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Abstract: 

The import of cost allocation procedures are through their ex ante impact on decision making. Hence, it is 

important that the allocation issue be placed squarely within the context of those firm's objectives which gave 

rise to the need for the specific allocation. To that effect, this paper focuses the debate on the identification of 

the indirect cost allocation method that is best suited to the specific reasons for requiring the cost information. 

First, it is shown that all existing allocation schemes (i) may be expressed in a common equation, flexible 

enough to be adapted to whatever decision-making purpose the firm desires; and (ii) fulfil the individual 

rationality conditions of game theory. Then, in light of the controversy as to whether the US Defense 

Department indirectly subsidizes the commercial side of its suppliers' operations, necessary and sufficient 

conditions are provided for allocations which do and do not subsidize. Non-subsidized allocations are shown to 

belong to the core. Subsidized allocations occur when the players (divisions') rational objectives are superseded 

by higher priority coordinating objectives of non-players (the firm).  
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1. Introduction 

This paper deals with the allocation of joint costs in cost-plus pricing situations. Its initial motivation lies on the 

question as to whether the US Defense Department indirectly subsidizes the commercial side of its suppliers' 

operations. Our points of departure are the 1987 inquiry of the US Defense Contract Audit Agency (e.g. [10]), 

the October 1992 issue of Accounting Review on a Forum on Accounting for Defense Contracts [3,11,15,17,26] 

and the recent articles of Gerchak and Gupta [7] and of Robinson [16], which have revived the controversy 

surrounding the indirect cost allocation issue. 

 

Rogerson [17] argues that the Department's practice of allocating overhead as a function of direct labour costs 

encourages firms to shift government procurement to in-house production and, if necessary, commercial output 

towards subcontracting. Similarly, Thomas and Tung [26] argue that contractors tend to overfund those pension 

plans associated with defense-related personnel and underfund those of workers engaged in commercial 

businesses. To generalize the subsidization issue, Gerchak and Gupta [7] use the continuous review order 

quantity reorder point inventory model with backordering (e.g. [23]), to show that allocation schemes based on 

volume, safety stocks or incremental contribution to total costs may not be fair, in the sense that at least one 

customer pays more than under the stand-alone cost policy. Instead, an allocation in proportion to the separable 

or non-centralized costs seems to be preferable for all customers. Robinson [16] recasts the problem within a 

game-theoretical framework and shows that the recommended allocation of Gerchak and Gupta [7] is not in the 

core, whereas those based on the Shapley value [22], Moriarity's [13] and Louderback's [12] are. 

 

A common thread of all these studies is their emphasis on the question of how to allocate at the expense of what 

to allocate. As a result, the discussion has centred on the development of a variety of allocation schemes, where 
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the differences lie (i) on the properties of the criteria to be used, such as whether the particular allocation 

scheme belongs to the core; and/or (ii) on the objectives of the allocation method, be them size, variability and 

the like. This has lead to three types of indirect cost allocation schemes proposed in the literature. One consists 

of game-theory based schemes, such as the Shapley [22] value and its variants (e.g. [8,9,18]). Another includes 

normative measures like those of Moriarity [13], Louderback [12], Gangolly [6] and Balachandran and 

Ramakrishnan [1]. The third one uses activity or ability-to-bear measures, such as size, variability, sales, plant 

assets, net realizable value and the like, as the basis for allocation (e.g. [2,5,19-21]). 

 

Whereas this line of reasoning continues to be a fruitful avenue of research, it does not address directly another 

fundamental question, namely what is being allocated. Addressing such question is the primary purpose of this 

study. The basic premise is that, since cost allocation procedures have direct impact on decision making within 

the firm, it is not possible to view cost allocations as separate from the incentives for divisions to make 

decisions within the firm. In fact, the value of a method will differ depending on whether the cost information is 

used for make or buy decisions, pricing, incentive compensation and the like. Nevertheless, it is possible to 

design a Generalized Benefit-Allocation Scheme (GBAS), where the main concern is how to translate such 

variety of incentives into 'savings' to be shared among the divisions of the firm and where the criteria for the 

sharing of those 'savings' are left entirely at the discretion of the firm's decision-making objectives for carrying 

out the allocation. 

