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Abstract:  

This paper addresses the current gap in the literature on quantitative tools that enable a manager 

to build schedules which incorporate job rotation by employees. This is done within the 

framework of the well-known Assignment Model recast in a multi-period setting. In addition to 

the usual objective of minimizing the total cost of assignment, we also consider a requirement to 

minimize the boredom felt by employees due to continued repetition of the same task over 

consecutive periods. Depending on alternative definitions of 'boredom', different bi-objective 

optimization models are formulated and solved using polynomial time algorithms or simple 

heuristics. In the case of heuristics, their implementation is discussed and computational 

experience is also reported.  

Keywords: Assignment model; Repetitive tasks; Job rotation; Cyclic scheduling  

 

Article: 

 

1. Introduction  

The most well known quantitative model for assigning workers to jobs is the Assignment Model, 

which has been utilized for a long time in numerous scheduling applications (Pinedo 1995). The 

traditional assignment problem seeks to assign a given number of workers to a given set of tasks 

while attempting to optimize some criteria such as the total cost or profit generated by the 

assignment. However, this approach has one major drawback: when the same problem is 

repeatedly solved, the worker-task assignments may turn out to be the same, i.e. the same jobs 

will need to be repeatedly performed by the same workers without any rotation. This may lead to 

boredom on the job due to repetition, thus underscoring the need for job rotation. However, this 

problem has not received attention in the traditional literature on scheduling of repetitive tasks 

(Pinedo 1995, Shtub et al. 1996, Al-Subhi et al. 1997). 

 

It is interesting to note that independent of the multi-period assignment models, job rotation is a 

commonly observed practice in today's industry and an active area of research (Osterman 1994, 

2000, Gittleman et al. 1998, Krajewski and Ritzman 1999, Ortega 2001). The purported benefits 

of job rotation in the literature are: fostering employee learning, reducing employee boredom, 

leading to increased motivation and increased human capital accumulation. In addition, Ortega 

(2001) argues that job rotation also results in 'firm learning', i.e. employers learning more about 

its employees. However, empirical evidence of the success of job rotation is mixed. Based on 
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implementations at companies such as American Cyanamid, Bethlehem Steel, Ford and TRW, 

Griffin (2002) postulated that job rotation has not been very successful in either increasing 

employee motivation or satisfaction. On the other hand, Cunningham and Eberle (1990) and 

Davis and Taylor (1989) have reported that job rotation improves employee satisfaction, 

although it may not improve employee performance. 

 

Our research shows that, in almost all the studies cited above, job rotation is done by mangers on 

a simplistic rule, for example a different job every day or on an ad hoc basis. This leads us to 

conjecture that the effectiveness of job rotation can be significantly increased if proper 

quantitative models were available to help managers decide good rotation plans. Our conjecture 

is supported by research done by Moorehead and Griffin (2001), Konz (1983) and Niebel (1993), 

who have concluded that the ineffectiveness of the job rotation approach is highly correlated 

with the way the jobs are being scheduled. The need for an effective job rotation model is further 

necessitated by the fact that contemporary management practice requires, in many cases, having 

multi-skilled employees that will be cross-trained in different jobs available by rotating these 

employees in a predetermined fashion (Dulin 1998, Thompson 1999, Anselmi and Sundarrajan 

2000). 

 

All this supports the rationale and motivation for our paper, which is to develop a bi-objective, 

multi-period assignment model that seeks to assign a given set of workers to a given set of tasks 

over a number of periods (henceforth, assumed to be days, without loss of generality) with the 

aim of rotation. The two objectives that we consider in the paper are: (1) minimize the total cost 

of assignment over all the days and (2) minimize the 'boredom' that the workers feel with their 

task assignments over all the days. In the next section, we discuss the preliminaries and formally 

state our multi-period assignment model. Thereafter, the next three sections consider three 

different versions of this generic model. The last section concludes the paper by summarizing 

our findings and proposing avenues for future research. 

