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 This dissertation explores the prevalence and prevention of rental housing evictions. I 

begin by providing a systematic review of the eviction literature. I find from my review of the 

literature over the past 20 years that attention to eviction has greatly increased. Next, I develop a 

theoretical model for the county-level eviction rate. By incorporating both landlord and tenant 

situations into the model, I find that the eviction rate can increase or decrease depending on 

eviction costs paid by landlords, hardship experienced by renters, or support provided to renters. 

Finally, I use data from the Eviction Lab, the first national database on eviction, to study three 

unanswered questions: (1) what is the extent of the US eviction crisis? (2) what is associated with 

the variation in eviction rates across US counties? And (3) can unemployment insurance (UI) 

benefits serve as an eviction prevention program? First, I find that the US eviction crisis is 

characterized primarily by consistently high rates of eviction at the national, state, and local 

levels. Second, I find that both demographic and economic factors are strongly related to the 

variation in eviction rates across US counties. Third, I find that UI benefits can serve as an 

eviction prevention program, but in doing so they induce landlords to file on their tenants more 

often, which results in worse outcomes for some tenants. Overall, this dissertation expands the 

literature on the prevalence and prevention of rental housing evictions, which ultimately aids 

policymakers and private organizations trying to reduce or prevent evictions. 
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CHAPTER I 

 

INTRODUCTION 

 

 

According to estimates from the Eviction Lab, the first national database on eviction, US 

landlords file over 2 million evictions per year (Desmond et al., 2018a). Nearly 40 percent of 

these eviction filings result in an eviction judgment, where an individual or a family is removed 

from their home. The current levels of eviction filings track levels of foreclosure filings during 

the peak of the foreclosure crisis. According to data from ATTOM data solutions, over 2.8 

million US properties had foreclosure filings in 2010 (ATTOM, 2019). This similarity has led 

journalists and scholars to suggest that the US is in the midst of an eviction crisis (Brennan, 2018; 

Capps, 2018; Goldberg, 2018; Gergen & Mayer, 2018; Sills et al., 2018). 

Previous research ties eviction to numerous negative consequences. For families, eviction 

can lead to homelessness, (Crane & Warner, 2000; Collinson & Reed, 2018), residential 

instability (Desmond & Shollenberger, 2015; Desmond et al., 2015; Collinson & Reed, 2018), 

and economic hardship (Humphries, et al., 2018, Kahlmeter et al., 2018). For adults, eviction is 

tied to job loss (Desmond & Gershenson, 2016a), as well as physical and mental health issues 

(Desmond & Kimbro, 2015; Vasquez-Vera, 2017; Collinson & Reed, 2018; Rojas & Stenberg, 

2018). Further, the consequences of eviction are not limited to those who experience it directly. 

Studies from ten different US cities show that the costs of eviction, unpaid property taxes, and 

unpaid utility bills to the community can range from tens to hundreds of millions of dollars (Elliot 

and Martinchek, 2019). Eviction can place direct and indirect fiscal costs on governments, 

taxpayers, and social-welfare groups as they pay for sidewalk cleanup, enforcement of evictions, 

homelessness, and increases in individuals requiring aid (Lindsey, 2010). During the ongoing 
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pandemic, eviction could further the spread of the coronavirus, which is a public health concern 

(CDC, 2020a). 

Despite high levels of eviction and numerous studies, the US eviction crisis is still not 

well understood. In their 2003 article, Hartman and Robinson referred to eviction as the “hidden 

housing problem”. The authors called for a national database on eviction to be built and for more 

scholars to study eviction. Although more scholars have studied eviction since then, a national 

database on eviction, the Eviction Lab, was only released in 2018. As a result, the prior literature 

is limited by data.  

Previous research primarily focuses on the causes and consequences of eviction, but most 

of the literature draws conclusions using data from one city or county, most of which are urban 

areas. Although these studies provide insight, it is difficult to know if the results are 

generalizable. Further, the literature has not focused on developing a theoretical framework 

within which to situate the study of eviction. Finally, the literature does little to suggest how we 

might prevent rental housing evictions. The release of the Eviction Lab provides an opportunity 

to study eviction more thoroughly because it provides estimates of eviction filings and eviction 

judgements at various geographic levels for the entire US. 

This dissertation explores the prevalence and prevention of rental housing evictions in 

several ways. First, it provides a systematic review of the eviction literature. Second, it develops a 

theoretical model for the county-level eviction rate. Third, it uses data from the Eviction Lab to 

study three unanswered questions: (1) what is the extent of the US eviction crisis? (2) what drives 

the variation in eviction rates across US counties? And (3) can unemployment insurance (UI) 

benefits serve as an eviction prevention program?  

This dissertation proceeds as follows. In Chapter II, I begin by providing a summary of 

the key aspects of landlord-tenant law and the eviction process. I then provide a systematic 
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review of the eviction literature. I find from my review of the literature over the past 20 years that 

attention to eviction has greatly increased. Further, the distribution of the topics of focus of this 

research is skewed towards the causes and consequences of eviction. 

In Chapter III, I develop a theoretical model of the county-level eviction rate. By 

incorporating both landlord and tenant situations into the model, I find that the eviction rate can 

depend on eviction costs paid by landlords, hardship experienced by renters, or support provided 

to renters. This model has implications for analyses in Chapter VII. In Chapter IV, I summarize 

the Eviction Lab database, describe my measures of eviction, and develop an adjustment measure 

for the quality of the Eviction Lab data.  

In Chapter V, I use state- and county-level data from the Eviction Lab to determine the 

extent of the US eviction crisis. I find that the US eviction crisis is characterized by consistently 

high eviction filing and eviction judgment rates at the national, state, and local level. This result 

differs slightly from the foreclosure crisis, which was defined by both a spike in foreclosure rates 

during the Great Recession and a sustained period of historically high foreclosure rates after the 

Great Recession. 

In Chapter VI, I determine what factors are associated with the variation in eviction filing 

rates and eviction judgment rates across US counties. Using data from nearly all US counties 

from 2005-2016, I find that both demographics and economics are associated the variation in 

eviction rates across US counties. However, the specific demographic and economic factors that 

are associated with higher eviction rates differ by outcome (eviction filing rates versus eviction 

judgment rates) and geography (all US counties versus urban US counties).  

In Chapter VII, I explore the potential of UI benefits to serve as an eviction prevention 

program by mitigating the effect of unemployment on eviction. Exploiting variation in UI 

benefits across states and over time, I estimate the effect of state-level UI benefits on county-level 
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eviction filing rates. I find that higher UI benefits can aid renters by mitigating the effect of 

unemployment on eviction. However, these higher benefits may also induce landlords to file on 

their tenants more often. Albeit counterintuitive, these results are consistent with recent literature 

on landlord-tenant interactions, particularly serial evictions. My results suggest that a clear 

understanding of the eviction process is necessary to creating effective eviction prevention 

policies. 

In Chapter VIII, I conclude with a general discussion of the findings of the dissertation, 

as well as their implications. Overall, this dissertation explores the prevalence and prevention of 

rental housing evictions, which extends the current eviction literature. Extending the eviction 

literature is important, because only in understanding eviction can we hope to address the 

ongoing US eviction crisis. Effective solutions can only be created once there is a clear 

understanding of the problem. Overall, this dissertation provides new insight on the prevalence 

and prevention of rental housing evictions, which can ultimately aid policymakers and private 

organizations who aim to reduce or prevent evictions.
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CHAPTER II 

BACKGROUND 

 

 

This chapter provides a background on eviction. I begin by briefly summarizing landlord-

tenant law and the eviction process. I define terminology used throughout the rest of the 

dissertation. I then systematically review eviction literature. My systematic review establishes 

gaps in the literature, which I fill with the theoretical and empirical analyses of Chapters III, V, 

VI, and VII. 

Landlord-Tenant Law 

Landlord-tenant law oversees the relationship between landlords and tenants by directing 

the rights, rules, and responsibilities of both parties (AAOA, 2019). Each state maintains its own 

landlord-tenant statutes. These statutes concern prices, health and safety, rental unit possession, 

and antidiscrimination (Hatch, 2017). Although federal and local laws exist, most landlord-tenant 

law is enacted at the state-level (Hatch, 2017).  

A number of states have drawn their landlord-tenant law from the Uniform Residential 

Landlord and Tenant Act from 1972 (Legal Information Institute, n.d.). However, recent research 

suggests there is significant variation in landlord-tenant policy across states. Hatch (2017) 

proposes that there are three distinct approaches: protectionist, probusiness, and contradictory. 

Protectionist states have mostly pro-renter laws. Probusiness states primarily protect landlords. 

Contradictory states have a variety of pro-renter and pro-landlord laws. For a comprehensive 

listing of existing landlord-tenant laws see Stewart and Portman (2018). For more on the typology 

of landlord-tenant policy approaches see Hatch (2017).
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The Eviction Process 

Eviction is an action taken by a landlord to remove a tenant from a rental property. In the 

United States, eviction is supposed to follow a legal process. However, previous research 

suggests that informal evictions, those where a landlord removes a tenant from a rental property 

without following the legal process, are prevalent (Desmond, 2012; Desmond & Shollenberger, 

2015). As a result, I further define formal evictions as those that follow the legal process.  

Due to data limitations, the prevalence of informal evictions across the United States is 

unknown. As a result, this dissertation focuses exclusively on formal evictions. The formal 

eviction process is guided by landlord-tenant laws and overseen by civil courts. Each state 

maintains its own laws and courts, which may differ from others. However, the process is 

generally the same and contains the following three steps: (1) file, (2) trial, and (3) judgement. 

The formal eviction process begins when the landlord files for eviction. I define an 

eviction filing as the opening of an eviction case by the landlord. A landlord can file for eviction 

for many reasons. The three most common reasons are the tenant failing to pay rent, the tenant 

failing to maintain aspects of the lease, or the tenant remaining in the property after the lease ends 

(LexisNexis, 2017). After the eviction case is opened, the tenant is served a notice giving them a 

date to appear in court for a trial. 

At trial, both landlords and tenants are given the opportunity to present evidence in their 

favor. Previous research suggests that most judgments are awarded in the landlord’s favor (Sills 

et al., 2017; UNCC Urban Institute, 2018b). I define an eviction judgment as a decision in favor 

of the landlord, which results in possession of the property returning to the landlord and the 

tenant being removed from their home. However, not all eviction filings turn into eviction 

judgments. For example, the tenant may leave prior to the trial or the landlord and the tenant may 
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come to an agreement (UNCC Urban Institute, 2017). In both cases, an eviction judgment is 

avoided. 

Avoiding an eviction judgment is not always good news for a tenant. If the tenant 

remains in the home but fails to pay rent or maintain another aspect of the lease a second time, the 

landlord can file again. Serial filings, those that occur repeatedly for the same tenant in the same 

rental unit, are common. Nationally, over a third of all filings in 2014 were attributed to 

households who were filed against more than once (Leung et al., 2019). Among DC households 

with an eviction filing in 2018, nearly 60 percent had at least one other filing against them at 

some other point between 2014 and 2018 (McCabe and Rosen, 2020). 

The analyses in later chapters will examine both eviction filings and eviction judgments. 

When I refer to evictions, I mean both filings and judgments. 

The Eviction Literature 

In their 2003 article, Hartman and Robinson refer to eviction as the “hidden housing 

problem”. They provide a thorough review of the literature to that point in time. I review the 

peer-reviewed eviction literature since 2003 to establish the importance of eviction filings and 

eviction judgments, to determine what we know about eviction, and to describe the gaps in the 

literature, which my theoretical and empirical analyses in later chapters will address.  

I collect relevant eviction literature using a systemic review method. To be sure I capture 

the most literature, I search “evict*” in the following databases: EconLit, RePEc, SocINDEX, 

JSTOR, and Scopus. I limit my search to titles and abstracts of journal articles in English. With 

this search method, I collect 172 articles from EconLit, 27 articles from RePEc, 378 in 

SocINDEX, 71 in JSTOR, and 164 in Scopus. Next, I read each title for relevance, which leaves 

me with 37 articles from EconLit, 1 article from RePEc, 56 articles from SocINDEX, 0 articles 

from JSTOR, and 40 articles from Scopus for a total of 134 articles. After removing duplicates, 
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103 articles remain. I then read each abstract for relevance, which leaves me with 81 articles. 

Next, I eliminate articles prior to 2003. Finally, after reading each article for relevance, I have 50 

articles. 

Figure 2.1 displays counts of peer-reviewed eviction articles over time. Between 2003 

and 2012, only one article was published. After 2012, at least one article was published a year. In 

2018, the Eviction Lab, the first national database on eviction was released. The release of new 

and better data may explain why in recent years, the number of articles has grown substantially. 

 

 

In reading the articles, five broad themes emerge, which can be used to group the articles. 

These themes are prevalence, causes, consequences, prevention, and landlords. Figure 2.2 depicts 

the distribution of the theme of focus of the literature. Articles were categorized by the theme that 

was most present. The distribution is skewed towards the causes and consequences categories. I 

summarize the literature in each of these five themes in turn. Because articles could capture more 
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than one theme, in the summaries that follow, some articles are discussed in more than one 

section. Additionally, I supplement my summary of the 50 articles from my systematic literature 

review with 6 local reports from North Carolina and Washington, DC that provide in depth 

studies of court cases. 

 

 
 

 

Prevalence 

Hartman and Robinson (2003) call for the establishment of a national database on 

evictions, because there is no systematic data collection at the national or local level (pp. 461). 

Without better data, it is impossible to know how many individuals were affected by eviction, nor 

who those individuals are, why they are being evicted, or what happens to them after (pp. 462). 

An understanding of these questions, the authors argue, would allow better development of 
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housing policies and programs that would decrease the negative effects of this traumatic event 

(pp. 461). 

Desmond (2012) studies the prevalence of eviction in Milwaukee, Wisconsin. Using 

eviction court records from 2003 to 2007, Desmond finds that landlords evict about 16,000 

individuals from 6,000 units per year. These numbers equate to nearly 16 evictions per day, 

making eviction a frequent occurrence in the lives of Milwaukee renters. Desmond and 

Shollenberger (2015) studies the prevalence of involuntary mobility, which expands beyond 

formal evictions to include informal evictions, landlord foreclosure, or building condemnation. 

Using survey data from the Milwaukee Area Renters Survey (MARS), the authors find that 48 

percent of all forced moves experienced by Milwaukee renters are informal evictions. Formal 

evictions only constitute 24 percent of forced moves. As a result, estimates using formal evictions 

likely undercount the prevalence of eviction by as much as half. 

In 2018, Matthew Desmond and his team out of Princeton University released the 

Eviction Lab. Desmond et al. (2018a) is the first national database on rental housing evictions. 

The database suggests that over 2 million individuals experience a legal eviction filing each year, 

while over 900,000 are removed from their home each year. However, the database captures only 

formal evictions, not informal evictions. Lundberg and Donnelly (2018) estimate the proportion 

of children who are ever evicted during childhood (between birth and age 15). Using the Fragile 

Families and Child Wellbeing Study, they find that 14.8 percent of children born between 1998 

and 2000 in large US cities are ever evicted between birth and age 15. 

The development of a national database by Desmond et al. (2018a) is the first step 

towards better development of housing programs and policies to decrease the negative effects of 

eviction, as suggested by Harman and Robinson (2003). We now know that eviction is a common 

occurrence amongst renters, with the number of evictions much higher than previously thought. 



 

10 

 

Although we have estimates of the number of formal evictions in the US, we still do not know the 

true prevalence of informal evictions. The research suggests that it is nearly two times as much as 

formal evictions. The next question to be answered is: why are evictions so prevalent? 

Causes 

Hartman and Robinson (2003) find that eviction tends to affect lower-income individuals, 

as well as primarily women and minorities. More recent research comes to the same conclusions. 

A number of studies find that high eviction rates tend to be associated with race and ethnicity. 

Desmond (2012) finds that minorities are more affected by eviction. Using geographic 

information from Milwaukee County, Wisconsin eviction records, Desmond finds that the 

majority of those evicted are from black neighborhoods. Further, a comparison of means analysis 

shows that the average eviction rates in black and Hispanic neighborhoods are higher than those 

in white neighborhoods. These results hold even in high poverty and hyper segregated 

neighborhoods. 

Lens et al. (2020) finds that evictions are most common in high black, high poverty areas 

in Los Angeles. These results suggest that race is the most important factor when it comes to 

higher eviction rates. Medina et al. (2020) finds that minority populations receive more eviction 

filings in Salt Lake City, UT. Nelson et al. (2021) finds that court-based fillings are more 

consistent spatially over time. The increased prevalence of court filings is most tied to the number 

of black residents. Finally, Hepburn et al. (2020) finds that eviction filing rates and eviction 

judgment rates are higher for black renters than for white renters. Furthermore, black and Latinx 

renters are more likely to face serial evictions. 

Because minorities are disproportionately affected by evictions, studies try to determine 

if discrimination is at work. Greenberg et al. (2016) find that Hispanic renters are more likely to 

be evicted by non-Hispanic than Hispanic landlords. The authors use data from MARS. In their 
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analysis, which uses discrete hazard models, they find that Hispanic renters are more likely to be 

evicted in majority white neighborhoods. Although the authors suggest discrimination against 

Hispanic tenants, they do not find evidence of discrimination against black tenants. However, 

they believe this lack of result could be due to racial residential segregation, a variable that has 

yet to be explored in the eviction literature. 

Beyond race, a number of studies show that women, especially women with children are 

more likely to be evicted. Phinney et al. (2007) finds that 20 percent of low-income women have 

been evicted. Desmond (2012) finds evidence that women are significantly more affected by 

evictions than men, particularly black women. Using survey responses from the Milwaukee 

Eviction Court Study, an in-person survey of 251 tenants appearing in eviction court, Desmond 

finds that the majority of respondents lived with children. Over a third of respondents were 

women with children who lived with no other adults. Desmond (2015) cites his previous work 

when reinforcing the idea that women, as well as children, are more likely to be affected by 

eviction. Hepburn et al. (2020) finds that black and Latinx females have higher eviction rates than 

their male counterparts. 

Desmond et al. (2013) suggests that children in and of themselves are a risk factor for 

eviction. The authors use Milwaukee County eviction cases and zero-inflated Poisson models to 

show that Census tracts with a higher percentage of children have higher eviction rates. In the 

same study, they use survey data from the Milwaukee Eviction Court Study, as well as logistic 

regression and propensity score analysis, to show that families with children are more likely to be 

evicted. Desmond and Gershenson (2016b) find similar results. Using the MARS data and 

discrete hazard models, the authors find that the presence of an additional child in a family 

increases that family’s likelihood of eviction. Using data from Mercy Housing, an organization 
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that offers affordable housing across 18 states, Brisson and Covert (2015) find that households in 

“family housing” are most at risk for receiving a lease violation for nonpayment of rent. 

One of the most general reasons for eviction under the law is a tenant failing to pay rent 

(LexisNexis, 2017). A report by the Center for Housing and Community Studies (CHCS) at the 

University of North Carolina at Greensboro (UNCG) finds that 98.7 percent of all eviction cases 

in Guilford County, North Carolina listed nonpayment of rent on the eviction filing (Sills et al., 

2017). A similar report by the Urban Institute at the University of North Carolina at Charlotte 

(UNCC) finds that 97 percent of all evictions in Charlotte-Mecklenburg County, North Carolina 

were due to nonpayment of rent (Urban Institute at UNCC, 2018b). A study on evictions in 

Washington, DC found that 93 percent of all eviction filings from 2014-2018 were for 

nonpayment of rent (McCabe and Rosen, 2020). Finnegan and Meagher (2019) suggest that 

income loss is significantly more likely to result in housing issues than utility issues. 

Looking at national trends over time, Desmond (2015) and Desmond (2018) both imply 

that the rising cost of housing, flat-lined incomes, and as a result higher rent-burden coincide with 

the commonplace of eviction in low-income, minority communities. Examining responses from 

the Milwaukee Eviction Court study, Desmond (2012) finds that many renters report that their 

incomes are not much higher than their rents, resulting in high rent to income ratios. Additionally, 

many do not receive housing assistance. 

Desmond and Gershenson (2016b) evaluate individual factors, neighborhood factors, and 

social network factors that are associated with evictions. At the individual-level, they find that  

payment history and job loss are significant predictors of eviction. At the neighborhood-level, 

higher crime rates and higher eviction rates are associated with higher likelihood of eviction. 

Finally, those that have lower network advantages are at higher risk for eviction. These results 

suggest that multiple factors can lead to differences in eviction outcomes. 
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Grief (2018) finds that landlords can use water and nuisance ordinances, which are meant 

to help protect tenants, to screen for tenant quality and sometimes increase evictions. Kroeger and 

LaMattina (2020) find that nuisance ordinances can increase eviction filings and eviction 

judgments by 14 percent. 

These papers suggest two broad reasons for the causes of eviction: demographics and 

economics. Demographic factors include race, ethnicity, gender, and family structure (Desmond, 

2012; Desmond et al., 2013; Greenberg et al., 2016; Desmond and Gershenson, 2016b). 

Economic factors include rent, income, and poverty (Sills et al., 2017; Urban Institute at UNCC, 

2018; Desmond and Gershenson, 2016b). The demographic factors are of particular interest 

because of the possibility of discrimination (Greenberg et al., 2016). However, most of these 

studies draw these conclusions from studies of urban areas, and, in particular, only a few cities or 

counties. There is still little understanding as to whether these results hold across the entire US. 

Consequences 

Eviction is associated with several negative consequences. Hartman and Robinson (2003) 

find that these include issues with mental health (pp. 468), worse relocation housing (pp. 468), 

homelessness (pp.468), loss of job, lower educational attainment, poor credit (pp. 469) and 

potentially violence (pp.470). These consequences are not just negative for the individual, but 

also for society. The eviction process is costly for communities through court and sheriff costs, as 

well as costs of aiding the homeless (pp.469). However, these conclusions were drawn from 

studies that only used local data. 

Much of the literature since then has reached the same conclusions. Eviction has been 

tied to residential instability, which often leads to worse housing outcomes. DeLuca et al. (2019) 

suggest that moving due to eviction or other housing instability issues does not give families 

much time to look for new housing. As a result, they end up in the same or worse situations than 
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before. Further, they seem to not know that there are better options. Some suggest that individuals 

may be less satisfied in their homes, but Johnson and Carswell (2021) do not find those who have 

been evicted to be more concerned about their housing choice. 

 One of the primary negative outcomes of housing instability beyond homelessness is its 

connection to poor health. Burgard et al. (2021) find that renters are more likely to experience 

depression symptoms if they are behind on rental payments. However, eviction does not seem to 

be associated with worse self-reported outcomes. Fowler et al. (2015) find that eviction related 

suicides increased during the Great Recession with suicides taking place before the eviction has 

even taken place. Eviction has been shown to be connected to sexually transmitted diseases. 

Groves et al. (2020) find that eviction can increase HIV risk, while Niccolai et al. (2019) find that 

eviction is associated with higher levels of Chlamydia and Gonorrhea.  

 An ongoing concern with the COVID-19 pandemic has been the spread of the virus. 

Although theoretical, Benfer et al. (2020) suggest that COVID-19 can further the spread of the 

coronavirus and suggest that eviction prevention policies during the pandemic have lowered the 

spread. The CDC seems to agree as they cite the reason for the federal eviction moratorium being 

to slow the spread of the virus (CDC, 2020a). 

 Eviction has been tied to consequences for children. Children who were evicted were 

twice as likely to be food insecure as children who had not been evicted (Leihfeit et al., 2020). 

