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Climate change is a growing concern that causes sea level risings, heatwaves,
and loss of habitats, and impacts the ecology. The climate change in the Arctic is
specifically important as the Arctic helps reflect a significant amount of sunlight.
This thesis applies Optimal Transport (OT) and Topological Data Analysis (TDA)
to analyse the arctic ice data collected by NASA in 1999-2009. OT and TDA are
fields in mathematics that consist of computational methods that study the shape and
distribution of data. Our method is based on Wasserstein distance, a geometry-aware
distance between distributions. Our method enables visualization tools such as time
series plots and low-dimensional embeddings. These visualizations in combination
with persistent homology reveal important insights from the data. In particular, we
were able to identify missing data in the dataset, and detect and compare the freezing
and melting times across years. Our most striking finding is a fundamental asymmetry
between the freezing and melting processes. These preliminary findings demonstrate
the potential of OT and TDA to reveal structure in climate change data, and more
generally to satellite image data.
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Chapter 1: Introduction

Optimal Transport (OT) can be described as the study of transporting one distribution
to another and associating a cost to that transport. As with any other transportation
problem, the minimum cost is the most ideal. OT has been increasingly used in
computational applications such as color or texture processing, shape manipulation,
and machine learning. In this thesis, OT will enable a computational approach to
visualizing the Arctic ice change.

Climate change is a growing concern that impacts everyone. Declining sea ice not
only reduces the reflection of sunlight but it can also contribute to rising sea levels,
and affect ecological and geomorphological processes [18]. The ecological world is
not the only one that is impacted by these effects. Its important for the Arctic and
Antarctic ice to reflect heat back with less heat being reflected this could lead to
intense heatwaves. Sea level rising has been of particular concern as it causes coastal
floods and storm surges. Specifically looking at the Arctic, the changes in ice and
water levels will lead to changes in the structure and function of ecosystems [14].

The motivation behind the present project was to make use of methods from
optimal transport to study the ice change happening in the Arctic. Aside from OT,
other methods like Topological Data Analysis (TDA) and Multi-Dimensional Scaling
(MDS) were used. TDA is a method that focuses on using topology to analyze datasets.

The basic method consists of computing the distance between the arctic ice using
Wasserstein distance (optimal transport distance). This distance takes into account not
only the amount of ice but the distribution of the ice in space. This distance enables
new analysis techniques such as low dimensional embedding, time series analysis, and
persistent homology. These techniques extract insights that might have remained
hidden if we only analyzed the images using the human eye.

We briefly outline the various sections of the thesis. In Chapter 2, we discuss the
necessary background needed to understand the theory used to compute our results,
focusing on optimal transport and persistent homology. The following chapter goes
over the methods used to analyze the dataset and the methods used to interpret the
results. The data is also discussed in this chapter as well as the errors in the dataset.
In Chapter 4, we present the results obtained and discuss some findings from these
results. In Chapter 5, we conclude and mention some possible future directions.
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1.1 Related Work

Optimal transport. Optimal transport methods have been applied in many fields
including statistics, economics, computer graphics and fluid mechanics. Examples of
applications of OT to image analysis include image segmentation, watermarking,
and color transfer. OT has been used in image segmentation by using various
transport based cost functions and relying on primal-dual algorithm to solve the
convex optimization problem in the images [16]. Strong security purposes are achieved
through watermarking but it is easy for distortion to happen. OT has been used
to minimize the global distortion in the images [7]. OT has also been applied to
the problem of color transfer between images. OT was able to remove the issues of
additional postprocessing [15].

Topological data analysis. TDA consists of methods which quantify the shape
of data. TDA methods have been applied to a wide range of fields like neural
science, image classification, medical imagining, and gerrymandering. Persistence
diagrams have been transformed into Gaussian persistence curves and applied to
texture datasets [1]. TDA has been applied to gerrymandering by producing a
persistence diagram from election data [2]. Persistent homology has also been used
to detect geometric voids in data sets specifically COVID-19 data [4]. More specific
to this research TDA has been applied to Arctic ponds formed on the surface of the
Arctic sea ice. TDA was applied to melt pond evolution, obtaining information about
the geometric structure of the melt ponds [20].