 

The formulation of the GBAS represents the first main contribution of the paper. It results in a generalized 'how 

to' method, where the incentives are all converted into 'savings' from centralization in a similar fashion, even if 

the attributes of the 'best' allocation scheme can only be specified within the context of the decision making 

situation. It also indicates what to allocate, namely the benefits of centralization. The GBAS is described in the 

next section. It is shown (i) to be fair and valid as long as the cost associated with the grand coalition of all 

centres does not exceed the sum of the stand-alone costs; and (ii) to encompass the existing allocation models. 

 

The second contribution consists of the identification and comparison of two approaches to allocate the benefits 

of centralization. In light of the Defense Department example, they differ on the film's objective for the 

allocation. The first (Section 3) assumes that no cross-subsidization of divisions is to occur. Hence, each 

division represents an independent and rational player, seeking as the only objective to maximize its share of the 

benefits of centralization. Allocations satisfying this assumption are shown to belong to the core and necessary 

and sufficient conditions for their existence are provided. The second (Section 4), which corresponds to the 

Defense Department example, considers the same players now constrained in the pursuit of its optimizing 

objective by the overall profitability of a non-player, namely the firm. The subsequent analysis brings into ques-

tion the usefulness of core allocations, when player's rational objectives are superseded by higher-priority 

coordinating objectives of non-players. To illustrate this point, a simple game is created (Section 5) and optimal 

solutions consistent with the subsidizing behaviour alluded to earlier are provided. Finally, a Conclusions 

section completes the paper. 

 

2. A family of fair allocation schemes 

This well-known property, related to the benefits of centralization, is a necessary condition for the acceptability 

of any indirect cost allocation scheme. 

 

Property 1 (Centralization pays). Consider N cost centres, each with stand-alone costs of Ci and let CT be the 

cost associated with the centralized system. Then, the total costs under a single centralized centre does not 

exceed the sum of all the individual stand-alone costs, i.e. 

 

      

 

   

         



One of the most common applications of (1) lies in the area of risk pooling, as in random-demand inventory 

systems (e.g. [27]). Another deals with the elimination of redundant transfers in the centralizing of cash 

management of a multinational business (e.g. [4]). 

 

In this section, we consider the proposition that any of allocation schemes alluded to above may result in 

allocations smaller than the stand-alone costs, if the question is phrased in terms of what to allocate rather than 

how to allocate. For this purpose, the following definitions are needed. 

 

Definition 1 (Allocation scheme). An allocation scheme represents the portion, Xi, i = 1,…, N, allocated to each 

player i of the costs, CT, incurred by the grand coalition of all N players. 

 

Definition 2 (Fair allocation schemes). An allocation scheme of the joint costs, CT, is said to be fair if the 

following conditions hold: 

 

(a) It allocates to each centre i an amount, Xi, not exceeding its stand alone cost, Ci, i.e. 

 

Xi ≤ Ci      (2) 

 
(b) The total cost, CT, is fully allocated, i.e. 

 

      

 

   

 

 

Allocations which satisfy (2) and (3) are also said to satisfy the individual rationality criterion of game theory. 

Hence, (2) and (3) characterize the imputations of the game. These allocations also fulfil Thomas' [24,25] 

additivity and unambiguity allocation criteria, since the entire joint costs must be allocated and in a unique way. 

 

On the basis of these results, the following property characterizes allocation sets which are consistent with (2) 

and (3). 

 

Property 2 (A family of fair allocation schemes).  All allocations of the form  

 

                   

     

 

   

  

        

         

 

   

                    

 

with ai defined as the allocation rate, are fair, in the sense of Definition 2. 

 

The import of this family of allocations is manifested in at least four significant ways. First, the functional form 

has an intuitively appealing economic interpretation. The joint cost allocated to centre i, Xi, equals the stand-

alone cost, C1, minus a fraction, ai, of the coordination gain or stand-alone penalty. Such family of allocations 

clearly determines what is to be allocated to i, namely a fraction, ai, of the savings, 5, arising from the formation 

of the grand coalition. Second, since, by Property 1, this fraction is always non-negative, any allocation scheme 

defined by (4) is fair in the sense of (2) and (3). Third, as Appendix A shows, this includes the normative and 

game-theory schemes discussed above, i.e. the Moriarity, Gangolly, Shapley, Louderback, and Balachandran 



and Ramakrishnan allocation schemes. Hence, all of these allocation schemes may be placed in the same 

format, regardless of the purpose of the allocation. 