However, there was no sign of a connection between eviction and obesity. Finally, a paper by 

Teresa and Howell (2020) suggests that eviction and the threat of eviction cause scarcity for 

housing for some tenants. As a result, new housing subunits are created that may exclude certain 

tenants. 

The majority of the literature suggests that eviction is tied to negative consequences, 

which confirms the intuitive understanding that eviction has high social costs. 
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Prevention 

 Although eviction has been tied to numerous negative consequences, the literature on 

eviction prevention remains sparse. Only recently have studies focused on methods of reducing or 

preventing eviction, primarily through existing programs that may have spillovers to eviction. 

Galagher et al. (2019) suggests that the expansion of Medicaid helped to reduce payment 

delinquencies, particularly among renters. As missed rental payments are some of the leading 

causes of eviction, it suggests that eviction may be reduced through the expansion of Medicaid. 

Zewde et al. (2019) showed that the expansion of Medicaid decreased county-level eviction filing 

rates and county-level eviction judgment rates. A study by Pilkaukis and Michalemore (2019) 

suggested that the EITC did not reduce evictions or foreclosures, nor did it prevent homelessness.  

 Housing interventions have promising outcomes for evictions. A study by Lundberg et al. 

(2020) finds that public housing does reduce evictions, although other forms of housing support 

do not. That said, they find that public housing and other forms of housing support, like vouchers, 

do reduce payment delinquencies. Low Income Housing Tax Credit (LIHTC) properties aimed at 

seniors have been shown to reduce evictions. Although the study that finds this result, Harrison et 

al. (2020), does not find a reduction in eviction rates for LIHTC properties for non-seniors. 

Garcia and Kim (2020) find that families in Rapid Rehousing end up being evited because they 

are not prepared for the program.  

 A final method of prevention that has been explored is landlord-tenant laws. Merrit and 

Farnett (2020) find that states that are tenant friendly have lower eviction rates, suggesting that 

tenant friendly policies may prevent eviction. 

These studies suggest that programs targeted to cost burdened individuals may or may 

not have an impact on evictions. Other research shows that programs aimed at housing can have 
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positive impacts on eviction or rent delinquency, but also may not be effective for all populations. 

More work needs to be done on what types of programs best reduce or prevent evictions. 

Landlords 

In the last few years, researchers have started to focus more on the landlord’s role in the 

eviction process. Qualitative research from Baltimore, MD, Cleveland, OH, and Dallas, TX 

suggests that landlords prefer a tenant to a vacancy (Garboden and Rosen, 2019). Because an 

eviction judgment is costly, a landlord will file to reach an eviction judgment only when they 

believe their tenant will not pay their back rent (Garboden and Rosen, 2019). Qualitative research 

from Philadelphia, PA suggests that smaller landlords attempt a number of different strategies to 

avoid eviction outcomes (Balzarini and Boyd, 2020). However, if the tenant is still not able to 

pay, Balzarini and Boyd (2020) find that landlords often resort to informal eviction methods. 

Eviction filings, as opposed to judgments, are less costly to landlords. Eviction filings 

allow a landlord to reach an eviction judgment if needed. Further, eviction filings can induce a 

tenant to pay and can give the landlord the opportunity to collect late fees (Garboden and Rosen, 

2019). As a result, many landlords will file not to reach an eviction judgment, but simply for the 

sake of filing to receive any of these benefits. 

Raymond et al. (2016) find that larger landlords tend to have higher eviction rates than 

smaller landlords. Raymond et al. (2018) finds the same result within post foreclosure single 

family homes. Seymour and Akers (2020) find that large, national landlords have higher eviction 

rates than smaller properties in Law Vegas, NV. However, large, local landlords have the highest 

eviction rates. Motels, which often serve as a housing of last resort, are associated with large 

eviction rates as well. Seymour and Aker (2021) find that post foreclosure single family 

properties in Detroit, MI that were bought up by large investors see persistently higher eviction 
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rates. Evictions are also more likely in newly constructed units that have higher assess values than 

the surrounding neighborhood (Robinson and Steil, 2020). 

Conclusion 

 This chapter summarizes landlord-tenant law, the eviction process, and the eviction 

literature. The overview of landlord-tenant law and the eviction process introduce the reader to 

the terminology that will be used throughout the rest of the dissertation. Further, it suggests that 

although landlord-tenant policy differs across states, the eviction process generally does not vary. 

The review of the literature summarizes the literature to date and establishes a number of gaps in 

the literature that this dissertation will fill in the following chapters. 

There are several limitations to the eviction literature in this chapter. First, the eviction 

literature is limited in its perspective. Most of the focus of the eviction literature is on the tenant. 

Although these results are important, eviction is a process that involves two agents: a landlord 

and a tenant. Because landlords make the decision to file for eviction and begin the eviction 

process, it is important to have research that includes the landlord’s perspective. This dissertation 

will fill this gap in the literature by developing a theoretical model for the landlord’s decision to 

evict in Chapter III. 

Second, the eviction literature is limited by the data. Prior to the Eviction Lab, there was 

no national database on eviction. As a result, most of the prior literature relies on data from one 

city or county. For example, seven studies in this chapter use data from Milwaukee, Wisconsin 

(Desmond, 2012; Desmond et al., 2013; Desmond and Shollenberger, 2015; Desmond et al., 

2015; Desmond and Gershenson, 2016a; Desmond and Gershenson, 2016b; Greenberg et al., 

2016). Two other studies in this chapter use data from individual counties in North Carolina (Sills 

et al., 2017; Urban Institute at UNCC, 2018b). Each of these studies focuses on urban areas. As a 

result, there is no way to know if results from these studies hold across the entire US or even 
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across all urban areas. This dissertation fills this gap in the literature by providing a national study 

of differences in eviction rates across US counties in Chapter VI. 

Third, the eviction literature is limited in the questions it has asked. The literature in this 

chapter is primarily focused on two topics: the causes of eviction and the consequences of 

eviction. This dissertation will fill this gap in the literature in Chapters III, V, VI, and Chapter VII 

all of which address questions previously unanswered in the literature.
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CHAPTER III 

 

A THEORETICAL MODEL OF THE EVICTION RATE 

 

 

To motivate the empirical assessments in later chapters, I develop a theoretical 

framework for the eviction rate. Eviction results from interactions between landlords and tenants. 

The decision to evict is made by landlords. This decision may be influenced by factors exogenous 

to landlords. For example, landlords face tenants who may fall on a continuum of how likely they 

are to pay back missed rent. If a tenant is more likely to pay back missed rent, landlords may 

decide to evict less often, whereas if a tenant is less likely to pay back missed rent, landlords may 

decide to evict more often. Additionally, landlords may be influenced by the economic 

environment in which they find themselves. Further, a landlords’ characteristics, like how large or 

small they are, may affect their decisions. Ultimately it is the landlords who choose whether to 

begin the eviction process. 

The landlord’s decision appears simple: if a tenant does not pay their rent, the landlord 

files for eviction. However, the literature suggests a more complicated story. As discussed in 

Chapter II, eviction judgments are costly to landlords (Garboden and Rosen, 2019). Although 

eviction judgements lead to the removal of a problem tenant, they come with the costs associated 

with going to court, turning over the unit, and finding a new tenant. Qualitative research from 

Baltimore, MD, Cleveland, OH, and Dallas, TX suggests that landlords prefer a tenant to a 

vacancy (Garboden and Rosen, 2019). Qualitative research from Philadelphia suggests that 

smaller landlords employ a number of strategies to avoid eviction (Balzarinin and Boyd, 2020) 

Because an eviction judgment is costly, a landlord will file to reach an eviction judgment only 

when they believe their tenant will not pay their back rent (Garboden and Rosen, 2019).
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Although there has been recent literature on the landlord’s decision to evict, there has 

been little theoretical literature on the interactions between landlords and tenants, which affect 

eviction outcomes. A working paper by Bradford and Bradford (2020) is the only paper to 

develop a theoretical framework for the study of eviction. Bradford and Bradford (2020) use their 

model to predict the effect of state and local housing laws on eviction rates. They then test those 

predictions empirically. Although their model provides useful insight, the game theoretic 

approach they take complicates their theoretical framework. I take a simpler approach in this 

chapter. 

The Model 

 Let the county-level eviction rate, e, be defined as: 

 

𝑒 =
𝐸𝑣𝑖𝑐𝑡𝑒𝑑 𝑅𝑂𝐻

𝑅𝑂𝐻
, 

 

where Evicted ROH is the county’s evicted renter-occupied households and ROH is the county’s 

renter-occupied households. I decompose e into two parts as follows: 

 

𝑒 = (
𝑅𝑂𝐻 𝐻𝑎𝑟𝑑𝑠ℎ𝑖𝑝

𝑅𝑂𝐻
) ∙ (

𝐸𝑣𝑖𝑐𝑡𝑒𝑑 𝑅𝑂𝐻

𝑅𝑂𝐻 𝐻𝑎𝑟𝑑𝑠ℎ𝑖𝑝
), 

 

where (
𝑅𝑂𝐻 𝐻𝑎𝑟𝑑𝑠ℎ𝑖𝑝

𝑅𝑂𝐻
) is the share of the county’s renter-occupied households that are facing 

hardship and (
𝐸𝑣𝑖𝑐𝑡𝑒𝑑 𝑅𝑂𝐻

𝑅𝑂𝐻 𝐻𝑎𝑟𝑑𝑠ℎ𝑖𝑝
) is the share of the county’s renter-occupied households facing 

hardship that are evicted. 

The prior literature suggests that tenants can experience hardship from an unexpected job 

loss, car payment, or medical expense. Further, this hardship can lead to difficulty paying rent 

(Sills et al., 2018). Failure to pay rent is a valid reason to evict a tenant and it is the leading reason 

why landlords evict their tenant (Sills et al., 2017; McCabe and Rosen, 2020). Additionally, the 
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prior literature suggests that landlords prefer keeping tenants, even those behind on their rent, to 

evicting tenants (Balzarinin and Boyd, 2019; Garboden and Rosen, 2019). By not immediately 

evicting tenants, landlords give their tenants the opportunity to catch up on missed rent. Although 

simplified, the decomposition of e into its two components accurately captures the formal 

eviction rate. 

Let the share of the county’s renter-occupied households that are facing hardship be 

defined as: 

 
𝑅𝑂𝐻 𝐻𝑎𝑟𝑑𝑠ℎ𝑖𝑝

𝑅𝑂𝐻
= 𝑟(1 − 𝑏), 

 

where r is the probability of a negative shock such as an unexpected job loss, car payment, or 

medical expense. b is the county’s support for renter-occupied households who experience a 

negative shock. I assume that both r and b are bounded by zero and one, where zero is low and 

one is high. As r increases, the share of the county’s renter-occupied households that are facing 

hardship also increases. 

Setting the share of the county’s renter-occupied households that are facing hardship 

equal to r(1-b) allows for the potential mitigating effect of the county’s support for renter-

occupied households who experience a negative shock. As a result, when b=0, the share of the 

county’s renter-occupied households that are facing hardship is equal to r. When b=1, the share of 

the county’s renter-occupied households that are facing hardship is equal to zero. Therefore, as b 

increases, the share of the county’s renter-occupied households that are facing hardship decreases. 

In Chapter VII, r will be captured by county-level unemployment rates and b will be captured by 

state-level unemployment insurance benefits. 

Next, I turn to the landlord’s decision. For simplicity, I assume that a landlord can only 

decide between keeping or evicting their current tenant. This assumption narrows the eviction 
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process to a one step process, instead of a three-step process (file, trial, judgment). The value 

function for a landlord who has a renter who experiences a negative shock is equal to the higher 

of two payoffs: 

 

𝑉𝑖(𝑟, 𝑏) = max{𝜋𝑗, −𝑐 + 𝐸[𝜋(𝑟, 𝑏)]}, 

 

where πj is the payoff to the landlord from keeping their current tenant, j, and – c + E[π (r, b)] is 

the payoff to the landlord from evicting their current tenant. If the landlord keeps their current 

tenant, they receive πj. If the landlord evicts their current tenant, they pay a cost of eviction, c, 

which is bounded between zero (low) and one (high) They then receive a draw of a new tenant 

from a function that depends on r and b: π(r, b) where the expected payoff is decreasing in r and 

increasing in b. E[π (r, b)] thus captures the expected payoff to the landlord of a new tenant in the 

event that the current tenant is evicted. Conditional on c, landlords are less likely to evict if they 

believe their current tenant is better than the tenant pool and are more likely to evict if they 

believe their current tenant is worse than the tenant pool.  

For simplicity, if we think of landlords in a county as being identical, the share of the 

county’s renter-occupied households facing hardship that are evicted can be written as follows: 

 

(
𝐸𝑣𝑖𝑐𝑡𝑒𝑑 𝑅𝑂𝐻

𝑅𝑂𝐻 𝐹𝑎𝑐𝑖𝑛𝑔 𝐻𝑎𝑟𝑑𝑠ℎ𝑖𝑝
) = 𝑃(𝜋𝑗 < −𝑐 + 𝐸[𝜋(𝑟, 𝑏)]), 

 

where P indicates probability. Let “tenant quality” be distributed uniformly between 0 and 
1

𝑅(1−𝐵)
 

and assume that 𝜋𝑗 is a random draw from this distribution. The functional form 
1

𝑅(1−𝐵)
 is 

decreasing in r and increasing in b. With this assumption, the share of the county’s renter-

occupied households facing hardship that are evicted can written as 
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(
𝐸𝑣𝑖𝑐𝑡𝑒𝑑 𝑅𝑂𝐻

𝑅𝑂𝐻 𝐹𝑎𝑐𝑖𝑛𝑔 𝐻𝑎𝑟𝑑𝑠ℎ𝑖𝑝
) = 𝐹(−𝑐 + 𝐸[𝜋(𝑟, 𝑏)]) =

1

2
− 𝑐𝑟(1 − 𝑏), 

 

where 𝐹(⋅) is the uniform cumulative distribution function. 

Plugging both parts into our original equation allows for the eviction rate to be written as 

 

𝑒 = (𝑟(1 − 𝑏)) (
1

2
− 𝑐𝑟(1 − 𝑏)) 

 

We can take partial derivatives to see how the eviction rate changes as a function of r and 

b. The partial derivative of e with respect to r is 

 
𝜕𝑒

𝜕𝑟
= (1 − 𝑏) (

1

2
− 2𝑐𝑟(1 − 𝑏)) 

 

This partial derivative can be positive or negative. By setting this partial derivative equal to or 

less than zero, we can determine the conditions under which 
𝜕𝑒

𝜕𝑟
 is likely to be negative. 

 

(1 − 𝑏) (
1

2
− 2𝑐𝑟(1 − 𝑏)) ≤ 0 

 
1

(1 − 𝑏)
≤ 4𝑐𝑟 

 

Holding c and r constant, as b increases, the left side becomes larger, which makes 
𝜕𝑒

𝜕𝑟
 less likely 

to be negative. Holding b and c, as r increases, the right side becomes larger, which makes 
𝜕𝑒

𝜕𝑟
  

more likely to be negative. Holding b and r, as c increases, the right side becomes larger, which 

makes 
𝜕𝑒

𝜕𝑟
  more likely to be negative. Therefore, the partial is more likely to be negative, when 

either b is small or when c or r is large.  
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The partial derivative of e with respect to b is: 

 

𝜕𝑒

𝜕𝑏
= −𝑟 (

1

2
− 2𝑐𝑟(1 − 𝑏)) 

 

This partial derivative can be positive or negative. By setting this partial derivative equal to or 

less than zero, we can determine the conditions under which 
𝜕𝑒

𝜕𝑏
 is likely to be negative. 

 

−𝑟 (
1

2
− 2𝑐𝑟(1 − 𝑏)) ≤ 0 

 

(1 − 𝑏) ≤
1

4𝑐𝑟
 

 

Holding c and r constant, as b increases, the left side becomes smaller, which makes 
𝜕𝑒

𝜕𝑏
 more 

likely to be negative. Holding b and c constant, as r increases, the right side becomes smaller, 

which makes 
𝜕𝑒

𝜕𝑏
  more likely to be negative. Holding b and r constant, as c increases, the right 

side becomes smaller, which makes 
𝜕𝑒

𝜕𝑏
  more likely to be negative. Therefore, the partial is more 

likely to be negative, when either b is large or when c or r is small. 

 Finally, the cross partial is: 

 

𝜕2𝑒

𝜕𝑟𝜕𝑏
= −

1

2
+ 4𝑐𝑟(1 − 𝑏) 

 

This partial derivative can be positive or negative. By setting this cross partial equal to or less 

than zero, we can determine the conditions under which 
𝜕2𝑒

𝜕𝑟𝜕𝑏
 is likely to be negative. 
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−
1

2
+ 4𝑐𝑟(1 − 𝑏) ≤ 0 

 

8(1 − 𝑏) ≤
1

𝑐𝑟
 

 

Holding c and r constant, as b increases, the left side becomes smaller, which makes 
𝜕2𝑒

𝜕𝑟𝜕𝑏
 more 

likely to be negative. Holding b and c constant, as r increases, the right side becomes smaller, 

which makes 
𝜕2𝑒

𝜕𝑟𝜕𝑏
  more likely to be negative. Holding b and r constant, as c increases, the right 

side becomes smaller, which makes 
𝜕2𝑒

𝜕𝑟𝜕𝑏
  more likely to be negative. Therefore, the partial is 

more likely to be negative, when either b is large or when c or r is small. 

Conclusion 

 In this chapter, I develop a theoretical model for the eviction rate. I incorporate both the 

tenant situation and the landlord decision into the model. I then take the partial and cross partial 

derivatives to understand the relationship between the Eviction Rate, e, the likelihood of a 

negative shock, r, the support for renters, b, and the cost of eviction to landlords, c. 

 The partial derivatives reveal a complicated story among e, r, and b in particular. The 

relationship between e and r can be either positive or negative. That is, the likelihood of a 

negative shock can either increase or decrease the eviction rate in the area. This is because the 

likelihood of a negative shock affects the eviction rate through both the tenant situation and the 

landlord decision. The likelihood of a negative shock makes a tenant more likely to default on 

their rent, but if the entire tenant pool is more likely to default on their rent, then the landlord may 

not want to evict. If the partial is negative, the tenant situation is stronger, if the partial is positive, 

the landlord decision is stronger. 
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 Similarly, the relationship between e and b can be either positive or negative. That is, the 

support for renters can either increase or decrease the eviction rate in the area. This is because the 

support for renters affects the eviction rate through both the tenant situation and the landlord 

decision. The support for renters may make a tenant less likely to default on their rent, but if the 

entire tenant pool is less likely to default on their rent, then the landlord may want to evict. If the 

partial is positive, then the tenant situation is stronger, if the partial is negative, then the landlord 

decision is stronger. 

 Finally, the cross partial also reveals a complicated relationship among e, r, and b in 

particular. The cross partial can be positive or negative. This means that depending on the values 

of r and b, the Eviction Rate may increase or decrease with changes in r or b.  

 Overall, this model showcases an important point: because eviction is an outcome in 

landlord-tenant interactions and because those interactions can be influenced in different ways, 

we cannot expect a straightforward answer to how certain policies may affect eviction rates. 

Although it appears straightforward, the relationship is much more complicated than the literature 

has given it credit for thus far. 
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CHAPTER IV 

 

EVICTION DATA 

 

 

Accurately measuring eviction is challenging. The literature uses two types of data most 

often: administrative data or survey data. Both types have their shortcomings. Survey data is 

limited in that it can undercount the prevalence of rental housing evictions or it can fail to capture 

a complete picture of housing displacement (Lundberg and Donnelly, 2018; Porton et al., 2020). 

As a result, many researchers use administrative data. However, administrative data is limited in 

that it does not capture informal evictions and can contain errors (Lundberg and Donnelly, 2018; 

Porton et al., 2020). Porton et al (2020) argue that administrative data can overcome its 

shortcomings by careful cleaning of the dataset. 

My data for eviction come from the Eviction Lab, the first national database on eviction 

in the United States. Created by Matthew Desmond and his team out of Princeton University, the 

Eviction Lab provides the first look at eviction across the nation. By gathering and standardizing 

data from across the United States, the Eviction Lab fills a huge gap in the data on evictions. The 

Eviction Lab website states that “Researchers can use the data to help us document the 

prevalence, causes, and consequences of eviction and to evaluate laws and policies designed to 

promote residential security and reduce poverty” (The Eviction Lab, 2018). The database gives 

researchers the opportunity to study questions that were previously impossible to study due to 

data limitations. 

Since its release, peer-reviewed studies and working papers have relied on the Eviction 

Lab database for their data (Bradford and Bradford, 2019; Zewde et al., 2019; Merritt and 

Farnworth, 2020; Bradford and Bradford, 2020). However, there have been a number of critiques 
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of the database. One of the most common being that the Eviction Lab undercounts the number of 

evictions in certain localities (Aiello et al., 2018). The critiques of the database necessitate an 

establishment of the quality of the database as a primary source for documenting evictions in the 

United States, either nationally or at the state or local level. This chapter provides an explanation 

of the Eviction Lab database, discusses the measure of eviction that will be used in the analyses in 

later chapters, and assesses the quality of the Eviction Lab data.  

The Eviction Lab 

The Eviction Lab contains estimates of eviction filings and eviction judgements at the 

Census block group-, Census tract-, city-, county-, state-, and national-level for 2000-2016. 

Because my research will use the county-level and state-level estimates, I will focus on these 

estimates going forward. The county-level (state-level) estimates were primarily produced by 

cleaning, merging, and aggregating individual-level civil court cases from LexisNexis Risk 

Solutions (LexisNexis), American Information Research Services Inc. (AIRS), and local courts. 

Compiled data were validated against state reported county-level court statistics whenever 

possible. The data were standardized to 2010 Census geographical boundaries and linked to 

Census and American Community Survey data on population, renter population, rent, property 

value, income, poverty, and race. Although the database is the most comprehensive to date, it 

captures only formal evictions, which means it underestimates the prevalence of eviction in the 

United States (Desmond et al., 2018b). 

Measuring Eviction 

The Eviction Lab data includes four measures of eviction: eviction filings, eviction 

judgements, the eviction filing rate, and the eviction judgement rate1. The eviction filings variable 

 
1 What I refer to as “eviction judgments” the Eviction Lab calls “evictions” and what I refer to as the 

“eviction judgment rate” the Eviction Lab calls the “eviction rate”. 
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is the number of eviction filings in a county (state) per year, including multiple eviction filings 

against the same address. The eviction judgments variable is the number of eviction judgements 

in a county (state) per year. The eviction filing rate variable is the number of eviction filings over 

the number of renter-occupied households in a county (state) per year. Finally, the eviction 

judgment rate variable is the number of eviction judgments over the number of renter-occupied 

households in county (state) per year. 

Although each of these four measures is informative, my analysis relies on the eviction 

filing rate and the eviction rate. Accounting for the number of renter-occupied households is 

crucial for comparisons across the nation and over time, because it standardizes my measures of 

eviction. If I did not control for the number of renter-occupied households, I would not know if 

changes in eviction were due to more evictions or more renters. The eviction filing rate and the 

eviction judgment rate provide two good measures for understanding differences across regions 

and over time.  

Because eviction filings do not always turn into eviction judgements, I construct a fifth 

measure of eviction: the likelihood of eviction. I define it as follows:  

 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 =
# 𝑜𝑓 𝑒𝑣𝑖𝑐𝑡𝑖𝑜𝑛 𝑗𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡𝑠

# 𝑜𝑓 𝑒𝑣𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑖𝑙𝑖𝑛𝑔𝑠
 

 

This measure is the proportion of eviction filings that turn into eviction judgments, that is, the 

likelihood that an eviction filing becomes an eviction judgement. 