 

2. Preliminaries  

In this section we will discuss the mathematical notation used in the paper and then, on this 

basis, present a formulation of our multi-period assignment model with rotation. We assume that 

the number of workers is given by 1, 2, … , i, I  and that each of them is to be assigned to a 

single task from a set given by 1, 2, … , j, … , J . As described in the literature on Assignment 

Models, we will assume without loss of generality that I = J, since, if that is not the case, we can 

easily satisfy this assumption by creating dummy jobs or workers with zero assignment costs. 

The assignment problem is multi-period, in the sense that it has to be repeated for each of K 

periods denoted by 1, 2, 3, … , k, K . In this paper, without loss of generality, we will assume 

each period to be a day, but they could as easily be hours or weeks. For example, when three 

workers need to be assigned to three different tasks over 7 days, we will have I = J = 3 and K = 

7. We will also assume that C = cij  represents the cost matrix of assignment; in other words, if 

worker i is asked to perform task j on any given day, the cost incurred by the organization for 

that day due to this assignment is cij. 

 

Given this, the main goal of the assignment model is to identify an assignment of these I workers 

to these J jobs in each of the K days, while simultaneously attempting to optimize the following 

two, possibly conflicting, objectives.  



 Objective 1. Minimize the total cost of assignment over the entire K days.  

 Objective 2. Minimize the 'boredom' that the workers feel with their individual 

assignments over the entire K days. This is assumed to be achieved by attempting to 

avoid repetition of the same task by a worker over these K days. Thus, the second 

objective can also be interpreted as requiring job rotation in the assignment.  

 

While Objective 1 is standard in the existing literature on assignment models and is therefore 

easily formulated, the same cannot be said about the second objective. This necessitates the 

formalization of that objective in terms of the input parameters of the model—and this is exactly 

where our paper separates into the three different models presented in sections 3, 4, and 5. Each 

one of these models measures boredom in a different way, thus resulting in three different 

formulations of Objective 2 in these sections. Nonetheless, all these formulations use the 

following Boolean assignment variable   : 

 

 
 

Given the definition of   in (1), the general multi-period assignment model that we address in 

this paper can be formulated as the following integer programming problem: 

 
The constraints in equations (2) are standard in all assignment models—they ensure that, in any 

given assignment, each worker is assigned to exactly one job and each job to exactly one worker 

in each of the K days. As mentioned above, Objective 1, which measures the total cost associated 

with any given assignment, is described as   . 

 

3. Model 1. Minimize maximum number of repetitions  

In this section, we present the first model that is based on the first formulation of Objective 2. 

Herein, we assume that, given any assignment, the boredom of any worker with a given task over 

the entire K days is presented by the total number of times that s/he will be assigned to this task 

over these periods. In other words, 

   

Given this, we measure the boredom of this worker i with this entire given assignment as 

 
 

Formula (3) measures the boredom of worker i with this given assignment as the maximum 

number of times that s/he has had to repeat any task in this assignment. With this formulation of 
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Objective 2, the first model that we present for solving the multi-period assignment problem in 

equations (2) can be represented as the following bi-objective integer programming problem: 

 
Since problem (4) is a bi-objective optimization problem, solving it entails the finding of the 

efficient frontier, which is also called the set of Pareto Optimal solutions (Taha 1997). In order to 

do so, note that B(i) is guaranteed to be an integer in the interval [1, K]. Thus, problem (4) can be 

solved by parametrizing on B(i), which is defined in formula (3). In other words, the optimal 

solution to (4) can be found by solving the following optimization problem (5) repeatedly, once 

for each value of q = 1, 2, … , K: 

 
To solve optimization problem (5), note that, for a given integral value of q ∈ [1, K], this 

problem can be formulated as the following Min-Cost Flow Problem, which is known to be 

solvable in polynomial time (Ahuja et al. 1993, Taha 1997). In fact, the linear programming 

formulation given below can also be used to solve this model and is guaranteed to give integer 

solutions. This Min-Cost Flow formulation is defined on a graph G = (V, A), whose vertices and 

arcs are as follows (see figure 1): 



 
Figure 1. Graph G(V, A). 

 

V, the set of vertices, is given by  

 s and t that denote source and sink nodes, respectively,  

 I 'Worker Nodes', given by W1, W2, … , Wi, … , WI,  

 J 'Task Nodes' given by T1, T2, … , Tj, … , TJ. 

