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Falls in the older adult population are a critical public health concern, resulting in 

significant personal and societal financial burden, and reduced independence and quality of life. 

Early identification of elevated fall risk is vital for implementation of effective fall prevention 

strategies. However, the unidimensional nature of traditional fall risk assessments fails to 

accurately determine fall risk (incidence of falls) in older adults. Additionally, fall risk 

assessments are most often measured in the clinical setting, and consequently many injurious 

falls occur prior to the identification of elevated risk by a healthcare provider. Assessment of 

heart rate variability (HRV) in the free-living environment provides a robust solution to the 

limitations of traditional fall risk assessments. HRV or the fluctuations in the time intervals 

between adjacent heartbeats, has emerged as a valuable assessment reflecting the dynamic, non-

linear autonomic nervous systems (ANS) influence on cardiac rhythm. In alignment with 

dynamic systems theory, previous work supports system-based overlaps of the ANS and other 

fall risk related physiological systems. Thus, measurement of HRV presents an opportunity to 

assess the interaction of multiple physiological systems that influence falls. However, the 

efficacy of HRV to determine fall risk in healthy, community dwelling older adults is unknown. 

Therefore, the purpose of this dissertation is threefold: 1) to determine if HRV indices observed 

over a 24-hour monitoring period differ in community dwelling older adults with a history of 

falls and those who have not sustained a fall,  2) to determine the discriminative validity of HRV 

indices observed over a 24-hour monitoring period for classifying fall risk in older adults 

compared to traditional fall risk assessment tools, including the Timed Up and Go (TUG), the 

Functional Gait Assessment (FGA), and the Activities-specific Balance Confidence Scale 



  

 

(ABC), 3) to examine associations between intrinsic fall risk factors [e.g., postural control, 

vestibular function, lower extremity muscular strength, executive function, and depression] and 

HRV indices observed over a 24-hour monitoring period and whether the relationships differ for 

those with a history of falls versus non-fallers. Forty-two healthy, community dwelling older 

adults (age 74.40 ± 5.46 years) participated in this study and were assigned to either the fallers 

group (n = 15) or non-fallers group (n = 27) based on self-reported fall history. Participants in 

the fallers group reported ≥1 fall during the 12 months prior to testing. All participants 

completed a demographics and health history survey, three traditional fall risk assessments 

(TUG, FGA, and ABC), and five measures to assess intrinsic fall risk. To measure HRV, 

participants wore a heart rate monitor for 24-hours in their free-living environment. Mann 

Whitney U tests were run to determine if HRV metrics differed between groups, and Wilcoxon 

effect size calculations were executed to determine the magnitude of the effect. The results 

reported in Manuscript I show that HRV metrics did not significantly differ between fallers and 

non-fallers; however, a medium effect of fall risk on the standard deviation of the normal-to-

normal intervals was observed (SDNN). This suggests that SDNN may provide clinically 

relevant information regarding fall risk. Receiver operator characteristics (ROC) curves were run 

to determine the discriminative validity of HRV indices in comparison to traditional fall risk 

assessments. The results of Manuscript II suggest that SDNN had the greatest accuracy to 

differentiate fallers from non-fallers but was not significantly better than traditional fall risk 

assessments. Multiple regressions were completed to determine the extent to which intrinsic fall 

risk factors are associated with HRV indices, and whether the relationships differ for those with a 

history of falls versus non-fallers. The results reported in Manuscript III show that declines in 

postural control and vestibular function were associated with alterations in HRV non-linear 



  

 

parameters. These data suggest that HRV may be an effective measure of fall risk in community 

dwelling older adults. It is recommended that future work expand to include older adults with 

diagnoses of age-related diseases known to increase fall risk.   
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CHAPTER I: INTRODUCTION 

Approximately 25% of adults aged 65 and older fall annually (Bergen et al., 2016). These 

falls are often severe and result in significant injury and consequently restricted activity and 

decreased independence and quality of life (Bergen et al., 2016). In 2015, the estimated annual 

cost of fatal and non-fatal falls in older adults totaled approximately $50.0 billion dollars, with 

99% of the cost attributed to healthcare treatment associated with non-fatal falls (Florence et al., 

2018). The older adult population is expected to increase dramatically over the next decade 

(Ortman et al., 2014); thus, without pressing attention, the large economic burden of falls and 

fall-related injuries on the U.S. healthcare system is projected to increase significantly (CDC, 

2017b).  

Early detection of fall risk (e.g., likelihood of sustaining a fall) is an essential component 

for reducing falls and fall related injuries. However, current clinical methods for assessing fall 

risk in older adults are primarily unidimensional (e.g., balance, gait, cognitive function), negating 

the fact that fall risk is multifactorial. As a result, current assessments have demonstrated a wide 

range of variability in diagnostic accuracy for correctly identifying individuals with elevated fall 

risk (Perell et al., 2001). Additionally, these assessments are typically measured in a controlled 

setting (e.g. doctors office or physical therapy clinic), nullifying the dynamic nature of fall risk 

and demanding time and effort from an already taxed medical staff (Perell et al., 2001). Due to 

these barriers, many older adults fall prior to identification of elevated risk. To reduce falls and 

fall-related disability, there is a need for accurate, cost effective, and time efficient tools to assess 

fall risk in the free-living environment.  



  

2 

 

Advances in wearable sensor technology provide opportunity to fill these gaps through 

the assessment of underlying physiological factors that may predict elevated fall risk, such as 

heart rate variability (HRV). HRV, or the fluctuations in time between adjacent heartbeats, has 

emerged as a valuable parameter reflecting the dynamic, non-linear autonomic nervous system 

(ANS). It is well established that a healthy heart, as well as other biological systems (e.g., ANS) 

have oscillations that are complex and non-linear (Shaffer & Ginsberg, 2017; Stergiou & Decker, 

2011). Moreover, the human system as a whole is dynamic and represents a collection of non-

linear systems that interact (Cavanaugh et al., 2017). The complexity of non-linear systems 

provides individuals with the flexibility to rapidly cope with an ever-changing environment, 

which is a vital component of fall prevention. However, injury, disease, and aging, involve either 

a loss or increase in complexity in one or more physiological systems, as well as changes in the 

coupling between systems, thus hindering system flexibility and adaptability (Lipsitz & 

Goldberger, 1992).  

Importantly, research has established an interaction of several intrinsic (e.g. person level) 

fall risk related factors/systems with the ANS to produce the complex heart rate signal, 

including: cognition (Thayer & Friedman, 2004; Thayer et al., 2009, 2012), cardiovascular 

dysregulation (e,g, postural hypotension, and orthostatic hypertension) (Li et al., 2020), and 

emotional regulation (e.g. depression) (Lane et al., 2009; Vasudev et al., 2011). When alterations 

to one of these contributing systems occurs as a result of injury, disease, or aging, it is likely that 

the coupling between said system and the ANS is altered resulting in loss of complexity of the 

heart rate signal. Thus, HRV presents an opportunity to assess the interaction of multiple 

physiologic systems associated with fall risk. HRV measured via a holter monitor has been 

shown to classify fallers and non-fallers in hypertensive individuals, a population known to have 
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ANS dysfunction (Melillo, Jovic, De Luca, et al., 2015), as well as patients in an acute care 

setting (Razjouyan et al., 2017). However, the efficacy of HRV to predict fall risk in healthy, 

community dwelling older adults remains unknown. To establish HRV as a fall risk assessment, 

it is also important to compare this new methodology to the current gold standard measures. 

Additionally, previous work has failed to explore the relationship between exposure to 

independent, intrinsic risk factors and HRV, an important component for confirming the relation 

between HRV and fall risk. Moreover, evaluating the interplay between HRV indices and 

intrinsic fall risk factors in fallers and non-fallers is vital for identifying the most important, 

primary targets (i.e., variables with the greatest influence on ANS alterations) for preventive 

interventions. 

To close these gaps, a series of experiments are presented in three manuscripts. The aims 

and associated hypotheses for each manuscript are presented below: 

Manuscript I 

Aim: Determine if HRV indices observed over a 24-hour monitoring period differ in 

community dwelling older adults with a history of falls and those who have not sustained a fall.  

Hypothesis: The HRV indices standard deviation of the normal-to-normal intervals 

(SDNN), low frequency (LF) power, high frequency (HF) power, and detrended fluctuation 

analysis (DFA) α1 and α2 will be significantly reduced in older adult fallers compared to non-

fallers.  

Manuscript II 

Aim: Determine the discriminative validity of HRV indices (SDNN, LF Power, and DFA 

α1) observed over a 24-hour monitoring period for classifying fall risk in older adults compared 
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to traditional fall risk assessment tools, including the Timed Up and Go (TUG), the Functional 

Gait Assessment (FGA), and the Activities-specific Balance Confidence Scale (ABC). 

Hypothesis: The HRV metrics SDNN, LF power, and DFA α1 will correctly identify a 

greater percentage of fallers compared to the TUG, FGA, and ABC. 

Manuscript III 

Aim: Examine the associations between intrinsic fall risk factors [e.g., postural control 

(center of pressure displacement), vestibular function (Sensory Organization Tests 5-6), lower 

extremity muscular strength (30s Chair Stands), executive function (Trail Making Test), and 

depression (Beck Depression Index II)] and HRV indices (SDNN, LF Power, HF Power and 

DFA α1 and α2) observed over a 24-hour monitoring period and whether the relationships differ 

for those with a history of falls versus non-fallers.  

Hypothesis: For fallers, a stronger negative relationship will be observed between the 

independent variables for postural control, executive function, and depression, and the HRV 

outcome variables. Additionally, for fallers, a stronger positive relationship will be observed 

between the independent variables for vestibular function and lower extremity strength and the 

HRV outcome variables.  
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CHAPTER II: REVIEW OF LITERATURE 

Overview 

This literature review will first discuss prevalence and risk factors associated with falling 

in older adults, proceeded by information on how fall risk has traditionally been assessed, with 

specific focus on limitations of current metrics. Next, this literature review will provide an 

overview of the proposed novel fall risk assessment, HRV, including a review of measurement 

standards and metrics, with important considerations for 24-hour monitoring. The discussion will 

proceed with how dynamical systems theory gives insights into the utility of HRV for assessing 

fall risk as well as the impact of aging on HRV and falls. Subsequently, evidence supporting the 

utility of HRV to tack physiological system changes will be discussed. Finally, a discussion of 

the previous research examining the relationship between HRV and fall risk and gaps in the 

literature with regards to this dissertation will be presented.  

Falls in Older Adults 

Prevalence  

An estimated 29.0 million fall occur annually in the older adult population. It is projected 

that each year 27,000 of these falls result in death and 7.0 million in injury (e.g., a fall that 

required medical treatment or restricted activity for ≥1 day), making falls the leading cause of 

fatal an nonfatal injuries for older adults (Bergen et al., 2016). Individuals who fall are 

significantly more likely to be female, Caucasian, older (65-74 years of age = 26.7%, 75-84 

years of age = 29.8%, ≥85 years of age = 36.5%), and lower income (Bergen et al., 2016; 

Florence et al., 2018). As a result of the high prevalence of fall related injuries, a substantial 

portion of the annual healthcare expenditure for older adults is attributed to falls. Florence et al. 
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(2018) found that based on fall reporting records from 2012, approximately 6.0% of Medicare 

and 8.0% of Medicaid expenditures and 5.0% of other source payments (e.g., private insurance 

and out-of-pocket spending) were attributable to falls. These percentages suggest fall-attributable 

expenses topping more than $49.5 billion annually. Furthermore, females account for 71% of the 

total medical costs of falls, with females aged 85 and older responsible for one-third of total 

medical costs (Burns et al., 2016). By 2030, more than 20 percent of U.S. residents are projected 

to be aged 65 and over, compared to 13 percent in 2010 (Ortman et al., 2014). To this end, falls 

and fall related injuries are expected to increase over the next decade and without prioritized 

attention will escalate the burden on an already taxed healthcare system.  

Risk Factors 

Fall risk is multi-factorial, and the combined result of person specific (intrinsic) and 

environmental (extrinsic) risk factors. In a 2013 systematic review, Ambrose and colleagues 

(2013) identified a number of fall risk factors in both categories. Identified intrinsic risk factors 

include age, sex (female), race, changes in gait dynamics, reduced postural control, reduced 

lower extremity strength, vestibular dysfunction, changes in vision, declines in cognitive 

function, neurodegenerative diseases, cardiovascular disease, depression, and certain 

medications. Identified extrinsic fall risk factors include slippery walking surfaces, ill-fitting 

footwear, loose rugs, or lack of handrails. While extrinsic risk factors certainly play a significant 

role in fall risk, improvement of intrinsic factors allow an individual to more safely and 

confidently navigate and respond to the extrinsic environment; thus, the remainder of this 

discussion will focus on intrinsic fall risk factors. 