I believe the likelihood of eviction is useful measure because it captures the potential of 

going through the entire eviction process, as opposed to experiencing each part individually. This 

measure tells me how likely it is that eviction filings turn into eviction judgements. When 

comparing eviction across regions and over time, it is important to see the difference in the 

likelihood of going through the entire eviction process. An eviction filing in and of itself carries 
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weight for renters, but an eviction filing in an area with a higher likelihood of eviction carries 

even more weight, because it increases the likelihood of experiencing the worst of eviction’s 

negative consequences: removal from the home. 

Missing Data 

The Eviction Lab contains data for 3,144 counties2. Of those 3,144 counties, all but one 

(Clifton Forge City, VA) appears in the database from 2000-2016. As a result, the database 

contains 53,436 county-year observations. However, eviction estimates are missing for certain 

counties in certain years. Coverage gaps exist because either the data was unable to be collected 

or the data was dropped. For the former, eviction data in some regions is not collected, reported, 

or may be sealed (Desmond et al., 2018b). For the latter, eviction data was deemed unreliable by 

the Eviction Lab researchers. Furthermore, counties needed to have at least two consecutive data 

points to be included in the database. This means that a county needed to appear in two years 

back-to-back for it to contain an eviction estimate. Unfortunately, I am not able to determine 

whether a missing value is the result of a true missing or of dropped data. In total, the Eviction 

Lab contains estimates for eviction filings (and the eviction filing rate) for 2,972 counties over 

time, which results in 44,168 county-year observations. It contains estimates for eviction 

judgments (and the eviction judgment rate) for 2,759 counties over time, which results in 41,339 

county-year observations. 

Substitution. Some of the estimates in the Eviction Lab have been substituted from 

sources other than LexisNexis, because LexisNexis was incomplete for the following states: New 

Jersey, Alaska, Arkansas, North Dakota, and South Dakota, as well as Pennsylvania for the years 

2007 to 2016. The New Jersey data was missing outcomes on its individual-level court cases. The 

 
2 I focus on the county-level data because the county-level data is aggregated to create the state-level data. 

As a result, any missing data issue at the county-level affects the missing data at the state-level. 
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Eviction Lab updated these outcomes by merging data from AIRS on to the LexisNexis data 

(Desmond et al., 2018b). Alaska, Arkansas, North Dakota, and South Dakota did not have 

consistent data coverage on eviction filings or eviction judgements. As a result, the Eviction Lab 

substituted state-reported court statistics for these states and adjusted them by a factor3 (Desmond 

et al., 2018b). Lastly, Pennsylvania data was missing from 2007 to 2016. The Eviction Lab filled 

in the missing data with individual-level data from the Pennsylvania courts, again adjusting them 

by a factor (Desmond et al., 2018b). 

All estimates that were substituted are flagged in the database as “subbed”. There is a 

total of 4,461 county-year observations that are “subbed”. These observations make up 8.35 

percent of the county-level data. The Eviction Lab standardized the data the best they could 

across all four data sources. As a result, I will not adjust for or drop the “subbed” data in my 

samples. 

Imputation. Some of the estimates in the Eviction Lab have been imputed. The rules for 

imputation were as follows. They did not impute prior to the first good value or after the last good 

value except for 2016 in which case they imputed the 2016 value with the 2015 value. For 

missing data between the first and last good values, if only one or two consecutive values were 

missing, they imputed values using linear interpolation. If more than two consecutive values were 

missing, they did not impute any values. Counties that had more data missing were not imputed.  

All estimates that were imputed are flagged in the database as “imputed”. There is a total 

of 612 county-year observations that are “imputed”. These observations make up 1.15 percent of 

the county-level data. The Eviction Lab made logical imputation choices. As a  result, I will not 

adjust for or drop the “imputed” data in my samples. 

 
3 The Eviction Lab created their adjustment factor by comparing their data to state reported court statistics 

for landlord-tenant cases, as well as taking into consideration the housing market a state was in.  
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Data Quality 

To understand how the missing data at the county-level impacts the coverage of the state-

level data, I pulled the county extracts from 2000-2016. I flagged all counties that reported 

eviction filings (eviction filings ≥ 0) and eviction judgements (eviction judgements ≥ 0). First, I 

aggregated the flagged counties for each state and divided the aggregation by the number of 

counties in the state. The result is the percentage of counties in the state that reported eviction 

filings and eviction judgements, respectively. I present the percentage of counties in the state that 

reported eviction filings in Table 4.1, because the results are the same across both tables except in 

states that report eviction filings and not eviction judgments (Alaska, Arkansas, North Dakota, 

and South Dakota). That is, if a state reports a certain percentage of counties reporting eviction 

filings, the same percentage of counties report eviction judgements, except in Alaska, Arkansas, 

and North and South Dakota, where no eviction judgements are reported.  

Table 4.1 confirms that not every eviction filing (or eviction judgement) is recorded in 

the Eviction Lab. Reporting has two trends: consistency and completeness. Consistency 

represents how similar each state’s reporting is in each year, while completeness represents how 

many of the counties report in each year. Some states have both trends, while others have one or 

the other, while still others have neither of the trends. For example, Alabama has consistent, but 

incomplete reporting across all years, while Alaska has inconsistent and incomplete data. Notice 

that 2000 and 2001 tend to be less consistent and complete than the rest of the data sets, even in 

states that tend to have better reporting. Because there is inconsistent and incomplete data, it is 

important to understand what the given data tell us about eviction in every state. 
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Table 4.1. 

Percentage of Counties Reporting Eviction Filings over Time by State 

 Year 

State 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 

AL 64 99 99 97 93 91 93 97 97 97 97 97 97 97 97 97 97 

AK 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 

AZ 100 100 100 100 100 87 67 47 40 40 33 33 33 40 40 40 40 

AR 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

CA 78 84 86 84 83 81 76 81 81 83 79 69 66 64 67 62 66 

CO 73 81 86 88 86 88 88 88 86 84 92 86 78 73 72 73 86 

CT 0 38 25 25 25 38 38 38 38 38 38 38 38 38 38 75 75 

DE 67 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

DC 0 0 0 0 0 0 100 100 100 100 100 100 100 0 0 0 100 

FL 57 72 82 82 81 81 84 82 82 82 84 84 85 87 87 87 88 

GA 55 65 71 80 78 79 75 74 74 73 78 79 78 81 82 84 86 

HI 100 80 80 80 80 80 60 60 60 40 20 20 20 40 60 60 60 

ID 80 91 93 95 93 93 93 93 93 91 91 91 91 93 93 91 91 

IL 74 91 98 99 98 98 96 96 96 95 96 96 95 95 91 89 90 

IN 50 68 84 83 88 88 86 78 78 79 88 89 89 91 92 88 91 

IA 71 96 96 96 96 96 96 97 97 97 96 96 96 96 97 97 97 

KS 86 95 97 97 100 100 100 100 100 100 100 100 99 98 97 96 96 

KY 69 80 88 88 84 82 81 79 78 78 82 83 83 83 81 78 78 

LA 30 50 56 59 59 59 61 59 58 53 53 53 53 50 42 42 47 
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ME 19 50 88 94 94 94 94 100 100 100 100 100 100 100 100 100 100 

MD 13 13 17 21 21 21 29 29 29 33 25 25 25 25 25 13 13 

MA 0 29 50 43 36 50 50 57 86 86 93 93 93 93 100 100 100 

MI 30 39 82 90 90 98 96 95 95 98 98 99 99 95 94 93 94 

MN 46 57 69 69 71 75 76 76 78 82 83 83 90 95 94 94 94 

MS 74 77 74 78 80 83 83 80 89 89 88 87 87 87 88 83 83 

MO 67 78 85 90 94 95 100 100 100 100 100 100 100 97 97 88 88 

MT 86 88 88 89 88 91 89 89 89 89 91 93 95 95 95 95 95 

NE 82 92 92 92 92 92 92 92 92 92 92 92 92 92 92 94 94 

NV 82 88 76 71 76 71 65 71 71 82 94 94 94 94 94 88 88 

NH 0 0 0 0 10 60 90 90 90 90 80 60 60 60 60 20 20 

NJ 0 100 100 90 90 90 100 100 100 100 100 100 100 100 100 100 100 

NM 88 94 100 97 94 94 85 85 85 79 76 70 70 70 64 55 61 

NY 31 31 31 29 31 32 35 32 32 32 34 37 39 40 44 44 47 

NC 63 79 87 89 84 90 90 90 91 92 92 92 92 92 92 92 92 

ND 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

OH 33 84 95 94 93 93 95 95 97 97 98 99 99 99 99 99 99 

OK 71 92 95 95 96 96 97 96 96 96 97 97 97 97 97 97 97 

OR 64 97 100 100 100 100 100 100 100 100 97 94 92 92 92 92 92 

PA 99 99 100 100 100 100 100 93 93 93 100 100 100 100 100 100 100 

RI 0 20 0 0 0 0 0 60 60 60 60 60 40 40 40 80 80 

SC 0 0 0 0 0 0 0 0 0 57 98 100 100 98 96 85 85 

SD 0 0 0 0 0 0 0 0 0 0 85 85 85 85 85 85 85 
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TN 72 88 93 96 94 84 83 83 76 66 66 67 75 68 62 63 64 

TX 70 82 83 84 86 86 85 85 85 84 85 86 86 85 82 81 81 

UT 69 83 86 86 86 86 93 97 97 100 100 100 100 100 100 100 100 

VT 79 86 86 86 86 86 86 86 86 86 79 79 79 79 79 79 79 

VA 89 93 95 97 98 98 98 89 89 88 90 92 91 92 91 92 92 

WA 82 95 95 87 79 79 77 74 69 72 67 62 62 62 67 77 82 

WV 44 71 60 71 73 71 73 85 91 93 93 95 95 96 96 98 98 

WI 79 93 99 97 97 97 99 100 100 100 100 100 100 100 100 100 100 

WY 65 65 70 74 74 74 74 74 74 74 70 65 65 65 65 65 65 
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Next, I study what percentage of the renter-occupied households in the state are 

represented by the counties that were reporting eviction filings. If a state has all but one county 

reporting eviction filings, but that one county contains most of the renter population, then the 

evictions we see may not be an accurate representation of eviction levels across the state. That is, 

the inconsistent and incomplete data reporting is only an issue that needs to be corrected if it does 

not give us an accurate picture of eviction in a state. I aggregated the number of renter-occupied 

households in the state from counties that reported eviction filings. I divided that number by the 

total number of renter-occupied households in the state. The result is the percentage of renter-

occupied households in the state that are represented by the counties representing eviction filings, 

which is shown in Figure 4.1. 

Once again, some states have data that is much more representative of their renter 

households, and therefore of their eviction filings, than others. Alaska and Hawaii both have 

inconsistent data, while Alaska’s is also incomplete. Because both states are not within the 

continental United States, their housing markets will differ more than the rest of the United 

States. As a result, I drop Alaska and Hawaii from the rest of the data analyses. Furthermore, 

because DC is not a state or a county and it does not have consistent data coverage, I also drop 

DC from the rest of the analyses. These graphs also confirm that the data in 2000 and 2001 tends 

to be less consistent and complete across all states. As a result, I drop 2000 and 2001 from the 

rest of the data analyses to have more consistent coverage across time. 
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Figure 4.1 Renter Households Represented by State, 2000-2016
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Figure 4.1 Renter Households Represented by State, 2000-2016
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Figure 4.1 Renter Households Represented by State, 2000-2016
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Figure 4.1 Renter Households Represented by State, 2000-2016
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Figure 4.1 Renter Households Represented by State, 2000-2016
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Figure 4.1 Renter Households Represented by State, 2000-2016
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Figure 4.1 Renter Households Represented by State, 2000-2016
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The inconsistent and incomplete data does provide some states with better or worse 

quality data. If all states were included in a state-level analysis, then they would not provide an 

accurate picture of eviction across the United States. To adjust for this fact, I develop a data 

quality variable, which captures the consistency and completeness of each state’s data.  
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I begin with the renters reporting variable. This variable captures the percentage of 

renters represented by counties reporting eviction filings. I use this measure to construct a data 

quality variable. Using the distribution of the renters reporting variable, I created categories for 

high, medium, and low reporting of eviction filings. Reporting above the median value was 

considered high quality data and was assigned a value of one, while any reporting that was 

between the first quartile and the median value was considered medium quality and assigned a 

value of two. Any reporting that was in the first quartile was considered low quality and was 

assigned a value of three. Each state received a data quality score for each year, which is shown 

in Table 4.2. 

 

Table 4.2 

Data Quality Scores over Time by State 

 Year Data Quality 

State 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 Mean 

AL 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1.2 

AK 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1.8 

AZ 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 2.5 

AR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

CA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

CO 3 3 3 3 3 3 3 3 2 3 3 3 3 3 2 2.9 

CT 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 2.1 

DE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

DC 3 3 3 3 1 1 1 1 1 1 1 3 3 3 1 1.9 

FL 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1.1 

GA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

HI 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2.9 

ID 1 1 1 1 1 1 1 2 2 2 2 1 1 2 2 1.4 

IL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IN 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 1.8 
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IA 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1.1 

KS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

KY 2 2 2 3 3 3 3 3 3 3 2 2 2 3 3 2.6 

LA 3 3 3 3 3 3 2 2 2 2 2 2 3 3 3 2.6 

ME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

MD 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

MA 3 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1.9 

MI 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1.2 

MN 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1.7 

MS 3 3 3 2 2 2 1 1 2 2 2 2 2 2 2 2.1 

MO 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1.3 

MT 3 3 3 2 3 3 3 3 2 2 1 1 1 1 1 2.1 

NE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

NV 1 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2.1 

NH 3 3 3 2 1 1 1 1 3 3 3 3 3 3 3 2.4 

NJ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

NM 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 2.1 

NY 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

NC 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1.4 

ND 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

PA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

RI 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 2.2 

SC 3 3 3 3 3 3 3 3 1 1 1 1 1 3 3 2.3 

SD 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 2.1 

TN 1 1 1 2 2 2 2 3 3 3 2 2 3 3 2 2.1 

TX 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 1.7 

UT 2 2 3 3 2 1 1 1 1 1 1 1 1 1 1 1.5 

VT 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

VA 2 1 1 1 1 3 3 3 3 2 2 2 2 2 2 2 
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WA 1 2 2 2 2 2 3 3 3 3 3 3 2 2 1 2.3 

WV 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1.8 

WI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

WY 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 2.5 

 

 

There are 8 states that have low data quality using this measure. They are Colorado, 

Hawaii, Kentucky, Louisiana, Maryland, New York, Vermont, and Wyoming. There are 19 states 

that have medium quality data and 21 states that have good comprehensive data. Over half of the 

states do not have good quality data, which is a lot when trying to establish national trends and 

differences in eviction filing and eviction judgments across states. 

The Eviction Lab does recognize that there are gaps in their data. The Eviction Lab 

verified their estimates against outside sources whenever possible. They produced a variable in 

the data set that flags areas where the Eviction Lab researchers believe measures of eviction have 

been undercounted. The variable is equal to 1 if the if the Eviction Lab researchers believe the 

filings reported are undercounted, while its equal to 0 if they do not believe the filings are 

undercounted. I compare my data quality measure against the Eviction Lab’s data quality measure 

to determine comparability, which is shown in Table 4.3. 

 

Table 4.3 

Comparison of Quality Measures: Constructed versus Eviction Lab 

State Data Quality Low Flag 

AL High 0.00 

AK Medium 1.00 

AZ High 0.00 

AR Medium 1.00 

CA Low 0.00 

CO Medium 1.00 

DE High 0.00 
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FL High 0.00 

GA Medium 0.00 

ID High 1.00 

IL High 0.00 

IN Medium 0.00 

IA High 0.00 

KS High 0.00 

KY Low 1.00 

LA Low 1.00 

ME High 0.00 

MD Low 1.00 

MA Medium 0.00 

MI High 0.00 

MN Medium 0.00 

MS Medium 0.00 

MO High 0.00 

MT Medium 0.00 

NE High 0.00 

NV Medium 0.00 

NH Medium 1.00 

NJ High 1.00 

NM Medium 0.00 

NY Low 1.00 

NC High 0.00 

ND High 0.00 

OH High 0.00 

OK High 0.00 

OR High 0.00 

PA High 0.00 

RI Medium 0.00 

SC Medium 0.00 

SD Medium 0.00 
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TN Medium 1.00 

TX Medium 1.00 

UT High 0.00 

VT Low 1.00 

VA Medium 0.00 

WA Medium 1.00 

WV Medium 0.00 

WI High 0.00 

WY Low 1.00 

 

 

As shown in Table 4.3, the two measures do not always agree. For example, my measure 

finds Colorado to have low quality data, but Eviction Lab does not flag it as “low”. The same 

goes for Idaho and New Jersey. My measure finds these states to have high c quality data, but the 

Eviction Lab has them flagged as low. This results from the Eviction Lab comparing their 

estimates to state-reported county statistics. 

To capture all possible strays from good data quality, I construct an adjusted quality 

score. I adjust the quality score by adding my initial data quality score values to the low flag 

value. If the adjusted data quality score remained at one it was still considered high quality, if a 

quality score dropped to or remained at two it was considered medium quality, if a quality score 

dropped to or remained at three or dropped to four it was considered low quality. 

I created an average score for each state by averaging each state’s quality score over time 

and rounding to the closest integer. Each state’s adjusted quality score in each year, as well as its 

average score is shown in Table 4.4. As shown, there are 19 states (39.6%) that report high 

quality data, 16 states (33.3%) that report medium quality data, and 13 states (27.1%) that report 

low quality data. In the next chapter, I study the extend of the US eviction crisis, which requires 

accurate information on eviction filings and evictions. As a result, I will restrict my sample in that 

Chapter by data quality for most of the analyses. 
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Table 4.4 

Adjusted Data Quality Scores over Time by State 

 Year 

Data 

Quality 

Score 

State 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 Average 

AL 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 

AZ 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 3 

AR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

CA 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

CO 3 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 

CT 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 3 

DE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

FL 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 

GA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

ID 2 2 2 2 2 2 2 3 3 3 3 2 2 3 3 2 

IL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IN 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 2 

IA 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 

KS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

KY 3 3 3 4 4 4 4 4 4 4 3 3 3 4 4 4 

LA 4 4 4 4 4 4 3 3 3 3 3 3 4 4 4 4 

ME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

MD 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

MA 3 3 3 3 3 3 2 2 1 1 1 1 1 1 1 2 

MI 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 

MN 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 

MS 3 3 3 2 2 2 1 1 2 2 2 2 2 2 2 2 

MO 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 

MT 3 3 3 2 3 3 3 3 2 2 1 1 1 1 1 2 

NE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

NV 1 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 
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NH 4 4 4 3 2 2 2 2 4 4 4 4 4 4 4 3 

NJ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

NM 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 2 

NY 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

NC 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 

ND 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

PA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

RI 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 2 

SC 3 3 3 3 3 3 3 3 1 1 1 1 1 3 3 2 

SD 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 2 

TN 2 2 2 3 3 3 3 4 4 4 3 3 4 4 3 3 

TX 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 

UT 2 2 3 3 2 1 1 1 1 1 1 1 1 1 1 1 

VT 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

VA 2 1 1 1 1 3 3 3 3 2 2 2 2 2 2 2 

WA 2 3 3 3 3 3 4 4 4 4 4 4 3 3 2 3 

WV 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 2 

WI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

WY 4 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 

 

 

Conclusion 

This chapter summarizes the Eviction Lab database, describes the measures of eviction to 

be used in later empirical work, and discusses the comprehensiveness of the state-level data. I 

propose an additional, created measure of eviction, the likelihood of eviction. This will be a 

useful measure in some of the empirical analyses that follow. Additionally, I find that when 

completing analyses at the state-level, researchers need to adjust for data quality, as some eviction 
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estimates at the state-level better represent the likely number of evictions in their state than others 

due to the consistency and completeness of their data.
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CHAPTER V 

 

THE US EVICTION CRISIS 

 

 

Since its release, the Eviction Lab database has been cited as evidence of an eviction 

crisis. However, references to this crisis are inconsistent. Some articles suggest a national crisis, 

pointing to the large number of evictions in 2016 (Brennan, 2018; Capps, 2018; Goldberg, 2018), 

while others mention a local crisis, citing a specific city’s ranking within the Eviction Lab’s top 

evicting cities (Goldberg, 2018; Gergen & Mayer, 2018; Sills et al., 2018). What do we mean 

when we refer to the US eviction crisis? Because a consistent definition of the US eviction crisis 

has not been provided, we have little understanding of what constitutes an eviction crisis. 

A better understanding of what constitutes an eviction crisis will aid US government 

officials and private organizations that seek to reduce or prevent evictions. In this chapter, I will 

use state- and county-level data from the Eviction Lab to study eviction at the national, state, and 

local level from 2002-2016. By exploring the prevalence of eviction over time and across 

geographies, I will be able to comment on what constitutes an eviction crisis in the US.  

Background 

The Efficient Level of Evictions 

From economics perspective, we approach this question in terms of efficiency. What is 

the efficient level of evictions? Despite eviction’s potential negative consequences, the efficient 

level of evictions is not zero. Eviction is the process through which a landlord removes a tenant 

from the rental property when a tenant fails to maintain some aspect of the lease. Tenants who 

purposely fail to maintain some aspect of the lease must be evicted, and as long as there are such 

tenants, the efficient level of evictions is nonzero.
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In a simple partial equilibrium setting, the efficient level of evictions is found at the 

intersection of the marginal social cost and marginal social benefit curves. The marginal social 

cost is the sum of the marginal private cost and the marginal external cost and represents the 

change in society’s total cost associated an additional eviction, while the marginal social benefit 

is the sum of the marginal private benefit and the marginal external benefit and represents the 

change in society’s total benefit associated with an additional eviction. Marginal external costs 

are costs of eviction imposed on parties other than the landlord or tenant, and marginal external 

benefits are benefits of eviction received by parties other than the landlord or tenant. For 

simplicity, we will assume there are no marginal external benefits. At the intersection, the 

marginal social cost of the next eviction is exactly equal to the marginal social benefit of the next 

eviction. 

Evictions result from decisions made by individual landlords. A landlord compares their 

marginal private costs to their marginal private benefits, and in equilibrium the landlord operates 

where marginal private benefit is equal to marginal private cost ignoring any external costs. For 

the landlord, the marginal private costs include court fees, turnover fees, and search costs, while 

the marginal private benefits include rent from a new, potentially better tenant. 

However, a problem arises if there are marginal external costs associated with eviction. 

These costs may include sidewalk cleanup, enforcement of evictions, homelessness, and increases 

in individuals requiring aid. Assuming no marginal external benefits for simplicity, the existence 

of marginal external costs leads the private equilibrium number of evictions to be higher than the 

socially optimal level of evictions. As a result, society operates at an inefficient level of evictions. 

Previous research ties eviction to numerous consequences including homelessness, 

residential instability, economic hardship, job loss, and physical and mental health issues (Crane 

& Warner, 2000; Desmond & Kimbro, 2015; Desmond & Shollenberger, 2015; Desmond et al., 
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2015; Desmond & Gershenson, 2016a; Vasquez-Vera, 2017; Collinson & Reed, 2018; Humphries 

et al., 2018, Kahlmeter et al., 2018; Rojas & Stenberg, 2018). Some of these consequences are not 

limited to those who experience eviction directly. For example, Lindsey (2010) suggests that 

eviction can place direct and indirect fiscal costs on governments, taxpayers, and social-welfare 

groups as they pay for sidewalk cleanup, enforcement of evictions, homelessness, and increases 

in individuals requiring aid. If landlords are not considering these costs in their decisions to evict, 

then we are currently operating at an inefficient level of evictions. 