Arctic Ice Analysis. Analysis on the Arctic ice to evaluate the season cycle
of the ice has previously been done. Time series of the ice extent also show that
there is a positive trend and correlates negatively with high-latitude temperature
fluctuations [19]. More recent studies have been conducted to see the impact the
changing sea ice will have on biology and human activity in the Arctic. The changes
in the sea ice is making it harder for certain species whose habitats might no longer
be there as well as native communities that live in the Arctic [9]. This once again
sheds light on the importance of this research.
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Chapter 2: Background

In the following sections, we recall material provided in the text Computational
Optimal Transport written by Gabriel Peyré and Marco Cuturi [13]. Let [[n]] denote
the set {1, 2, . . . , n} and 1n be a vector of ones of length n.

2.1 Optimal Transport Theory

We work with discrete measures throughout since these will be most important for
the computational experiments later on, but all of this theory extends to arbitrary
measures.

Definition 2.1 (Discrete Measures). A discrete measure with weights a ∈ Rn and
locations x1, ...., xn ∈ X is defined as α =

∑n
i=1 aiδxi

, where δxi
is the unit mass

concentrated at location xi.

2.1.1 Monge-Problem

The Monge-Problem seeks a map that matches each point xi to a single point yj
and must push the mass of α toward the mass of β where α and β are discrete
measures [13].

Definition 2.2 (Monge problem). Let T : {x1, ...., xm} −→ {y1, ..., yn} be a mapping.
We write T#α = β if bj =

∑
i:T (xi)=yi

ai for all j ∈ [[n]] . Then for a ground cost
function c the Monge-Problem is

min
T

{
∑
i

c(xi, T (xi)) : T#α = β}.

A mapping T realizing this minimum is called a Monge map.

Note that a Monge map may not exist between discrete measures in general.

3
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Figure 2.1. Kantorovich’s OT Problem through Mines and Factories.

2.1.2 Kantorovich Relaxation

The Kantorovich Relaxation takes the idea of a Monge Problem and relaxes the rules
around it. Now, to solve the optimal problem one no longer needs to only assign
one location to another. Instead, Kantorovich aims to move any point across several
locations which allows for what is known as mass splitting [13]. In order to achieve
this a coupling matrix, P, is needed where Pi,j describes the amount of mass flowing
from xi toward yi.

Definition 2.3 (Set of Coupling Measures). For two discrete measures with weights
a and b respectively, we define the set of couplings as:

U(a,b) = {P ∈ Rn×m
+ : P1m = a and PT1n = b}

We can also note that a coupling P is in U(a,b) if and only if PT is in U(b, a)
making Kantorovich’s relation formation always symmetric [13]. We can now move on
to Kantorovich’s optimal transport problem.

LC(a,b) = min
P∈U(a,b)

⟨C,P⟩ =
∑
i,j

Ci,jPi,j (2.1)

The easiest way to understand this OT problem is the famous mines and factories
example [13]. Looking at Figure 2.1, there are 5 warehouses and 4 factories where each
warehouse contains material needed to run the factories. Each warehouse is indexed
with an integer i and contains xi units of the material. The materials need to be
moved to the factories with a prescribed quantity yj needed at factory j. To move the
materials we need a to use a transportation company that will charge Ci,j to move
a single unit of from location i to j. We assume the price is linear in this example,
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the cost of shipping x units of the material from one location to another is x · Ci,j.
Using Equation 2.1 to solve this we obtain a transportation plan P∗ that measures
the amounts of goods Pi.j being transported from a warehouse i to a factory j. Now,
the total amount needed to be pay to execute the plan is ⟨P∗,C⟩.

2.1.3 Wasserstein Distance

Wassertein distances are metrics between probability distributions that measure the
minimal effort required to reconfigure the mass of one distribution in order to recover
the other distribution [12]. To consider the Wasserstein distance we need to assume
that the locations xi and yi for the discrete measures are in some metric space M
with distance d. We then let the fixed cost matrix equal Dp = (Dp

i,j)i,j ∈ R where
Di,j = d(xi, yj). Then we define the p-Wasserstein distance for p ≥ 1 associated with
the distance matrix D as

Wp(a,b) = LDp(a,b)
1
p (2.2)

where LDp represents the optimal solution as in Equation (2.1).
It can be shown that Wp is symmetric, positive, Wp(α, β) = 0 if and only if α = β,

and it satisfies the triangle inequality [13]. The triangle inequality is as follows

∀α, β, γ, Wp(α, γ) ≤ Wp(α, β) +Wp(β, γ) (2.3)

2.2 Persistent homology

To further understand the results some knowledge on persistence homology is needed.
For this, we draw on standard material provided in the text Introduction to Applied
Algebraic Topology written by Tom Needham [11].