 

Fourth and more importantly, since ai has no units of measurement, it does not necessarily have to represent a 

cost ratio. In fact, the allocation proportion, ai, may be computed on the basis of any ability-to-bear measure, 

while still keeping the corresponding GBAS fair. The main implication of this result is that it places the choice 

of measures squarely in the hands of the firm. The restriction that a, is computed on an indirect-cost basis is 

lifted. The firm may tailor the allocation scheme to suit the objectives of the particular decision making 

situation requiring the allocation. This allows management to reward centres with, say, higher sales or lower 

lead time demand, rather than higher costs. It may also help to alleviate the allocation problem in the Defense 

Department situation, if a switch in allocation basis is made from direct labour costs to other value measure 

which does not reward higher costs. 

 

3. Fair and equitable allocations 

If the question of whether a centre is subsidizing another is relevant, as is in the US Defense Department 

example mentioned earlier, then it should be first observed that not all solutions satisfying Property 2 yield non-

subsidized allocations. For example, Robinson [16] shows numerically that Gerchak and Gupta's [7] preferred 

allocation scheme penalizes the largest centre. Hence, additional criteria are needed to ensure that the resulting 

scheme yields Pareto-optimal allocations. To that effect, the following definition is needed. 

 

Definition 3 (Fair and equitable allocation schemes). Let CS be the cost for sub-coalition S, composed of any 

combination of the members of N, i.e. S ⊆ N, and C-S, its counterpart for a coalition composed of all members in 

N but not in S. Then, a fair allocation is said to be equitable if it satisfies the group rationality criterion of game 

theory, i.e. if, in addition to (2) and (3), the following condition holds: 

 

                ⊆  

   

 

                   ⊆   

   

 

 

Hence, any scheme which does not include all centres yields nonequitable and hence suboptimal allocations. 

Thus the set of all equitable imputations form the core of the game. Its existence is not in doubt, since 

Balachandran and Ramakrishnan [1] prove that the L/BR allocation is always in the core. 

 

The next result identifies the necessary and sufficient conditions for an allocation scheme, Xi, i = 1,…,N, to 

belong to the core.  

 

Lemma 1 (Core allocations). Let IS be the incremental cost incurred if S joins all others (-S) in a grand 

coalition. Then, an allocation scheme, Xi, i = 1,…, N, is in the core iff 

 

             

   

          ⊆                   

 

Proof. By contradiction. Suppose that the allocation set belongs to the core, i.e. it satisfies Definition 3. Assume 

further that, contrary to (6), 

 

             

   

           ⊆              

 

Then, combining (7) and (3), one obtains  



             

   

 

 

and 

 

       

   

                

 

which violates the core condition in (5); hence, the first contradiction. 

 

Similarly, suppose that (6) holds and consider, contrary to (5), that 

 

   

   

           ⊆                  

 

Then, combining (9) and (3), one obtains  

 

        

   

  

 

and 

 

                       

   

 

 

which violates the condition in (6); hence, the second contradiction. 

 

From Definition 3 and Lemma 1, it follows that all equitable allocation schemes, Xi, i = 1, must satisfy 

 

                       ⊆

   

    

 

Expression (11) places in the core all schemes which allocate to each coalition, S ⊆ N, (i) at least its marginal 

contribution, CT   C-S, to the grand coalition's cost; but (ii) no more than the cost incurred by S on its own. The 

first inequality is needed to avoid S being subsidized by the other members, whereas the second puts an upper 

limit on the cost to be allocated to S, as an incentive for S to join those in (  S). Additional insights into the 

nature of the core allocations are provided by the next lemma, obtained when (4) and (11) are combined to 

produce another set of necessary and sufficient conditions for a set of allocations to be in the core. 

 

Lemma 2 (An alternate characterization of core allocations). An allocation pattern is in the core iff 

 

   

   

                                

      

 

 

Expression (12) conveys a very intuitively appealing economic interpretation to equitable allocations. Since ai 

represents the proportion of the coordination gain, δ, allocated to centre i, it follows that the middle term yields 

the portion of the consolidation gains allocated to those in S. As an incentive to join the grand coalition, this 

amount must exceed those obtained by the members of S forming a coalition among themselves only. This 



justifies the direction of the first inequality. As for the second and to avoid subsidizing, S's share of the 

consolidation gains cannot exceed its contribution towards the cost reduction for the grand coalition. 