The Foreclosure Crisis 

There is currently no research to suggest whether we are actually operating at an 

inefficient level of evictions or not. As a result, we may look to another example of a crisis to 

compare current levels of evictions to. Because mortgage foreclosures are the homeowner 

equivalent of evictions, it makes sense to compare the US eviction crisis to the US foreclosure 

crisis. The foreclosure crisis refers to both the spike in mortgage foreclosure rates around the 

Great Recession and the consistent, historically high mortgage foreclosure rates after the Great 

Recession (Emmons, 2016). 

Figure 5.3 depicts foreclosure filing rates from 2005 to 2016. Although filing rates 

peaked in 2010, they remained high until 2016. Foreclosure rates above 0.5 percent are 

historically high. As I explore eviction over time and across geographies, I will be interested in 

spikes, historically elevated levels, and rates 0.5 percent to constitute an eviction crisis. 
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Data 

To examine national, state, and local trends in eviction over time, I use state- and county-

level data from the Eviction Lab. Specifically, I use eviction filing rates and eviction judgment 

rates from 2002-2016. I also construct my measure, the likelihood of eviction, from 2002-2016. 

Recall that this variable captures the likelihood that an eviction filing results in an eviction 

judgment. 

At the national-level, I examine trends in eviction over time using data from all states 

except Alaska, Hawaii, and the District of Columbia. Excluding these states addresses data issues 

discussed in Chapter IV. At the state- and local-level, I examine trends in eviction over time using 

data from a selection of “core” states. To be included in the “core” sample, states must satisfy the 

following criteria: 
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Figure 5.1 Foreclosure Filing Rate, 2005-2016
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(1) Eviction data in the state must be high quality, as measured by my data quality 

variable 

(2) Eviction data in the state must include both eviction filings and eviction judgments 

Table 5.1 depicts where each state falls in terms of data quality and inclusion of eviction filings 

and eviction judgments. The states located in row 1, column 1 are in the “core” sample. 

Seventeen states are included. 

 

Table 5.1. 

States in Sample 

Quality Contains filings and judgments Missing 

filings 

Missing 

judgments 

High AL, DE, FL, IA, IL, KS, ME, MI, MO, NE, 

NC, OH, OK, OR, PA, UT, WI 

 AR, ND 

Medium GA, ID, IN, MA, MN, MS, NV, NJ, NM, 

VA, WV 

RI, SC, SD RI, SC, SD 

Low AZ, CA, CO, CT, KY, LA, MD, NY, TN, 

TX, VT, WA, WY 

NH NH 

Notes: If a state is missing filings and/or missing judgments in at least one year from 2002-

2016, it is placed in column 2 and/or column 3. A state needs to contain both eviction filings 

and eviction judgments for all years from 2002-2016 for it to appear in column 1. 

 

Eviction at the National Level 

I begin by exploring national trends in eviction over time. Figure 5.2 depicts the US 

eviction filing rate and the US eviction judgment rate from 2002 to 2016. The filing rate is the 

number of eviction filings per 100 renter-occupied households, while the judgment rate is the 

number of eviction judgments per 100 renter-occupied households. From 2002-2016, the filing 

rate remains above the judgment rate. The filing rate sees a drop from 2007-2009, while the 

judgment rate remains relatively flat over time. Both the filing rate and the judgment rate have 

decreased slightly from 2002. The filing rate has decreased from 6.77 eviction filings per 100 

renter-occupied households in 2002 to 6.10 in 2016, while the judgment rate has decreased from 

2.81 eviction judgments per 100 renter-occupied households in 2002 to 2.35 in 2016. 
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We can compare Figure 5.2 to the foreclosure crisis to get a sense of whether it represents 

an eviction crisis. Neither the eviction filing rate or the eviction judgment rate spike during 2002-

2016. Although the filing rate does gradually increase starting in 2009, it follows a sharp decrease 

from 2007-2009. Because we do not have data further back, it is impossible to tell if these graphs 

represent a sustained historically elevated level of evictions. What we can say is that both the 

eviction filing rate and the eviction judgment rate are well above the foreclosure rate over this 

time period, even when foreclosure rates are considered to be at crisis levels. As a result, if we 

use the foreclosure crisis as a comparable measure for the US eviction crisis, then these graphs 

certainly do suggest a persistent eviction crisis over the last fifteen. 

 
 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

E
v

ic
ti

o
n

 F
il
in

g
 R

a
te

2002 2004 2006 2008 2010 2012 2014 2016

Great RecessionEviction Judgement RateEviction Filing Rate

Figure 5.2 Eviction Filing Rate and Eviction Judgment Rate, 2002-2016

Note: Excludes Alaska, Hawaii, and DC.



 

60 

 

 

Eviction at the State Level 

The national trends provide insight, but they mask what is happening at the state level. It 

is possible that some state trends look very different from the national trends. As a result, I 

explore state trends in eviction over time. I restrict my analysis to my 17 “core” states. Figure 5.3 

depicts the eviction filing rate and the eviction judgment rate from 2002 to 2016 for each of my 

core states. For all states, from 2002-2016, the filing rate remains above the judgment rate. 

However, there is a lot of variation in how much different the eviction filing rate is from the 

eviction judgment rate. For example, the filing rate in Maine is only slightly above the judgement 

rate, but in Michigan and North Carolina the two rates are much further apart. 

Twelve (Alabama, Florida, Illinois, Iowa, Kansas, Maine, Missouri, Nebraska, Ohio, 

Oregon, Utah, and Wisconsin) of the seventeen states do not have much movement in their 

eviction filing rates or eviction judgement rates. Florida and Oregon have slight downward trends 

in both their filing rates and judgement rates. Maine has a slight upward trend in both of its rates. 

The other eight states remain relatively flat over time. 

The remaining five states (Delaware, Michigan, North Carolina, Oklahoma, and 

Pennsylvania) have much more movement in their eviction filing rates or eviction judgement 

rates (or both). Delaware’s eviction filing rate nearly doubles in 2009, while its eviction 

judgement rate trends downward over time. Michigan’s rates follow a clear arc, while North 

Carolina’s rates look to be converging over time. Oklahoma sees a spike in both its eviction filing 

rate and its eviction judgement rate in 2012. Finally, Pennsylvania’s eviction filing rate starts to 

dip in 2014, while its eviction judgement rate spikes in 2006. There is no consistent trend in these 

five states, nor is there a consistent trend across the entire core.  

Again, we can compare Figure 5.3 to the foreclosure crisis to determine the extent of an 

eviction crisis at the state level. A few states do see spikes in their filing rates, judgment rates, or 
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both during 2002-2016. These spikes may suggest a crisis. For states that have relatively flat 

filing rates and judgment rates over time, we again do not have data further back, so it is 

impossible to tell if these graphs represent a sustained historically elevated level of evictions. 

However, we can say that both the eviction filing rate and the eviction judgment rate for most 

states are well above the foreclosure rate over this time period, even when it was considered to be 

at crisis levels. As a result, if we again use the foreclosure crisis as a measure of the eviction 

crisis, then these graphs certainly do suggest a persistent eviction crisis over the last fifteen or so 

years. 
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Figure 5.3 Eviction Filing Rate and Eviction Judgment Rate, 2002-2016
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Figure 5.3 Eviction Filing Rate and Eviction Judgment Rate, 2002-2016
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Figure 5.3 Eviction Filing Rate and Eviction Judgment Rate, 2002-2016

Great RecessionEviction Judgement RateEviction Filing Rate
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Figure 5.4 depicts the likelihood of eviction from 2002 to 2016 for my core states. The 

likelihood of eviction is much more volatile than the eviction filing rate and the eviction 

judgment rate. Despite the volatility, five states (Alabama, Florida, Maine, Missouri, and Ohio) 

have no clear trend over time. Of the remaining twelve states, nine (Delaware, Iowa, Kansas, 

Michigan, Oklahoma, Oregon, Pennsylvania, Utah, and Wisconsin) have a clear downward trend 

in their likelihood of eviction. That is, renters in these states are less likely to receive an eviction 

judgement if they received an eviction filing than they were in 2002. The remaining three states 

(Illinois, Nebraska, and North Carolina) have a clear upward trend. Renters in these states are 

more likely to receive an eviction judgment if they received an eviction filing in 2016 than they 

were in 2002. As with the filing rate and judgment rate, there is no consistent trend across the 

entire core. 
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Figure 5.4 Likelihood of Eviction, 2002-2016
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Figure 5.4 Likelihood of Eviction, 2002-2016
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Figure 5.4 Likelihood of Eviction, 2002-2016
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Eviction at the County Level 

The state trends provide insight, but they mask what is happening at the county level. It is 

possible that some county trends look very different from the state trends. As a result, I explore 

county trends in eviction over time. I again restrict my analysis to my 17 “core” states. Figure 5.5 

depicts the eviction filing rate from 2002 to 2016 for each state, as well as each county in the state 

for all of my core states. Including both the counties’ filing rates, as well as the state’s filing rate 

on the same graphs gives us a better sense of how the county and state level rates relate to one 

another. Figure 5.5 showcases how the county filing rates can be very different from the state 

filing rates. A cluster of lines appears in every state’s graphs; however, there is also a bit of range 

in the filing rates across the counties. Further, all states have counties with filing rates that are 

incredibly volatile. We did not see this level of volatility in the state-level data. 

Beyond the volatility of some counties’ eviction filing rates, two trends emerge: state 

eviction filing rates that mirror the majority of their counties’ rate and state eviction filing rate 

that mirror only some of their counties. Delaware and Maine have county-level filing rates that 

are nearly identical to the state’s eviction filing rate. The state line falls in the middle of the 

counties. For the other 15 states in the core, the state eviction filing rate appears to be getting 

pulled away from the majority of the counties’ rates. 
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Figure 5.5 Eviction Filing Rate, 2002-2016
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Figure 5.5 Eviction Filing Rate, 2002-2016
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Figure 5.5 Eviction Filing Rate, 2002-2016

Great Recession
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Figure 5.6 depicts the eviction judgment rate from 2002 to 2016 for each state, as well as 

each county in the state for all of my core states. Including both the county’s judgment rates, as 

well as the state’s judgment rate on the same graphs gives us a better sense of how the county and 

state level rates relate to one another. Figure 5.6 showcases how the county judgment rates can be 

very different from the state judgment rate. As with the eviction filing rates, there is always a 

cluster of lines in each state’s graphs. However, unlike the eviction filing rates, the eviction 

judgment rates have much less spread. Although we can see some volatility in the judgment rates, 

it is not nearly as volatile as the eviction filing rates. The highest eviction judgment rates are 

lower than the corresponding eviction filing rates. 

Figure 5.6 presents two distinct patterns: states that follow the majority of their counties’ 

trends and those that only follow a few counties’ trends. There are more states that fall in the 

middle of their county data than before. These states are Delaware, Illinois, Maine, Michigan, 

Ohio, Oregon, and Pennsylvania. The other ten states tend to sit more towards the top of the 

eviction rate cluster, which suggests that there is a county or two that is pulling the state’s line 

away from the cluster. 
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Figure 5.6 Eviction Judgment Rate, 2002-2016

Great Recession
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Figure 5.6 Eviction Judgment Rate, 2002-2016
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Figure 5.6 Eviction Judgment Rate, 2002-2016

Great Recession
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 Finally, Figure 5.7 depicts the likelihood of eviction from 2002 to 2016 for  over time for 

counties within the states in our core sample. The state’s likelihood of eviction is plotted for 

comparison. These graphs are the most volatile of all. Most states have counties that bounce 

between 0 and 1. Although there tend to be clusters, the clusters do not always follow the same 

trend. For example, Illinois has a lot of counties in the top half of the graph, but there is no clear 

pattern to their likelihood of eviction. Wisconsin has a distinct trend across numerous counties. 
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Figure 5.7 Likelihood of Eviction, 2002-2016

Great Recession
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Figure 5.7 Likelihood of Eviction, 2002-2016
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Figure 5.7 Likelihood of Eviction, 2002-2016

Great Recession
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These graphs confirm that there is a lot of variation in eviction filing rates, judgement 

rates, and the likelihood of eviction across areas and over time. A close look at the filing rates and 

judgement rates suggests that although there are spikes over time, there have not been many 

spikes that have maintained the higher levels, especially not recently. The likelihood of eviction is 

incredibly volatile, but that is only capturing the chances of someone receiving a judgment after 

being filed upon. 

Conclusion 

There has been much discussion about the US eviction crisis. However, we have never 

defined what constitutes an eviction crisis. From an economics perspective, we may think in 

terms of the efficient level of evictions. Yet, there is currently no literature to suggest whether we 

are operating at an inefficient level of evictions or not. As a result, we may look to a different 

example of a crisis to compare current levels of eviction to. Because foreclosures are the 

homeowner equivalent of evictions, I compare the US eviction crisis to the foreclosure crisis. 

The foreclosure crisis is defined as both the spike in foreclosure rates around the Great 

Recession and the consistent, historically elevated foreclosure rates after the Great Recession. 

These historically elevated rates are above 0.5 percent. Using the foreclosure crisis definition as 

context for the US eviction crisis, my results suggest that the US eviction crisis is a national, 

state, and local issue. 

At the national level, the US eviction crisis is not marked by a spike or a historically 

elevated level of evictions, but instead by eviction filing rates and eviction judgment rate well 

above those of the foreclosure rates during the same time period. At the state and local level, the 

US eviction crisis can be marked by spikes in filing rates, judgment rates, and the likelihood of 

eviction, as well historically elevated filing rates, judgement rates, and the likelihood of eviction. 
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Additionally, many states and counties have eviction filing rates and judgment rates well above 

0.5 percent. 

The goal of this chapter is to provide a first step in understanding what has been deemed 

the US eviction crisis. It is important to understand the crisis, before trying to solve it, because a 

clear understanding of the problem helps us to create the most effective solutions. It is impossible 

to solve a problem that you do not understand.
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CHAPTER VI 

 

THE VARIATION IN EVICTION RATES ACROSS US COUNTIES 

 

 

Chapter V highlighted a large variation in eviction rates across US counties, yet we do 

not know why this variation exists. As discussed in Chapter II, the prior literature offers 

explanations for why some individuals are evicted, while seemingly similar individuals are not. 

The results suggest that both demographic factors, such as race, ethnicity, and family structure 

and economic factors, such as rent, income, and poverty, contribute to differences in eviction 

outcomes. Demographic factors have been of particular interest because of the possibility of 

discrimination. However, the previous research is limited by data availability. Most conclusions 

have been reached using data from one city or county. Further, nearly all the research has focused 

on urban areas. As a result, we do not know if results from the literature generalize across the US. 

The Eviction Lab provides an opportunity to study differences in eviction rates across US 

counties. This chapter uses county-level data from the Eviction Lab to determine which factors 

are associated with differences in eviction rates across the US. Specifically, it seeks to determine 

in the relationship between county-level eviction rates on the one hand and county-level 

demographic characteristics and economic conditions on the other. In doing so, it explores and 

expands previous explanations provided by the literature. 

Ultimately, distinguishing which, if any, explanations contribute to geographic disparities 

in eviction rates is an essential step toward developing place-level targeted interventions. If 

county-level characteristics that predict differences are economic, then solutions like affordable 

housing should be the focus; however, if county-level characteristics that predict differences are 

demographic, then these solutions may not be enough.
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Data 

Outcomes 

My dependent variables of interest are the county-level eviction filing rate and the 

county-level eviction judgment rate. Both of these variables are contained in the Eviction Lab. 

Recall that the eviction filing rate is the number of eviction filings, including multiple against the 

same household, per the number of renter-occupied households. The eviction judgment rate is the 

number of eviction judgments per the number of renter-occupied households. As rates, both the 

eviction filing rate and the eviction judgment rate fall between zero and one4. I use data from 

2005-2016, because my covariates are only available during that time period. 

Covariates 

County-level explanatory variables were selected based on the literature, specifically 

focusing on demographic and economic characteristics. Following the literature, I select the 

following demographic controls: race, ethnicity, and female headed household status. I also 

include a measure of racial residential segregation, which has not previously been included in 

eviction research, and educational attainment, which has been used as a control in some of prior 

the literature. 

Because I am using county rather than individual level data, many of these variables will 

be the percentage of individuals or households having a certain characteristic. Race is captured by 

the percentage of black residents in a county. Ethnicity is captured by the percentage of Hispanic 

(of any race) residents in the county. Racial residential segregation is measured by the black-

white dissimilarity index. The dissimilarity index measures the degree of segregation between 

two groups by looking at their relative distributions across a smaller geographical area within a 

 
4 The eviction filing rate could be greater than one, but in my data, I do not have any observations greater 

than one. As a result, I ignore this characteristic of the data in this analysis. 
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larger geographical area. Here, the dissimilarity index captures the relative distribution across 

census tracts within the same county. The index usually runs from 0 (complete integration) to 1 

(complete segregation). Female headed households are captured by the percentage of families in 

the county with a female head, no husband present, and their own children. Finally, educational 

attainment is captured for the county population age 25 and over. I separate educational 

attainment into the following five groups: less than a high school education, a high school degree, 

some college, a college degree, and more than a college degree. 

To account for economic conditions, I include variables measuring rent, income, poverty, 

and unemployment in my analysis. Rent is captured by real median gross rent. Income is captured 

by real median household income. Both rent and income are measured in 2016 dollars. Poverty is 

measured by the percentage of families in a county with income below the poverty line. Finally, 

unemployment is captured by the county’s unemployment rate. 

Lastly, in the analysis of all counties, I include a geographic control for whether a county 

is considered urban or not. I define urban by the Census bureau definition of a population 50,000 

or more 

Data for covariates come from the American Community Survey (ACS) and the Bureau 

of Labor Statistics Local Area Unemployment Statistics (BLS LAUS). The ACS provides the 

most up to date data on population and housing characteristics, while the BLS LAUS provides the 

most up to date data on unemployment. To study all counties across the US, I use the ACS 5-year 

estimates for all covariates except unemployment. The ACS 5-year estimates are essentially a 5-

year average of data from each county. As a result, I must use the same estimate for multiple 

years. I used the 2009 ACS 5-year estimates for 2005-2009, the 2012 ACS 5-year estimates for 

2010 and the 2015 ACS 5-year estimates for 2011-2016. For unemployment, I use county-level 

unemployment data from BLS LAUS for 2005-2016. These are yearly estimates. 
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Samples 

I begin by eliminating all counties from Alaska, Hawaii, DC, and Maryland to address 

data quality issues from Chapter IV. I also eliminate any counties with missing data for any of the 

outcome and control variables. As a result, the full sample contains 28,306 county-year 

observations across 2005-2016. The sample represents 2,662 of the 3,242 unique counties or 

county equivalents in the US. Because counties that do not consistently show up in the data may 

be different from those that do, I perform a sensitivity analysis using a balanced panel. I also 

construct an urban sample to understand if the factors that affect the differences in the eviction 

rates across the entire US differ from those that affect differences in eviction rates across urban 

counties. The urban sample, which eliminates counties in the same way as the full sample, 

contains 8,910 county-year observations across 2005-2016. This panel is also unbalanced. 

Table 6.1 presents summary statistics for both the full and urban sample. The full sample 

provides an understanding of the demographics and economics of all counties across the US, 

while the urban sample provides a narrower view. There are differences in the means across the 

two samples. In the full sample, the eviction filing rate and the eviction judgement rate are lower 

than in the urban sample. These results suggest that eviction is more prevalent in urban counties. 

Additionally, the full sample of counties is less segregated than the urban sample. Across the full 

sample, the dissimilarity index is 0.41, while across the urban sample, the dissimilarity index is 

0.47. The full sample has slightly lower levels of female-headed households. The urban sample is 

more highly educated. The full sample has lower median household income and median gross 

rents, as well as median rent burden. However, the full sample has higher levels of poverty. The 

average unemployment rate between the two samples is similar. 
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Table 6.1 

Summary Statistics 

 Full Sample Urban Sample 

 Mean SD Min Max Mean SD Min Max 

Eviction Filing Rate 0.03 0.05 0.00 0.55 0.06 0.07 0.00 0.55 

Eviction Judgment Rate 0.02 0.02 0.00 0.24 0.03 0.02 0.00 0.24 

% Black 9.02 14.36 0.01 86.76 10.27 11.87 0.06 70.94 

% Hispanic 8.30 13.11 0.00 95.54 9.56 12.07 0.50 95.54 

Dissimilarity Index 0.41 0.18 0.00 0.99 0.47 0.12 0.11 0.83 

% Female-Headed 

Households 

9.54 3.52 0.00 29.60 10.50 3.01 2.87 28.79 

% < HS Grad 16.03 7.17 1.26 48.70 13.35 5.51 2.32 46.29 

% HS Grad 35.52 6.98 7.52 55.10 31.25 6.87 8.30 52.16 

% Some College 29.08 5.30 10.83 48.82 29.85 4.50 12.29 43.83 

% College Grad 12.67 5.34 2.50 42.20 16.27 5.61 5.44 37.78 

Median Rent (100s) 7.14 1.86 1.99 19.40 8.60 2.00 5.19 18.68 

Median Income (1000s) 48.33 12.38 19.58 139.58 55.47 13.84 28.92 137.99 

% Families in Poverty 11.87 5.44 0.49 44.32 10.46 4.21 1.43 31.74 

Unemployment Rate (%) 6.77 2.96 0.20 26.30 6.63 2.66 0.20 19.00 

Urban (%) 0.31 0.46 0.00 1.00 1.00 0.00 1.00 1.00 

Observations 28,306 8,910 

 

 

The differences in the summary statistics are worth noting as they suggest that we may 

see different outcomes in the regression models that follow. Also, given these differences, it 

would not be surprising to find that factors that drive differences across the entire US differ from 

those that drive differences across urban areas. These results will be important, because previous 

research has focused almost exclusively on urban areas to develop ideas for why some individuals 

are evicted and others are not. If the factors that drive differences in eviction rates are different in 

urban areas than the rest of the United States, the policies that we use to decrease eviction rates 

will also need to be different. 

Methods 

I use regression analysis to explore the relationship between eviction filing rates and 

eviction judgments and possible predictors in both the full sample and the urban sample. The 

distribution of the eviction filing rate and the eviction judgment rate suggest that ordinary least 

squares may not be the best estimation method for the data. In Figures 6.1 and 6.2, I plot 
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histograms of the eviction filing rate and the eviction judgment rate, respectively. In both figures, 

the histograms are right skewed with pile-up near zero. For the eviction filing rate, 2,640 

observations (approximately 9.3 percent of the sample) equal zero. For the eviction judgment 

rate, 3,284 observations (approximately 11.6 percent of the sample) equal zero. These 

characteristics of the data will be accounted for in the empirical specifications that follow. 
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Because the data are skewed, it is at first appealing to estimate the above model using 

Tobit regression. Tobit is used in situations where the outcome variable is censored or where 

there is a corner solution. My outcomes are not censored and, since they are rates, are not corner 

solutions, but they are restricted to have a lower bound of zero.  

 As rates, both the eviction filing rate and the eviction judgment rate are considered 

proportions, which are bounded between zero and one. Although the eviction filing rate can 

technically go above one, in the samples I use in this analysis, the data never goes above one. To 

account for the fractional nature of the outcome variables, I estimate a fractional response model. 