Definition 2.4 (Convex Set). A subset S is a convex set if for any point x, y ∈ S
each point (1− t)x+ ty, t ∈ [0, 1] along the interpolation of x and y is contained in S.

The convex hull of S is the smallest convex subset of Rk which contains S we
denote this by cvx(S). [11].

Definition 2.5 (Simplex). A simplex associated to S is the set σ(S) = cvx(S) where
each point xi is called a vertex of σ(S) and a pair of points is called an edge of σ(S).
The face of σ(S) is σ(T ) where T ⊂ S.

A 0-simplex is a point. A 1-simplex is an edge and a 2-simplex is a filled triangle.
As for a 3-simplex this is seen as a solid tetrahedron. We can note that a 0-simplex
has one face. While a 1-simplex has the faces of the edge AB, A, and B. Now we can
define what a simplicial complex is.
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Definition 2.6. A simplicial complex is a collection of simplices X in some Rn that
satisfies the following:
1. Given any simplex σ ∈ X all the faces σ are contained in X.
2. For any simplex σ, τ ∈ X the intersection σ ∩ τ is either empty or is also a simplex
and a face of both σ and τ

We almost have everything we need to understand what persistent homology is.
The last thing we need is something called Vietoris-Rips complexes or VR complexes.
Definition 2.7 (VR-Complex). Let (X, d) be a finite metric space and r a distance
parameter. Then the Vietoris-Rips complex at parameter r is V R(X, r) = (Vr,Σr).
The simplex set Σr is defined as

Σr = {σ ⊂ X | d(x, y) ≤ r∀ x, y ∈ σ}
and Vr = X.

So, as long as every pair of points in σ ⊂ X is at most r apart we can include σ
in Σr. Note that (Vr,Σr) defines an abstract simplicial complex (i.e. a list of vertices
and simplices) which has many possible geometric realizations (Definition 2.6). The
simplicial homology of this complex depends only on the pair (Vr,Σr) and not on the
geometric realization.
Definition 2.8 (Filtered Simplicial Complexes). A filtered simplicial complex is a
collection K = {Kr}r≥0 of (finite) simplicial complexes Kr such that Kr ⊆ Ks when
r ≤ s.

The goal of persistent homology is to track the appearance and disappearance of
holes and connected components. We will not recall the details of simplicial homology
here, see [11] for a description in the F2 case.
Theorem 2.9 (Fundamental Theorem of Persistent Homology [21]). Let Kr1 ⊆ · · ·Krn

be a filtered simplicial complex. and let i1∗, . . . , in∗ be the induced maps of homology
in dimension in k. Then we can choose a basis Bj of each Hk(Krj ) such that for each
element b ∈ Bj, either ik ∗ (b) = 0 or ik ∗ (b) ∈ Bj+1 and no other b′ ∈ Bj maps to
ik ∗ (b).

The Fundamental Theorem of Persistence Homology gives rise to the concept of
birth and death. If b ∈ Bj is not in the image of i(j−1)∗, then we say that b is born at
rj. For b ∈ Bj to die at rm we need the following to hold:

ij∗(b) ̸= 0

ij+1∗ ◦ ij∗(b) ̸= 0

. . .

im−1∗ ◦ . . . ◦ ij∗(b) ̸= 0

im∗ ◦ . . . ◦ ij∗(b) = 0

6



(a) A VR Complex (b) The PD of the VR Complex

Figure 2.2. Detecting a hole through Persistence Diagrams.

If no such m exists then we say that b dies at ∞. A visualization of birth and death
is something called persistence diagrams which will be talked about in the following
chapter.

Definition 2.10 (Persistence Diagram). The persistence diagram(PD) consists of the
multi-set {(bi, dj)}Mj=1 consisting of all (birth, death) pairs.