 

4. Are equitable allocations necessary? 

The desirability of core allocations lies on the premise that players are rational and self-interested. Thus, Pareto-

optimal solutions yield the least undesirable allocations. However, the Defense Department example brings an 

additional element into the equation, namely that the firm itself has objectives of its own which may supersede 

those of the individual divisions. As a result, it may be perfectly rational behaviour for the firm to allocate to a 

given centre (e.g. the one with the government contract) more than its share of the costs, if market conditions 

allow it. A case in point, even if extreme, is a firm with a monopoly product to which a larger than equitable 

share of the indirect costs is allocated, to help render other products more competitive. In more realistic cases 

and generalizing the 'ability-to-bear' argument, allocations in inverse proportion to demand elastici ties may 

yield 'better' allocations for the firm (`better', in terms of the firm's overall objective), even if not necessarily for 

all the centres themselves, than their Pareto-optimal counterparts, since the former are more representative of 

market conditions. 

 

Another example may be that of the government contract alluded to earlier. At its simplest, the problem may be 

posed as a comparison between one (or more than one) player(s), g, representing the government contract(s) and 

all the others, ( g), which represent the commercial side of the firm. Then, a potential solution to the allocation 

issue may be based on a game where the only coalitions allowed are the commercial players on the one hand 

and the government-contract side, assumed for simplicity to be a singleton. The following result characterizes 

such a game. 

 

Lemma 3 (A special type of game). Consider a game characterized by the following cost structure:   

 

   

 
 

 
                    
                      

                

                    

              

 

Then, an allocation belongs to the core iff 

 

                         

        

 

   

  

          

   

                

 

Expression (14), obtained from (11) and (13), also conveys a very intuitively appealing economic interpretation. 

For our purposes, i = g is the only singleton of interest. Then, since (1   ag) yields the fraction available for 

sharing among all commercial divisions, δ(1   ag) represents the cost savings available to be shared by all non-

government divisions, if the grand coalition is formed. On the other hand, if g is left out on its own, the cost 

savings available to the singleton, ϕg, reflect the difference between the sum of the stand-alone costs and those 

from a coalition of all non-government divisions. Then, for a given allocation to be in the core, the grand 

coalition gains must exceed those obtained by a coalition formed by all divisions except g. 

 

In more general terms, one may envision a firm with N divisions, each with different market power or at the 

very least with different 'ability to bear' capabilities, which determine the share of indirect costs allocated, on 

the basis of some objective on the part of the firm. The end result may not be in the core and it may not even 

belong to those characterized by Definition 2. Such problems may be formulated and solved by using standard 



optimization techniques. For illustrative purposes, the following property considers a firm's profit-maximizing 

allocation problem and optimal allocation schemes for three special cases. 

 

Property 3 (A profit-maximizing allocation problem). (a) Let fi(Xi) be the profit earned by centre i, i = 1,...,N, 

before its share of the indirect costs is allocated. Then, the firm's allocation problem consists of 

 

                             

 

   

 

 

s. t. 

 

       

 

   

 

 

                      
 

(b) If fi(Xi) is a convex function of Xi, i = 1,…, N, then there exists an optimal allocation strategy in which all 

costs are allocated to only one centre, i.e. 

 

  
   

                                                           
                          

                                                                 
       

 

(c) If fi(Xi) is a concave function of Xi, i = 1,…,N, the optimal allocation pattern may be approximated by the 

solution to the linear program resulting from replacing in (15) all fi(Xi)'s with piece-wise linear functions. 

 

(d) If all fi(Xi)'s are identical concave functions, then the optimal solution to (15) is to allocate an equal amount 

to all centres, i.e. 

 

  
                                           

 

Property 3a provides the mathematical formulation for a specific allocation problem, where the objective is the 

maximization of profits earned by all centres. Profits are defined as a function of the allocation pattern, given by 

the Xi's. The constraints are the individual rationality conditions of Definition 2. Optimal solutions for special 

forms of the profit functions are presented in Properties 3b-3d. More specifically, Property 3b presents an 

optimal solution to the problem of maximizing a convex function, subject to a linear constraint. For such 

problems, there exists an optimal solution, given by (16), at the extreme point which yields the maximum profit. 

Similarly, Properties 3c and 3d present two well known cases of maximizing a concave function, subject to 

linear constraints. Property 3c plays the double role of giving an approximate solution for the general concave 

case and of serving as a necessary condition for Property 3d, whereas Property 3d provides an explicit optimal 

solution to the special case of identical concave functions. The validity of Property 3c is justified in Chapter 1 

of [14] and that of Property 3d, in Appendix B. 