The fractional response model uses a logit Quasi-Maximum Likelihood Estimator to estimate the 

following nonlinear model: 
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𝑌𝑖𝑡 =  𝐺(𝑋𝑖𝑡𝛽 + 𝐸𝑖𝑡𝛿 + 𝐺𝑖𝑡𝛾 + 𝑇𝑡 + 𝑢𝑖𝑡), 

 

where Yit is the eviction filing rate or the eviction judgement rate in county i in year t; G(·) is the 

logistic function; Xit is a vector of demographic covariates including county i's percentage of 

black residents, percentage of Hispanic residents, degree of black-white racial residential 

segregation, percentage of female headed households, and educational attainment composition in 

year t; Eit is a vector of economic covariates including county i's median gross rent, median 

household income, and percent of families in poverty in year t; Git is a geographic control equal 

to 1 if county i is urban (population greater than or equal to 50,000) in year t and 0 otherwise, Tt 

is a vector of time dummy variables, and uit is an error term for county i in year t. 

Results 

All Counties 

I begin with the full sample results. In Table 6.2, I present results from the QMLE 

regression of the eviction filing rate on its covariates. In column 1, I present the QMLE estimates 

of the fractional response model. Because the coefficients are not directly interpretable, in column 

2, I present the QMLE estimates as odds ratios. Because expected eviction filing rates and 

expected eviction judgment rates can be viewed as estimates of the probability of an eviction 

filing or an eviction judgment, it is possible to adopt an odds-ratio interpretation of the results 

(Stata, n.d.). Odds ratios are interpreted in relation to one. An odds ratio greater than one 

indicates that the covariate increases the odds of the outcome, an odds ratio equal to one indicates 

that the covariate has no effect on the odds of the outcome, and an odds ratio less than one 

indicates that the covariate decreases the odds of the outcome (Szumilas, 2010). 

The coefficients in column 1 suggest that both demographic and economic factors are 

associated with differences in eviction filing rates across US counties. The percent of black 

residents, percent of female-headed households, percent of the population over 25 with less than a 
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high school, percent of the population over 25 with a high school degree, the median gross rent, 

the unemployment rate, and the county being urban are all positively associated with the eviction 

filing rate and statistically significant. The percent of Hispanic residents and the percent of 

families living in poverty are both negatively associated with the eviction filing rate and 

statistically significant. 

In column 2, the odds ratios for the percent of black residents, the percent of Hispanic 

residents, percent of female-headed households, the median gross rent, the percent of families 

living in poverty, the unemployment rate, aand the county being urban are the most precisely 

estimated, because the confidence intervals are the smallest (Szumilas, 2010). Of these, the 

percent of female-headed households, the median gross rent, and the county being urban are most 

strongly associated with eviction filings, because the odds ratios are the largest or smallest. The 

odds of an eviction filing are 1.08 higher given a one unit increase in the percent of female-

headed households in a county. The odds of an eviction filing are 1.17 higher given a one unit 

increase in the median gross rent in a county. The odds of an eviction filing are 2.42 higher given 

an urban county compared to a rural county. 

 

Table 6.2 

The Eviction Filing Rate and Its Covariates 

 Fractional Response 

Coefficients 

Fractional Response Odds 

Ratios 

% Black 0.0217*** 1.022*** 

 (0.002) [1.018,1.026] 

   

% Hispanic -0.0152*** 0.985*** 

 (0.002) [0.980,0.990] 

   

Dissimilarity Index -0.0332 0.967 

 (0.115) [0.772,1.212] 

   

% Female-Headed Households 0.0802*** 1.084*** 

 (0.009) [1.065,1.103] 

   

% < HS Grad 0.0256** 1.026* 
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 (0.011) [1.004,1.048] 

   

% HS Grad 0.0243** 1.025* 

 (0.010) [1.006,1.044] 

   

% Some College 0.0143 1.014 

 (0.009) [0.997,1.032] 

   

% College Grad 0.0104 1.010 

 (0.016) [0.980,1.042] 

   

Median Gross Rent ($ 100s) 0.160*** 1.174*** 

 (0.020) [1.129,1.220] 

   

Median Household Income ($ 

1000s) 

-0.000824 0.999 

 (0.003) [0.993,1.005] 

   

% Families in Poverty -0.0586*** 0.943*** 

 (0.008) [0.929,0.957] 

   

Unemployment Rate (%) 0.0509*** 1.052*** 

 (0.008) [1.035,1.070] 

   

Urban 0.884*** 2.420*** 

 (0.055) [2.174,2.693] 

Observations 28,306 28,306 

 

 

In Table 6.3, I present results from the QMLE regression of the eviction judgment rate on 

its covariates. In column 1, I present the QMLE estimates of the fractional response model; in 

column 2, I present the QMLE estimates as odds ratios. The coefficients in column 1 again 

suggest that both demographic and economic factors are associated with differences in eviction 

judgment rates across US counties. The percent of black residents, the degree of black-white 

racial residential segregation, percent of female-headed households, the percent of the population 

over 25 with less than a high school, the percent of the population over 25 with a high school 

degree, the percent of the population over 25 with some college, the median gross rent, the 

unemployment rate, and the county being urban are all positively associated with the eviction 

judgment rate and statistically significant. The percent of Hispanic residents, the median 
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household income, and the percent of families living in poverty are all negatively associated with 

the eviction filing rate and statistically significant.  

In column 2, the odds ratios for the percent of black residents, the percent of Hispanic 

residents, the percent of female-headed households, the median gross rent, the percent of families 

living in poverty, the unemployment rate, are the county being urban are the most precisely 

estimated. Of these, the percent of female-headed households, the median gross rent, and the 

county being urban are most strongly associated with eviction filings. The odds of an eviction 

judgment are 1.08 higher given a one unit increase in the percent of female-headed households in 

a county. The odds of an eviction judgment are 1.13 higher given a one unit increase in the 

median gross rent in a county. The odds of an eviction judgment are 1.99 higher given an urban 

county compared to a rural county. 

 

Table 6.3 

The Eviction Judgment Rate and Its Covariates 

 Fractional Response 

Coefficients 

Fractional Response Odds 

Ratios 

% Black 0.00844*** 1.008*** 

 (0.002) [1.005,1.012] 

   

% Hispanic -0.0131*** 0.987*** 

 (0.002) [0.983,0.991] 

   

Dissimilarity Index 0.199** 1.220* 

 (0.094) [1.015,1.466] 

   

% Female-Headed Households 0.0803*** 1.084*** 

 (0.007) [1.068,1.099] 

   

% < HS Grad 0.0165* 1.017 

 (0.009) [1.000,1.034] 

   

% HS Grad 0.0127* 1.013 

 (0.007) [0.998,1.028] 

   

% Some College 0.0154** 1.015* 

 (0.007) [1.002,1.029] 
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% College Grad -0.00897 0.991 

 (0.012) [0.967,1.016] 

   

Median Gross Rent ($ 100s) 0.125*** 1.133*** 

 (0.016) [1.098,1.170] 

   

Median Household Income ($ 

1000s) 

-0.00435* 0.996 

 (0.003) [0.991,1.001] 

   

% Families in Poverty -0.0463*** 0.955*** 

 (0.006) [0.944,0.966] 

   

Unemployment Rate (%) 0.0272*** 1.028*** 

 (0.007) [1.013,1.042] 

   

Urban 0.690*** 1.994*** 

 (0.042) [1.835,2.166] 

Observations 28,306 28,306 

 

 

Urban Counties 

In Table 6.4, I present results from the QMLE regression of the eviction filling rate on its 

covariates for urban counties. In column 1, I present the QMLE estimates of the fractional 

response model; in column 2, I present the QMLE estimates as odds ratios. The coefficients in 

column 1 again suggest that both demographic and economic factors are associated with 

differences in eviction filing rates across urban US counties. The percent of black residents, 

percent of female-headed households, the percent of the population over 25 with less than a high 

school, the percent of the population over 25 with a high school degree, the percent of the 

population over 25 with some college, the percent of the population over 25 with a college 

degree, and the unemployment rate are all positively associated with the eviction filing rate and 

statistically significant. The degree of black-white racial residential segregation and the percent of 

families living in poverty are both negatively associated with the eviction filing rate and 

statistically significant.  
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In column 2, the odds ratios for the percent of black residents, the degree of black-white 

racial residential segregation, the percent of female-headed households, the percent of the 

population over 25 with less than a high school, the percent of the population over 25 with a high 

school degree, the percent of the population over 25 with a college degree, the percent of families 

living in poverty, the unemployment rate, and the county being urban are the most precisely 

estimated. Of these, the degree of black-white racial residential segregation, the percent of 

families living in poverty, and the unemployment rate are most strongly associated with eviction 

filings. The odds of an eviction filing are 0.49 lower given a one unit increase in the dissimilarity 

index in a county. The odds of an eviction filing are 0.919 lower given a one unit increase in the 

percent of families living in poverty in a county. The odds of an eviction filing are 1.09 higher 

given a one unit increase in the eviction filing rate. 

 

Table 6.4 

The Eviction Filing Rate and Its Covariates, Urban Counties 

 Fractional Response 

Coefficients 

Fractional Response Odds 

Ratios 

% Black 0.0381*** 1.039*** 

 (0.003) [1.032,1.046] 

   

% Hispanic -0.00528 0.995 

 (0.004) [0.987,1.003] 

   

Dissimilarity Index -0.718*** 0.488** 

 (0.228) [0.312,0.763] 

   

% Female-Headed Households 0.0691*** 1.072*** 

 (0.015) [1.040,1.104] 

   

% < HS Grad 0.0476*** 1.049** 

 (0.016) [1.016,1.083] 

   

% HS Grad 0.0473*** 1.048*** 

 (0.013) [1.021,1.076] 

   

% Some College 0.0296** 1.030* 

 (0.012) [1.006,1.055] 
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% College Grad 0.0626*** 1.065** 

 (0.022) [1.020,1.111] 

   

Median Gross Rent ($ 100s) 0.0204 1.021 

 (0.026) [0.971,1.073] 

   

Median Household Income ($ 

1000s) 

0.00380 1.004 

 (0.004) [0.996,1.012] 

   

% Families in Poverty -0.0849*** 0.919*** 

 (0.017) [0.889,0.949] 

   

Unemployment Rate (%) 0.0860*** 1.090*** 

 (0.012) [1.065,1.115] 

Observations 8,910 8,910 

 

 

In Table 6.5, I present results from the QMLE regression of the eviction judgment rate on 

its covariates for urban counties. In column 1, I present the QMLE estimates of the fractional 

response model; in column 2, I present the QMLE estimates as odds ratios. The coefficients in 

column 1 again suggest that both demographic and economic factors are associated with 

differences in eviction judgment rates across urban US counties. The percent of black residents, 

percent of female-headed households, the percent of the population over 25 with a high school 

degree, the percent of the population over 25 with some college, the median household income, 

and the unemployment rate are all positively associated with the eviction filing rate and 

statistically significant. The median gross rent and the percent of families living in poverty are 

both negatively associated with the eviction filing rate and statistically significant.  

In column 2, the odds ratios for the percent of black residents, the percent of female-

headed households, the percent of the population over 25 with a high school degree, and the 

unemployment rate are the most precisely estimated. Of these, the percent of female-headed 

households is the most strongly associated with eviction judgments. The odds of an eviction 
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judgment are 1.067 higher given a one unit increase in the percent of female-headed households 

in a county. 

 

Table 6.5 

The Eviction Judgment Rate and Its Covariates, Urban Counties 

 Fractional Response 

Coefficients 

Fractional Response Odds 

Ratios 

% Black 0.0195*** 1.020*** 

 (0.003) [1.014,1.025] 

   

% Hispanic -0.00320 0.997 

 (0.003) [0.991,1.003] 

   

Dissimilarity Index -0.263 0.769 

 (0.219) [0.500,1.181] 

   

% Female-Headed Households 0.0645*** 1.067*** 

 (0.013) [1.039,1.095] 

   

% < HS Grad 0.0212 1.021 

 (0.014) [0.994,1.049] 

   

% HS Grad 0.0300*** 1.030** 

 (0.011) [1.008,1.053] 

   

% Some College 0.0433*** 1.044*** 

 (0.010) [1.023,1.066] 

   

% College Grad 0.0294 1.030 

 (0.019) [0.993,1.069] 

   

Median Gross Rent ($ 100s) -0.0412* 0.960 

 (0.021) [0.921,1.000] 

   

Median Household Income ($ 

1000s) 

0.00856** 1.009* 

 (0.004) [1.001,1.016] 

   

% Families in Poverty -0.0315** 0.969* 

 (0.014) [0.943,0.996] 

   

Unemployment Rate (%) 0.0383*** 1.039*** 

 (0.011) [1.016,1.063] 

Observations 8,910 8,910 
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Robustness 

 Full Sample. The main results are robust to changes in the full sample. The full sample 

was an unbalanced panel. To confirm that the main results do not depend on the unbalanced 

panel, I repeat the analysis on a balanced panel. The balanced panel includes only counties 

observed for the entire 2005-2016 period. Summary statistics for the original, unbalanced full 

panel, are reprinted in columns 1-4 of Table 6.6 for convenience. Summary statistics for the 

balanced panel are printed in columns 5-8 of Table 6.8. As shown, the means are nearly identical 

across the two samples. 

 

Table 6.6 

Robustness of Summary Statistics 

 Unbalanced Panel Balanced Panel 

 Mean SD Min Max Mean SD Min Max 

Eviction Filing Rate 0.0344 0.0490 0.0000 0.5480 0.0330 0.0463 0.0000 0.5480 

Eviction Judgment 

Rate 

0.0179 0.0201 0.0000 0.2416 0.0176 0.0197 0.0000 0.1980 

% Black 9.02 14.36 0.01 86.76 9.03 14.37 0.01 86.76 

% Hispanic 8.30 13.11 0.00 95.54 7.96 12.54 0.00 95.54 

Dissimilarity Index 0.41 0.18 0.00 0.99 0.42 0.18 0.00 0.99 

% Female-Headed 

Households 

9.54 3.52 0.00 29.60 9.53 3.51 0.00 29.60 

% < HS Grad 16.03 7.17 1.26 48.70 16.15 7.15 2.85 48.70 

% HS Grad 35.52 6.98 7.52 55.10 35.87 6.93 10.26 55.10 

% Some College 29.08 5.30 10.83 48.82 28.93 5.23 10.83 46.77 

% College Grad 12.67 5.34 2.50 42.20 12.47 5.31 2.50 42.20 

Median Rent (100s) 7.14 1.86 1.99 19.40 7.08 1.82 1.99 19.40 

Median Income 

(1000s) 

48.33 12.38 19.58 139.58 48.20 12.21 19.58 137.99 

% Families in 

Poverty 

11.87 5.44 0.49 44.32 11.85 5.42 0.49 44.32 

Unemployment Rate 

(%) 

6.77 2.96 0.20 26.30 6.76 2.93 0.30 26.30 

Urban (%) 0.31 0.46 0.00 1.00 0.30 0.46 0.00 1.00 

Observations 28,306 23,436 

 

 

 I estimate the primary specification, the fractional response model, on the balanced panel. 

The results for the unbalanced panel are presented in columns (1) and (3) for convenience. The 
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results for the balanced panel are presented in columns (2) and (4). As shown, the results are 

robust. The directions of all coefficients are identical across both outcomes, while the magnitudes 

are nearly identical across both outcomes. Therefore, the main results do not depend on the 

unbalanced panel. 

 

Table 6.7 

Robustness of the Eviction Rates and Their Covariates 

 Eviction Filing Rate Eviction Judgment Rate 

 Unbalanced Balanced Unbalanced Balanced 

% Black 0.0217*** 0.0173*** 0.00844*** 0.00626*** 

 (0.0020) (0.0023) (0.0016) (0.0018) 

     

% Hispanic -0.0152*** -0.0165*** -0.0131*** -0.0155*** 

 (0.0024) (0.0028) (0.0019) (0.0023) 

     

Dissimilarity Index -0.0332 0.0625 0.199** 0.191* 

 (0.1149) (0.1262) (0.0939) (0.1047) 

     

% Female-Headed Households 0.0802*** 0.0947*** 0.0803*** 0.0897*** 

 (0.0089) (0.0101) (0.0073) (0.0082) 

     

% < HS Grad 0.0256** 0.0291** 0.0165* 0.0200* 

 (0.0109) (0.0131) (0.0086) (0.0102) 

     

% HS Grad 0.0243** 0.0251** 0.0127* 0.0150* 

 (0.0095) (0.0118) (0.0075) (0.0090) 

     

% Some College 0.0143 0.0160 0.0154** 0.0210** 

 (0.0089) (0.0110) (0.0070) (0.0084) 

     

% College Grad 0.0104 0.0136 -0.00897 -0.00418 

 (0.0158) (0.0196) (0.0125) (0.0151) 

     

Median Gross Rent ($ 100s) 0.160*** 0.186*** 0.125*** 0.143*** 

 (0.0196) (0.0224) (0.0162) (0.0187) 

     

Median Household Income ($ 1000s) -0.000824 -0.00182 -0.00435* -0.00585** 

 (0.0030) (0.0034) (0.0026) (0.0028) 

     

% Families in Poverty -0.0586*** -0.0642*** -0.0463*** -0.0504*** 

 (0.0076) (0.0082) (0.0060) (0.0067) 

     

Unemployment Rate (%) 0.0509*** 0.0438*** 0.0272*** 0.0256*** 

 (0.0084) (0.0086) (0.0070) (0.0079) 
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Urban 0.884*** 0.856*** 0.690*** 0.701*** 

 (0.0545) (0.0610) (0.0423) (0.0473) 

Observations 28,306 23,436 28,306 23,436 

 

 

Urban. The urban results are robust to changes in the underlying data. The ACS contains 

5-year, 3-year, and 1-year estimates. However, the 5-year estimates are the only estimates 

available for all US counties. The 3-year estimates are only available for areas with a population 

of 20,000 or more, while the 1-year estimates are only available for areas with a population of 

65,000 or more (Census, 2020). To confirm that the urban results do not depend on estimates that 

change only once every five years, I construct an urban sample using the 1-year estimates. I also 

reduce my original urban sample to the same 2,177 county-year observations to compare the 

results. Summary statistics for the restricted original sample and the new urban sample are 

presented in Table 6.8 below. As shown, the eviction filing rate, the eviction judgment rate, and 

the unemployment rate are identical in both samples. This is because these are the only variables 

that change every year in the original urban sample. These should be the same since we have 

restricted the samples to the same counties. The rest of the summary statistics appear nearly 

identical across samples. 

 

Table 6.8 

Robustness of Summary Statistics, Urban Counties, 2010-2016 

 5-Year Estimates 1-Year Estimates 

 Mean SD Min Max Mean SD Min Max 

Eviction Filing Rate 0.0939 0.0769 0.0005 0.4944 0.0939 0.0769 0.0005 0.4944 

Eviction Rate 0.0363 0.0243 0.0000 0.1613 0.0363 0.0243 0.0000 0.1613 

% Black 14.19 13.32 0.05 72.49 14.14 13.28 0.29 70.31 

% Female-Headed 

Households 

11.38 3.38 2.54 23.03 11.34 3.17 5.40 27.02 

% < HS Grad 12.17 4.39 1.52 34.52 12.21 4.24 2.32 37.91 

% HS Grad 30.48 6.87 9.16 52.14 30.45 6.73 8.30 50.89 

% Some College 29.80 4.60 10.48 46.12 29.80 4.37 12.29 43.10 

% College Grad 17.47 5.53 4.99 37.00 17.46 5.40 5.84 37.78 

Median Gross Rent 

(100s, 2016 $) 

8.58 1.84 4.53 18.58 8.68 1.82 5.23 18.68 
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Median Household 

Income (1000s, 

2016 $) 

53.85 12.88 29.63 134.46 53.68 12.62 31.00 125.05 

% Families in 

Poverty 

11.29 4.26 2.02 33.33 11.25 4.02 2.58 29.93 

Unemployment Rate 7.17 2.32 2.60 19.00 7.17 2.32 2.60 19.00 

Observations 2,177 2,177 

 

 

 I estimate the fractional response model on both urban samples. The results for the 

restricted original sample are presented in columns (1) and (3). The results for the new urban 

sample are presented in columns (2) and (4). As shown, the results are robust. The directions and 

magnitudes of all coefficients are nearly identical across both outcomes. Therefore, the main 

urban results do not depend on the 5-year estimates. 

 

Table 6.9 

Robustness of the Eviction Rates and Their Covariates, Urban Counties, 2010-2016 

 Eviction Filing Rate Eviction Judgment Rate 

 5-Year 1-Year 5-Year 1-Year 

% Black 0.0378*** 0.0375*** 0.0157*** 0.0187*** 

 (0.0044) (0.004) (0.0032) (0.002) 

     

% Female-Headed Households 0.0427* 0.0153 0.0673*** 0.0298*** 

 (0.0223) (0.011) (0.0194) (0.010) 

     

% < HS Grad 0.0791*** 0.0544*** 0.0172 0.0136 

 (0.0174) (0.014) (0.0156) (0.012) 

     

% HS Grad 0.0344** 0.0368*** 0.00336 0.0143 

 (0.0165) (0.013) (0.0139) (0.011) 

     

% Some College 0.0516*** 0.0493*** 0.0471*** 0.0502*** 

 (0.0144) (0.012) (0.0121) (0.010) 

     

% College Grad 0.0491* 0.0408** -0.00326 0.0115 

 (0.0267) (0.020) (0.0234) (0.017) 

     

Median Gross Rent ($ 100s) 0.0792** 0.0761*** -0.0608** -0.0450* 

 (0.0315) (0.029) (0.0273) (0.024) 

     

Median Household Income ($ 1000s) -0.00853 0.00203 0.000446 0.00114 

 (0.0061) (0.005) (0.0053) (0.004) 
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% Families in Poverty -0.127*** -0.0613*** -0.0599*** -0.0243** 

 (0.0245) (0.012) (0.0221) (0.011) 

     

Unemployment Rate (%) 0.0693*** 0.0547*** 0.00392 -0.00507 

 (0.0194) (0.020) (0.0201) (0.020) 

Observations 2,177 2,177 2,177 2,177 

 

 

Discussion 

 There is a large variation in eviction rates across US counties. This chapter provides a 

first step in understanding why. Prior literature suggested that both demographics and economics 

contribute to differences in eviction outcomes. However, these studies have drawn conclusions 

from data from one city or county. Further, these studies have focused on urban areas exclusively. 

I find that county-level demographic composition and economic conditions are associated with 

differences in eviction rates. I find that there are a lot of similarities between the factors that 

explain filing and judgment rates, as well as the full sample versus the urban sample. However, 

not all factors are exactly the same or of the same importance. 

These results suggest three aspects that need to be considered when developing policies 

to reduce evictions: geography, outcomes, and factors associated with outcomes. First, we need to 

consider whether we are addressing evictions in an urban are or not. Factors associated with 

eviction rates differ across geographies, so programs need not be the same across the entire US. 

Second, we need to consider the outcome we are trying to address. Programs that address eviction 

judgements may not address eviction filings. For example, a number of eviction diversion 

programs exist in the US, some of which offer to pay the back rent owed by a tenant to prevent an 

eviction. Although this may prevent an eviction judgement, it does not prevent an eviction filing. 

Lastly, we need to be aware of the demographic and economic factors that affect eviction rates.  