The normal aging process is associated with declines in several physiological systems 

associated with elevated fall risk including the musculoskeletal system (Kamel, 2003), vestibular 



  

7 

 

system (Anson & Jeka, 2016), and cognition (Hoogendam et al., 2014). With regard to the 

musculoskeletal system, sarcopenia or the loss of muscle mass that occurs with aging is 

characterized as a decline in the number of muscle fibers (mainly type II myosin heavy chain 

isoforms) and a reduction in muscle fiber size (Kamel, 2003). Sarcopenia is also accompanied by 

concomitant declines in muscle strength and power (dynapenia), which occur more rapidly than 

the loss of muscle mass. Dynapenia is the combined result of sarcopenia and a complex interplay 

of neurologic and muscular mechanisms (Manini & Clark, 2012), the most prominent of which 

include: a reduction in central activation, denervation of type II muscle fibers, alterations in 

intrinsic force-generating capacity of muscle, changes in dihydropyridine and ryanodine 

receptors impacting excitation-contraction coupling, and increased inflammatory cytokine 

production (Clark & Manini, 2012; Manini & Clark, 2012). In a systematic review examining 

muscle weakness as a potential risk factor for falls, Moreland et al. (2004) observed that for 

lower extremity weakness, the combined odds ratio was 1.76 for any fall and 3.06 for recurrent 

falls. Since then, other studies have confirmed the important contribution of muscle weakness to 

the fall risk (Hasselgren et al., 2011; Horlings et al., 2008; Perry et al., 2007; Tiedemann et al., 

2008; Yau et al., 2013). Additionally, the disproportionate reduction in muscle strength and 

power (1 to 3.5 % per year in older adults) relative to muscle mass (6% per decade after 50 

years), suggests a decrease in muscle quality (Lynch et al., 1999; Skelton et al., 1994). Muscle 

quality or force per unit of muscle cross-sectional area is associated increased susceptibility to 

functional limitation and physical disability (Straight et al., 2015), both of which are associated 

with increased fall risk in the older adult population.  

Aging is also accompanied by significant changes in the vestibular system with aging 

which contributes to elevated fall risk. It has been established that independent of vestibular 
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disease, vestibular hair cells decline with age, with approximately 25% reduction in the saccule 

and utricle and 40% reduction in semi-circular canal hair cells in individuals over the age of 70 

years (Matheson et al., 1999). Additionally, the size and number of neurons in the vestibular 

nucleus decrease by 3% each decade after age 40 (Lopez et al., 1997), and the number of 

vestibular nerve fibers consistently decline with age (Park et al., 2001). The consequence of 

reduction in vestibular sensory cells and neural pathways is diminished afferent signals to the 

central nervous system which manifests as functional impairments. Fewer sensory cells in the 

otolith organs (saccule and utricle) results in reduced sensitivity to gravity and linear acceleration 

(Igarashi et al., 1993; Walther & Westhofen, 2007). Additionally, age related declines in the 

sensitivity of the saccule results in smaller amplitudes of ocular and cervical vestibular-evoked 

myogenic potential (Piker et al., 2013). Moreover, in older adults, cervical vestibular-evoked 

myogenic potentials response latencies are longer and require a greater stimulus volume to 

generate an effective response (Welgampola & Colebatch, 2001). The aforementioned reduced 

capabilities in the aging vestibular system impair the ability of older adults to rapidly detect and 

respond to changes in head acceleration which contributes slower walking speeds and may be a 

potential protective strategy to prevent falls (Agrawal et al., 2013). Additionally, reduced 

sensitivity in the utricle has been associated with increased medial-lateral postural sway in older 

adults (Serrador et al., 2009), which has been linked to increased risk of falling.  

Age related declines in cognitive function, particularly the domains of attention and 

executive function, have also demonstrated to increase fall risk. With regard to attention, much 

work in the dual task paradigm has established that the attentional demand to maintain upright 

posture increases with age. To this end, a systematic review conducted by Boisgontier et al. 

(2013) observed that older adults were able to perform a postural dual task (e.g. postural control 
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task + concurrent task) as well as younger adults in a stable (stationary) task condition. However, 

when the complexity of the postural task increased (e.g., unstable surface), performance on the 

postural control task, concurrent task (cognitive or motor), or both tasks were more detrimentally 

affected in older compared to younger adults (Boisgontier et al., 2013). Similar findings have 

been observed in the dual task gait literature, with deterioration in gait (e.g., increased step 

width, step time, and step length) during dual task compared with single task performance 

associated with increased fall risk in community dwelling older adults (Muir-Hunter & Wittwer, 

2016). Moreover, with regard to both attention and executive function, in a 5-year prospective 

study examining fall risk, Mirelman et al. (2012) evaluated executive function and attention 

using a computerized test battery (MindStreams, Neuro Trax Corp., TX) and assessed balance as 

well as single and dual task gait performance. They found that both the executive function and 

attention indices as well as dual task gait performance predicted the risk of future falls, with 

poorer performers at baseline more likely to report falling (Mirelman et al., 2012). These 

findings robustly support the importance of attention and executive function for maintaining 

upright posture. 

The aforementioned age-related declines in the sensory system, motor systems, and 

cognitive function collectively contribute to changes in balance and gait dynamics, which have 

been consistently identified as the strongest predictors of falls (Deandrea et al., 2010; Woollacott 

& Shumway-Cook, 2002). With regard to changes in static balance with aging, increased 

postural sway (center of pressure displacement and velocity) during quiet standing has been 

consistently observed in older adults compared to young adults (Laughton et al., 2003) and in 

elderly fallers compared to non-fallers (Melzer et al., 2004). Additionally, changes in postural 

sway complexity (e.g., sample entropy and approximate entropy) have been observed in older 
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adults compared to young adults (Borg & Laxåback, 2010), elderly individuals with a history of 

fall compared to non-fallers (Costa et al., 2007), and in frail individuals compared to healthy 

adults (Kang et al., 2009). Moreover, alterations in response to balance perturbations have been 

observed as a function of aging. Jensen et al. (2001) found that compared to young adults, older 

adults were more likely to employ a compensatory stepping mechanism when balance was 

perturbed as a result of a moving platform. Additionally, it was also found that older adults tend 

to take several smaller steps as opposed to one smooth step following a balance perturbation 

(McIlroy & Maki, 1996) and have difficulty initiating compensatory arm action to help maintain 

an upright stance (Maki & McIlroy, 2006). These responses may contribute to increased risk of 

falling when balance is perturbed.  

Alterations in gait with aging have also been associated with falls. Verghese et al. (2009) 

found that older adults with a slow gait speed (≤70 cm/s) had a 1.5-fold increased risk of falls 

compared to those with normal speed. The researchers also observed that increased stride length 

and swing time variability were robust predictors of falls, as well as important predictors of 

injurious falls (Verghese et al., 2009).  In a more recent review of the literature, Aboutaorabi 

(2016) and colleagues observed that in addition to slower walking, older adults tend to take 

shorter steps, demonstrate increased step width, and prolonged double support. These changes in 

gait with aging are likely compensatory strategies to overcome sensory (e.g., vision and 

vestibular) and motor (e.g., muscle strength and power) deficits and avoid falls.  

Traditional Fall Risk Assessment Tools 

A number of assessments (e.g., self-report and performance based measures) have been 

developed for and tested with community dwelling older adults to identify fall risk (Perell et al., 

2001; Wrisley & Kumar, 2010). Majority of these assessments measure a single fall risk factor. 
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However, fall risk is multifactorial, and as a result no one measure has demonstrated to be an 

accurate diagnostic tool, with specificity and sensitivity of current measures broadly varying 

(Lusardi et al., 2017; Perell et al., 2001; Shumway-Cook et al., 1997). In a systematic review and 

meta-analysis, Lusardi and colleagues (2017) investigated the predictive ability of fall history 

questionnaires, self-report measures (e.g., ABC), and performance-based measures (e.g., TUG) 

for assessing fall risk in community dwelling older adults. Five history questions (fall history, 

difficulty with activities of daily living, use of an ambulatory device, concern about falling, and 

use of psychoactive medication) and two self-report measures (Geriatric Depression Scale-15 

and the Falls Efficacy Scale International) were suggested to have clinical relevance in 

identifying individuals at risk of future falls. Moreover, three performance-based measures: BBS 

score of ≤50 points, TUG time ≥12 seconds, and 5 time sit-to-stand time ≥12 seconds were found 

to be the most evidence-supported measures for determining individual risk of future falls. Their 

findings suggest that a multi-dimensional assessment approach is needed to effectively identify 

individuals at increased risk of falling. However, because fall risk assessments most often takes 

place in a clinical setting (doctor’s office or physical therapy clinic), administration of multiple 

assessments is unrealistic given the time and resource constraints of an already strained medical 

system. In an effort to advance fall risk assessment methods and reduce healthcare burden, 

researchers have investigated the ability of several technologies to identify and alert individuals 

to elevated fall risk, including: posturographs, sock pressure sensors, bed or chair alarms, as well 

as other indoor ambient sensors (Kosse et al., 2013). To date, majority of this work has been 

done in a nursing home setting, a relatively controlled environment compared to that of 

community dwelling individuals. In addition, the technologies listed above are costly and have 

demonstrated high occurrence of false alarms (Kosse et al., 2013). Thus, there is a need for 



  

12 

 

accurate, cost-effective fall risk assessment tool with the ability to assess multiple dimensions 

(e.g., input from multiple physiological systems) of fall risk in a free-living environment. Using 

wearable sensor technology to measure physiological variables, such as HRV, provides a 

potential solution.  

HRV Measurement 

HRV is the fluctuation in time intervals between adjacent heart beats, or the time between 

R peaks (R-R intervals) on an ECG recording (Electrophysiology Task Force of the European 

Society of Cardiology the North American Society of Pacing, 1996). It is an index of 

neurocardiac function and is generated by heart-brain interactions and the autonomic nervous 

system (Billman et al., 2015; Electrophysiology Task Force of the European Society of 

Cardiology the North American Society of Pacing, 1996). Further discussion regarding the 

emergent properties of HRV and its utility as an assessment of fall risk will be discussed in the 

subsequent section, here, the text will provide an overview of HRV indices and measurement 

standards for 24-hr recordings.  

24-hr HRV recordings represent the “gold standard” for clinical HRV assessment 

(Shaffer et al., 2014). In comparison to short-term measurements, these recording achieve greater 

predictive power to differentiate between healthy and diseased states, as well as to predict a 

health related event (Fei et al., 1996; Moss, 2016; Nolan et al., 1998). While the same indices 

(time domain, frequency domain, and non-linear analyses) are used to analyze short-term and 24-

hr recordings, they cannot substitute for one another and their physiological meaning can vary 

greatly (Kamath et al., 2012). Circadian rhythms, core body temperature, metabolism, sleep, and 

the renin-angiotensin system contribute to 24-hr recordings, while their contributions are less 

significant for short-term recordings (Shaffer et al., 2014).  
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Three domains of measurements are used to assess HRV, including time-domain, 

frequency domain, and non-linear measures. The simplest to perform are time-domain indices 

which quantify the amount of variability in the heartbeat observed during monitoring periods. 

Standard deviation of the normal-to-normal interval (SDNN) is one of the most commonly 

calculated time-domain variables and reflects all the cyclic components responsible for 

variability in the time series recording (Electrophysiology Task Force of the European Society of 

Cardiology the North American Society of Pacing, 1996). It is important to note that “normal” 

when referring to the “normal to normal” intervals means that abnormal beats (e.g., ectopic 

beats) have been removed from the time series. For 24-hour recordings, SDNN can index the 

heart’s response to varying workloads as well as circadian rhythm processes, and is the “gold 

standard” for medical stratification of cardiac risk (Grant et al., 2011; Shaffer & Ginsberg, 2017).    

To calculate frequency-domain outcomes, Fast Fourier Transformation or autoregressive 

modeling is used to separate the heartbeat time series into its component rhythms ultra-low 

frequency (ULF), very-low frequency (VLF), low frequency (LF), and high frequency (HF) that 

operate in different frequency ranges. The most commonly reported frequency components are 

the LF (0.04-0.15 Hz) and HF (0.15-0.40 Hz) bands. While the exact pathogenesis of the LF 

component is not yet known, it is believed to reflect both sympathetic and vagal 

(parasympathetic) influence on the heart rhythm and is also correlated with baroreflex sensitivity 

(La Rovere et al., 1998; Moak et al., 2007). With regard to the  LF band as an outcome measure 

for this dissertation, blunted baroreflex sensitivity is associated with risk of falling in older adults 

(Isik et al., 2012). Additionally, two previous studies examining HRV and fall risk in clinical 

populations (Melillo, Jovic, De Luca, et al., 2015; Razjouyan et al., 2017), observed significant 

relationships between LF power measured over a 24-hour period and fall risk. With regard to the 
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HF band, it has been suggested that the HF band reflects vagal modulation of heart rate (Shaffer 

et al., 2014), and it is also called the respiratory band because it corresponds to the heart rate 

variations related to the respiratory cycle (e.g., heart rate accelerates during inspiration and slows 

during expiration) (Shaffer & Ginsberg, 2017). Deficient vagal inhibition reflected in the HF 

band is associated with increased morbidity (Thayer et al., 2010); thus, it is an important measure 

to consider regarding fall risk in older adults. 

The theory and application of the third domain of HRV measures, non-linear metrics, will 

be discussed in detail in the subsequent section. 

The Task Force of the European Society of Cardiology and the North American Society 

of Pacing and Electrophysiology (“Heart Rate Variability,” 1996) has established guidelines for 

the assessment of long-term (24-hr) HRV recordings. First, long-term recording must contain at 

least 18 hours of analyzable R-R data, including the whole night. Second, time domain (e.g., 

SDNN) and non-linear measures (DFA α1 and DFA α2), should be calculated for the entire 24-hr 

time series, while frequency domain measures (e.g., LF and HF power) should be obtained from 

averages of 5-minute segments over the 24-hour period. Third, visual inspection of the raw ECG 

signal should be used to detect artifact (missed or spurious beats). This is important as segments 

with substantial can significantly distort time- and frequency- domain measures (Peltola, 2012).  