 

Property 3b highlights some of the problems of the 'cost-plus' type of arrangements, common in many of the 

government contracts discussed earlier. It gives the firm the incentive to shift as much of the indirect cost 

burden as possible to the government side. In fact, it can be readily shown that such a result holds for any full-

cost pricing situation. Furthermore, for (16) to be fair, it is required that CT does not exceed the stand-alone cost 

of the centre which absorbs the entire cost. Such a situation, even if somewhat unusual, may be valid in cases 

of, say, a player (the government?) with very high stand-alone cost structure, at least as compared to that of the 

other players (on the commercial side?). 



Property 3d relates to the question of what-to-allocate, either cost or benefit. Specifically, the equal cost 

allocation solution of (17) can be shown to be fair, only if there exists at least one player with a stand-alone 

cost, Ci, higher than the average cost per player, CT/N, of the grand coalition, i.e. unless all players are of similar 

strength. This is in contrast to the equal benefit allocation solution of ai = 1/N, which may be shown to be 

always fair, but not necessarily equitable. 

 

5. Conclusions 

Based on the Defense Department example alluded to earlier, this paper evaluates the question of whether it is 

rational behaviour for a firm to shift indirect costs from one division to another at the expense of the specific 

profitability objectives of the affected divisions. To answer this question it is worth noting that the import of 

cost allocation procedures are through their ex ante impact on decision making. As a result, the allocation issue 

should be placed squarely within the context of those firm's objectives which gave rise to the need for the 

specific allocation. As shown in this paper for the Defense Department example, it is perfectly rational for a 

firm to shift indirect costs to particular divisions, if such undertaking better meets its overall objectives. 

 

To that effect, this paper shifts the focus of the debate on the identification of the 'best' indirect cost allocation 

method to the purpose of the allocation itself. Any allocation scheme must be evaluated in context. The costs 

and benefits of an allocation scheme depend on how the cost information is used. For example, the Shapley 

allocation of the cost of an internally generated good or service keeps divisional managers from purchasing that 

good or service outside the company, on their own, at a higher cost to the company as a whole. Here, the cost 

information is used in the make or buy decision. In the Defense case, the cost information is used to set prices 

and generate profits when the firm is engaged in both government and commercial dealings. 

 

This shift has resulted in the identification of an entire family of allocations, which meet the desirable 

individuality conditions of game theory and are flexible enough to be adapted to whatever, decision-making 

purpose thy firm has in mind for this cost information. From these, core allocations have also been derived, for 

those cases in which the firm chooses not to subsidize any division at the expense of the others. In the process, 

questions have been raised as to the appropriateness of game-theoretic solutions to the indirect cost allocation 

problem, if, as in the Defense Department example, subsidization meets the objectives of the firm. As a result, 

specific solutions not necessarily in the core have been shown to be desirable for the firm, even if not 

necessarily for the players themselves, under various realistic conditions. An important implication of this 

research is to question the usefulness of searching for equitable allocations in cases whereby 'coordinating' 

objectives have priority over and may conflict with the players' own priorities. 
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Appendix A. Comparing GBAS to the normative allocation schemes 

In this Appendix, the GBAS is compared to the Moriarity, Gangolly, Shapley, Louderback, and Balachandran 

and Ramakrishnan allocation schemes. For the GBAS, the last two schemes may be shown to be equivalent 

(heretofore denoted by L/BR). To that effect, Table 1 provides expressions for the allocation, Xi, and the 

allocation proportion, ai, to centre i = 1,…, N, associated with each scheme. Table 2 provides an illustrative 

computational example, using the model and the following data from Gerchak and Gupta [7] and Robinson 

[16]. 

 



 
 

Note that the term Ii in Table 1 denotes the incremental cost incurred if centre i joins the grand coalition. Also, 

observe, from the Xi's of Table 1 and the (Xi/Ci)'s of Table 2, that Moriarity's scheme results in all centres being 

allocated a constant proportion to their stand-alone costs. On the other hand, L/BR's depends upon each centre's 

contribution to the total costs. In addition, the expressions and the values for the allocation fraction clearly 

delineate the special characteristics of the two allocation methods. Moriarity allocates the cooperation gain in 

direct proportion to the stand-alone costs. L/BR's weights are based on the stand-alone costs net of those arising 

from centre i joining the coalition. Furthermore, by equating their respective expressions for ai, it can be readily 

shown that the two methods yield the same allocation, when centre i's contribution rate to the stand-alone costs 

equal its counterpart to the incremental costs, i.e. when 

 

                  

 

   

 

   

                 

 