These results suggest that policies need to be targeted to local conditions. National policy 

would likely only be sufficient if it allowed for localities to be able to tailor their program to their 
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area. This reflects the current state of national housing policy. For example, housing vouchers are 

a national program, but the vouchers are administered locally, and the amounts of the vouchers 

are targeted to local housing markets. These results do create a challenge for those who want to 

replicate an existing program. Because the factors that affect eviction differ depending on 

geography and outcome, a program that works well in one locality may not work well in another 

if the conditions are not the same. A final challenge is that both demographic and economic 

conditions affect evictions, but we often only consider the economic factors when creating 

solutions. The previously mentioned eviction diversion programs address economic issues, as do 

solutions like affordable housing. It is more difficult to come up with solutions to address 

demographic factors, specifically race.  

The racial demographic results in this paper cannot speak to discrimination, because of 

the aggregate nature of the data. However, if discrimination is a part of the explanation for these 

results, it creates an additional challenge for policy makers. Landlords cannot file a legal eviction 

based on an individual’s race (or gender or family status), so discrimination in eviction filings and 

eviction judgements would result from landlords and possibly even courts making different 

decisions on when to file or evict based off of an individual’s demographic characteristics. We 

would need to ensure that landlords and courts were making eviction filing and eviction 

judgement decisions the same across all people in a similar situation. A potential solution might 

be similar to that of the Home Mortgage Disclosure Act (HMDA) for mortgages. All landlords 

and courts could be required to report their eviction outcomes to an organization that collects the 

data to determine if there is statistical discrimination. 

Conclusion 

The factors associated with differences in eviction rates fall into two broad categories: 

demographics and economics. These categories are consistent with those found by the previous 
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literature. However, this chapter has extended the previous literature in several ways. First, it has 

confirmed that the idea that demographics and economics play a role in eviction outcomes holds 

across the US. These results suggest that policymakers need to consider both economics and 

demographics when crafting policies. The demographic results suggest that discrimination could 

be at work, as I have controlled for a number of economic factors. 

This chapter has also shown that different factors affect eviction filing rates versus 

eviction judgement rates. Further, the factors that affect eviction in urban areas are different than 

those that affect eviction in rural areas. This result seems intuitive, as different parts of the US 

have different rental housing markets and demographics and economics. This chapter has 

suggested that national policy may only be effective in reducing the eviction crisis if it allows 

localities to tailor programs to their local conditions: including the outcomes that are a problem in 

their local and the factors associated with it. 

The goal of this chapter is to provide an understanding of the variation in eviction in the 

US. It is important to understand what drives differences in eviction rates, before trying to solve 

the problem of high eviction rates, because a clear understanding of the problem helps us to 

create the most effective solutions. It is impossible to solve a problem that you do not understand.
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CHAPTER VII 

 

THE EFFECT OF UI BENEFITS ON EVICTION 

 

 

Chapter VI established predictors of variation in eviction filing rates and eviction 

judgment rates across the country. One of those predictors, unemployment, is of particular 

interest during the ongoing coronavirus pandemic. In April 2020, the US unemployment rate 

reached 14.7 percent, up from 4.4 percent the month before (BLS, 2020). The high level of 

unemployment associated with the coronavirus pandemic has been particularly hard on renters. 

According to the Week 25 Household Pulse Survey (February 17-March 1, 2021), a new 

experimental survey that collects data on how the coronavirus pandemic impacts people’s lives, 

over 23 million renter households contain a respondent who is unemployed (US Census Bureau, 

2021). Of those 23 million, over 5 million renter households remain behind on their rent 

payments. High unemployment places renters in precarious positions; unemployment increases 

the likelihood of missed rental payments and nonpayment of rent is a reason to file for eviction in 

all fifty states. 

A key motivation for policy intervention is to avoid the additional unseen costs of 

eviction borne by renters, landlords, taxpayers, and those in the surrounding community. A 

program that has the potential to aid renters in the ongoing eviction crisis is unemployment 

insurance (UI). Most evictions are filed for nonpayment of rent, which can result from 

employment instability or job loss (Sills et al., 2018). As a result, UI has the potential to serve as 

an eviction prevention program by mitigating the effect of unemployment on eviction.
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In this chapter, I explore the effect of UI benefits on eviction filings. Using data from 

nearly all US counties from 2002-2016, I estimate the effect of state-level UI benefits on county-

level eviction filing rates. My identification strategy rests on the exogeneity of variation in UI 

benefits within states over time. Despite what intuition may indicate, I find that when UI benefits 

are low, an increase in the county-level unemployment rate decreases eviction filings. By 

contrast, when UI benefits are high, an increase in the unemployment rate increases eviction 

filings. These results are robust to changes in the specification and although perhaps 

counterintuitive, are consistent with the literature on landlord-tenant interactions, particularly 

serial evictions, as well as predictions from my theoretical model from Chapter III. 

This chapter contributes to the growing body of literature on eviction in several ways. 

First, it focuses on eviction prevention, which has yet to be thoroughly addressed in the literature. 

Second, it highlights the importance of studying eviction filings, which have been focused on less 

in the literature than eviction judgments. Lastly, it addresses the importance of understanding 

landlord-tenant relationships, particularly from the landlord’s perspective. 

Overall, my results suggest that the effectiveness of eviction prevention programs lies in 

creating them with a clear understanding of landlord-tenant interactions. If we want to create 

effective eviction prevention policies, we need to understand the mechanisms through which 

evictions take place. These results provide useful information for policymakers as they attempt to 

address the ongoing eviction crisis. 

Background 

Eviction 

 Although much of the prior literature focuses on eviction judgments, this paper follows 

the recent trend in the literature to focus on eviction filings. This new focus on eviction filings is 

important. First, not all filings lead to judgments, which means more households are affected by 
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filings (Garboden and Rosen, 2019). The Eviction Lab records eviction filings and eviction 

judgements from 2000 to 2016 (Desmond et al., 2018a). Columns 2 and 3 in Table 7.1 present the 

number of eviction filings and eviction judgments, respectively. In column 4, I calculate the 

likelihood of eviction, the percentage of eviction filings that result in eviction judgments. I find 

that less than half of all filings result in a judgment. A study in Washington, DC found that in 

2018, only about 5.5 percent of filings resulted in a judgment (McCabe and Rosen, 2020). If we 

ignore eviction filings, we are ignoring the largest part of the eviction process. 

 

Table 7.1  

The Percentage of Eviction Filings that Result in Eviction Judgments over Time 

Year Eviction Filings Eviction Judgments Likelihood of Eviction (%) 

2002 2,085,491 864,918 41 

2003 2,134,014 910,361 43 

2004 2,177,018 940,817 43 

2005 2,306,580 969,303 42 

2006 2,441,067 1,019,600 42 

2007 2,002,531 958,605 48 

2008 2,079,865 996,233 48 

2009 2,108,719 952,699 45 

2010 2,374,084 993,531 42 

2011 2,452,080 987,999 40 

2012 2,420,135 983,666 41 

2013 2,378,464 930,693 39 

2014 2,394,318 908,977 38 

2015 2,288,732 870,325 38 

2016 2,350,042 898,479 38 

Source: Eviction Filings and Eviction Judgments come from the Eviction Lab national-level 

data. 

Notes: Eviction filings is equal to the total number of eviction filings in the United States each 

year, including those filed against the same household. Eviction judgments is equal to the total 

number of eviction judgments in the United States each year. Filings to Judgments equals 

column 3 divided by column 2 multiplied by 100. Column 4 is rounded to the nearest whole 

percent. 

 

 

 Second, the threat of eviction embodied by filings has been tied to its own set of negative 

consequences. The threat of eviction has been shown to cause stress and financial strain for 
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families (Vasquez-Vera, 2016; Sills et al., 2018; Immergluck et al., 2019). Additionally, it can 

lead some tenants to offer up favors, such as labor or sex, to work off debt (Garboden and Rosen, 

2019). Tenants can also be less likely to seek help in situations of domestic violence or housing 

code violations (Garboden and Rosen, 2019). By focusing only on eviction judgments, the prior 

literature may not have captured the full impact of the eviction process on those that experience it 

(Garboden and Rosen, 2019). 

 Third, by preventing eviction filings, we can prevent eviction judgments. Existing 

prevention methods, like emergency rental assistance or access to legal aid, focus on preventing 

judgments, not filings. These services are often not available until a tenant receives an eviction 

filing. Although these programs have been successful in avoiding some eviction judgments, they 

are not always successful at keeping tenants in their homes. Sometimes the removal of a tenant 

cannot be avoided, so these services are negotiating better terms for the removal like giving the 

tenant more time to move out (LANC, 2017). By focusing on the front end of the eviction 

process, we may be better able to address eviction judgments. 

 To prevent eviction filings, we need to be considering the entire eviction process. Most 

eviction cases are filed for nonpayment of rent (Sills et al., 2018; Urban Institute at UNCC, 2018; 

McCabe and Rosen, 2020). If landlords wish to ensure that they receive their rent, they must file 

for eviction. Additionally, filing for eviction often allows landlords the opportunity to charge the 

tenant with late fees, which has been shown to increase the tenant’s costs by as much as 20% 

(Leung, et al., 2020). Further, if the tenant does indeed continue to miss their rental payments, 

filing for eviction is the only way for landlords to legally ensure that they can remove the tenant 

from their property. These outcomes suggest that eviction prevention that focuses only on the 

tenant is inherently flawed. Eviction is a process that involves two parties: the landlord and the 
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tenant. There needs to be a concern for the landlords’ actions as well, not just the tenant (McCabe 

and Rosen, 2020). 

Unemployment Insurance 

 Unemployment insurance is a social insurance program that aims to assist individuals 

who have lost their jobs while they look for a new one. The program consists of two types of 

benefits: regular benefits and extended benefits. The regular benefits program is run by the states 

and overseen by the United States Department of Labor. It is a state-federal partnership where the 

states have primary control. Regular benefits are available to the unemployed regardless of 

economic conditions. During economic downturns, additional programs can be enacted. The 

states, the federal government, or both can run these extended benefits programs. Extended 

benefits are only available to the unemployed during poor economic conditions. 

Regular Benefits. Regular UI benefits can broadly be characterized by the weekly 

benefit amount and benefit duration. The weekly benefit amount is how much an individual 

receives in benefits each week. The benefit duration is the number of weeks an individual can 

receive benefits. Each state sets its own maximum weekly benefit amount and maximum benefit 

duration, the highest weekly benefit amount, and the highest number of weeks of benefits an 

individual can obtain. Although the maximum weekly benefit amount varies greatly across states, 

the maximum benefit duration is typically 26 weeks. Regular UI benefits tend to replace about 

half of a workers’ lost wages. 

 Table 7.2 shows the change in the maximum weekly benefit amount and the maximum 

benefit duration in each state from 2002 to 2016. The maximum weekly benefit amount varies 

greatly across states and time with some states reducing their maximum weekly benefit while 

others have maintained or increased it. For example, North Carolina had a maximum weekly 

benefit amount of $396 in 2002, but only $350 in 2016, not adjusted for inflation. This increase is 
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equivalent to about a 12 percent decrease in the nominal maximum weekly benefit amount. The 

opposite extreme, North Dakota, provided a maximum weekly benefit amount of only $290 in 

2002, but increased it by about 118 percent by 2016 to provide $633. Unlike maximum benefit 

amount, there is much less variation in maximum benefit duration. The smallest maximum 

benefit duration decreased from 26 weeks to 12 weeks from 2002 to 2016 in Florida, while the 

largest maximum benefit duration remained at 30 weeks in Massachusetts. 

 

Table 7.2 

The Change in UI Benefits over Time by State 

 Maximum Weekly Benefit Amount Maximum Benefit Duration 

State 2002 2016 % Change 2002 2016 % Change 

AL 190 265 39% 26 26 0% 

AZ 205 240 17% 26 26 0% 

AR 333 451 35% 26 20 -23% 

CA 330 450 36% 26 26 0% 

CO 390 552 42% 26 26 0% 

CT 481 673 40% 26 26 0% 

DE 330 330 0% 26 26 0% 

FL 275 275 0% 26 12 -54% 

GA 284 330 16% 26 14 -46% 

ID 315 410 30% 26 26 0% 

IL 431 595 38% 26 25 -4% 

IN 312 390 25% 26 26 0% 

IO 347 529 52% 26 26 0% 

KS 333 474 42% 26 16 -38% 

KY 329 415 26% 26 26 0% 

LA 258 247 -4% 26 26 0% 

ME 408 595 46% 26 26 0% 

MA 768 1083 41% 30 30 0% 

MI 300 362 21% 26 20 -23% 

MN 452 658 46% 26 26 0% 

MS 200 235 18% 26 26 0% 

MO 250 320 28% 26 13 -50% 

MT 286 487 70% 26 28 8% 

NE 262 392 50% 26 26 0% 
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NV 301 417 39% 26 26 0% 

NH 331 427 29% 26 26 0% 

NJ 446 657 47% 26 26 0% 

NM 277 473 71% 26 26 0% 

NY 405 420 4% 26 26 0% 

NC 396 350 -12% 26 13 -50% 

ND 290 633 118% 26 26 0% 

OH 414 587 42% 26 26 0% 

OK 304 505 66% 26 26 0% 

OR 400 549 37% 26 26 0% 

PA 438 581 33% 26 26 0% 

RI 518 707 36% 26 26 0% 

SC 268 326 22% 26 20 -23% 

SD 234 366 56% 26 26 0% 

TN 275 275 0% 26 26 0% 

TX 319 479 50% 26 26 0% 

UT 365 509 39% 26 26 0% 

VT 312 446 43% 26 26 0% 

VA 268 378 41% 26 26 0% 

WA 496 664 34% 30 26 -13% 

WV 338 424 25% 26 26 0% 

WI 324 370 14% 26 26 0% 

WY 283 491 73% 26 26 0% 

Source: Maximum Weekly Benefit Amount (WBA) and Maximum Benefit Duration come 

from the January publications of the US Department of Labor Employment & Training 

Administration’s Significant Provisions of State UI Laws.  

Notes: Maximum WBA is equal to the highest value listed for each state. Dollar values in 

columns 2-3 are nominal. Duration values in columns 5-6 are in weeks. Columns 4 and 7 are 

rounded to the nearest whole percent. 

 

 

 If UI benefits are to aid in eviction prevention, it would be through replacement of 

workers’ lost wages. Table 7.3 depicts the potential impact of UI on renters in each state. Column 

1 contains the median renter household income (monthly); column 2, the potential unemployment 

insurance benefit (monthly); column 3, the median gross rent (monthly), and column 4, the 

maximum benefit duration (weeks). Column 5 calculates the potential impact of UI on renters 

through the median gross rent as a percentage of unemployment insurance benefits. Across all 50 
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states, rent makes up less than 100% of monthly UI benefits. This result indicates that, in all 

states, monthly UI benefits have the potential to cover monthly rent. However, some states 

benefits are far more likely to cover rent than others. For example, Arizona’s median gross rent 

takes up 94% of monthly UI benefits, whereas North Dakota’s median gross rent takes up only 

48% of monthly UI benefits. 

 

Table 7.3 The Potential Value of UI Benefits to Renters 

State Median 

Household 

Income 

Potential UI 

Benefit 

Median Gross 

Rent 

UI Rent 

Burden 

Maximum 

Coverage 

AL 2,249 1,124 743 66% 6 

AK 4,483 1,914 1,208 63% 6 

AZ 3,212 1,039 976 94% 6 

AR 2,378 1,189 701 59% 4.62 

CA 3,936 1,949 1,375 71% 6 

CO 3,516 1,758 1,171 67% 6 

CT 3,336 1,668 1,115 67% 6 

DE 3,122 1,429 1,048 73% 6 

DC 4,235 1,554 1,376 89% 6 

FL 3,055 1,191 1,086 91% 2.77 

GA 2,990 1,429 933 65% 3.23 

HI 4,594 2,297 1,483 65% 6 

ID 2,691 1,346 790 59% 6 

IL 3,033 1,516 950 63% 5.77 

IN 2,594 1,297 768 59% 6 

IO 2,642 1,321 741 56% 6 

KS 2,849 1,424 789 55% 3.7 

KY 2,363 1,182 707 60% 6 

LA 2,224 1,070 808 76% 6 

ME 2,543 1,272 797 63% 6 

MD 4,140 1,862 1,314 71% 6 

MA 3,448 1,724 1,179 68% 6.93 

MI 2,564 1,282 818 64% 4.62 

MN 3,064 1,532 912 60% 6 

MS 2,272 1,018 728 72% 6 

MO 2,706 1,353 771 57% 3 

MT 2,714 1,357 741 55% 6.47 

NE 2,777 1,388 769 55% 6 

NV 3,263 1,632 1,003 61% 6 
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NH 3,589 1,794 1,026 57% 6 

NJ 3,713 1,857 1,244 67% 6 

NM 2,498 1,249 804 64% 6 

NY 3,411 1,706 1,194 70% 6 

NC 2,718 1,359 839 62% 3 

ND 3,216 1,608 776 48% 6 

OH 2,587 1,293 759 59% 6 

OK 2,614 1,307 744 57% 6 

OR 3,110 1,555 1,015 65% 6 

PA 2,863 1,432 881 62% 6 

RI 2,782 1,391 948 68% 6 

SC 2,637 1,318 841 64% 4.62 

SD 2,657 1,329 706 53% 6 

TN 2,634 1,191 806 68% 6 

TX 3,244 1,622 956 59% 6 

UT 3,430 1,715 954 56% 6 

VT 2,709 1,355 925 68% 6 

VA 3,664 1,637 1,159 71% 6 

WA 3,757 1,879 1,135 60% 6 

WV 2,169 1,085 682 63% 6 

WI 2,820 1,410 802 57% 6 

WY 3,236 1,618 840 52% 6 

Source: Calculations based on 2016 American Community Survey and the January 2016 

publication of the US Department of Labor Employment & Training Administration’s 

Significant Provisions of State UI Laws. 

Notes: Values in columns 2-5 are monthly. The median household income is median income 

among renter households in each state. The potential UI benefit is the minimum value of either 

half the value of the monthly median household income or the state’s monthly maximum 

benefit. The state's monthly maximum benefit is calculated by multiplying 4.33 to the state’s 

maximum weekly benefit amount values (Table 2, Column 3). The maximum duration is the 

state’s maximum duration in weeks. The maximum coverage is calculated by dividing 52 (the 

number of weeks in a year) by the maximum duration values (Table 2, Column 6). 

 

 

 Renters who have lost their job may be concerned not just about the amount of benefits 

they receive, but also the length of time they receive them. Column 6 calculates the potential 

impact of UI on renters through the maximum months of coverage that maximum benefit duration 

provides. Most states provide 6 months of coverage. Massachusetts provides the most coverage, 

nearly 7 months (30 weeks), while Florida provides the least coverage, under 3 months (12 
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weeks). If UI benefits do not aid in eviction prevention, it may be that UI does not replace enough 

of workers’ lost wages or does not provide a long enough duration of benefits. 

Extended Benefits. Extended UI benefits can affect regular UI benefits in amount or 

duration. The two extended benefit programs that are of interest to this paper are the Emergency 

Unemployment Compensation (EUC) program and the Extended Benefits (EB) program. Both 

these programs affected regular UI benefits by extending benefit duration at some point from 

2002-2016. However, length of extensions differed by program and by the level of 

unemployment in a given state. 

 The EUC program was enacted in June 2008 and ran thru December 2013. It provided 

several extensions to the duration of unemployment benefits, which were determined by levels of 

unemployment in the state. At its peak, the EU program provided four tiers worth of extensions, 

providing up to 53 additional weeks of benefits for some states. The EB program, which is 

permanent, was adopted in 1970. This program provides a mandated extension of duration when 

the state’s unemployment rate reaches certain levels. However, states can opt for additional 

triggers that are considered easier to reach. Prior to the Great Recession only a few states opted 

into these triggers. Usually, fifty percent of the EB program is paid for by the Federal government 

and fifty percent by the states, but during and after the Great Recession, from 2008 to 2013, the 

federal government completely paid for the EB program. As a result, a few states elected to use 

the optional easier triggers during the period the Federal government completely covered the cost. 

 Although extended benefits may affect filings, this paper focuses only on the effects of 

regular UI benefits, because they are consistently available throughout the time period. 

Additionally, these are the first benefits an individual receives, even when extensions are in 

effect. My empirical work does control for the presence of extended benefits, but it does not 
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discuss the effect of these benefits in depth. As a robustness check, I evaluate the impact of UI 

benefit generosity on eviction filing rates using a measure that incorporates extended benefits. 

Theoretical Model 

 In Chapter III, I developed a theoretical model that I will adapt here to provide insight 

into the expected effect of UI benefits on eviction filings. Let r be the county-level 

unemployment rate, b be the state-level UI benefits, and c be the landlord’s cost of an eviction 

filing. I write the theoretical model for county-level eviction filing rate, e, as follows:  

𝑒 = (𝑟(1 − 𝑏)) (
1

2
− 𝑐𝑟(1 − 𝑏)) 

Recall from Chapter III that both partial derivatives and the cross partial could be either positive 

or negative depending on the levels of r, b, or c. This has important implications for the research 

question in this chapter. The model suggests that there is no straightforward effect of UI benefits 

on mitigating the effect of unemployment on eviction. The eviction filing rate may increase or 

decrease depending on the combination of county-level unemployment, state-level benefits, and 

costs of eviction. 

Data 

Data and Variables 

Evictions. To capture eviction outcomes, I use the county-level eviction filing rate from 

2002 to 2016 from the Eviction Lab. I choose to exclude the 2000 and 2001 data, because more 

counties have missing data in those years than in the rest of the data. The eviction filing rate is the 

number of eviction filings in a county (which may include multiple filings against the same 

household) divided by the number of renter-occupied households in the county multiplied by 100. 

As a result, the eviction filing rate can be interpreted as the number of eviction filings per 100 

renter-occupied households. 



 

116 

 

 

UI Benefits. Data for state UI policies come from Hsu et al. (2018b) and the US 

Department of Labor Employment & Training Administration. Hsu et al. (2018b) is the publicly 

available dataset for Hsu et al. (2018a). The authors collected maximum weekly benefits and 

maximum benefit duration for each state from the Significant Provisions of State Unemployment 

Insurance Laws. These documents track the minimum and maximum benefits awarded in each 

state, as well as the durations and qualifications in each state. I use their data from 2002 to 2010. I 

complete the dataset by obtaining data for 2011 to 2016, following the same process as Hsu et al. 

(2018a). I use maximum weekly benefits and maximum benefit duration in each state from the 

January publication of the Significant Provisions of State UI Laws for 2011 to 2016 (Department 

of Labor, 2011-2016). 

To capture each state’s UI policy, I follow Hsu et al. (2018a) by focusing on each state’s 

UI generosity. Like Hsu et al. (2018a), I construct maximum benefit from the product of each 

state’s maximum weekly benefit and maximum number of weeks for which benefits are paid 

(excluding extensions weeks from the EUC and EB programs). Maximum benefit captures the 

generosity of each state’s UI policy. It serves as a proxy for the total regular benefits that an 

unemployment insurance claimant could receive during an unemployment spell (Hsu et al, 

2018a). As a sensitivity check, I also consider a number of additional measures of UI generosity 

to see if the results differ. 

For measures of UI extensions, specifically the Extended Benefits (EB) and Extended 

Unemployment Compensation (EUC) programs, I collect data from the EB and EUC trigger 

notices provided by the US Department of Labor Employment & Training Administration 

(https://oui.doleta.gov/unemploy/claims_arch.asp). These trigger notices capture when each 

state’s unemployment rate was high enough to initiate the starting or stopping each of these 

programs. I collect trigger notices for the last week of December in each year from 2002-2016 for 
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the EB program (the duration available, as the EB program is permanent) and from 2008-2013 for 

the EUC program (the duration available, as the EUC program was temporary). 