Dynamic Systems Theory and HRV 

The human body is comprised of many systems with unique rhythms, some intrinsic 

(e.g., heartbeat, respiration, reproduction, etc.) and others under conscious control (e.g., chewing, 

walking gait) (Glass & Mackey, 1988). These rhythms can change over the course of one’s life 

as a result of interaction with one another as well as the external environment, or in response to 

disease (Glass & Mackey, 1988; Lipsitz, 2002). Dynamic systems theory provides a framework 
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to understanding the mechanisms underlying physiological rhythms through the integration of 

mathematics and physiology.  

Stergiou and Decker (Stergiou & Decker, 2011, p. 870) described dynamic system theory 

as “biological systems [that] self-organize according to environmental, biochemical, and 

morphological constraints to find the most stable solution”. As such, heart rate is known to 

change in response to environmental, biochemical, and physical perturbations; yet it is generally 

thought to remain relatively stable during steady state. However, even during steady state, the 

heartbeat contains underlying dynamic fluctuations reflecting the interactions between multiple 

neural, hormonal, and mechanical control systems at both the local and central levels that interact 

to find the most stable solution (Shaffer et al., 2014). The nonlinear behavior of the heartbeat is 

overlooked when a mean value over time is calculated but is observable when heart rate is 

examined on a beat-to-beat basis (e.g., R-R intervals). 

It is important to understand the term ‘nonlinear’ with regard to dynamic systems theory 

and physiological systems. ‘Nonlinear’ applies to systems whose components interact in a non-

additive way (Goldberger, 2002). This occurs in physiological system because physiological 

processes operate with different mechanisms interacting over a variety of time scales (Lipsitz, 

2002). As a result of this organization, the time-series outputs of physiological systems are 

complex and marked by a degree of non-random (or self-similar) fluctuations over multiple time 

scales (Goldberger, 2002). Regarding the nonlinear nature of the heartbeat, the cardiovascular 

systems organization is characterized by interacting subsystems, self-sustained oscillators, and 

feedback loops that consistently react to internal and external inputs including central 

commands, reflexive mechanisms, and humoral factors (Malliani Alberto & Montano Nicola, 

2002; Porta et al., 2007), culminating in the complex heart rhythm. The nonlinear nature of 
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physiological systems has led to the development of nonlinear analyses in order to distinguish 

healthy function from disease states and to predict the onset of a health-related event (Golberger, 

1996). Such measures have been derived from dynamic systems theory and nonlinear dynamics 

and are based on the concept of fractals, which is a geometric object or temporal feature with 

self-similar patterns over multiple time scales (Golberger, 1996). While additional domains of 

analyses (time domain and frequency domain) are used to assess HRV, their utility of nonlinear 

metrics has become prominent in recent years.  

One common nonlinear metric for assessing HRV is detrended fluctuation analysis 

(DFA). DFA quantifies the correlation between successive heart beats or R-R intervals over 

different time scales (Shaffer & Ginsberg, 2017). Like many biological signals, R-R intervals are 

highly nonstationary. Applying DFA to such signals detrends the time series, permitting the 

detection of intrinsic self-similarity embedded in a non-stationary time series, while also 

avoiding the spurious detection of self-similarity (Acharya et al., 2002). In this approach, the 

fractal scaling exponents α1 and α2 are calculated using short-term and longer frequency ranges 

respectively. α values equating to ≤ 0.5 correspond to white noise or uncorrelated data, values 

between 0.5-1 correspond to persistent long-range correlations, and values of ≥ 1.5 corresponds 

to Brownian noise (e.g., presence of a random walk) (Acharya et al., 2002). Importantly, the 

DFA method of HRV analysis has demonstrated clinical relevance to discriminate between 

heathy and diseased states. Yeh et al. (2006) investigated HRV in patients undergoing various 

types of neurosurgery operations. They found that the α1 value of neurosurgery patients was 

significantly (p < 0.05) lower than healthy individuals and significantly (p < 0.05) higher than a 

white noise signal (Yeh et al., 2006). Additionally, Gospodinov et al. (2016) examined HRV in 

healthy subjects and diabetic patients and found that the α1 value was significantly lower (p < 
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0.001) in Diabetic patients compared to healthy controls. While diseased states can depress some 

non-linear measurements, elevated values do not always indicate health. For example, increased 

DFA α1 in post-myocardial infarction patients is an independent risk factor for mortality (Stein & 

Reddy, 2005) 

Dynamic Systems Theory, Aging, and HRV 

Decrements in the structure of physiological variability may be observed as individuals 

age or in the presence of disease. Lipsitz and Goldberger first proposed that aging can be defined 

by a progressive loss of complexity in physiologic system outputs (Lipsitz & Goldberger, 1992) 

which is believed to stem from deterioration of the underlying structural components of the 

physiological system, as well as changes to the coupling between systems (Lipsitz, 2002; Lipsitz, 

2004). This phenomenon is known as the loss of complexity hypothesis. In alignment with this 

hypothesis, a reduction in overall HRV as well as changes in complexity of its physiologic 

dynamics are observed with aging. To this end, Umetani and colleagues (1998) observed that 

SDNN and the SDNN index decreased gradually, reaching 60% and 46% of second-decade 

values by the tenth decade, respectively. Additionally, the proportion of pairs of successive R-R 

intervals that differ by more than 50ms (pNN50) and RMSSD decreased most rapidly, reaching 

24% and 47% of baseline, respectively, by the sixth decade (Utemani et al., 1998). With regard 

to HRV non-linear measures, in a cross-sectional study examining HRV across the lifespan (age 

range, 1 to 82 years), a progressive loss of complexity (decreased approximate entropy) and 

alterations of long-term fractal-like heart rhythm behavior (increased DFAα2) were observed 

beginning in middle age (40 to 60 years) and continuing thereafter (>60 years) (Pikkujämsä 

Sirkku et al., 1999).  Similarly, in a more recent investigation, Takahashi et al. (2012) also found 

that aging was marked by a more regular, repetitive pattern in the heart rate signal, characterized 
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by a decrease in both the Complexity Index and the Normalized Complexity Index. It has been 

suggested that these significant alterations in HRV with aging reflect loss of complexity of the 

autonomic regulation of heart rate and propose the utility of HRV to track changes in system 

inputs (e.g., autonomic nervous system) (Takahashi et al., 2012).  

The ANS is essential for rapid adaptation or modulation of bodily functions during 

changes or perturbation in the external or internal environments. In elderly individuals, 

autonomic functions are relatively well maintained at rest, but the ability to adapt to internal and 

external changes are often severely impaired (Hotta & Uchida, 2010). With regard to age-related 

changes in sympathetic nerve activity, compared to adults, older adults have a higher amount of 

tissue norepinephrine spillover, an indirect index of sympathetic nerve activity, in the heart at 

rest (Seals & Esler, 2000). It has been hypothesized that this is a result of decreased baroreflex 

sensitivity that occurs with aging, which manifests as a diminished heart rate response to 

sympathetic nerve activity (Vasudev et al., 2011). Other explanations have also been suggested, 

including a chemoreceptor reflex-based increase (Sato et al., 1991). This may occur because 

oxygen exchange in the lungs declines with age and consequently a decrease in the partial 

pressure of arterial oxygen stimulating increased sympathetic nerve outflow. Additionally, a 

close relationship has been observed between age related increases in visceral fat and increased 

resting sympathetic nerve activity (Seals & Bell, 2004). It has been suggested that increases in 

adiposity-sensitive humoral signals (e.g., leptin and insulin) that cross the blood brain barrier, 

activate subcortical areas involved in the regulation of energy balance (e.g., hypothalamus), and 

stimulate sympathetic outflow to peripheral tissues (e.g., heart) (Seals & Bell, 2004).  

In comparison to the sympathetic division of the ANS, less is known regarding age 

related changes in the parasympathetic division. However, it has been observed that heart rate 
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changes in response to muscarinic acetylcholine receptor blocking agent are blunted in older 

adults (Brodde et al., 1998). Moreover, in animal studies, there is a reported reduction in the 

maximum conduction velocity of the myelinated vagal nerve fibers in ages rats (Sato et al., 

1985). Due to the observed reduction in parasympathetic tone, less cardio acceleration occurs 

during vagal withdrawal with transition from a seated to standing position and in many instances 

results in orthostatic hypotension (Vasudev et al., 2011). Orthostatic hypotension, or declines in 

blood pressure when changing postures is a common problem in the elderly and is associated 

with increased fall risk (Mol et al., 2019). Moreover, among older adults, the HRV indices 

SDNN, VLF power, and the low frequency / high frequency ratio were significant negatively 

correlated with orthostatic hypotension (Li et al., 2020). In addition, alterations in the ANS as 

measured by HRV (decreased SDNN values) have been associated with increased risk of decline 

in functional status (e.g., basic and instrumental activities of daily living as measured by the 

Barthel and Lawton scales) (Ogliari et al., 2015). This is important with regard to falls risk as 

difficulty performing various tasks of normal daily functioning has been associated with future 

falls (Mamikonian-Zarpas & Laganá, 2015). These findings present evidence for the utility of 

HRV to track changes in the ANS that occur with aging, as well as the relationship between ANS 

alterations as measured by HRV and fall risk.  

Utility of HRV to Track Systematic Changes in Other Systems Associated with Fall 

Risk 

In addition to the suggestion that HRV can track changes in autonomic regulation that 

occur with aging, the Neurovisceral Integration model proposed by Thayer and colleagues 

suggests that vagally mediated HRV may serve as a measure of the functional capacity of brain 

structures, specifically those that support performance of executive function tasks (e.g., frontal 
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cortex) and emotion regulation (Thayer & Lane, 2000). Importantly, both executive function 

(Mirelman et al., 2012) and emotion [e.g., fear of falling (Jung, 2008) and depression (Kamińska 

et al., 2015)] have been associated with fall risk in older adults. To this end, functional units 

within the central nervous system related to goal-directed behaviors and adaptability have been 

identified with output directly linked to the heart via the stellate ganglia (sympathetic nerves) and 

the Vagus nerve. These functional units have been termed the central autonomic network (CAN) 

(Benarroch, 1993) which consists of a number of brain structures including: the anterior 

cingulate, insular, and ventromedial prefrontal cortices, the central nucleus of the amygdala, the 

paraventricular nuclei of the hypothalamus, the periaqueductal gray matter, the parabrachial 

nucleus, the nucleus of the solitary tract, the nucleus ambiguus, the ventrolateral and 

ventromedial medulla, and the medullary tegmental tract. Both direct and indirect pathways have 

been identified connecting the frontal cortex to ANS circuits responsible for both excitatory 

(sympathetic) and inhibitory (parasympathetic) effects on the heart (Thayer & Lane, 2000). In 

addition, sensory information from peripheral organs, such as baroreceptors, are fed back to the 

CAN. These complex interactions between the heart, brain, and periphery suggest HRV as an 

index of the central nervous system through ANS integration as well as central-peripheral neural 

feedback (Thayer & Lane, 2000). Thus, it is likely that HRV provides utility to track changes in 

these integrated systems. 

It is important to note that like heart rate, the CAN has many features of a nonlinear 

dynamic system, which is an important distinction with regard to its ability to track changes in 

other systems. First, the CAN consists of both positive and negative feedback interactions with 

autonomic responses. For example, at any given moment the CAN may integrate excitatory input 

from the frontal cortex while receiving inhibitory input from the baroreceptors. Second, the CAN 
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output is comprised of many parallel pathways, allowing for many avenues by which a response 

(change in HRV) can occur. For example, an increase in heart rate may be the result of vagal 

withdrawal, increased sympathetic activity, or a combination of both. Additionally, in a third 

layer of control and complexity, the direct and indirect pathways of the CAN modify the output 

of parasympathetic and sympathetic neurons. These features represent vast control mechanisms 

within the CAN and demonstrate the influence of many factors and pathways on CAN output 

(e.g., HRV).  

In support of the Neurovisceral Integration model, Thayer and colleagues have performed 

a series of studies examining correlations between neural activity and HRV in response to 

emotional arousal and executive function (goal directed) tasks. Regarding emotional arousal, 

using positron emission tomography, they observed significant correlations between high 

frequency HRV and blood flow in the right superior prefrontal cortex, the left rostral anterior 

cingulate cortex, the right dorsolateral prefrontal cortex, and the right parietal cortex during 

emotion evoking conditions (film clips and recall of personal experiences related to happiness, 

sadness, and disgust). Specifically, emotional arousal was associated with a decrease in HRV and 

a concomitant increase in brain activation in the aforementioned regions (Lane et al., 2009). 

Prior to this research, it had been suggested that the prefrontal cortex played a general inhibitory 

role on HRV via the Vagus nerve. It was proposed that decreased activation of the prefrontal 

cortex would lead to disinhibition of the tonically inhibited amygdala (Thayer et al., 2009). This, 

in turn, would lead to a simultaneous disinhibition of the sympathetic neurons in the rostral 

ventrolateral medulla and an inhibition of parasympathetic neurons in a second pathway (Thayer 

et al., 2009). Subsequently, both would lead to an increase in heart rate and an associated 
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decrease of vagally mediated HRV. Importantly, these findings support the inhibitory role of the 

prefrontal cortex and link emotional arousal to changes in HRV.  

Additionally, in a study examining working memory, nonexecutive, and executive 

function in military personnel (Hansen et al., 2003), participants were allocated to high or low 

HRV groups based on a median split of HRV (based on RMSSD values). Working memory was 

assessed using a modified version of a WMT developed by Hugdahl et al. (2000), and executive 

and nonexecutive function were assessed via subscales of the California Computerized 

Assessment Package Abbreviated Version (CALCAP; Norland Software, Los Angeles, CA). 