Moriarity and L/BR consider costs and benefits of a centre either standing on its own or as a member of the 

grand coalition. In addition, the other two schemes also take into consideration each centre's contribution to the 

various possible subcoalitions. Gangolly's scheme consists of two steps. First, for each subcoalition R ⊆ N, the 

savings of forming R is allocated to its members in proportion to their stand alone costs. Then, the total 

allocation for any given member i represents the sum of the savings allocated to all subcoalitions of which i is a 

member. On the other hand, Shapley allocates to each centre i an amount equal to the expected marginal savings 

incurred when i joins the different subcoalitions. For the example of Table 2, the Shapley's allocation proportion 

suggests almost equiprobable allocation of the grand coalition's savings. In addition, an examination of the 

appropriate allocation fractions from Table 1 suggest that Gangolly's scheme is equivalent to Moriarity's and 

L/BR's when (A.2) and the following expression hold true: 

 

            

 

   

           

 

Expression (A.3) has also a meaningful economic interpretation. Observe from Table 1 that, in the equation for 

8Gi, the value corresponding to the R = i singleton is always equal to one. Hence, the term in parentheses of 

(A.3) represents the sum of the proportions of the cost savings incurred when i joins all potential subcoalitions. 

Then, for all three schemes to yield the same allocations, that cumulative fraction of the total stand-alone costs 

must equal δ, the benefits obtained if, rather than all acting on their own, all centres were to form a grand 

coalition. 



 
 

 
 

In summary, the above comments help placing the four allocation schemes into proper perspective. A 

distinction is made between the allocation of costs (Moriarity) and the distribution of coalition-formation 

savings (L/BR, Gangolly, Shapley). In addition, the savings may be total, i.e. resulting from a comparison 

between the grand coalition and the singletons (L/BR), or may also include subcoalition savings (Gangolly and 

Shapley). In any case, the allocation basis is cost proportional. However, as discussed elsewhere, since the ai's 

have no units of measurement, then they do not have to represent fractions of costs. As with the GBAS, any 

other value measure consistent with the firm's decision- making objective for the allocation itself could be 

substituted for indirect costs and still keep the various properties of the original schemes. The last example of 

Table 2 serves to illustrate this point. There, the units of measurement is the annual demand. The firm appears 

to encourage sales volume, by allocating an indirect cost amount, Xi, to centre i which is lower than that 

assigned by any other allocation scheme. The end result is a substantial generalization of the existing schemes. 

Allocating the coalition benefits in proportion to ability-to-bear measures ties the most widely used activity-

based allocation basis to the best known normative models. 

 

Appendix B 

Proof of Property 3d. The following definitions are needed to prove Property 3d. 

 

Definition B.1. A function f(x): ℝn
 →ℝ is said to be symmetric iff f(x) = f(x

a
), where x

a
 is one of the n! 

permutations of x. 



Example. If x = (x1,x2)   ℝ2
, then f(x): ℝn

 → ℝ = (x1,x2) is a symmetric function. 

 

Definition B.2. A set S   ℝn
 is said to be symmetric iff 

 

x   S x
a
   S, 

 

where x
a
 is one the n! permutations of x. 

 

Example. The unit circle in R
2
 with its centre at the origin is a symmetric set. 

 

Using the above definitions, the following lemma justifies Property 3d. We believe that this lemma is part of the 

folklore, but for the sake of completeness, we state the proof here. 

 

Lemma. Consider the following problem: 

 

Max (Min)  F (X)  

subject to X   S, 

 

where X = (X1, X2,…,Xn), X   ℝn. 

 

If F(X) is a concave (convex) symmetric function of X, and S is a compact, convex, symmetric set, ∃ an optimal 

solution X
*
 to the problem where   

  =   
  = 

… 
=   

 . 

 

Proof. Since F(X) is a continuous function and S is compact, it follows that an optimal solution exists to the 

above problem — say it exists at X
a
 = (  

 ,   
 ,…,  

 ). Then,   
 , 1 ≤ q ≤ n!, where   

  is one of the n! 

permutations of X
a
, is also in S (because S is symmetric) and 

 

F(  
 ) = F(X

a
), 1 ≤ q ≤ n! 

 

(because F is symmetric). Consider the following point: 

 

       

  

   

     

 

X
*
   S because S is convex and X

*
 is a convex combination of points in S. In addition, 

 

     

 
 
 

 
       

                          
  

   

      
                         

  

   

  

 

implying that F(X
*
 ) = F(X

a
). Furthermore,   

  =   
  = 

…
 =   

 .  ∎ 
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