 

A, the set of arcs, is given by  

 (s-Worker) Arcs. There are I such arcs, each of which goes from the source node s to 

each of the worker nodes. The lower bound, upper bound and cost of flow on each of 

these arcs is set to K, K and 0, respectively, to ensure that each worker has an assignment 

for each of the K days.  

 (Tasks-t) Arcs. There are J such arcs, each of which goes from each Task Node to the 

sink node t. The lower bound, upper bound and cost of flow on each of these arcs is set to 

K, K and 0, respectively, to ensure that each job has a worker assigned to it on each of the 

K days.  

 (Worker-Task) Arcs: there are (I J) such arcs. Each of these arcs goes from every 

worker node Wi to every task node Tj. On each of these arcs, the lower bound and upper 

bound are fixed at 0 and q, respectively. The cost of flow on an arc going from worker 

node Wi to task node Tj is fixed at cij. This guarantees that no worker will be assigned to 

any job more than q times subject to all this and other constraints imposed by the 

capacities of (s-Worker) and (Tasks-t) arcs; the total cost of the assignment will be 

minimized. 

 

For illustrative purposes, we present in figure 2 the specific instance of the above graph G(V, A) 

for the case where I = J = 2 (i.e. there are two workers to be assigned to two jobs) and the costs 

are as follows: c11 = 10, c12 = 20, c21 = 30 and c22 = 40. The total number of periods, K = 7 (i.e. 

one week), and we assume that we are solving (5) for q = 4. In that case, solving (5) will entail 
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finding the Min-Cost flow on the instance of G shown in figure 2. Note that the triple [… , … , 

…] on every arc in that figure represents the lower bound, upper bound and cost per unit flow, 

respectively, for that arc. For example, the triple [7,7,0] for the arc (s,W1) indicates that the 

lower bound and upper bound of flow on that arc are 7 units each and the cost per unit flow is 0. 

By solving the Min-Cost Flow problem (any commercially available linear programming 

software will suffice), one can verify that an optimal solution is as follows: Flow on (W1, T1) = 

Flow on (W2, T2) = 4 and Flow on (W1, T2) = Flow on (W2, T1) = 7. This translates to a policy 

where Worker 1 is assigned to Task 1 for the first four days of the week and to Task 2 for the last 

three. Worker 2 is assigned to Task 2 for the first four days and to Task 1 for the last three. The 

total scheduling cost is 350. 

 
Figure 2. Specific instance of graph G(V, A). 

 

4. Model 2. Minimize consecutive repetitions  

  In this section, we will use a different definition of 'boredom', which will lead to an alternative 

formulation of our model and a different solution methodology. The managerial premise of this 

alternative definition of boredom is that, in a good assignment, no worker should have to repeat 

the same job twice in any two (or preferably more) consecutive days. To formulate this 

mathematically, we define DAYS-OF-ROTN as a parameter that represents the minimum number 

of consecutive days over which it is desired that no worker should have to repeat any job. Hence, 

if DAYS-OF-ROTN = 2 for a given assignment, then it implies that there is a desire that no 

worker should repeat the same job in any two consecutive days in this assignment. Given an 

assignment, we define B(i, j) as the boredom felt by worker i from task j in this assignment over 

the entire K days as follows: 

 
 

The boredom felt by this worker i from the entire assignment is defined as B(i), which is given 

by 

 
 

Given these definitions in (6) and (7), the problem of finding the best assignment can be 

formulated as the following bi-objective integer programming problem: 
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As is evident, optimization problem (8) is a nonlinear integer programming problem, which is 

generally NP Hard. Hence, we propose the following iterative heuristic for it, which is based on 

the idea presented below. 

 

Assume that we have solved the assignment problem for day 1. Then, if worker i is assigned to 

task j on day 1, we can discourage his/her assignment to the same job on the next days by 

increasing the cost cij to an appropriately large amount for the next day's assignment problem. 