Results demonstrated that the high HRV group had superior performance on executive function 

and working memory tasks. In a follow-up study (Hansen et al., 2003), participants completed 

the same tasks but were presented with a stressful situation (e.g., threat of shock). Findings 

demonstrated that during the threat of shock, the low-HRV group had faster reaction times on 

nonexecutive function tasks compared to the high-HRV group. Moreover, in the working 

memory task, the low-HRV group showed improved performance under the threat of shock, 

while the high-HRV group demonstrated stable performance. These results suggest individual 

variability in the ability to cope with stressful situations. Importantly, the low-HRV group may 

be more reliant on outside stimulation to perform successfully (Thayer et al., 2009). Increased 

outside stimulation may allow for optimal cortical arousal, which would in turn increase HRV. 

Whereas, performance of the high HRV-group suggests a more adaptable system with the ability 

to self-regulate (Thayer et al., 2009). This work proposes that HRV may serve as a measure of 

changes in central nervous system networks involved in goal directed behavior, an essential 

component of fall risk.  
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Previous Findings of HRV and Fall Risk 

To date, two studies have examined the utility of HRV indices to detect changes in fall 

risk in older adults. In a prospective study, Melillo et al. (2015) acquired 24-hour ECG Holter 

recordings from 168 hypertensive patients (age 72 ± 8 years, 60 females) and asked if they had 

experienced a fall during the 3-months prior to or following collection of ECG recordings. Forty-

seven participants reported falling during the 6-month period. The researchers used a data mining 

algorithm integrating HRV indices extracted based on principle components analysis (LF power, 

Shannon entropy, and recurrence plots features) to create a classifier of fall risk. The classifier 

achieved high specificity (80%) but low sensitivity (51%) (Melillo, Jovic, DeLuca, et al., 2015). 

However, the low sensitivity observed is likely due to the fact that hypertension alters ANS 

function; thus, these individuals could have alterations in HRV that may not result in elevated 

fall risk. Additionally, Razjouyan and colleagues (2017) examined HRV as an indicator of fall 

risk in an acute care setting. Participants (n = 31, age 55.4 ± 15.5 years) receiving treatment in an 

oncology wing were stratified to low and high risk fall groups based on the Hendrich II fall risk 

assessment (≥5 = high fall risk, <5 = low fall risk). Significant negative correlations (r = -0.59, p 

= 0.001) were observed between fall risk and SDNN (Razjouyan et al., 2017).  

Current Gaps in the Literature with Regard to this Dissertation 

While previous studies (Melillo, Jovic, DeLuca, et al., 2015; Razjouyan et al., 2017) 

observed significant relationships between HRV indices and fall risk, the subjects were clinical 

populations (hypertensive patients and patients in an acute care setting); thus, these findings are 

not generalizable to the community dwelling population. Additionally, previous work has not 

examined the discriminative ability of HRV compared to traditional fall risk metrics for 

identifying individuals with elevated risk. It is important to compare HRV to these current 
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“gold” standard measures. Exploration is also needed regarding the relationship between 

exposure to independent, intrinsic risk factors and HRV, which is important for confirming the 

relationship between HRV and fall risk. Finally, the sensors used for data collection in previous 

studies are bulky and costly, and thus do not translate well to use on a large scale with the 

general population. Advances in wearable sensor technology provide opportunity to overcome 

these shortcomings. with newer devices demonstrating high validity and reliability (Gilgen-

Ammann et al., 2019), whilst being inconspicuous and cost effective.  
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CHAPTER III: OUTLINE OF PROCEDURES 

Participants 

We recruited 60 participants (60 intended – 42 collected) aged 65-90 years from the local 

community. All potential participants were screened for eligibility and were excluded due to any 

of the following criteria: 1) Not between the ages of 65-90 years; 2) Any diagnosed neurological 

condition that impacts postural control (e.g., Multiple Sclerosis, Parkinson’s Disease, Peripheral 

Neuropathy); 3) Vision that was not normal or corrected-to-normal; 4) Inability to stand for at 

least 5 minutes without the use of an assistive device; 5) A Mini-Mental State Examination 

(MMSE) score <25; 6) Current smoker; 6) History of cardiovascular disease including: heart 

attack, stroke, bypass surgery, stent, or pacemaker implantation, 7) Diabetes (Type 1 or Type 2) 

diagnosis; 8) Hypo / hyperthyroidism diagnosis; 8) Change to medications during the previous 

two months. Participants were assigned to groups (fallers vs. non-fallers) based on self-reported 

fall history. Individuals were asked whether or not they had fallen at least once during the 

previous 12 months. A fall was defined as an event resulting in a person coming to rest on the 

ground or other lower level (CDC, 2017b). Participants who report sustaining a ≥ 1 fall in the 

were classified as a faller, and those who report no falls in the last 12 months were classified as a 

non-faller.  

Procedure 

 The experimental design is shown in Figure 1. All data collection was completed in the 

Balance and Training Laboratory at the University of North Carolina Greensboro’s (UNCG) 

main campus. The procedures for this study were approved by UNCG’s institutional review 

board prior to collection. Interested individuals completed an online screening survey (via 
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Qualtrics). Eligible individuals were contacted via phone to confirm eligibility and schedule a 

laboratory testing session. When participants arrived at the lab, the Mini Mental State 

Examination (MMSE) (Tombaugh et al., 1996) was administered. If a score of >24 was 

achieved, informed consent was obtained and a general intake questionnaire including health 

history, fall history, and demographic information was completed. Next, participants completed 

three traditional fall risk assessments (e.g., TUG, FGA, and ABC) in a randomized order. 

Subsequently, participants completed five intrinsic fall risk factor assessment, including: the 

BTrackS Balance Test (postural control), the Equitest Sensory Organization Test (SOT) 

(vestibular function), 30s Chair Stands (lower extremity muscular strength), the Trail Making 

Test (executive function), and the second edition of the Beck Depression Inventory (BDI-II) 

(depression). Similar to administration of traditional fall risk assessments, the order of these 

measurements was randomized for each participant.  

Following completion of the lab-based testing assessments, participants were outfitted 

with a Polar H10 chest strap integrated with an Actigraph GT9X Link (Actigraph, Pensacola, 

FL) wrist worn accelerometer to collect HRV. Accelerometers were initialized to start collecting 

R-R interval data 2-hours following visit completion, assuring participants had returned to their 

normal, free-living activity. Data collection  continued for the subsequent 30-hour period 

guaranteeing  collection of 24 hours of data, whilst accounting for any non-wear periods (e.g. 

showering). Participants were instructed to go about their normal daily activities (including 

sleeping) while wearing the sensor for the duration of the 30-hour period. Participants were 

asked to record the time they went to sleep, the time they woke up, and times the monitor was 

removed for showering/bathing. Prior to testing visit completion, a time was scheduled to return 

the Polar H10 and the Actigraph GT9X Link to the researchers.
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Figure 1. Study Timeline 

 

Note. Traditional fall risk assessments and fall risk factor measures (Day 1 Testing) denoted with * were administered in a randomized 

order.    
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Traditional Fall Risk Assessments 

 Participants completed three traditional fall risk assessments, including the Timed Up and 

Go (TUG), the Functional Gait Assessment (FGA), and the Activities Specific Balance 

Confidence Questionnaire. To account for potential fatigue, the administration order of the three 

assessments was randomized for each participant.  

TUG 

The TUG assesses the ability to initiate/terminate gait as well as change of directions. To 

complete the test, participants were timed as they stood up from a chair, walked 3 meters, turned 

around, and then walked back to the chair and sat down (Barry et al., 2014). Scores ranging from 

10 to 30 seconds have been suggested to classify fall risk in community dwelling populations 

(Podsiadlo & Richardson, 1991; Shumway-Cook et al., 1997; Trueblood et al., 2001); however, 

participant’s in a study by Trueblood et al. (2001) closely resembled participants in the current 

study and a cutoff score of  ≥11 seconds indicated increased fall risk.  

FGA 

The FGA is a series of dynamic balance tasks designed to mimic real-world challenges 

(Wrisley & Kumar, 2010). The 10-item tests asked participants to perform the following gait 

activities: walk at normal speeds, at fast and slow speed, with vertical and horizontal head turns, 

with eyes closed, over obstacles, in tandem, backwards, and while ascending and descending 

stairs (Wrisley et al., 2004). In community dwelling older adults, a cutoff score of 22/30 on the 

FGA indicates increased risk of falls (Wrisley & Kumar, 2010).  

ABC 

The ABC is a 16-item self-efficacy scale that is scored on a 10-point ordinal scale 

(Powell & Myers, 1995). Participants were asked to rate their confidence in maintaining their 
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balance while performing 16 activities of daily living. Scores on the ABC range from 0, 

indicating no confidence in participant’s ability to maintain balance while completing the 

activity, to 100, indicating complete confidence. ABC scores of ≤ 67 indicate increased risk of 

falls (Lajoie & Gallagher, 2004).  

Intrinsic Fall Risk Factor Measures 

Participants completed five intrinsic fall risk factor assessment, including: the BTrackS 

Balance Test (postural control), the Equitest Sensory Organization Test (SOT) (vestibular function), 

30s Chair Stands (lower extremity muscular strength), the Trail Making Test (executive function), 

and the second edition of the Beck Depression Inventory (BDI-II) (depression). To account for 

potential fatigue, the order of these measurements was randomized for each participant.  

BTrackS Balance Test 

The BTrackS Balance Tracking System with Sport Balance Software (BTrackS; Balance 

Tracking Systems, Inc, San Diego, California) quantifies postural sway via force plate center of 

pressure (COP) during quiet standing (Goble & Baweja, 2018). For three, 20-second trials, 

participants stood on the BTrackS force plate with feet shoulder-width apart, hands on hips, and 

eyes closed. The Sport Balance Software calculates the average total COP path length in 

centimeters across trials. Poor postural control and consequently increased fall risk is defined as 

greater CoP displacement (increased path length) and greater CoP velocity (Quijoux et al., 2020).  

Sensory Organization Test 

Computerized dynamic posturography, such as the SOT, allows researchers and clinicians to 

objectively measure the postural components of balance (Chaudhry et al., 2011). The SOT protocol 

was administered using the NeuroCom Smart Balance Master System (NeuroCom, Clackamas, 

OR). Participants stood with a standardized foot placement on a force platform that measured 



 

30 

 

horizontal and vertical forces, and wore a harness secured to the platform frame to prevent injury in 

the event of a fall. The protocol consisted of 3, 20 second trials for each of the six SOT test 

conditions. SOT’s 1-3 use a fixed platform, while SOTs 4-6 use a sway-referenced platform. There 

are also 3 visual conditions: eyes open and fixed on a stable visual surround (SOT’s 1 and 4), eyes 

closed (SOT’s 2 and 5), and eyes fixed on a sway-referenced visual surround (SOT’s 3 and 6). The 

best of the 3 trails for each test was used to calculate the equilibrium score. The score is determined 

by calculating the angular difference between a participant’s calculated maximum anterior-posterior 

center of gravity displacement and the theoretical maximum (angular difference without a fall 

occurring) of 12.5 degrees. Equilibrium scores are expressed as a percentage, with scores near 100 

indicating no anterior-posterior excursion, and scores approaching 0 indicating an increase in 

anterior-posterior excursion (Evans & Kers, 1999). Importantly, SOT 5 and 6 have demonstrated to 

be moderately correlated (r  ≤ .72) with traditional vestibular-ocular test results (Evans & Kers, 

1999) and were used as outcome measures in this study. 

30 Second Chair Stands 

 The 30 second Chair Stand test is an assessment of lower extremity muscular strength, 

(Jones et al., 1999). The test was administered using a chair without arms, with a seat height of 17 

inches, and began with participants seated in the middle of the chair, back straight, feet shoulder 

width apart, and arms crossed against the chest. Participants were instructed to stand and return to a 

seated position as many times as possible during a 30 second period. The total number of stands 

executed correctly during the time period were recorded (more than halfway up at the end of the 30 

seconds was count as a full stand). 
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Trail Making Test 

 Executive function and in particular executive control was measured using the Trail 

Making Test (Arbuthnott & Frank, 2000; Bowie & Harvey, 2006). The test was given in two parts: 

Part A involved drawing a line connecting numbers from 1 to 25 in ascending order, Part B 

involved drawing a line connecting alternating numbers and letters in a sequence (e.g., 1-A-2-B, 

etc.). The time in seconds to complete each ‘trail’ was recorded. During test administration, the 

researcher pointed out errors as they occurred, and error-correction was included in the time to 

complete the trail (Lezak, 1995). A maximum time of 300 seconds was allotted for trail completion. 

If participants were still working at 300 seconds, the test was discontinued. As is commonly used in 

clinical practice, the ratio of time to complete B/A was used as the outcome measure in this study 

(Lamberty et al., 1994).  

Beck Depression Scale-II 

The BDI-II, a 21-item questionnaire measuring 21 depressive symptoms (Beck et al., 1996). 

Participants were asked to “think about how they have been feeling during the “past two weeks, 

including today” and then rate symptoms on a 4-point scale ranging from 0 to 3. The ratings of each 

symptom were summed for a total score ranging from 0 to 63, with higher scores indicating more 

depressive symptoms. Scores of 0-9 correlate to no or minimal depression, 10-18 correlates to mild 

to moderate depression, 19-29 correlates to moderate to severe depression, and scores of 30 or 

greater correlate to severe depression (Beck et al., 1996). Increased risk of falling has been 

correlated with greater depressive symptoms (Kamińska et al., 2015).  