From Figure2.2, we can see how persistence diagrams detect holes. We first take
note that there are two things being plotted: H0 and H1 component. The H0 represents
the connecting components while H1 represents the holes. Looking at the Figure2.2b
we can see that there is one connecting component that "survives". We also see that
there is one point in H1 that is furthest from the diagonal. This means it had a longer
life compared to the other points. This is an indication that we have a circle, as we
have one component that persists and only one point that is away from the diagonal
in H1. This is proven by Figure2.2a, as that is what we plotted in order to achieve
2.2b.
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Chapter 3: Methods

3.1 Data

The data used was found through the NASA National Snow and Ice Data Center as
NASA SCP Arctic and Antartic Ice Extent from QuikSCAT, 199-2009, Version 2
(NSIDC-0265) [5]. The data set provides sea ice extent for the Arctic and Antarctic
in Scatterometer Image Reconstruction (SIR) binary image format. The data extends
from July 19, 1999 to December 31, 2009. NASA’s Quick Scatterometer (QuikScat)
satellite obtained 12 individual radar normalized backscatter measurements called
slices. The summed up measurement of the slices are called egg measurements which
are stored as image files. An example can be seen in 3.1a. Each day contains a set of
both slices and egg images. Only eggs were used in the computations of this thesis.
The SIR file used in the implementations contained at least one 512-byte header with
information to read the file and projection information to geolocate the data [5].

3.1.1 Errors in Data Set

It was noted that high winds can make the ocean appear like ice, while surfaces melt
conditions can make sea ice appear like ocean. As well as rapid ice edge motion can
lead to misclassification errors.

The QuickSCAT suffered a power anomaloy on November 18, 1999 making the
egg images blank for that day. Other years also contained blank eggs or just missing
dates.The SeaWinds which is a scatterometer that flies on the QuickSCAT collects
data more than 99% of the time. However, there are data gaps due to spacecraft
anomalies [6]. Not considering this every year except for leap years contained all 365
eggs. The only exception being 2008 that had blank egg files. This was fixed later on
by removing the blank images and replacing them with the previous egg (see Figure
4.4).
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(a) Raw Egg (b) Binary Image

(c) Low Resolution Image

Figure 3.1. The visual representation of the image processing done to obtain the low
resolution images.
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3.2 Computing distances between images

3.2.1 Image to Discrete Distributions

The goal was to convert an egg into a discrete distribution in the plane. Each image
had a size of 1530 by 1530. This would later prove to be an issue in regards to
computational time, but first we focused on finding ice pixels. We isolated all the
pixels that represented the ice in the image. To do this the image had to be turned
into a binary array of 1 for ice or 0 for no ice as seen in Figure 3.1b.

Given that the images had a size of 1530 by 1530 computation of Wasserstein
distances later on in the process was taking too long so the resolution of the images had
to be changed. In order to do this the images had to be partitioned. The images were
partitioned by taking a 30 by 30 block and summing the values for each block we can
see the outcome in Figure 3.1c. Each block was represented by discrete distribution:

• locations were the coordinates of the central pixel in each block,

• weights were equal to the sum over the 30 by 30 block divided by the sum of all
such values

These same weights were used as the weights used to compute Wasserstein distances
later on. We unravel the 51 by 51 array of weights to a vector of length 2601 for this
purpose. We now have the low resolution ice images as well as the associated weight
vectors all we need is the cost matrix.

3.2.2 Cost matrices

We consider two different geometric cost matrices.

Pixel distance (Gpixel)

The Gpixel cost matrix used the Euclidean distance between pixels.

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2 (3.1)

Geographic distance (Ggeo)

This cost matrix used the Geographic distance (Haversine formula) between locations.
The Haversine formula determines the distance between two points on a sphere given
their longitudes and latitudes. The Haversine formula allows the Haversine of θ to be
computed from the latitude φ and longitude λ of two points. Note that θ is the angle
between two points on a sphere is given by:

θ =
d

r
(3.2)
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where d is the spherical distance between two points and r is the radius of the sphere.
The Haversine formula of two points is[17]:

hav(θ) =
sin2(φ2 − φ1)

2
+ cos(φ1) cos(φ2)

sin2(λ2 − λ1)

