

solution quality. In fact, to the best of our knowledge, the largest centroid model ever solved by a heuristic as 

reported in the published literature is in this paper. 

 

GAs were also tested on a large, real-life data set that was constructed based on the road network in Amherst, 

New York. Our testing revealed that GAs were able to give good solutions for each model (except the 

capacitated fixed charge location problem) and in addition, solution quality was quite robust with respect to 

initial starting conditions of the GA. 

 



However, it must be kept in mind that these findings are the results of a preliminary study. Much more work 

needs to be done before determining the suitability or even superiority of GAs as a viable solution procedure for 

location models. Therefore, the most immediate avenue for future research should be to conduct additional 

empirical work on GAs on other location models such as the p-median model, the center model, etc. Further, it 

may be worthwhile to benchmark the performance of GAs against other metaheuristics such as Tabu Search 

and/or Simulated Annealing algorithms for some of these models. Finally, another strand of future research 

could investigate the development of ―specialized‖ GAs for each different location model.  
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