HRV Measurement 

To collect HRV participants wore a Polar H10 chest strap (Polar Elector, Bethpage, NY) 

integrated with an Actigraph GT9X Link (Actigraph, Pensacola, FL) wrist worn accelerometer for 
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30 hours in their free-living environment. The Polar H10 chest strap collects R-R interval data that 

can be stored on the GT9X Link and downloaded in the ActiLife software (Actigraph, Pensacola, 

FL). The Polar H-10 monitor collects R-R interval data at a rate of 1000 Hz and has demonstrated 

to be valid measurement of R-R intervals across a wide range of activities (Gilgen-Ammann et al., 

2019).  

To obtain HRV indices, R-R interval data was extracted from the Actigraph software and 

uploaded to the Kubios Premium software (Kubios Premium 3.4.1, Biosignal Analysis and Medical 

Imaging Group, Kuopio, Finland) for analysis. HRV analysis was conducted according to 

international guidelines by the Task Force of the European Society of Cardiology and the North 

American Society of Pacing and Electrophysiology (“Heart Rate Variability,” 1996). As is 

suggested for 24-hr analyses, recordings had to contain at least 18 hours of analyzable R-R data that 

include the whole night. Data was then visually inspected, and excessively noisy segments were 

removed from the time series. Time domain (SDNN) and non-linear measures (DFA α1 and α2), 

were calculated for the entire 24-hour time series, while frequency domain measures (LF, and HF 

power) were obtained from averages of 5-minute segments over the 24-hour period. Within the 

Kubios software, an automatic artefact correction algorithm was applied, in which artefacts were 

detected from a time series consisting of differences between successive R-R intervals. If an inter-

beat-interval differed from the local average more than 0.25 seconds, defined as a ‘medium’ 

threshold, the interval was identified as an artefact and corrected by replacing it with an interpolated 

value using a cubic spline interpolation. 
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Statistical Analyses 

Purpose 1: Determine if HRV indices observed over a 24-hour monitoring period differ 

in community dwelling older adults with a history of falls and those who have not sustained a 

fall.  

Hypothesis 1: The HRV indices SDNN, LF and HF power, and DFA α1 and α2 will be 

significantly reduced in older adult fallers compared to non-fallers. 

To answer Hypothesis 1, a MANCOVA was used to examine whether each of the 

dependent variables (SDNN, LF and HF power, and DFA α1 and α2) differs in fallers versus non-

fallers, while controlling for the variable medications. Prior to analysis, correlations were 

performed between each of the dependent variables. If a correlation between two dependent 

variables was greater than .70, then one of the variables was removed from the analysis. Under 

such circumstances, one dependent variable becomes a near-linear combination of the other 

dependent variable, and thus it becomes statistically redundant to include both variables.  

Purpose 2: Determine the discriminative validity of HRV indices (SDNN, LF Power, 

and DFA α1) observed over a 24-hour monitoring period for classifying fall risk in older adults 

compared to traditional fall risk assessment tools, including the Timed Up and Go (TUG), the 

Functional Gait Assessment (FGA), and the Activities-specific Balance Confidence Scale 

(ABC). 

Hypothesis 2: The HRV indices SDNN, LF power, and DFA α1 will correctly identify a 

greater percentage of fallers compared to the TUG, FGA, and ABC. 

Receiver operator characteristics (ROC) curves were used to determine the discriminative 

validity of HRV indices (SDNN, LF power, and DFA α1) and traditional fall risk assessments 

(TUG, FGA, and ABC) in identifying fall risk. A series of pairwise comparisons (Hanley & 
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McNeil, 1983) were run of each HRV indices area under the curve (AUC) with every traditional 

fall risk assessments AUC to determine which measure is best in discriminating fallers from non-

fallers.  

Purpose 3: Examine the associations between intrinsic fall risk factors [e.g., postural 

control (center of pressure displacement), vestibular function (Sensory Organization Tests 5-6), 

lower extremity muscular strength (30s Chair Stands), executive function (Trail Making Test), 

and depression (Beck Depression Index II)] and HRV indices (SDNN, LF Power, HF Power and 

DFA α1 and α2) observed over a 24-hour monitoring period and whether the relationships differ 

for those with a history of falls versus non-fallers.  

Hypothesis 3: For fallers, a stronger negative relationship will be observed between the 

independent variables for postural control, executive function, and depression, and the HRV 

outcome variables. Additionally, for fallers, a stronger positive relationship will be observed 

between the independent variables for vestibular function and lower extremity strength and the 

HRV outcome variables. 

Associations between intrinsic fall risk factors and HRV indices were assessed using 

multivariable linear regressions. Models included main and interaction effects for fall risk factors 

(postural control, vestibular function, lower extremity muscular strength, executive function, and 

depression) and group (fallers vs. non-fallers). To assess multicollinearity amongst the 

independent variables, prior to analysis, the variance inflation factor (VIF) was calculated for 

each predictor by conducting a linear regression with one predictor on all other predictors to 

obtain the R2 value for each regression. The VIF was then be calculated as 1/(1-R2). If the VIF of 

two factors was greater than 5 (Johnston et al., 2018), one was removed from the models because 

they supply redundant information. 
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Adjustment Due to Reduced Sample Size 

With the approval of my advisor, the following changes were made to the statistical 

analysis for Manuscript 1 (Purpose 1) due to the reduced sample size and non-parametric data. 

The, the Mann-Whitney U test was used to compare the HRV indices between fall risk groups 

(faller vs. non-faller). Wilcoxon Q effect size calculations (Wilcox, 2019) for non-parametric 

data were also calculated to test the effect of fall risk group on HRV indices.  
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CHAPTER IV: 24-HOUR HEART RATE VARIABILITY IN OLDER ADULT FALLERS 

AND NON-FALLERS 

Introduction 

Each year, approximately one in three adults age 65 and older will fall (Bergen et al., 

2016).  Many of these falls result in significant injury, including fractures and head trauma, with 

subsequent hospitalization, increased chance of morbidity, and decreased functional mobility 

(Bergen et al., 2016; Sterling et al., 2001; Tinetti et al., 1988, 1995). Fall related injuries also 

account for approximately $50 billion in annual US healthcare expenditures (Florence et al., 

2018). As the older adult population of the United States rapidly increases, with projected growth 

from 16% to ~20% by 2030, fall rates are expected to increase in conjunction (Ortman et al., 

2014). Thus, addressing fall risk is critical for reducing societal financial burden and improving 

quality of life for older adults.  

Several assessments have been developed to identify elevated fall risk in community-

dwelling older adults, including static and dynamic balance tests, gait assessments, and 

questionnaires (Perell et al., 2001b). However, fall risk is multifactorial (Tinetti et al., 1988) and 

such assessments are primarily designed to measure a single dimension of fall risk (e.g., static 

balance, dynamic balance, fear of falling). As a result, elevated fall risk often goes unidentified, 

negating opportunities to intervene prior to a fall with preventative interventions. Measuring 

physiological variables, such as heart rate variability (HRV), that reflect multiple fall risk 

dimensions, presents prospect for a more holistic assessment.  

HRV is the fluctuation in time between adjacent heart beats (R-R intervals) and is an 

index of neurocardiac function resulting from heart-brain interactions and the autonomic nervous 
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system (ANS) (Electrophysiology Task Force of the European Society of Cardiology the North 

American Society of Pacing, 1996). It is assessed using three domains of measurement: time-

domain, frequency domain, and non-linear analysis. Time-domain indices quantify the amount of 

variability in the heartbeat observed during a monitoring period. Of the time-domain measures, 

standard deviation of the normal to normal intervals (SDNN) is one of the most commonly 

calculated and reflects all the cyclic components responsible for variability in the time series 

recording (Electrophysiology Task Force of the European Society of Cardiology the North 

American Society of Pacing, 1996). Frequency domain indices are calculated using Fast Fourier 

Transformation or autoregressive modeling to separate a heartbeat time series into its component 

rhythms that operate in different frequency ranges. The most typically reported frequency 

components are the LF (0.04-0.15 Hz) and HF (0.15-0.40 Hz) bands. Detrended fluctuation 

analysis (DFA) is a common non-linear measure used to assess HRV. DFA quantifies the 

correlation between R-R intervals over different time scales (Shaffer & Ginsberg, 2017). R-R 

intervals as well as other physiological signals are highly nonstationary. Applying DFA to these 

signals detrends the time series, permitting the detection of intrinsic self-similarity embedded in 

a non-stationary time series, while avoiding spurious detection of self-similarity (Acharya et al., 

2002). The outcome of DFA is the fractal scaling exponents α1 and α2 which are calculated by 

examining self-similarity over short-term and longer frequency ranges, respectively. α values 

equating to ≤ 0.5 correspond to white noise or uncorrelated data, values between 0.5-1 

correspond to persistent long-range correlations, and values of ≥ 1.5 corresponds to Brownian 

noise (Acharya et al., 2002). 

 Importantly, dynamic system theory provides a theoretical framework for HRV as an 

assessment of fall risk. The theory suggests that physiological systems, such as the 
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cardiovascular system, self-organize according to constraints (environmental, biochemical and 

morphological) in order to find the most stable solution (Stergiou & Decker, 2011). The dynamic 

interactions between the environment, other physiological systems (e.g., autonomic nervous 

system), and the cardiovascular system to find this “stable solution” are reflected in the 

underlying fluctuations of the heartbeat (e.g., HRV) that are overlooked when only mean heart 

rate value is observed (Shaffer et al., 2014). As stated previously, fall risk is multifactorial, and 

the result of both internal (physiological) and external (environmental) factors. In alignment with 

dynamic systems theory, HRV provides opportunity to assess internal (physiological) factors 

associated with fall risk, as well as physiological systems abilities to react to external 

(environmental) perturbations.   

To illustrate the relationship between HRV and fall risk, consider the impact of aging, a 

primary fall risk factor (Tinetti et al., 1988), on the ANS. Compared to younger adults, older 

adults have a greater amount of sympathetic nerve activity (Seals & Bell, 2004). It has been 

suggested that this may be the result of decreased baroreflex sensitivity that occurs with aging, 

and thus decreased heart rate response to norepinephrine released from the sympathetic nerves 

(Vasudev et al., 2011). Alternatively, others have observed a close relationship between visceral 

fat and increased resting sympathetic nerve activity (Seals & Bell, 2004; Seals & Esler, 2000). 

Importantly, visceral adipose tissue accretion is associated with aging (Huffman & Barzilai, 

2009). The increase in leptin and insulin that occurs as a result of excess visceral adiposity sends 

humoral signals across the blood brain barrier to the hypothalamus stimulating outflow of the 

sympathetic nervous system to the heart (Seals & Bell, 2004; Seals & Esler, 2000). Regarding 

age related changes to the parasympathetic division of the ANS, a reduction in parasympathetic 

(vagal) tone with aging has been observed (Brodde et al., 1998), resulting in less 
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cardioaccelerator during vagal withdraw when transitioning positions (e.g., seated to standing) 

(Vasudev et al., 2011). In many instances, this leads to orthostatic hypotension or a drop in blood 

pressure when changing postures. These age-related changes in the ANS impair older adults’ 

ability to adapt to alterations in the internal (physiological) and external environment, and are 

associated with increased risk of decline in functional mobility and falls (Hotta & Uchida, 2010; 

Mol et al., 2019; Ogliari et al., 2015). Moreover, alterations in ANS function have been 

associated with changes in HRV. Li and colleagues (2020) found that the HRV indices [standard 

deviation of the normal-to-normal intervals (SDNN), very low frequency power, and the low 

frequency power / high frequency power ratio] were significantly negatively correlated with 

orthostatic hypotension in a sample of older adults. Additionally, Ogliari et al.(2015) observed 

that decreased SDNN values were associated with decrements in the ability to perform activities 

of daily living.  

Previous research examining the relationship between HRV and fall risk has 

demonstrated promise for identifying individuals with elevated risk. To classify fall risk in a 

sample of 168 patients with hypertension, Melillo and colleagues applied a data mining 

algorithm that included three HRV indices [low frequency (LF) power, Shannon entropy, and 

recurrence plots features] extracted from a principle components analysis (Melillo, Jovic, 

DeLuca, et al., 2015). Their classifier achieved high specificity (80%) but low sensitivity (51%) 

(Melillo, Jovic, DeLuca, et al., 2015) to differentiate fallers from non-fallers. In a second study, 

Razjouyan and colleagues (Razjouyan et al., 2017) examined HRV as a fall risk indicator for 31 

patients in an acute care setting. They observed significant negative correlations (r = -0.59, p = 

0.001) between fall risk and the time-domain metric, SDNN. However, both studies investigated 

clinical populations; and thus, their findings are not generalizable to community dwelling older 
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adults. To this end, the purpose of this study was to determine if HRV indices differ in 

community dwelling older adults with a history of falls and those who have not sustained a fall. 

We hypothesized that the time-domain metric, SDNN, the frequency domain metrics, LF and 

high frequency (HF) power, and the non-linear metrics, detrended fluctuation analysis (DFA) α1 

and α2 would be significantly reduced in older adult fallers compared to non-fallers. To test our 

hypothesis, healthy, community dwelling older adults (age 65-90 years) were recruited, and 

HRV was collected for 24-hours while participants continued their normal daily activities. A 24 

hour wear period was chosen to align with previous HRV and fall risk research (Melillo, Jovic, 

DeLuca, et al., 2015; Razjouyan et al., 2017) and because it is considered the gold standard of 

clinical HRV assessment (Shaffer et al., 2014). 