2
(3.3)

where φ1, φ2 are the latitude of point 1 and latitude of point 2, and λ1, λ2 are the
longitude of point 1 and longitude of point 2. Finally, the distance is obtain by
applying arcsin:

d = 2r arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cosφ1 cosφ2 sin

2

(
λ2 − λ1

2

))
(3.4)

3.2.3 Optimal transport distance

Recall the optimization problem from the previous section. Given a cost matrix G
(either Gpixel or Ggeo) we get:

LG(a,b) = min
P∈U(a,b)

⟨G,P⟩ =
∑
i,j

Gi,jPi,j (3.5)

where a and b are the vectors of weights associated to two egg images.
Its important to note that since the discrete distributions have a fixed set of

possible locations we can precompute Ggeo and Gpixel just once.

3.3 Visualizing with MDS

After obtaining the pair-wise distance for all years Multi-Dimensional Scaling (MDS)
was used to analyze the results. The aim of MDS is to find the representation in as
few dimensions as possible, while still reproducing the dissimilarities [8].

3.4 Finding holes with TDA

Topological Data Analysis (TDA) was also used to interpret the results. It was
seen through MDS that certain years had "holes". To visuually see this persistence
homology was used in order to obtain the persistence diagrams.

3.5 Implementation

The main Python libraries used were ot, and numpy. The majority of the functions
used to transform the eggs into arrays where provided by the user guide [5], as well as
how to convert pixels to latitude and longitude points.
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3.5.1 Cost Matrix G

The functions used to compute the cost matrix were loadsir, distance, geodistance,
pix2latlon_custom. The loadsir function and the pix2latlon_custom was provided by
the user guide while the latter had to be customized to work with the newer version
of python. The loadsir function was used to load the sir image and head array into
python. The head array is the scaled header information block that contains scale
factors to convert floating-point data to integers [5]. The pix2latlon_custom function
was used to convert pixels to latitude/longitude points. The distance function was the
adaptation of the Haversine function formula. The geodistance function took two ice
pixel arrays as well the header then used pix2latlon_custom to convert the pixels to
latitude and longitude points. Then distance was applied to compute the haversine
distance between those points. The geodistance function was used to obtain the cost
matrix Ggeo.

3.5.2 Wasserstein Distance

Wasserstein distances were computed by using the function ot.emd2 from the Python
OT [3]. Given the year, the files were loaded, the icepixels were obtained and turned
into lower resolution images. The weights were then normalized. The function then
took the sample weights as well as the cost matrix and returned the optimal transport
loss. To be able to compute the distances for every year the longleaf high perfomance
cluster at UNC Chapel Hill was used.

12



Chapter 4: Results

We have now successfully turned each image into a discrete distribution, and can
compute pairwise Wasserstein distances. We can now make sense of our results through
visual representations.

4.1 Time Series

In Figure 4.1, we can see the ice change for the whole year over a seven day interval.
More precisely, we compute, for each day i, the ice change from day i to day i + 6
using our Wasserstein distance. To smooth out the graphs further, we replace each
value with the seven day average. Thus Figure 4.1 represents the rolling seven day
average of the per-week ice change for each year. The results are identical even though
a different G matrix was used.

We can see that there are two peaks around mid April and late September. The
peaks around April being the one where the ice is melting and the peaks around
late September indicating freezing. It is also easy to see the change in ice through
the seasons. There is also variability between the years and the peak sizes. We can
see that 2008 has the highest peak between all the years. The contrast in peak size
can be seen when comparing 2008 with 2002. Not only is the peak smaller during
the freezing period but the freezing period for 2002 came earlier compared to 2008.
Another difference can be seen when the ice is melting. For 2003, the peak hits its
highest around early April while in 2008 the peak does not happen until mid to late
April.

4.2 MDS Plots

We were able to find what years were missing dates through MDS. When the starting
point did not end in the same area as the ending point, this was a clear indicator of
missing data. This visualisation of the data with MDS also helped see how some years
had a “hole” or an opening as the points made their way back to the starting point as

13



Figure 4.1. Time Series of Ggeo (above) and Gpixel (below) showing the smoothed per
week ice change throughout the year. Different choices of G yielded almost identical
graphs.
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seen in Figures 4.2. Both Ggeo and Gpixel yielded almost identical results hence, only
the MDS plots for Ggeo are shown.