The increase must be large enough to capture the desire of the decision maker to avoid 

consecutive assignments over two successive days; for example, if this assignment is prohibited, 

then the cost should be set to infinity. If this assignment is not preferred for the next DAYS-OF-

ROTN days, then this increase has to be done for as many days and in a manner that reflects the 

decision maker's inherent desire to avoid repetitions within any consecutive DAYS-OF-ROTN 

days. This is the central idea behind the heuristic. Basically, the heuristic will solve K different 

assignment problems successively (one for each day), with K different cost matrices. In order to 

present this heuristic in an algorithmic format, assume that we define K cost assignment matrices 

named C
(1)

, … , C
(k)

, … , C
(K)

, where C
(k)

 is the cost assignment matrix that will be used to solve 

the assignment model for the kth day and will be obtained on the basis of assignments that are 

made on the (k-1)th day. The algorithm for the heuristic is presented below. 

 

4.1 Avoid-Consecutive-Repetitions algorithm  

   

Input: Cost of Assignment Matrix C = cij , Workers: i = 1, 2, … , I  and Tasks: j = 1, 2, … , 

J  

Output:   for i = 1, 2, … , I, j = 1, 2, … , J and k = 1, 2, … , K. 

Initialize all cost matrices as follows: C
(1)

 = C
(2)

 = …C
(k)

 = …C
(K)

 = C 

for (k = 1, 2, 3, … , K) do 

 
Solve the assignment model for these I workers to these J tasks for the kth days, using cost 

matrix C
(k)

. Examine the assignment obtained. 

for (i = 1, 2, 3, … , I) do 

 
for (j = 1, 2, 3, … , J) do 

 

if (   ) then 

 



Modify   in the cost matrices C
(k

 
+ 1)

, … , C
(k + DAYS-OF-ROTN)

 as per 

a given rule that captures the desire of the decision maker to avoid consecutive assignments. 

 

 

 

 
 

4.2 Implementation of Avoid-Consecutive-Repetitions algorithm  

  The Avoid-Consecutive-Repetitions algorithm was implemented as a user-friendly program in 

Microsoft Excel. Macros using customized Visual Basic were utilized to automate execution of 

the Solver Add-in for each consecutive day. 'If' statements were used to create an algorithm to 

adjust the actual cost of the worker-job assignment based on whether the worker had been 

assigned to that job in previous days. The number of workers and/or jobs was allowed to range 

from two to 12. The schedule could be customized to complete a schedule from one to ten days. 

Finally, the application could be adjusted to change the DAYS-OF-ROTN parameter from 1 to 5 

days with different rules for changing cij to avoid consecutive assignments. The final algorithm 

was then implemented via a separate macro written in Visual Basic. This MS-Excel 

implementation was empirically tested on a complete grid of costs for 12 workers and 12 jobs. 

Four sets of random costs were generated, each in the interval (1, 10). The average cost ranged 

from 5.2 to 5.8 and the standard deviation ranged from 2.7 to 2.9. 

 

4.3 Impact of changing the DAYS-OF-ROTN value  

  Our first set of empirical tests was to investigate the effect of imposing a greater amount of 

rotation (by increasing the value of DAYS-OF-ROTN) on total scheduling costs; intuitively, we 

would expect the cost of the assignment to increase. We confirmed this in our observations. 

Figures 3 and 4 present the average increase in costs of all randomly generated data sets in cases 

where DAYS-OF-ROTN = 1 and 3, respectively. Simulation averages with the random data sets 

that assumed DAYS-OF-ROTN = 1, i.e. rotating the assignments every other day, are summarized 

in figure 3, and as can be seen therein, the average costs in our simulation ranged from 111 to 

128% of the optimum costs (no rotation) after just 10 days of schedule. By contrast, the 

simulation averages shown in figure 4 indicate a larger increase in scheduling costs when we 

increased the amount of rotation by making DAYS-OF-ROTN = 3. 



 
Figure 3. Cost penalty for DAYS-OF-ROTN = 1.    

 

 

 
Figure 4. Cost penalty for DAYS-OF-ROTN = 3. 