Methods 

Participants 

 A total of 42 participants were recruited for this study. Participants were between the 

ages of 65-90 years; had never been diagnosed with a neurological condition known to impact 

balance (e.g., Parkinson’s Disease, Peripheral Neuropathy, Multiple Sclerosis); had normal or 

corrected-to-normal vision; achieved a Mini-Mental State Examination (MMSE) score >24; were 

not current smoker; had the ability to stand for ≥ 5 minutes without the use of an assistive device; 

did not have a history of cardiovascular event or surgery including: heart attack, stroke, bypass 

surgery, stent, or pacemaker implantation, had never been diagnosed with Diabetes (Type 1 or 

Type 2); had never been diagnosed with Hypo / hyperthyroidism diagnosis; and their 

medications had been stable for the previous two months. With the exception of the MMSE, 

individuals were screened for the above criteria via an online survey (Qualtrics, Provo, Utah). 

Subsequently, inclusion criteria were reviewed via phone when individuals were contacted to 
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schedule a laboratory visit. Participants were assigned to one of two group based on self-reported 

fall history. A fall was defined to participants as “an event resulting in you coming to rest on the 

ground or other lower level”. Those who reported falling ≥ 1 fall during the previous 12 months 

were identified as a “faller”, and participants who reported no falls during the same time frame 

were identified as “non-fallers”. Participant demographics are presented in Table 1. 

Procedure 

 All procedures were approved by the University’s Institutional Review Board. Upon 

arrival to the lab, participants were screened for cognitive function via the MMSE. If a score of 

>24 was achieved, participants gave informed consent. Participants then completed a 

demographic and health history survey, and height and weight were measured. Participants were 

then equipped with a Polar H10 chest strap (Polar Elector, Bethpage, NY) and Actigraph GT9X 

Link accelerometer (Actigraph, Pensacola, FL). When integrated, the Polar H10 chest strap 

collects R-R interval data that can be stored on the GT9X Link accelerometer. R-R intervals are 

collected by the Polar H10 at a rate of of 1000 Hz, and prior research has established it as a valid 

measurement of R-R intervals across a broad range of activities (Gilgen-Ammann et al., 2019). 

Monitors were initialized to begin collecting data two hours after participants left the lab, 

ensuring they had returned to their free-living environment. Collection of R-R intervals 

continued for the subsequent 28-hour period. The Task Force of European Society of Cardiology 

and the North American Society of Pacing and Electrophysiology (“Heart Rate Variability,” 

1996) has recommended that long-term (24-hour) recordings include a minimum of 18 hours of 

succussive R-R intervals, including the whole period of nighttime sleep; thus, our methodology 

assured sufficient data collection. Participants were instructed to wear the monitors for the 

entirety of the 30-hour period, with the exception of when bathing, and to continue their normal 
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daily activities. Periods of non-wear due to bathing and sleep time were recorded by participants 

and returned to researchers when monitors were retrieved.  

HRV Data Reduction 

In order to calculate HRV indices, R-R interval data was downloaded from the GT9X Link 

via the ActiLife software (Actigraph, Pensacola, FL). R-R intervals were then uploaded to the 

Kubios Premium software (Kubios Premium 3.4.1, Biosignal Analysis and Medical Imaging Group, 

Kuopio, Finland) for HRV analysis. First, data was visually inspected to confirm R-R intervals for 

the entirety of nighttime sleep. n =1 participant was removed from analyses as a result of missing 

nighttime data. Next, data was visually inspected for excessively noisy segments, and identified 

segments were removed from the time series. An automatic artefact correction algorithm was then 

applied with a ‘medium’ threshold (inter-beat-interval differing from the local average more than 

0.25 seconds were corrected). The time-domain metric, SDNN (ms), and the non-linear metrics, 

DFA α1 and α2, were calculated for the entire 24-hour time series. Frequency-domain metrics, LF 

and HF Power [(measured as normalized units (nu)], were calculated as averages of 5-minute 

segments. 

Analysis 

 All data analyses were performed using R (R, Version 4.2.0; R Foundation for Statistical 

Computing, Vienna, Austria). Independent samples t-tests were used to compare group 

demographics. The Shapiro-Wilks test was used to assess the distribution of each outcome 

variable [e.g., SDNN, LF Power, HF Power, DFA α1, and DFA α2), with some variables 

exhibiting a non-normal distribution. Therefore, non-parametric Mann Whitney U tests were 

performed to compare HRV indices (SDNN, LF Power, HF Power, DFA α1, and DFA α2) 

between fallers and non-fallers. Alpha level was set a priori at 0.05 for all analyses. To assess the 
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strength of the association between fall risk and HRV indices, Wilcoxon Q effect size calculation 

(Wilcox, 2019) were conducted. The interpretation values for the Wilcoxon Q effect size are as 

follows: r  < 0.30 = small effect, r = 0.30 – 0.49 = medium effect, and r  ≥ 0.50 = large effect 

(Wilcox, 2019).  

Results 

 Independent samples t tests revealed a significant difference of age between groups (p = 

0.026), with fallers having an older average age compared to non-fallers (Table 1). No other 

significant differences for demographic variables were observed. Mann Whitney U tests revealed 

that only the time-domain HRV metric, SDNN, approached significance U = 257, p = 0.063 CI [-

0.46, 18.03]. No other HRV indices significantly differed between fallers and non-fallers: (LF 

Power: U = 171, p = 0.634, CI [-10.37, 5.51]; HF Power: U = 207, p = 0.630, CI [-5.49, 10.35], 

DFA α1: U = 178, p = 0.777, CI [-0.14, 0.10]; DFA α2: U = 182, p = 0.858, CI [-0.08, 0.05]) 

(Table 2). Figure 2 includes a visual representation of the mean and standard deviation values for 

each HRV indices by group. Finally, a medium effect size (r = 0.30, CI [0.02, 0.56]) for the 

effect of fall risk on SDNN was observed (Table 2). All other effect sizes were negligible (r ≤ 

0.11). 
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 Table 1. Participant Demographics 

  Fallers (n=14) Non-Fallers (n=27) p 

Sex 
Male (n) 4 11  

Female (n) 10 16 
 

Age (years) 77 ± 6.18 73 ± 4.70 0.026 
Height (cm) 163.89 ± 11.01 167.38 ± 9.72 0.303 
Weight (kg) 66.94 ± 14.32 74.58 ± 13.44 0.099 
MMSE 29.07 ± 0.73 29.37 ± 0.93 0.301 

Household 
Income 

(n) 

$15,000 - $29,999 1 1  
$30,000 - $44,999 1 3  
$45,000 - $59,999 0 3  
$60,000 - $74,999 0 4  
$75,000 - $89,999 4 3  
$90.000 or above 5 10  

Chose not to answer 3 3  

Highest 
Level of 

Education 
(n) 

Technical School 0 1  

2 Year College 3 6  

4 Year College 3 8  

Graduate School 7 10  

Professional School 1 2  

Note. Values are reported as mean ± SD, MMSE = Mini Mental State Examination, 
Household Income = based on annual income for the three years prior to retirement.  
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Figure 2. Mean and Standard Error of HRV Parameters 

 

 

Note. SDNN = Standard Deviation of the Normal-to-Normal Intervals, LF Power = Low 
Frequency Power, HF Power = High Frequency Power, DFA = Detrended Fluctuation Analysis.  
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Table 2. Mean, Standard Error, and Mann Whitney U Test Results for HRV Parameters  

 
  CI95  CI95 

  Fallers Non-Fallers U p LL UL r LL UL 
SDNN (ms) 38.99 ± 6.24 50.67 ± 7.90 257 0.063 -0.46 18.03 0.30 0.02 0.56 
LF Power (nu) 60.91 ± 5.76 58.87 ± 4.17 171 0.634 -10.37 5.51 0.05 -0.22 0.16 
HF Power (nu) 19.96 ± 4.10 18.67 ± 3.33 207 0.63 -5.49 10.35 0.05 -0.22 0.16 
DFAα1 1.06 ± 0.09 0.94 ± 0.08 178 0.777 -0.14 0.10 0.11 -0.14 0.3 
DFAα2 0.54 ± 0.02 0.51 ± 0.02 182 0.858 -0.08 0.05 0.03 -0.27 0.13 
Note. Values are reported as mean ± SE, SDNN = Standard Deviation of the Normal-to-Normal Intervals, LF 
Power = Low Frequency Power, HF Power = High Frequency Power, DFA = Detrended Fluctuation Analysis, CI95 

= 95% Confidence Intervals. 
 

Table 3. Medication Types by Group 
 
  Fallers (n=14) Non-Fallers (n=27) 
  n % n % 

No Meds 4 28.57 12 44.44 

Cardiac Meds 7 50 10 37.04 

Anti-Meds 1 7.14 1 3.7 

Both 2 14.29 4 14.81 

Note. Cardiac Meds = statins and ACE-inhibitors, Anti-
Meds = anti-anxiety and anti-depression medications, Both 
= Cardiac and Anti-Meds. 
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Discussion 

The aim of this study was to investigate if HRV indices, measured over a 24-hour period, 

differ in older adults who fell and those who did not during the 12 months prior to assessment. 

As fall rates in the older adult population are projected to increase, it is essential to identify 

holistic assessments that can characterize individuals with elevated risk, providing opportunity 

for implementation of preventative interventions. In the present study, older adults (age: 74.30 ± 

5.56 years) were assigned to two groups based on self-reported fall history (N = 14 fallers, N = 

27 non-fallers) and wore a heart rate monitor for 24 hours in their free-living environment. R-R 

interval data collected via the heart rate monitors was analyzed to obtain time-domain (SDNN), 

frequency-domain (LF and HF power), and non-linear (DFA α1 and α2) HRV indices. Based on 

previous literature, it was hypothesized that HRV metrics would be significantly reduced in older 

adult fallers compared to non-fallers. 

Our results suggest that HRV metrics (SDNN, LF and HF Power, and DFA α1 and α2) did 

not significantly (p > 0.05) differ between healthy, community dwelling, older adult fallers, and 

non-fallers. However, a medium effect size was observed for the effect of fall risk on SDNN, 

with fallers demonstrating lower SDNN compared to non-fallers. Importantly, in contrast to null 

hypothesis testing, which provides information regarding the probability that the null hypothesis 

is true (e.g., no difference between in HRV between fallers and non-fallers), effect size 

calculations evidences the strength of the relationship between variables (e.g., strength of the 

relationship between fall risk and SDNN) and is an indication of whether findings are 

meaningful for clinicians and patients (Maher et al., 2013). The magnitude of the observed effect 

of fall risk on SDNN, suggests that the metric may provide clinically relevant information 

regarding fall risk in community dwelling older adults.  
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Importantly, SDNN has demonstrated clinical importance for differentiating between 

healthy and diseased states. For 24-hour recordings, it is regarded as the “gold standard” for 

stratifying cardiac risk (e.g., likelihood of a cardiac event) because it can index the heart’s 

response to circadian rhythm processes as well as varying workloads (Grant et al., 2011; Shaffer 

& Ginsberg, 2017). Additionally, SDNN has also been shown to differentiate between 

individuals with major depression and healthy controls (van der Kooy et al., 2006), as well as 

patients with Type II Diabetes and healthy controls (Benichou et al., 2018). With regard to fall 

risk, for patients in an acute care setting, Razjouyan and colleagues (2017a) observed a strong, 

negative correlation between fall risk and SDNN (p = 0.001, r = -0.59, ds = 1.68), with high risk 

fallers demonstrating lower SDNN compared to low-risk fallers. While our finding of a medium 

effect size of fall risk on SDNN is not as strong as the aforementioned study, there are a few key 

differences of note. First, the sample of the current study was a healthy community dwelling 

population, while patients in Razjouyan et al.’s study were hospitalized in a 

hematology/oncology unit, and thus were likely already experiencing alteration to ANS as a 

result of illness (Kloter et al., 2018). Additionally, Razjouyan and colleagues used the Hendrich 

II fall risk assessment scale to classify individuals as low or high fall risk. Despite being a well-

established and validated method of assessment for the hospital setting, the subjective 

assessment presents possibility for false positives/negatives. In contrast, participants in the 

current study reported whether or not they had fallen during the 12 months prior to HRV 

monitoring. While it is possible that mis-reporting can occur with fall recall, previous work has 

suggested no difference in recall accuracy once intervals extend beyond one month (Ganz et al., 

2005). Razjoyan et al.’s study was similarly powered to ours, with N = 31 patients (N = 10 fallers 

and N = 21 non-fallers), and while their observed effect size was large, the aforementioned 
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sample and methodological differences suggest that our observed moderate effect for SDNN may 

be clinically relevant to differentiate between community-dwelling fallers and non-fallers.  