I capture extended benefits as a separate control. I construct extended benefits, which is 

the product of each state’s maximum weekly benefit and number of extension weeks for which 

benefits are paid. I calculate the number of extension weeks from the EUC and EB trigger notices 

from the last week of December in each year. I assume that the maximum number of extension 

weeks available during this week is the number of extension weeks available during the entire 

year. I combine the maximum number of extension weeks for each program to yield the total 

number of extension weeks for which benefits are paid. 

Controls. In the empirical work that follows, I include county-level controls. I collect 

data on county-level household income, gross rent, rent burden, and race from the Eviction Lab. I 

pull data on county-level unemployment rates from the Bureau of Labor Statistics (BLS) Local 

Area Unemployment Statistics (LAUS). The BLS LAUS contains unemployment rates for all 

counties in the United States across time. I use the county-level unemployment rates from 2002 to 

2016. The BLS LAUS is the most comprehensive data on unemployment at the county-level 

making it the best choice for this research. Lastly, I define counties as urban or rural using the 

rural-urban continuum codes from the U.S. Department of Agriculture, Economic Research 

Service (USDA ERS, 2004; USDA ERS, 2013). 

I also include controls for state-level economic conditions that may affect county-level 

eviction filing rates. I include a measure of real GDP per capita, which I take from the Bureau of 

Economic Analysis from 2002-2016; the Housing Price Index (HPI), which I obtain from the 

Federal Housing Finance Agency; the state-level unemployment rate, which I collect from the 

BLS LAUS; and state annual wages from the BLS, Quarterly Census of Employment and Wages.  
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Descriptive Statistics 

The final data set used in this paper is an unbalanced county-level panel dataset 

containing 39,369 observations from 2,924 US counties from 2002-2016. The dataset includes all 

continental US counties except for DC and Maryland. DC has been excluded because it is not a 

county or a state making it difficult to include in the analysis. Maryland is excluded because it has 

a significantly different way of counting its eviction filings, which makes its data difficult to 

compare to other states. 

Means and standard deviations for all variables are presented in Table 7.4. The first part 

of the table describes the state-level data, while the second half of the table describes the county-

level data. The average maximum regular benefit is $10,650 with a standard deviation of $381. 

Note that the variation in the maximum benefit is primarily driven by the variation in maximum 

weekly benefit, as opposed to maximum duration. There is much more variability across states 

and time in benefit amounts than in the number of weeks those benefits are paid out. Turning to 

the county-level data, the average eviction filing rate is 3.1 with a standard deviation of 4.78. 

 

Table 7.4 Summary Statistics 

 Mean Median SD 

Panel A. State characteristics (2002-2016, N = 705) 

Unemployment insurance    

   Max Benefit ($ thousands) 10.65 10.19 3.81 

   Max Weekly Benefit ($ thousands) 0.41 0.39 0.13 

   Max Regular Duration (weeks) 25.77 26.00 1.89 

   Real Maximum UI Benefit 12.01 11.58 4.11 

   Average Weekly Benefit ($ thousands) 0.29 0.28 0.05 

   Adjusted Max Benefit ($ thousands) 18.79 12.99 13.99 

    

Economic variables    

   Unemployment rate (%) 6.02 5.60 2.01 

   log of real GDP per capita 10.78 10.76 0.18 

   Home price growth (%) 2.29 2.35 5.96 

   Average annual wages ($ thousands) 41.94 40.97 8.03 

    

Panel B. County characteristics (2002-2016, N = 39,369) 

Eviction and housing    
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   Eviction filing rate 3.10 1.54 4.78 

Employment, income, and rent 

   Unemployment rate (%) 6.50 5.90 2.72 

   log of median household income 10.75 10.75 0.24 

   Median gross rent ($ hundreds) 6.76 6.41 1.87 

   Median rent burden 27.10 27.20 4.79 

Demographics 

   African American (%) 8.37 1.72 14.06 

   Hispanic (%) 7.68 2.83 12.80 

   Urban 0.34 0.00 0.47 

Notes: This table describes my main sample. Max Benefit, Max Weekly Benefit, Average 

Weekly Benefit, and Adjusted Max Benefit are not adjusted for inflation. Home price growth is 

captured by the percent change in the Housing Price Index. Average annual wages capture the 

average state-level wage. 

 

 

Descriptive Analysis 

If UI benefits prevent eviction filings, it is likely by mitigating a negative effect of 

unemployment on eviction filings. I begin by exploring the relationship between unemployment 

rates and eviction filing rates graphically. Unemployment Rate is a continuous variable, which is 

difficult to capture in a simple graphical analysis, so I use it to construct two groups: Low 

Unemployment Rate and High Unemployment Rate. For each year of data, I group counties by 

comparing their unemployment rate to the median unemployment rate. If a county’s 

Unemployment Rate is less than the median in a given year, the county is considered a Low 

Unemployment Rate county in that year. If a county’s Unemployment Rate is greater than or equal 

to the median in a given year, the county is considered a High Unemployment Rate county in that 

year. In Figure 7.1, I plot the average eviction filing rate over time by Unemployment Rate 

groups. It shows that the average eviction filing rate among counties with high unemployment 

rates tends to be higher than the average eviction filing rate among counties with low 

unemployment rates. In most years prior to 2007, the means are not statistically different. In 

2007, the means begin to diverge and by 2008, the means are statistically different. Although the 

gap begins to close around 2014, the means remain statistically different between the two groups 
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through 2016. This suggests that the relationship between unemployment and eviction filings may 

differ over time. 

 

 
 

 

Next, I explore the relationship between UI benefits and eviction filing rates graphically. 

Like Unemployment Rate, Max Benefit is a continuous variable, so I use it to construct two 

groups: Low Max Benefit and High Max Benefit. Again, I group counties by comparing their UI 

benefits to the median UI benefit. If a county’s Max Benefit is less than the median in a given 

year, the county is considered a Low Max Benefit county in that year. If a county’s Max Benefit is 

greater than or equal to the median in a given year, the county is considered a High Max Benefit 

county in that year. In Figure 7.2, I plot the average eviction filing rate over time by Max Benefit 

groups. It shows that the average eviction filing rate among counties with low benefits tends to be 
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higher than the average eviction filing rate among counties with high benefits. In most years prior 

to 2007, the means are not statistically different. In 2007, the means begin to diverge and by 

2008, the means are statistically different. They remain so through 2016. Figure 7.2 suggests 

there may not have been an effect of regular UI benefits on eviction filing rates prior to the Great 

Recession, but higher UI benefits may have helped eviction filing rates remain low during and 

after the Great Recession. 

 

 
 

 

Lastly, I combine the two previous figures to explore the potential mitigating effect of UI 

benefits on unemployment rates. When benefits are low, a change from low to high 

unemployment may increase the average eviction filing rate, because low benefits can do little to 

mitigate the potential negative effect of unemployment. However, when benefits are high, a 
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change from low to high unemployment may not increase the average eviction filing rate, because 

high benefits mitigate the negative effect of unemployment. In Figure 7.3, I plot the average 

eviction filing rate over time by unemployment and UI benefits. 

 

 
 

 

Prior to the Great Recession, the average eviction filing rate across groups is relatively 

consistent. In 2008, the averages begin to diverge. The low benefit, high unemployment rate 

group begins to see a significantly higher average eviction filing rate than the other three groups. 

This pattern remains even after the Great Recession. In 2009, the average eviction filing rate for 

the other three groups begins to diverge. The high benefit, low unemployment rate group now has 

a significantly lower average eviction filing rate. Both the low benefit, high unemployment rate 

group and the high benefit, low unemployment rate group have similar average eviction filing 
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rates, until 2013, when the average for the high benefit, high unemployment rate group becomes 

significantly smaller. 

The graph suggests that UI benefits may be able to mitigate a negative effect of 

unemployment during and after the Great Recession. When benefits are low, a change from low 

to high unemployment increases the average eviction filing rate significantly, which suggests that 

low benefits can do little to mitigate the negative effect of unemployment. However, when 

benefits are high, a change from low to high unemployment does not always increase the average 

eviction filing rate significantly, which suggests that high benefits mitigate the negative effect of 

unemployment. 

Methodology 

The graphical relationships are revealing, but the simple plots over time do not control for 

other county or state characteristics. To account for such factors, I turn to regression analysis. In 

developing my estimation equation, I use Figures 7.1-7.3 as a guide. Figures 7.1 and 7.2 suggest 

that I allow for the possibility of different effects of unemployment rates and UI benefit 

generosity before, during, and after the Great Recession. During the Great Recession 

unemployment uptake and duration increased (BLS, 2020; Kroft et al., 2016). Additionally, the 

characteristics of the unemployed changed (Mattingly et al., 2011). Unemployment rates amongst 

single mothers and those living in urban areas increased significantly (Mattingly et al., 2011). 

Both groups are especially prone to eviction. Figure 7.3 suggests that I allow for the possibility of 

different effects of unemployment rates at different levels of UI benefits. Research shows that the 

marginal person transitioning into unemployment differs when the unemployment rate is low than 

when it is high (Ahn and Hamilton, 2020). Taken together, the figures, as well as economic 

research, suggest the inclusion of interaction terms. 
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I am interested in how UI benefit generosity affects the impact of county-level 

unemployment on county-level eviction filing rates. Specifically, I am interested in whether 

higher UI benefit generosity can mitigate a negative effect of involuntary unemployment on 

eviction filings. To understand how UI benefit generosity affects the impact of unemployment 

rates on county-level eviction filings rates, I need to isolate the effect of UI benefit generosity. To 

control for potential confounding factors, I employ a continuous treatment DDD empirical 

strategy. Although my measures of UI benefit generosity and unemployment are continuous, we 

can think of me having four groups: (1) higher county-level unemployment rates in states with 

higher UI benefit generosity, (2) higher county-level unemployment rates in states with lower UI 

benefit generosity, (3) lower county-level unemployment rates in states with higher UI benefit 

generosity, and (4) lower county-level unemployment rates in states with lower UI benefit 

generosity. I compare differences between these four groups in periods during and after the Great 

Recession to before the Great Recession—which is my third level of differencing—to ask how 

the impact of involuntary unemployment on eviction filing rates depended on state UI benefit 

generosity. I chose to consider the recession period itself and the ensuing period separately. This 

implies that I have two DDD estimators—one pertaining to the Great Recession period relative to 

the earlier prerecession period, and the other pertaining to the post-Great Recession period 

relative to the same prerecession period. 

My primary method for answering the question of how state-level UI benefit generosity 

affects county-level eviction filings rates is the following specification. The main estimating 

equation takes the following form: 
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𝐸𝐹𝑅𝑐𝑠𝑡 = 𝛽0 + 𝛽1𝑀𝑎𝑥 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠𝑡 + 𝛽2𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒𝑐𝑠𝑡 + 𝛽3𝐺𝑅𝑡 + 𝛽4𝑃𝑜𝑠𝑡 𝐺𝑅𝑡

+ 𝛽5𝑀𝑎𝑥 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠𝑡 × 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒𝑐𝑠𝑡

+ 𝛽6𝐺𝑅𝑡 × 𝑀𝑎𝑥 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠𝑡 + 𝛽7𝐺𝑅𝑡 × 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒𝑐𝑠𝑡

+ 𝛽8𝐺𝑅𝑡 × 𝑀𝑎𝑥 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠𝑡 × 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒𝑐𝑠𝑡

+ 𝛽9𝑃𝑜𝑠𝑡 𝐺𝑅𝑡 × 𝑀𝑎𝑥 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠𝑡

+ 𝛽10𝑃𝑜𝑠𝑡 𝐺𝑅𝑡 × 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒𝑐𝑠𝑡

+ 𝛽11𝑃𝑜𝑠𝑡 𝐺𝑅𝑡 × 𝑀𝑎𝑥 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠𝑡 × 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒𝑐𝑠𝑡  + 𝜸𝑿𝑐𝑠𝑡

+ 𝜹𝒁𝑠𝑡 + 𝝀𝑠 + 𝜀𝑐𝑠𝑡 

 

 

The dependent variable, EFR, is the eviction filing rate for county, c, in state, s, and year, t. The 

independent variables are Max Benefit, the product of the maximum weekly benefit amount and 

the maximum benefit duration (in weeks) for state, s, in year, t; Unemployment Rate, the 

unemployment rate for county, c, in year, t; GR, a dummy variable indicating that the year, t, is 

during 2008 or 2009; and Post GR, a dummy variable indicating that the year, t, is after 2010. X 

is a vector of county characteristics; Z is a vector of time-variant state characteristics; λ 

represents a vector of state fixed effects; and ε is the error term. Max Benefit and Unemployment 

Rate are demeaned (with respect to the mean for the entire sample) before they are interacted, so 

β5 measures the change in the county-level eviction filing rate associated with the average county-

level unemployment rate in a state with average UI generosity before the Great Recession. β8 and 

β11 measure this change during and after the Great Recession, respectively. The vector X includes 

median household earnings, median gross rent, median rent burden, percent African American, 

percent Hispanic, and a dummy variable equal to 1 if the county is urban and 0 otherwise. The 

vector Z includes the following state-level economic conditions: the state unemployment rate, log 

of real GDP per capita, home price growth, average wages, and maximum UI benefit extensions. 

The main results reported in Table 6 are ordinary least squares estimates of the fixed effects 

model with standard errors adjusted for clustering at the state level. 

Determining a causal effect of UI benefit generosity on eviction filing rates relies on the 

assumption that differences in UI benefit generosity are not correlated with other factors that 
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affect changes in eviction filing rates. This assumption seems plausible as UI benefit generosity is 

captured at the state-level, while eviction filing rates are captured at the county-level. Eviction 

filing rates are determined locally, but individual local factors should not influence state-level 

policy choices. 

A concern could be that state legislators change UI generosity in response to economic 

shocks, which may be determinants of county-level eviction filing rates and could confound my 

estimates. To address this concern, I follow Hsu et al. (2018a) and estimate the correlation of 

benefit levels with various state macroeconomic variables, conditional on state fixed effects. 

Unlike Hsu et al. (2018a), the results, which are reported in columns 1-4 of Table 7.5, show 

evidence of a relation. Individually, I estimate a positive, statistically significant relationship 

between UI benefits and real GDP per capita, we well as between UI benefits and state wages. 

When estimating the correlation of benefits levels with all state macroeconomic variables, I find a 

positive, statistically significant relationship between UI benefits and the state unemployment 

rate, as well as between UI benefits and real GDP per capita. This difference may be due to 

differing time periods because my analysis extends to 2016, whereas previous research has 

stopped around 2010. To account for the resulting endogeneity, I include these variables in my 

main estimating equation. As a robustness check, I estimate the model with state-by-year fixed 

effects. 

 

Table 7.5 Regressions of Maximum UI Benefit on Economic Variables 

 Maximum UI Benefit 

 (1) (2) (3) (4) (5) 

Unemployment 

Rate 

-0.0132 

(0.084) 

 

 

 

 

 

 

0.249** 

(0.109) 

      

Real GDP per 

Capita 

 

 

8.993*** 

(1.915) 

 

 

 

 

8.055*** 

(2.839) 

      

Housing Price 

Index 

 

 

 

 

-0.0144 

(0.014) 

 

 

-0.00555 

(0.015) 
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Wages  

 

 

 

 

 

0.358*** 

(0.101) 

0.187 

(0.122) 

      

Observations 705 705 705 705 705 

R2 0.9205 0.9315 0.9207 0.9316 0.9361 

Notes: Clustered standard errors in parentheses. Clustering at the state-level. Each model includes 

state and year fixed effects. Maximum UI Benefit captured in real terms. 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 

 

Results 

Discrete Results 

I begin by estimating a simple model that only includes discrete measures of 

Unemployment Rate and Max Benefit, as well as GR, and Post GR. In terms of the main 

estimating equation presented in Section 5, this simple model excludes all interaction terms. As 

reported in column 1 of Table 7.6, the coefficient of High Unemployment is negative and 

statistically significant. The estimate of 0.379 suggests that a county in the high unemployment 

rate group is associated with 0.379 less eviction filings per 100 renter-occupied households than a 

county in the low unemployment rate group. As reported in column 1 of Table 7.6, the coefficient 

of High Max Benefit is positive. The coefficients on GR and Post GR show that, on average, 

eviction filing rates increased during and after the Great Recession. 

To determine whether there is a mitigating effect of UI benefits on unemployment, I 

estimate the same simple model with the inclusion of one interaction term, Unemployment Rate × 

Max Benefit. These estimates are reported in column 2 of Table 7.6. The coefficient on the High 

Unemployment × High Max Benefit interaction is positive and statistically significant. The 

coefficient of 0.503 suggests that the marginal effect of High Unemployment increases by 0.503 

eviction filings per 100 renter-occupied households for counties in the high maximum benefit 

group. This suggests that, instead of mitigating the effect of the unemployment rate, benefits 

reinforce the effect. 
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Table 7.6. 

The Effect of UI Generosity on Eviction Filing Rates, 2002-2016 

 (1) (2) (3) 

High Max Benefit 0.142 

(0.192) 

-0.0896 

(0.206) 

-0.186 

(0.237) 

    

High Unemployment -0.379** 

(0.173) 

-0.624*** 

(0.231) 

-0.658** 

(0.281) 

    

Great Recession 0.0148 

(0.157) 

0.0393 

(0.159) 

-0.197 

(0.353) 

    

Post Great Recession 0.261 

(0.221) 

0.289 

(0.222) 

0.314 

(0.241) 

    

High Max Benefit # High 

Unemployment 

 

 

0.503* 

(0.290) 

0.708* 

(0.377) 

    

High Max Benefit # Great 

Recession 

 

 

 

 

0.425 

(0.445) 

    

High Max Benefit # Post 

Great Recession 

 

 

 

 

0.0493 

(0.194) 

    

High Unemployment # 

Great Recession 

 

 

 

 

0.271 

(0.396) 

    

High Unemployment # 

Post Great Recession 

 

 

 

 

-0.00291 

(0.235) 

    

High Max Benefit # High 

Unemployment # Great 

Recession 

 

 

 

 

-0.531 

(0.416) 

    

High Max Benefit # High 

Unemployment # Post 

Great Recession 

 

 

 

 

-0.296 

(0.312) 

    

Constant -22.46* 

(12.363) 

-22.95* 

(11.602) 

-22.87* 

(11.916) 

Observations 39391 39391 39391 

R2 0.3825 0.3830 0.3832 

 

 

The graphical analysis in Descriptive Analysis section suggested that the effect of 

unemployment on filings, as well as unemployment on filings by benefits, may differ by time 
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period, namely during and after the Great Recession. To assess how the interaction between 

benefits and unemployment differs across time periods, I interact the High Unemployment × High 

Max Benefit interaction with the period indicator variables. As reported by column 3 in Table 7.6, 

the coefficient on High Max Benefit is negative and statistically different from zero. The 

coefficient on the High Unemployment × High Max Benefit interaction is positive and statistically 

significant. Taken together, the coefficients on High Max Benefit and High Unemployment × 

High Max Benefit capture the effect of benefit generosity on eviction filings before the Great 

Recession.  

I find that the interaction between benefits and unemployment differs by time period. The 

coefficients on the Great Recession × High Unemployment × High Max Benefit interaction and 

the Post Great Recession × High Unemployment × High Max Benefit interaction are both 

negative and statistically significantly different from zero. These interaction terms suggest that 

the positive interaction effect is mitigated during and after the Great Recession. 

Continuous Results 

Next, I begin by estimating a simple model that only includes Unemployment Rate, Max 

Benefit, GR, and Post GR. In terms of the main estimating equation presented in Section 5, this 

simple model excludes all interactions terms. In this specification, the coefficient on 

Unemployment Rate measures the average association between unemployment rates and eviction 

filing rates. As reported in column 1 of Table 7.7, the estimate is positive. The coefficient on Max 

Benefit measures the average association between maximum benefit generosity and eviction filing 

rates. As reported in column 1 of Table 7.7, the estimate is positive and statistically significant. 

The coefficient of 0.148 suggests that a $1,000 increase in state-level maximum UI benefit 

generosity leads to a 0.148 increase in county-level eviction filings per 100 renter-occupied 

households. The coefficients on GR and Post GR show that, on average, eviction filing rates 
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increased during and after the Great Recession. 

To determine whether there is a mitigating effect of UI benefits on unemployment, I 

estimate the same simple model with the inclusion of one interaction term, Unemployment Rate × 

Max Benefit. These estimates are reported in column 2 of Table 6. Recall that both 

Unemployment Rate and Max Benefit are demeaned, so the coefficient on Unemployment Rate 

measures the change in the average county-level eviction filing rate for a change in the 

unemployment rate at the mean maximum UI benefit generosity. The coefficient on the 

Unemployment Rate × Max Benefit interaction is positive and statistically significant. The 

coefficient of 0.0435 suggests that the marginal effect of Unemployment Rate increases by 0.0435 

eviction filings per 100 renter-occupied households for every $1,000 increase in maximum UI 

benefit generosity. This suggests that, instead of mitigating the effect of the unemployment rate, 

benefits reinforce the effect. 

Thus far, I have examined unemployment and benefits to gauge the average effect of 

benefit generosity on filing rates. However, the graphical analysis in Section 4 suggested that the 

effect of unemployment on filings, as well as unemployment on filings by benefits, may differ by 

time period, namely during and after the Great Recession. To assess how the interaction between 

benefits and unemployment differs across time periods, I interact the Unemployment Rate × Max 

Benefit interaction with the period indicator variables. As reported by Column 3 in Table 6, the 

coefficient on Max Benefit remains positive and statistically different from zero. The coefficient 

on the Unemployment Rate × Max Benefit interaction is positive and statistically significant. 

Taken together, the coefficients on Max Benefit and Unemployment Rate × Max Benefit capture 

the effect of benefit generosity on eviction filings before the Great Recession.  

I find that the interaction between benefits and unemployment differs by time period. The 

coefficients on the Great Recession × Unemployment Rate × Max Benefit interaction and the 
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Post Great Recession × Unemployment Rate × Max Benefit interaction are both negative and 

statistically significantly different from zero. These interaction terms suggest that the positive 

interaction effect is mitigated during and after the Great Recession. 

 

Table 7.7 The Effect of Max UI Benefit on Eviction Filing Rates, 2002-2016 

 Eviction Filing Rate 

 (1) (2) (3) 

Max UI Benefit 0.148*** 

(0.034) 

0.164*** 

(0.031) 

0.296*** 

(0.073) 

    

Unemployment Rate 0.0191 

(0.060) 

0.0236 

(0.060) 

0.148 

(0.108) 

    

Great Recession (GR) 0.524** 

(0.213) 

0.766*** 

(0.235) 

0.426* 

(0.228) 

    

Post Great Recession (Post GR) 0.689** 

(0.274) 

0.860*** 

(0.283) 

0.534* 

(0.284) 

    

Max UI Benefit × Unemployment Rate  

 

0.0435*** 

(0.010) 

0.113*** 

(0.028) 

    

GR × Max UI Benefit  

 

 

 

-0.109* 

(0.064) 

    

GR × Unemployment Rate  

 

 

 

-0.137* 

(0.076) 

    

GR × Max UI Benefit × Unemployment 

Rate 

 

 

 

 

-0.0646** 

(0.025) 

    

Post GR × Max UI Benefit  

 

 

 

-0.140** 

(0.061) 

    

Post GR × Unemployment Rate 
 

 

 

 

-0.142* 

(0.073) 

    

Post GR × Max UI Benefit × 

Unemployment Rate 

 

 

 

 

-0.0745*** 

(0.028) 

    

County controls Yes Yes Yes 

State controls Yes Yes Yes 

State fixed effects Yes Yes Yes 

    

Observations 39369 39369 39369 
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R2 0.5179 0.5206 0.5221 

Notes: Clustered standard errors in parentheses. Clustering at the state-level. County controls 

include median household income, median gross rent, median rent burden, percent African 

American, and percent Hispanic. State controls include extended benefits, unemployment rate, 

real GDP, HPI, and average annual wage. Significance is * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

 

The coefficients on the interaction terms are difficult to interpret. To ease interpretation, 

in Figure 7.4, I plot the expected eviction filings per 100 renter-occupied households at different 

values of benefits and unemployment rates in each time period. Each line captures a different 

level of unemployment. For ease of interpretation, benefits are measured as weekly benefits for 

26 weeks duration. In terms of maximum benefits used in the model $200, $400, and $600 are 

equivalent to $5,200, $10,400, and $15,600, respectively. The x-axis captures values of 

unemployment, namely full employment (4%), mean unemployment (6.5%), and high 

unemployment (10%). All of these are values of unemployment rates observed in my sample. 