 

4.4 Impact of changing workers to tasks ratio  

Next, we investigated the impact of changing the ratio of workers to jobs/tasks. Our empirical 

results indicated that having more workers than jobs leads to a higher rise in costs (relative to the 

cost where rotation is not required) than when the opposite is the case. Consider a typical 

example that we show in figure 5, which is for a specific instance of the problem where we took 

a (12 worker 12 job) problem and tested with two fewer jobs than workers and then with two 

fewer workers than jobs. 
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Figure 5. Impact of changing workers to job ratio. 

 

5. Model 3. A hybrid of Models 1 and 2  

  In this section, we will discuss our third and final variant of the generic model given in the 

second section. This version is a hybrid of the models in the previous two sections. It attempts to 

simultaneously restrict the maximum number of assignments of a worker to any job and also the 

maximum number of consecutive assignments of a worker to the same job. To formalize the 

development of this model, we define T(i, j) of worker i on job j as the total number of 

assignments of worker i to job j: 

 
Then, one of the boredom measures of worker i will be the maximum number of assignments to 

a specific job j in k periods, defined as   . We now impose the condition that 

the maximum number of assignments should not exceed a predetermined limit of Tm assignments 

for any job in a set. Although we assume for the sake of simplicity that the same limit will be 

used for all scheduled workers, the model and the solution proposed can be used when this 

assumption is not true. Thus by our assumption, no worker should be assigned to any job more 

than Tm times in a k-period schedule. Along the same lines, we also impose the additional 

condition that the maximum number of consecutive assignments of worker i to job j, which is 

another measure of boredom, should not exceed a predetermined limit of Bm. Since this hybrid 

model combines the essential ideas of Models 1 and 2, we would expect that its results, while 

different in general from either of the Models 1 and 2, will be of more use to practitioners. 

Nonetheless, the mathematical formulation of the hybrid model is as follows: 
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To solve the model described in problem formulation (9), we propose the following heuristic 

algorithm. This algorithm is based on employing the assignment model in each period and using 

a heuristic approach to assess the boredom level of a worker in that period. If at any scheduled 

period a worker reaches the limit of consecutive assignments for a specific job, then s/he is 

prohibited from the assignment to this job in the next period (the cost of such an assignment is 

also substantially increased). Also, if at any point of time in the schedule, a worker reaches the 

maximum limit of assignments to a specific job, then s/he is prohibited from doing this job for 

the rest of the scheduled periods. This algorithm is described below. 

 

5.1 Hybrid-Model algorithm  

   

Input: Cost of Assignment Matrix C = cij , Workers: i = 1, 2, … , I  and Tasks: j = 1, 2, … , 

J  

Output:   for i = 1, 2, … , I, j = 1, 2, … , J and k = 1, 2, … , K. 

begin 

 
Step 1. In the first period (k = 1), all workers are numbers from 1 through I, and all jobs are 

numbered from 1 through J. We assume that I = J, otherwise a dummy number of workers (I - J) 

or jobs (J - I) may be added. Assign the workers to jobs by employing the assignment model. 

while (k ≤ K) do 

 
Step 2. At any period k in the schedule, use the assignment model to identify the minimum cost 

assignment schedule. 

Step 3. Revise the cost of assignments for the next period (k + 1). To do that, for each worker i 

identify the two parameters of boredom: B(i), the maximum number of consecutive assignments, 

and T(i), the maximum number of total assignments for a job. If both parameters are less than the 

limits, Bm and Tm, respectively, then the cost of assignments of worker i to job j for the next 

period (k + 1) will be the same, Cij. If either of these parameters reached the limit, then the cost 

of assignments will be M, or a huge positive number substantially greater that the actual costs: 

 

 

 
End 

 

5.2 Implementation of the Hybrid-Model algorithm  

  To identify the performance of the Hybrid-Model algorithm and prove its effectiveness, this 

algorithm was implemented in MS Excel. We developed a macro written in Visual Basic, which 

applied the Excel's Solver add-in to identify optimal assignments in each period. As in the case 

of the previously discussed algorithm Avoid-Consecutive-Repetitions, the Hybrid-Model 

algorithm was also empirically tested on a grid of costs for 12 workers and 12 jobs for a 10-day 

period. Four sets of random costs were generated with the average cost ranging from 5.5 to 6.2 

and the standard deviation varying from 3.4 to 4.1. 