While the MDS plots for 2006 show the points’ trajectory make its way back to
the start we can see the opposite for 1999 in Figure 4.3. The MDS plot shows that the
starting point did not end in the same area as the ending point. This indicated that
the year was missing days which is confirmed by the user guide. The most interesting
thing can be seen in Figures 4.2. We took note of a hole or cycle structure in all plots,
which provided us with a different insight.

The hole corresponds to a different melting and freezing trajectory. There is a lack
of symmetry that shows that the freezing of the ice does not look like the melting. Not
every year had a clear indicator of having a “hole” (for example 2003) so, persistent
homology was used to confirm the “hole” even when it was not clear on the MDS
embedding.

4.3 Persistence Diagrams

The initial analysis conducted revealed there was an issue for 2008. We can see in
Figure 4.4a that there is something wrong with the persistence diagram for 2008. The
difference is seen in the H0 components which are the blue dots in Figure 4.4. The
outlier is obvious in the corrupted image as there is an H0 component that lived longer
than the other H0 components. This resulted in finding out that 2008 had blank eggs.
Removing the outliers gave us Figure4.4b.

Aside from detecting an abnormality the persistence diagram also confirmed the
circle found in the MDS plots. We can see that if a component has a short life (dies
shortly after it is born) it will be close to the diagonal [10]. With this in mind we can
see in Figures 4.5 that there is a point in H1 that has a long lifetime which means it
is far from the diagonal. Having this point indicates we have a hole, in other words,
the rough topology of the data is that of a circle. Once again, the circle represents
that there is a different freezing and melting pattern, as if it was symmetrical there
would be no hole. This can be seen in Figure 4.6. We can also see that unlike the
other years 2009 does not have a hole this is due to 2009 having missing data.

This finding demonstrates the usefulness of persistent homology for finding structure
in highly non-linear, high dimensional spaces. Persistence diagrams do not rely on the
planar embedding created by MDS, but use the original distances which shows that
the freezing and melting time is not symmetrical, and this is not just an artifact of
the embedding.
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Figure 4.2. MDS plots for 1999-2009 using optimal transport distance. The color
indicates the day of the year.
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Figure 4.3. Detecting missing dates for 1999 through MDS.

(a) corrupted images included (b) corrupted images removed

Figure 4.4. Vietoris-Rips persistence diagrams for 2008 with and without corrupted
images. The presence of the corrupted images (outliers) is clearly detected by the H0

diagram in the left image.
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Figure 4.5. Vietoris-Rips persistence diagrams for 1999-2009.
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Figure 4.6. Asymmetry in melting and freezing for 2006.
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Chapter 5: Conclusion

5.1 Findings

Optimal transport is a growing field that finds the optimal solutions to a variety of
problems. The main goal of this thesis was to find ways to visualize the ice change in
the Arctic using optimal transport. We were able to find a way to change an image
into a discrete distribution, create cost matrices, and find holes using MDS and TDA.
Not only were we able to do this but we were able to use visualization tools and
persistent homology to make concrete findings:

• The melting and freezing process are different. Instead of having a symmetric
process a lot of the years had a “hole” indicating the lack of symmetry in the
freezing and melting process.

• The time series also shows the different seasons in which the ice is forming and
melting for all the years, namely September and April respectively. While some
years started earlier than others they are all relatively close to each other.

• The data for certain years contained corrupted images and/or missing time
periods.

5.2 Future work

From our results, we can see that we found the freezing and melting processes were
not symmetric. It would be interesting if those years that do not have the same
melting and freezing time will remain asymmetric using a different weights for the
cost matrix or a different distance measure. The resolution also had to be lowered due
to computational constraints but given the opportunity computing the entire process
with the raw eggs to see if there us a significant difference in the results. Given that
this process was only done with the Arctic eggs the process can be redone with the
Antarctic eggs. Specifically looking at the years that were asymmetric would they
still remain asymmetric when looking at the Antarctic eggs. There was not enough
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time to explore the footprint of climate change in the data, even though it was a big
motivation behind this research. Further research is needed to determine what these
results mean for climate change. The methods used throughout this research can
also be applied to other fixed regions or images such as deforestation, wetland data,
soil levels, and habitat growth. OT has demonstrated the potential it has to reveal
structure in climate change data.
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