Moving along a given line shows the effect of an increase in unemployment rate on expected 

eviction filings.  

As shown, prior to the Great Recession, at low unemployment, there is a negative effect 

of increasing unemployment on predicted eviction filings. However, as benefits increase, the 

effect of unemployment on filings becomes positive. During and after the Great Recession, the 

overall effects are less extreme. The effect of increasing unemployment on predicted filings 

remains negative for low benefits during and after the Great Recession. As benefits increase, the 

effect of unemployment on predicted eviction filings again become positive. However, it is not as 

strong of relationship as that before the Great Recession. 
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Robustness 

The results presented in column 3 of Table 7.7 are robust to a number of changes in 

specification. The results of these alternative specifications are presented in Tables 7.8 and 7.9. In 

column 1 of Table 7.8, 1 examine the robustness of the model to the use of real values instead of 

nominal. Results remain unchanged. In columns 2-4, I estimate the model without state-level 

controls, with county fixed effects, and with state-by-year fixed effects, respectively. Results are 

consistent with those in the primary specification. The robustness to state-by-year fixed effects is 

noteworthy, because it eliminates our earlier concern about economic shocks.  



 

134 

 

 

Table 7.8 

Robustness of Model to Changes to Real Values and Changes in Fixed Effects 

 Eviction Filing Rate 

 Real 

Values 

(1) 

Drop 

State 

Controls 

(2) 

County 

FE 

(3) 

State-

by-year 

FE 

(4) 

Max UI Benefit 0.299*** 

(0.071) 

0.194* 

(0.103) 

0.185*** 

(0.057)  

     

Unemployment Rate 0.0640 

(0.095) 

0.223** 

(0.110) 

-0.00480 

(0.026) 

0.195* 

(0.105) 

     

Max UI Benefit × Unemployment Rate 0.0967*** 

(0.027) 

0.123*** 

(0.031) 

0.0191** 

(0.008) 

0.128*** 

(0.031) 

     

Great Recession (GR) 0.166 

(0.180) 

-1.085*** 

(0.357) 

-0.0462 

(0.119)  

     

Post Great Recession (Post GR) -0.0145 

(0.187) 

-1.586*** 

(0.487) 

0.170 

(0.179)  

     

GR × Max UI Benefit -0.0994 

(0.061) 

-0.162** 

(0.072) 

-0.0378 

(0.040) 

 

 

     

GR × Unemployment Rate -0.0807 

(0.061) 

-0.254** 

(0.107) 

-0.0172 

(0.034) 

-0.222*** 

(0.074) 

     

GR × Max UI Benefit × Unemployment Rate -

0.0528** 

(0.025) 

-0.0842*** 

(0.028) 

-

0.0203** 

(0.009) 

-

0.0466** 

(0.023) 

     

Post GR × Max UI Benefit -0.127** 

(0.057) 

-0.146* 

(0.073) 

-0.0577 

(0.038) 

 

 

     

Post GR × Unemployment Rate 
-0.0398 

(0.059) 

-0.203** 

(0.091) 

0.00641 

(0.031) 

-0.190*** 

(0.067) 

     

Post GR × Max UI Benefit × Unemployment 

Rate 

-

0.0581** 

(0.027) 

-0.0934*** 

(0.030) 

-

0.0242** 

(0.010) 

-0.0481 

(0.029) 

     

County controls Yes Yes Yes Yes 

County fixed effect No No Yes No 

State controls Yes No Yes No 

State fixed effects Yes Yes No No 

State-by-year fixed effects No No No Yes 
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Observations 39369 39369 39369 39369 

R2 0.523 0.517 0.926 0.542 

Notes: Column 1 presents results from the primary specification with real, instead of nominal, 

values for benefits, median household income, and median gross rent. Column 2 presents 

results from the primary specification without state-level controls. Column 3 presents results 

from the primary specification with county fixed effects. Column 4 presents results from the 

primary specification with state-by-year fixed effects. Clustered standard errors in parentheses. 

Clustering at the state-level. County controls include median household income, median gross 

rent, median rent burden, percent African American, and percent Hispanic. State controls 

include extended benefits, unemployment rate, real GDP, HPI, and average annual wage. 

Significance is * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

 

In columns 1-3 of Table 7.9, I estimate the model using different measures of UI benefit 

generosity. In column 1, I use maximum weekly benefit, in column 2, maximum duration, and in 

column 3, average weekly benefit amount paid. These results are relatively consistent with those 

in the primary specification. All but maximum benefit duration suggest a positive relationship 

between benefits and filings. All three suggest that the effect is reinforced by unemployment rates 

and mitigated over time. Finally, in 4olumn 4 of Table 7.9, I weight the primary model by county 

population. The main conclusion of a positive relationship between benefits and filings, which is 

reinforced by unemployment hold. However, in this model, that relationship does not appear to 

change over time. 

 

Table 7.9 Robustness of Model to Changes in Max UI Benefit and Addition of Weights 

 Eviction Filing Rate 

 WBA 

(1) 

Duration 

(2) 

AWBA 

(3) 

Weighted 

(4) 

Max UI Benefit 0.00922*** 

(0.002) 

-0.0151 

(0.057) 

0.0138** 

(0.005) 

0.419* 

(0.234 

     

Unemployment Rate 0.186 

(0.114) 

-0.00813 

(0.103) 

0.167 

(0.129) 

0.341 

(0.207) 

     

Max UI Benefit × Unemployment Rate 0.00329*** 

(0.001) 

0.0958** 

(0.037) 

0.00472** 

(0.002) 

0.105* 

(0.055) 

     

Great Recession (GR) 0.332 

(0.229) 

0.487** 

(0.209) 

0.246 

(0.273) 

0.117 

(0.485) 
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Post Great Recession (Post GR) 0.409 

(0.288) 

0.642** 

(0.287) 

0.404 

(0.347) 

0.450 

(0.697) 

     

GR × Max UI Benefit -0.00345* 

(0.002) 

0.0620 

(0.095) 

-0.00564 

(0.004) 

-0.139 

(0.117) 

     

GR × Unemployment Rate -0.169** 

(0.080) 

0.00133 

(0.072) 

-0.173* 

(0.097) 

-0.131 

(0.158) 

     

GR × Max UI Benefit × Unemployment 

Rate 

-0.0020*** 

(0.001) 

-0.0459 

(0.050) 

-0.00254* 

(0.001) 

-0.0740 

(0.047) 

     

Post GR × Max UI Benefit -0.0042** 

(0.002) 

0.0969 

(0.072) 

-0.00502 

(0.004) 

-0.149 

(0.127) 

     

Post GR × Unemployment Rate 
-0.184** 

(0.080) 

0.0230 

(0.066) 

-0.162* 

(0.093) 

-0.0960 

(0.163) 

     

Post GR × Max UI Benefit × 

Unemployment Rate 

-0.0023*** 

(0.001) 

-0.0717** 

(0.035) 

-0.0031** 

(0.001) 

-0.0778 

(0.049) 

     

County controls Yes Yes Yes Yes 

State controls Yes Yes Yes Yes 

State fixed effects Yes Yes Yes Yes 

     

Observations 39369 39369 39311 39369 

R2 0.522 0.518 0.520 0.653 

Notes: Column 1 uses maximum weekly benefit amount (WBA) as the measure of UI benefit 

generosity. Column 2 uses maximum benefit duration as the measure of UI benefit generosity. 

Column 3 uses average weekly benefit amount (AWBA) as the measure of UI benefit 

generosity. Column 4 weights the primary specification by county population. Clustered 

standard errors in parentheses. Clustering at the state-level. County controls include median 

household income, median gross rent, median rent burden, percent African American, and 

percent Hispanic. State controls include extended benefits, unemployment rate, real GDP, HPI, 

and average annual wage. Significance is * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

 

Discussion 

My results show a robust, positive effect of the interaction between benefits and 

unemployment, which decreases slightly during and after the Great Recession. The consistently 

positive relationship appears counterintuitive. UI benefits are a source of income that could be 

used to pay rent, so an increase in benefits could make it easier for individuals or families to 

make their rental payments, especially during times of high unemployment. We would expect, or 



 

137 

 

 

at least hope, that an increase in UI benefits would lead to a decrease in eviction filings as the 

unemployment rate increases. That is, we would expect the interaction term to be negative. 

Furthermore, the graphical analysis supported this hypothesis. My results suggest the opposite, 

which warrants further discussion. 

First, it is important to understand why the graphical analysis and the empirical results 

tell different stories. The graphical analysis plotted averages over time. It did not account for 

other county or state characteristics. Once those characteristics are accounted for, the relationship 

changed. An important factor that the graphs do not account for is state fixed effects. Because my 

data is counties that are within states, with a state-level policy, it is important to control for fixed 

effects. Once these fixed effects are included the relationship changes. See Appendix A for more 

details. 

Table 7.10 presents the adjusted predictions of county-level eviction filings per 100 

renter-occupied households at representative values of benefits and unemployment before, during, 

and after the Great Recession. I choose the same levels of benefits and unemployment I plotted in 

Figure 7.4. All of the controls have been set to their means. The table depicts the consistently 

positive relationship between benefits and filings. Holding unemployment constant, as we 

increase UI benefit generosity, we see an increase in the expected county-level eviction filings 

per 100 renter-occupied households. However, the predicted values are quite small across the 

entire table. 

Additionally, Table 7.10 depicts that the relationship between unemployment and filings 

varies by benefits. When benefits are low, as we increase unemployment, we see a decrease in the 

expected county-level eviction filings per 100 renter-occupied households. This negative 

relationship holds across all time periods. However, the predicted values remain quite small 

across the entire table. When benefits are average, as we increase unemployment, we increase the 
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eviction filing rate. This relationship also holds across all time periods. Finally, when benefits are 

large, as we increase unemployment, we increase the eviction filing rate even more. 

 

Table 7.10 

Expected County-Level Eviction Filings by UI Benefits and Unemployment Rates 

   Expected Eviction Filings 

Weekly 

Benefit 

Maximum 

Benefit 

Unemployment 

Rate 

Pre-Great 

Recession 

During Great 

Recession 

Post-Great 

Recession 

$200 $5,200 4% 2.42 2.94 3.09 

$200 $5,200 6.5% 1.43 2.39 2.64 

$200 $5,200 10% 0.05 1.61 2.01 

$400 $10,400 4% 2.49 3.28 3.40 

$400 $10,400 6.5% 2.97 3.36 3.45 

$400 $10,400 10% 3.65 3.46 3.53 

$600 $15,600 4% 2.56 3.62 3.71 

$600 $15,600 6.5% 4.51 4.33 4.26 

$600 $15,600 10% 7.25 5.32 5.04 

Notes: This table shows the expected eviction filings per 100 renter-occupied households at the 

county-level from the primary regression results. 

 

 

Taken together, these results seem to suggest a small change in the number of county-

level eviction filings. However, these small county-level effects can result in larger state-level 

effects once aggregated. For example, using the estimates from the main model, increases the 

maximum UI benefit generosity by $1,000, we would expect to see 0.296 more eviction filings 

per 100 renter-occupied households at the mean level of unemployment. Using North Carolina, 

where I attended undergraduate and graduate school, as an example, in 2016, the Eviction Lab 

database estimates that there were over 1.3 million renter-occupied households. Assuming this 

number, an increase in maximum UI benefits generosity by $1,000 in North Carolina could result 

in 3,848 more eviction filings in a given year with average unemployment. If we expect about 40 

percent of those filings to result in judgments, then this increase in benefits could lead to nearly 

1,540 eviction judgments across the state. According to my calculations using data from the 

Eviction Lab, in an average year, the number of eviction filings is nearly 150,000. This increase 

in benefits could lead to around a 2.5 percent increase in filings in the state. 
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My results suggest that the relationship between benefits and filings cannot be understood 

in isolation from the relationship between benefits and unemployment. When benefits are low, an 

increase in the unemployment rate leads to a decrease in the eviction filing rate. When benefits 

are high, an increase in the unemployment rate leads to an increase in the eviction filing rate. 

These relationships hold to a lesser extent during and after the Great Recession. These results are 

consistent with the literature on landlord-tenant interactions, particularly serial filings. 

Landlord-tenant interactions are best viewed from the landlord’s point of view (Garboden 

and Rosen, 2019). Eviction judgments are costly to landlords. “From a landlord’s perspective, 

even the most straightforward evictions result in 2 months of lost rent plus turnover costs” 

(Garboden and Rosen, 2019). Although eviction judgements lead to the removal of a problem 

tenant, it comes with the costs associated with going to court, turning over the unit, and finding a 

new tenant. Qualitative research from Baltimore, MD, Cleveland, OH, and Dallas, TX suggests 

that landlords prefer a tenant to a vacancy (Garboden and Rosen, 2019). 

There are two actions a landlord can take when dealing with a problem tenant: filing an 

eviction to reach an eviction judgment (Type 1) or filing an eviction to reach an eviction filing 

(Type 2). Because an eviction judgment is costly, a landlord will file to reach an eviction 

judgment only when they believe their tenant will not pay their back rent (Garboden and Rosen, 

2019). An eviction filing, on the other hand, is not costly. Eviction filings allow a landlord to 

reach an eviction judgment if needed. Further, eviction filings can induce a tenant to pay and can 

give the landlord the opportunity to collect late fees (Garboden and Rosen, 2019). These benefits 

lead to much of the serial eviction filings we see across the US. As a result, many landlords will 

file not to reach an eviction judgment, but simply for the sake of filing to receive any of these 

benefits. 
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When benefits are low, landlords may perceive that there is less of a social safety net. 

Therefore, as unemployment increases, landlords may be more likely to file for eviction to reach 

eviction judgement, because they know their tenants will not be able to pay their back rent. This 

logic explains the decrease in eviction filings that we see when unemployment rates increase. 

Essentially, landlords may be switching from Type 2 landlords to Type 1 landlords. By contrast, 

when benefits are high, landlords may perceive that there is more of a social safety net. As 

unemployment increases, landlords may be more likely to file for eviction to reach an eviction 

filing, because they know their tenants will eventually be able to pay as a result of their benefits. 

This logic explains the increase in eviction filings that we see when unemployment rates increase. 

Landlords are filing to file, which likely results in even more eviction filings, because individuals 

are remaining in their homes, but behind on their rent. 

 I can use additional data to support this story. If landlords are behaving more like Type 1 

landlords, that is, filing to evict, we should see eviction judgments remain constant or increase 

compared to eviction filings. As a result, the likelihood of eviction should remain constant or 

increase. If landlords are behaving more like Type 2 landlords, that is, filing to file, we should see 

eviction judgments decrease compared to eviction filings. As a result, the likelihood of eviction 

should decrease. 

Figure 7.5 depicts the predictive margins of the main regression model (column 3 of 

Table 7.6) with the likelihood of eviction as the outcome of interest. I focus on the pre–Great 

Recession period, as this likely captures the effect of UI benefits on eviction outcomes through 

the landlord’s decision. In the pre–Great Recession period, when benefits are low, an increase in 

the unemployment is positively associated with the likelihood of eviction. When benefits are 

high, an increase in the unemployment rate is negatively associated with the likelihood of 

eviction. These results exactly match my landlord decision story. When benefits are low, 
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landlords behave like Type 1 landlords; while when benefits are high, landlords behave like Type 

2 landlords. 

 

 
 

 

Finally, the interaction between benefits and unemployment, and that interaction 

relationship with eviction filings remains during and after the Great Recession, albeit it decreases. 

In the context of the preceding discussion, this result suggests that during times of economic 

recession landlords may be less sure that their tenant will eventually be able to pay and less sure 

that they will be able to find a satisfactory new tenant. These negative impacts on the likelihood 

of filing for eviction mitigate the positive relationship between benefits and filings. This outcome 

persists even after the Great Recession due to the slow recovery and potentially lasting change in 

the interactions between landlords and tenants. 
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Conclusion 

In this paper, I study the effect of UI benefits on rental housing evictions. To do so, I 

exploit differences in UI generosity across states and over time. I find that county-level eviction 

filing rates increase as state-level benefits become more generous. This positive relationship is 

smaller during and after the Great Recession. Despite what intuition may indicate, these results 

make sense within the framework of the landlord-tenant relationship. Landlords are more likely to 

file when they are sure that their late tenants will eventually pay. Although the effects are 

somewhat small at the county-level, the aggregated effect can be larger. For example, a $1,000 

increase in maximum benefit generosity in North Carolina could lead to 3,848 additional eviction 

filings in the state. 

These results suggest that increases in UI generosity can lead to unintended consequences 

for renters. However, these results do not mean that policymakers should refrain from increasing 

UI generosity and cannot rely on unemployment insurance as an eviction diversion program. My 

results suggest that we need to think more clearly about how we create and implement eviction 

diversion programs. Preventing eviction filings requires delivery of benefits in advance of the day 

rent is due. If tenants are late on their rent, they will continue to be filed on. 

Additionally, these results highlight the importance of understanding the landlord-tenant 

relationship. When studying eviction, the literature has focused almost exclusively on the tenant’s 

perspective. Although tenants certainly suffer a larger fallout from eviction, the landlord 

perspective is incredibly important. If we do not understand the landlord-tenant relationship, we 

will never be able to understand why certain programs, like unemployment insurance, are not 

preventing filings like our intuition suggested they would. Ultimately, we need a clear 

understanding of the mechanisms through which evictions take place if we wish to prevent 

evictions.



 

143 

 

 

CHAPTER VIII 

 

CONCLUSION 

 

 

This dissertation studies the prevalence and prevention of rental housing evictions. It 

expands the literature in several ways. First, it summarizes the eviction literature to date, finding 

that the over the last 20 years, the eviction literature greatly increased. Additionally, the topics 

covered in the literature fall in one of five different categories: prevalence, causes, consequences, 

prevention, and landlords. Second, it develops a theoretical model of the eviction rate, which 

incorporates both the landlord and the tenant perspective. Although eviction involves both the 

landlord and the tenant (as well as the court), it is a decision made by the landlord that begins the 

process. It is important to have a clear understanding of when the landlord makes this decision 

and what the implications are for aggregate eviction outcomes. 

Third, this dissertation discusses and uses the Eviction Lab data. The prior literature is 

limited in its conclusions due to a lack of national data. Now that there is a national database it is 

important to evaluate the database in terms of usability. This dissertation establishes an 

adjustment measure for using the state-level data in the Eviction Lab. 

Finally, the paper uses the Eviction Lab data to answer three questions. First, it explores 

the extent of the US eviction crisis. My dissertation concludes that the eviction crisis is primarily 

characterized by a consistently high rate of eviction filings and eviction judgments at the national, 

state, and local level. Further, the crisis does not appear everywhere. Certain counties have very 

high levels of filings and judgements, while others do not. Second, it examines the determinants 

of differences in eviction rates across US counties. It finds that both demographic and economic 

factors are associated with differences in eviction rates. Third, this dissertation examines the 
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potential of unemployment insurance to serve as an eviction prevention program. I find that 

unemployment insurance does seem to aid renters, but also seems to induce landlords to file on 

their tenants more often. As a result, the effectiveness of unemployment insurance as an eviction 

prevention program is complicated. 

 Overall, this dissertation contributes to the literature on eviction by providing new 

insights. My results ultimately help better understand eviction and provide clarity to policymakers 

and private organizations that hope to reduce or prevent rental housing evictions in the US.
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APPENDIX A. 

 

 

Although the graphical analysis suggests that higher benefits lead to lower average 

eviction filing rates, the graphical analysis does not account for other county or state-level 

controls. Once some of these things are accounted for the results change. Table A1 presents these 

results. In column 1, I present the difference in average eviction filing rates between the high and 

low benefit groups from Figure 1. In columns 2 and 3, I present these same estimates controlling 

for state fixed effects and state fixed effects and state controls, respectively. Although column 1 

shows consistently lower average eviction filings for the high benefit group, columns 2 and 3 

show consistently higher average eviction filings for the high benefits group. State trends are 

important to control for, so it is important to control for state fixed effects. The inclusion of these 

effects changes the results from intuitive to counterintuitive. 

 

Table A1. Average Eviction Filing Rates over Time by UI Benefit Groups 

 Average Eviction Filing Rate 

 (1) (2) (3) 

2003 × High Max Benefit -0.0329 

(0.182) 

0.446*** 

(0.156) 

0.593*** 

(0.164) 

    

2004 × High Max Benefit -0.242 

(0.182) 

0.282* 

(0.156) 

0.568*** 

(0.176) 

    

2005 × High Max Benefit -0.0895 

(0.181) 

0.423*** 

(0.155) 

0.813*** 

(0.188) 

    

2006 × High Max Benefit 0.117 

(0.181) 

0.616*** 

(0.155) 

1.231*** 

(0.204) 

    

2007 × High Max Benefit -0.396** 

(0.184) 

0.350** 

(0.159) 

1.206*** 

(0.231) 

    

2008 × High Max Benefit -0.430** 

(0.181) 

0.307** 

(0.156) 

1.333*** 

(0.255) 
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2009 × High Max Benefit -0.758*** 

(0.181) 

0.161 

(0.155) 

1.189*** 

(0.298) 

    

2010 × High Max Benefit -0.610*** 

(0.181) 

0.291* 

(0.156) 

1.421*** 

(0.317) 

    

2011 × High Max Benefit -0.509*** 

(0.189) 

0.309* 

(0.163) 

1.625*** 

(0.340) 

    

2012 × High Max Benefit -0.837*** 

(0.180) 

0.184 

(0.152) 

1.692*** 

(0.333) 

    

2013 × High Max Benefit -1.130*** 

(0.180) 

0.347** 

(0.153) 

1.934*** 

(0.345) 

    

2014 × High Max Benefit -1.117*** 

(0.181) 

0.284* 

(0.154) 

2.096*** 

(0.375) 

    

2015 × High Max Benefit -1.016*** 

(0.183) 

0.286* 

(0.155) 

2.282*** 

(0.401) 

    

2016 × High Max Benefit -0.986*** 

(0.182) 

0.275* 

(0.154) 

2.361*** 

(0.410) 

    

Constant 3.055*** 

(0.127) 

2.859*** 

(0.105) 

-31.28*** 

(7.086) 

    

State fixed effects No Yes Yes 

State controls No No Yes 

    

Observations 39393 39393 39393 

R2 0.0233 0.3816 0.3823 

Notes: This table presents results from a regression of eviction filing rates on the interaction 

between years and the benefit groups. As a result, these estimates are the difference between 

the average eviction filing rates for the high benefit group versus the low benefit group. 

 

 