 

The algorithm was tested first with only one boredom constraint, which was the maximum 

number of consecutive assignments, Bm. In this case, we considered Bm equal to 2. The rotation 



results in terms of the penalty cost increase are shown in figure 6. This penalty cost (see also 

section 4.2 of this paper) is caused by an increase in the total cost of assignments over the 

minimum cost in the original solution where no rotation is required. As can be seen from figure 

6, there is no penalty cost for the first two periods, because the boredom constraint, Bm, is equal 

to 2 and, thus, allows no rotation (resulting in no penalty cost) in the first two periods. The 

penalty cost appears in period 3, when the boredom constraint (in this case, maximum number of 

consecutive assignments) will require rotation, which, in turn, results in a penalty cost. The 

bigger the penalty cost increase, the more rotation is taking place, and the less the boredom of 

employees. As can be seen from figure 6, the cost increase on any particular day varied from 0 to 

slightly above 10% (11.4% on average for all simulation runs) with the average increase between 

0 and 7.6% in a 10-day period. 

 
Figure 6. Penalty cost in rotation with maximum consecutive assignments' constraint. 

 

The Hybrid-Model algorithm was also tested with both boredom constraints, i.e. the maximum 

number of consecutive assignments, Bm, and maximum number of assignments of an employee 

per job, Tm. In this case, we considered Bm = 2 and Tm = 3. The results of this test are shown in 

figure 7. As described before, there is no penalty cost for the first two periods (see figure 7), 

because rotation is not required by either of the constraints in the first two periods of this test. 

However, the penalty cost will appear in period 3, when the first constraint Bm necessitates 

rotation resulting in the incurrence of a penalty cost. 
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Figure 7. Penalty cost in rotation with two boredom constraints. 

 

As can be seen from figure 7, the daily cost increase varies from 0 to slightly above 20% (20.2%) 

with the average cost increase from 0 to 13.4%. This average cost increase is about 80% higher 

than that in the first test with only one boredom constraint. Applying two constraints definitely 

leads to more rotations and less overall boredom of employees. 

 

The hybrid model presented in formulation (9) can be easily adapted to accommodate a wide 

range of additional constraints that arise from practice. For example, a worker may not be 

assigned to a specific job, because of a possible lack of skills or education. In this case, 

introducing a substantially higher cost for these assignments will resolve the problem. 

Sometimes, because of specific technological and psychological conditions, a worker cannot be 

rotated from one job to another. Hence, not all jobs can be alternated in a schedule. A special 

matrix of permitted rotations may be developed to catch and resolve such problems. Usually, a 

worker requires some time to adjust to the working conditions associated with each job. The 

duration of such time is a constraint in the job rotation assignments, because a worker should do 

a job at least some minimal time. Besides, the number of rotations per shift may not be greater 

than a specified limit. All such constraints can easily be incorporated into the model. 

 

6. Conclusion  

  In this paper, we have attempted to address the gap in the published literature on quantitative 

tools to enable a manager to rotate workers through jobs in a meaningful manner that balances 

cost of assignment with the boredom felt by the workers. We began by proposing a generic 

version of this problem as a multi-period assignment model that examines the problem of 

assigning workers to jobs over a fixed number of periods where it is required to (i) minimize the 

cost of the assignment and (ii) rotate workers through jobs such that their boredom from 

repetition is minimized. This was then formulated as a bi-objective optimization problem. 

Having done that, we presented three different versions of our generic model, each of which 

measured boredom in a different way. For each such version, we either developed a polynomial 

time algorithm or proposed a heuristic. In the case of heuristics, we also presented their 

implementation in MS-Excel and discussed the results of empirical testing. 
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Future research in this area should examine more refined models that take into account other 

realistic constraints that managers face in today's organizations, such as budgetary constraints, 

dynamically changing jobs and workforce skills, etc. Also of interest would be to conduct studies 

where we study the impact of our proposed models on assignments in a real organization to see if 

the usage of quantitative tools such as ours has a significant impact on outcomes such as 

employee satisfaction, motivation and performance. Such a study could also examine the 

employee characteristics that are the most predictive of scheduling cost increases or decreases 

when job rotation is required. 
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