In contrast to our findings of no differences between fall risk and frequency and non-

linear HRV indices, Melillo et al. (2015) observed differences in LF Power and Shannon Entropy 

between hypertensive patients (age: 72 ± 8 years) who fell within 3 months of HRV monitoring 

and those who did not. Yet, it is difficult to compare findings in hypertensive patients to healthy, 

community dwelling adults because hypertension is known to alter ANS function and 

consequently HRV (Carthy, 2014). Furthermore, hypertension related changes in ANS function 

also contribute to elevated fall risk (Chu et al., 2015); thus, it is likely that a greater percentage of 

hypertensive patients would fall compared to community dwelling adults. Indeed, of the 168 

patients in Melillo et al. study, n = 47 reported a fall during the 3 months prior to or following 

HRV monitoring, equating to 28% of the sample. In comparison, current population fall rates 

project that approximately 25% of adults aged 65 and older fall annually. However, it remains 

important to consider hypertension in the community dwelling population. Currently, 74.5% of 

US adults over the age of 60 have hypertension (blood pressure above 130/80 mmHg) (Ostchega 

et al., 2020). Thus, to optimally infer study findings to the general population, it is important that 

a sample mirror these statistics. In the current study, n = 23 (55%) participants [n = 14 (50%) 

non-fallers and n = 9 (64%) fallers] reported use of prescription medications to manage 

hypertension (Table 3). Therefore, while hypertensive medication use was higher in the fallers 

group, the overall sample is below national hypertension rates for older adults. Such differences 

may have contributed to our null findings as our sample was generally healthy and may have 

better ANS function.  
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The current study was not without limitations. First, there was a significant difference in 

age between faller (77 ± 6.18 years) and non-faller (73 ± 4.70 years) groups. However, fall risk 

is known to increase with age, and thus one would suspect that individuals with a history of falls 

would likely have an older mean age compared to those with no history of falls (Bergen et al., 

2016).  Differences between groups in medication use was another limitation (Table 3), with a 

larger proportion of the fallers group (64% vs. 55%) reporting use of cardiac altering (statins and 

ACE-inhibitors) medications (Menezes & Melo, 2000; Pehlivanidis et al., 2001). While both 

classifications of drugs have demonstrated beneficial improvements in HRV (Menezes & Melo, 

2000; Pehlivanidis et al., 2001), caution must be taken when interpreting these data. Finally, the 

small sample and strict inclusion criteria are limitations which may constrain the generalizability 

of these findings. A strict inclusion criterion was used to maintain internal validity as the 

following diseases are known to alter autonomic control: Diabetes, Hyper/hypothyroidism, 

cognitive decline, and dementia. Yet, in the US older adult population, an estimated 33% have 

diabetes (CDC, 2017a), 7-14% have hypothyroidism (Kim, 2000), 40-60% have mild cognitive 

impairment (Gillis et al., 2019), and 5 million have dementia (What Is Dementia?, 2019). 

Therefore, to improve generalizability, it is recommended that future studies consider broadening 

inclusion criteria to include diseases that impact older adults. Finally, due to the small sample, 

additional studies are warranted to confirm the observed results in a larger population.  

In conclusion, this study examined the difference in HRV indices in older adult fallers 

and non-fallers. Although, no significant differences in HRV indices were observed between 

fallers and non-fallers, a medium effect of fall risk on the time-domain metric, SDNN, was 

found. This suggests that SDNN may provide clinically relevant information regarding fall risk. 
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Importantly, such an assessment presents a more holistic measure for identifying community 

dwelling older adults at high risk for falls.  
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CHAPTER V: A COMPARISON OF HEART RATE VARIABILITY INDICES AND 

TRADITIONAL FALL RISK MEASURES TO CLASSIFY FALL RISK 

Introduction 

Falls and fall related injuries in the older adult population can be reduced through the 

implementation of preventative interventions (Sherrington et al., 2011), secondary to the 

identification of elevated risk through the application of screening tools. A considerable number 

of screening tools are available with cutoff values for stratification of risk of falling (Chu et al., 

2015; Perell et al., 2001a; Shumway-Cook et al., 1997). However, the comparison of sensitivity 

and specificity between methods indicates that no method is significantly better than another (da 

Costa et al., 2012; Gates et al., 2008), and most have demonstrated poor predictive power to 

classify the risk of falling in older adults (Balasubramanian et al., 2015; Gates et al., 2008).  

One reason for the lack of effective fall risk measures is that fall risk is multifactorial, 

while majority of traditional assessments are unidimensional. Regarding the multifactorial nature 

of falls, fall risk is the result of both physiological and environmental factors. Intrinsic factors 

include age-related changes in the sensory, cognitive, neural, and muscular systems that impact 

postural control, as well as and psychoactive drugs (Ambrose et al., 2013a; Tinetti et al., 1995). 

Extrinsic factors include alterations in the environment or activities that perturb postural stability 

(Ambrose et al., 2013a; Deandrea et al., 2010; Tinetti et al., 1995). Research has suggested 

improved predictive ability when a battery functional assessments are performed together 

(Lusardi et al., 2017). However, this takes a significant amount of time and many of the 

functional measures require administration by a trained practitioner; thus, increasing the burden 
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on an already taxed healthcare system (Casey et al., 2017). Therefore, there is a need for fall risk 

assessment tools that is time efficient and encompasses the multidimensional nature of fall risk.  

Mobile, sensor-based technologies provide an opportunity to fill the current gaps in fall 

risk assessments by measuring physiological variables, such as heart rate variability (HRV), in 

the free-living environment. HRV or the interval in time between successive heart beats is an has 

demonstrated utility for tracking changes in intrinsic fall risk factors (Shaffer et al., 2014). For 

example, HRV has also demonstrated the ability to measure functional capacity of brain 

structures, and in particular those related to executive function, emotion, and depression 

(Kamińska et al., 2015; Thayer & Lane, 2000). Importantly, declines in executive function, 

changes in emotion, and depression are all associated with increased fall risk (Kamińska et al., 

2015). The association between brain structures and HRV is supported by the Neurovisceral 

Integration Model. The model has identified functional units, known as the central autonomic 

network, within the central nervous system that are linked to the heart through the stellate 

ganglia and the Vagus nerve and responsible for excitatory and inhibitory effects on the heart 

(Benarroch, 1993; Thayer & Lane, 2000). In alignment with this model, Lane et al. (2009) 

observed that emotional arousal was associated with a decrease in the HRV parameter high 

frequency (HF) power, with a simultaneous increase of blood flow in the right superior 

prefrontal cortex, the left rostral anterior cingulate cortex, the right dorsolateral prefrontal cortex, 

and the right parietal cortex. Additionally, Hansen et al. (2003) examined working memory, 

nonexecutive, and executive function in military personnel. Participants were assigned to a high 

or low HRV group based on a median split of the HRV parameter root mean squared standard 

deviations (RMSSD). The high HRV group demonstrated superior performance on executive 

function and working memory tasks (Hansen et al., 2003). Furthermore, depression has also been 
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linked to alterations in autonomic control and is characterized by reduced HRV (Sgoifo et al., 

2015; Udupa et al., 2007). This previous work provides theoretical reasoning for HRV as a 

holistic measure of fall risk.  

 To establish the utility of HRV as a fall risk assessment tool, it must be compared against 

the current gold standard measures. Therefore, the goal of this study was to determine the 

discriminative validity of HRV indices standard deviation of the normal-to-normal intervals 

(SDNN), low frequency (LF) Power, and DFA α1 observed over a 24-hour monitoring period for 

classifying fall risk in older adults compared to traditional fall risk assessment tools, including 

the Timed Up and Go (TUG), the Functional Gait Assessment (FGA), and the Activities-specific 

Balance Confidence Scale (ABC). The HRV metric SDNN reflects the cyclic components 

responsible for the variability of the heartbeat time series. It was chosen as an outcome measure 

in the current study because it has previously demonstrated the ability to differentiate high and 

low risk fallers in a sample of oncology patients residing in an acute care facility (Razjouyan et 

al., 2017). Additionally, SDNN is the “gold standard” for medical stratification when recorded 

over a 24-hour period (Shaffer & Ginsberg, 2017). LF power was chosen as an outcome measure 

because it has been correlated with baroreflex sensitivity (La Rovere et al., 1998; Moak et al., 

2007), which is associated with risk of falling in older adults (Isik et al., 2012). Moreover, a 

previous study by Melillo et al. (2015) observed a significant relationship between LF power 

measured over a 24-hour period and fall risk in hypertensive patients. The non-linear metric 

DFA α1 was chosen because it also reflects the baroreceptor reflex (Shaffer & Ginsberg, 2017) 

and has demonstrated the ability to differentiate between healthy and diseased states 

(Gospodinova et al., 2016; Yeh et al., 2006). The traditional fall risk measures (TUG, FGA, 

ABC) were selected as they are commonly used in the clinical setting and have been shown to be 
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valid measures in the community dwelling population (Barry et al., 2014; Powell & Myers, 

1995; Wrisley et al., 2004). We hypothesized that HRV indices will correctly identify a greater 

percentage of fallers compared to the TUG, FGA, and ABC. To test this hypothesis, traditional 

fall risk assessments and 24-hour HRV measures were collected on community dwelling older 

adults and compared using receiver operator characteristics (ROC) curves.  

Methods 

Participants 

 Participants were recruited from the surrounding community through email listservs, 

flyers, social media posts, and presentations at community events. Interested individuals 

completed an online survey (Qualtrics, Provo, Utah) that screened for the following inclusion 

criteria: 1) be between the ages of 65-90 years; 2) never been diagnosed with a neurological 

condition; 3) normal or corrected-to-normal vision; 4) not currently a smoker; 5) possess the 

ability to stand for ≥ 5 minutes without the use of an assistive device; 6) no history of 

cardiovascular event or surgery including: heart attack, stroke, bypass surgery, stent, or 

pacemaker implantation, 7) never been diagnosed with Diabetes (Type 1 or Type 2); 8) never 

been diagnosed with Hypo / hyperthyroidism diagnosis; and 9) no change in medication during 

the previous two months. Individuals who met the above criteria were contacted to confirm the 

inclusion criteria and schedule a lab testing visit. When participants arrived at the lab, the Mini-

Mental State Examination (MMSE) was administered to screen for cognitive function. If 

participants, achieved an MMSE score >24, study procedures continued. A total of 42 

participants (74.37 ± 5.52 years, 166.19 ± 10.18cm, 71.97 ±14.06kg) met the inclusion criteria 

and were enrolled in the study.  
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Procedure 

The following procedures were approved by the University’s Institutional Review Board. 

Following completion of the MMSE, participants gave informed consent. A demographics and 

healthy history survey was then completed, and anthropometrics were measured. The health 

history survey asked participants to indicate whether or not they had fallen at least once during 

the previous 12 months. A fall was defined as “an event resulting in you coming to rest on the 

ground or other lower level”. Participants who reported falling during the previous 12 months 

were classified as a “faller”, and participants who reported no falls were classified as a “non-

faller”. 15 participants were identified as fallers, and 27 participants were identified as non-

fallers. 

Participants then completed three traditional fall risk assessments (TUG, FGA, and ABC) 

in a randomized order. These assessments were chosen because they are commonly used in the 

clinical setting. Participants performed the TUG and FGA without shoes. To complete the TUG, 

participants were timed as they stood from a chair, walked 3 meters, turned around, walked back 

the chair and sat down (Barry et al., 2014). The total time required for participants to complete 

the TUG was used for analysis. The FGA consists of 10 dynamic gait tasks that are scored from 

0 to 3, with higher scores indicating better functional gait (Wrisley & Kumar, 2010). To create 

an overall score, individual task scores were summed with a maximum value of 30. Overall FGA 

scores were used for analysis. The ABC consists of 16 items that assess balance self-efficacy 

during activities of daily living. Each item is scored on a 10-point ordinal scale (0 = no 

confidence to 100 = complete confidence to maintain balance while completing the activity) 

(Powell & Myers, 1995). Item scores were averaged to achieve an overall score. The overall 

ABC scores were used in analysis.  
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Following completion of the traditional fall risk assessments, participants were outfitted 

with a Polar H10 chest strap (Polar Elector, Bethpage, NY) and Actigraph GT9X Link 

accelerometer (Actigraph, Pensacola, FL). The Polar H10 sensor collected R-R intervals at a rate 

of 1000 Hz and stored them on the GT9X Link accelerometer. The literature has established the 

Polar H10 as a valid measurement of R-R intervals across a range of activities (Gilgen-Ammann 

et al., 2019). To ensure participants had returned to their normal daily activities following the 

testing visit, monitors were initialized to begin collecting data two hours after participants left 

the lab. R-R intervals were collected for the successive 28-hour period. With the exception of 

when bathing, participants were instructed to wear monitors for the entire 30-hour period, 

including while sleeping, and to continue their normal daily activities. It is recommended that 

long-term HRV recordings (e.g., 24-hour) include a minimum of 18 hours of successive R-R 

intervals, including the entire period of nighttime sleep (“Heart Rate Variability,” 1996). For the 

current study, 30 hours of monitor wear time insured sufficient data for long-term recordings. 

Following completion of the 30-hour wear period, monitors were returned to the study team.  

HRV Data Reduction 

First, R-R intervals were downloaded from the GT9X Link to the ActiLife software 

(Actigraph, Pensacola, FL). Next, R-R intervals were uploaded to the Kubios Premium software 

(Kubios Premium 3.4.1, Biosignal Analysis and Medical Imaging Group, Kuopio, Finland) to 

conduct HRV analysis. Data were then visually inspected to confirm inclusion of R-R intervals for 

the entire of nighttime sleep period. Nighttime sleep data was missing for N = 1 participant; 

therefore, they were removed from analyses. Subsequently, noisy segments were identified via 

visual inspection and removed from the time series. An automatic artefact correction algorithm 

within the Kubios Premium software was then applied with a ‘medium’ threshold (R-R intervals 
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differing from the local average more than 0.25 seconds were corrected). The time-domain [SDNN 

(ms)] and the non-linear (DFA α1) metrics were calculated for the entire 24-hour time series. The 

frequency-domain metric [LF Power (nu)] was calculated as average of 5-minute segments for the 

time-series. 

Analysis 

41 participants were included in data analyses (n= 14 fallers: 77 ± 6.18 years, 163.89 ± 

11.01 cm, 66.94 ± 14.32 kg, n = 27 non-fallers: 73 ± 4.70 years, 167.38 ± 9.72 cm, 74.58 ± 13.44 

kg). All data analyses were performed using R (R, Version 4.2.0; R Foundation for Statistical 

Computing, Vienna, Austria). Demographic and anthropometric characteristics broken down by 

group assignment (fallers vs. non-fallers) are presented in Table 1. Receiver operator 

characteristics (ROC) curves as executed in the “pROC” package (Robin et al., 2011) were used 

to assess the effectiveness of HRV indices (SDNN, LF power, and DFA α1) and traditional fall 

risk assessments (TUG, FGA, and ABC) to identifying fall risk in community dwelling older 

adults. Using the roc.test function in pROC, a series of bootstrapped pairwise comparisons were 

performed for each HRV indices area under the curve (AUC) with each traditional fall risk 

assessment’s AUC to determine which measure best discriminates fallers from non-fallers. 

Sensitivity and specificity were determined based on the highest threshold value with the highest 

sensitivity and specificity.  

Results 

The ROC curves for the ability of HRV (SDNN, LF power, and DFA α1) and traditional 

fall risk assessments (TUG, FGA, and ABC) to identify fallers versus non-fallers in community 

dwelling older adults are depicted in Figure 4. The estimated AUC was 0.68 for SDNN, 0.55 for 

LF Power, 0.53 for DFAα1, 0.49 for FGA, 0.49 for TUG, and 0.50 for ABC. The AUC 
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corresponds to the ability of the test to correctly classify those with and without fall risk. A test 

with an AUC of 1 has perfect accuracy and an AUC of 0.50 suggests the test is no better than 

random chance (Fawcett, 2006). Pairwise comparisons of the AUC’s for SDNN and the 

traditional fall risk assessments suggested that SDNN was not a superior test for discriminating 

fallers from non-fallers (FGA: p = 0.17, TUG: p = 0.17, ABC: p = 0.10). The AUCs for the 

remaining HRV indices and traditional fall risk assessments were near or below 0.50 suggesting 

that for the given sample these metrics were no better than random chance for detecting fall risk; 

therefore, no other pairwise comparisons were executed. 

Figure 3. ROC Curves for HRV Metrics and Traditional Fall Risk Assessments 

 

Note. SDNN = Standard Deviation of the Normal-to-Normal Intervals, LF Power = Low 
Frequency Power, DFA = Detrended Fluctuation Analysis α1, ABC = Activities Balance 
Confidence Scale, FGA = Functional Gait Assessment, TUG = Timed Up and Go.  
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Table 4. AUC, Sensitivity, and Specificity for HRV Metrics and Traditional Fall Risk 
Assessments 
 

  Fallers Non-Fallers AUC Sn Sp 
SDNN (ms) 38.99 ± 6.24 50.67 ± 7.90 0.68 64.29 22.22 
LF Power (nu) 60.91 ± 5.76 58.87 ± 4.17 0.55 50.00 37.04 
DFAα1 1.06 ± 0.09 0.94 ± 0.08 0.53 50.00 37.04 
TUG 9.82 ± 0.41 9.92 ± 0.36 0.49 50.00 40.74 
FGA 22.50 ± 0.63 22.26 ± 0.67 0.49 42.86 33.34 
ABC 91.57 ± 0.02 92.15 ± 0.01 0.50 57.14 48.15 
Note. Values are reported as mean ± SE, Sn = Sensitivity, Sp = Specificity, 
SDNN = Standard Deviation of the Normal-to-Normal Intervals, LF Power = 
Low Frequency Power, DFA = Detrended Fluctuation Analysis, TUG = Timed 
Up and Go, FGA = Functional Gait Assessment, ABC = Activities Balance 
Confidence Scale.  

 

Discussion 

This study compared the ability of HRV indices measured over a 24-hour period to 

traditional fall risk assessment tools for classifying fall risk in community dwelling older adults. 

Traditional fall risk assessments are primarily unidimensional and have demonstrated a range of 

variability to accurately detect falls (Lusardi et al., 2017; Perell et al., 2001a; Shumway-Cook et 

al., 1997). The multidimensional nature of falls risk requires a more holistic assessment tool. 

HRV presents opportunity to fill this gap due to its evidenced ability to track changes in multiple 

intrinsic fall risk factors (Sgoifo et al., 2015; Thayer & Lane, 2000). In this study, older adults 

(age: 74.30 ± 5.56 years) were assigned to one of two groups based on self-reported fall history 

(n = 14 fallers, n = 27 non-fallers), and completed three traditional fall risk assessments (FGA, 

TUG, and ABC) in a randomized order. Next, participants were equipped with a heart rate 

monitor chest strap and wore it for 24 hours in their free-living environment. To compare test’s 
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ability to differentiate fallers from non-fallers, ROC curves were generated for FGA, TUG, and 

ABC scores, as well as the HRV parameters SDNN, LF power, and DFA α1.  

Our results suggest that in a healthy, community dwelling, older adult population, SDNN 

was the best measure to correctly differentiate fallers from non-fallers. However, pairwise 

comparisons of the AUC’s for SDNN and each traditional fall risk assessment, showed that 

performance of SDNN did not significantly differ from the clinical measures (p > 0.10). Thus, 

while SDNN performed best in this sample and is trending towards significance, as a result of 

reduced statistical power associated with the small sample it did not perform significantly (based 

on p < 0.05) better than the traditional fall risk measures.  

However, SDNN was the only assessment that demonstrated to be “better than chance” 

(AUC = 0.68) at discriminating fall risk, with moderate sensitivity (64.29%) but low specificity 

(22.22%). Importantly, an AUC of 0.70 is a commonly used clinical cutoff to determine the 

utility of a test to diagnose patients with and without a disease or condition (Fawcett, 2006).   

The low specificity suggests that as a measure of fall risk, SDNN comes with a fairly high rate of 

false positives. These findings are similar to what has been observed in the application of other 

sensor-based (wearable and non-wearable) technologies for assessing fall risk. In a systematic 

review, Kosse and colleagues (2013) investigated the effects of sensor technologies to reduce 

falls and fall related injuries in patients residing in a nursing home setting. With the use of sensor 

systems (e.g., sock pressure sensors, movement sensors, bed and chair alarms), they observed up 

to a 77% reduction in falls and fall-related injuries but a high rate of false alarms (16%) (Kosse 

et al., 2013). They noted that the high rate of false alarms desensitized caregivers and medical 

staff against alarms, and thus reduced timely intervention. To improve measurement specificity 

of HRV, a time threshold could be used, where an alert is triggered after a certain time period 
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when a parameter (e.g., SDNN) is above or below a threshold point. However, developing a 

predictive time threshold model for SDNN would require a larger dataset and measurement of 

HRV for days to weeks as well as fall occurrence for several months following assessment. Such 

time threshold models have been used to predict stressful episodes with a high level of 

specificity (94.8% for episodes of 13.5 minutes) (Sarker et al., 2016). Sarker et al. ( 2016) used 

physiological (HRV & respiration), GPS, and activity data collected from 38 users in their free-

living environment to discover patterns of stress and develop a time threshold model to predict 

stressful episodes. The work of Sarker and colleagues highlights the importance of including 

activity data in a predictive time threshold model for HRV and fall risk as HRV is impacted by 

physical activity. Future research should consider examining the predictive ability of HRV for 

fall risk using a time threshold method.  

It is important to note that the sample in the current study may not be representative of 

fall risk in the community dwelling population. Both the non-faller and faller groups achieved 

similar scores (Table 4) that were above cut-off values for fall risk on the traditional fall risk 

assessments. Various cut-off scores ranging from 10-20 seconds have been proposed for the 

TUG (Shumway-Cook et al., 1997; Trueblood et al., 2001), with a score of  >12 seconds 

suggested as a cut-off for fall risk in community dwelling populations (Lusardi et al., 2017). In 

our sample, both fallers and non-fallers mean TUG scores were well below 12 seconds. For the 

FGA, a score of ≤ 22 has been suggested to provide both discriminative and predictive validity 

for falls (Wrisley et al., 2004). Again, in the current sample, mean scores of both the faller and 

non-faller groups were above 22. Regarding the ABC, scores of ≤ 67 have shown to indicate 

increased risk of falls (Lajoie & Gallagher, 2004). In our sample, both groups had mean ABC 

scores above 90. In addition to high performance on functional tests, to be included in the study, 
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participants had to pass the Mini Mental State Examination with a score of > 24. Thus, the 

sample also had high cognitive ability. This suggests that our sample may have been more 

homogenous regarding fall risk. Future research should consider investigating HRV and fall risk 

in a broader range of community dwelling older adults, including individuals with age-related 

diseases known to increase fall risk.  

The benefit of HRV as opposed to traditional functional and other sensor-based 

measurements is that it is cost effective and provides a multivariate approach for assessing fall 

risk factors and underlying mechanisms (McCraty & Shaffer, 2015). Other fall prevention sensor 

systems and traditional clinical measures are often based on a single fall risk factor (Kosse et al., 

2013; Perell et al., 2001b), but fall risk is complex and multifactorial. Our findings suggest that 

while SDNN performed better than the clinical measures, but there is no evidence that HRV is a 

superior to traditional assessments for discriminating fall risk. These findings may have been 

influenced by the health of our sample. Both fallers and non-fallers performed better than the 

proposed cut-offs for TUG, FGA, and ABC, and thus may not be representative of the general 

population. Further research with an expanded sample is needed to confirm these findings. 

Additionally, future studies should consider prospective as opposed to retrospective design and 

use time threshold to improve accuracy and reduce bias (Peel, 2000).   
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CHAPTER VI: ASSOCIATIONS BETWEEN INTRINSIC FALL RISK FACTORS AND 

HEART RATE VARIABILITY 

Introduction 

Heart rate variability (HRV) has been investigated as an assessment of fall risk in clinical 

populations, including hypertensive patients and patients receiving oncology treatment in an 

acute care setting (Melillo, Jovic, DeLuca, et al., 2015; Razjouyan et al., 2017). In these 

populations, HRV metrics have demonstrated to be effective at identifying individuals with 

elevated fall risk (Melillo, Jovic, DeLuca, et al., 2015; Razjouyan et al., 2017). However, 

hypertension and cancer are known to cause autonomic dysfunction resulting in altered HRV, 

and prior work did not confirm findings of HRV and fall risk by examining additional intrinsic 

fall risk factors. To validate this novel measure of fall risk, it is important to explore the 

relationship between exposure to independent, intrinsic risk factors and HRV. Such information 

is also important for identifying variables with the greatest influence on HRV to be primary 

targets for preventative interventions. 

While falls are most often reported as ‘accidental’ or environment-related, many of these 

falls really stem from the interaction between identifiable environmental hazards and individual 

susceptibility to hazards as a result of intrinsic risk factors (Rubenstein, 2006). Identified 

intrinsic fall risk factors including reduced lower extremity strength, changes in vision, vestibular 

dysfunction, and declines in cognitive function are associated with aging and result in alterations 

in postural control and gait dynamics (Ambrose et al., 2013b). Additionally, many age-related 

diseases and the medications used to treat them also impact fall risk such as cardiovascular 

disease, neurodegenerative disease, and depression (Ambrose et al., 2013b). Importantly, the 
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most cited causes for falls by the elderly are decrements in gait and balance, lower extremity 

weakness, dizziness/vertigo, cognitive impairment, postural hypotension, emotional 

dysregulation, and visual disorders (Rubenstein, 2006). To assess these risk factors, several 

functional and survey-based measures have been developed and validated (Gates et al., 2008; 

Lusardi et al., 2017).  

To this end, this study investigated associations between intrinsic fall risk factors, 

including postural control, vestibular function, lower extremity muscular strength, executive 

function, and depression, and the HRV parameters standard deviation of the normal-to-normal 

intervals (SDNN), low frequency (LF) power, high frequency (HF) power, and the non-linear 

measures DFA α1 and α2 in healthy, community dwelling older adult fallers and non-fallers. 

Postural control was measured as center of pressure (CoP) displacement, vestibular function was 

assessed using tests 5 & 6 of the Equitest Sensory Organization Test (SOT), lower extremity 

strength was measured using the 30s Chair Stand test, executive function was measured using the 

Trail Making test, and depression was assessed using the Beck Depression Inventory II (BDI II). 

HRV parameters were also assessed over a 24-hour period using wearable sensors. Previous 

research on HRV and fall risk has included patient populations with diseases known to impact 

autonomic control and consequently HRV; thus, to improve internal validity a healthy population 

was investigated. We hypothesized that for fallers a stronger negative relationship would be 

observed between the independent variables for postural control, executive function, and 

depression, and the HRV outcome variables. Furthermore, we hypothesized that for fallers, a 

stronger positive relationship would be observed between the independent variables vestibular 

function and lower extremity strength and the HRV parameters. Both hypotheses represent 

reduction in HRV parameters with an associated decline in each of the independent variables. 
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Methods 

Participants 

 Forty-two healthy, community dwelling older adults (74.37 ± 5.52 years, 166.19 ± 

10.18cm, 71.97 ±14.06kg) were enrolled in this study. Participants were between the age of 65-

90 years, had normal or corrected-to-normal vision, did not currently smoke, had the ability to 

stand for ≥ 5 minutes without the use of an assistive device, and their medications had been 

stable for the prior two months. They had no history of cardiovascular event or surgery, and were 

free of any neurological disorders, Diabetes (Type I and II), and Hypo/hyperthyroidism. 

Individuals expressed interest by completing an online survey (Qualtrics, Provo, Utah) that 

screened for the above criteria. Qualifying individuals were contacted to schedule a lab testing 

visit. Upon arrival to the lab, participants were screened for cognitive function via the Mini-

Mental State Examination (MMSE). To proceed with testing, participants had to achieve an 

MMSE score >24.  

Procedure 

Following completion of the MMSE and prior to initiation of testing measures, 

participants gave informed consent. Participants then completed a basic demographics and 

healthy history survey, and height and weight were measured. Within the health history survey, 

participants indicated if they had fallen during the prior 12 months. A fall was defined as “an 

event resulting in you coming to rest on the ground or other lower level”. Participants were 

assigned to one of two groups based on their fall history. Those who reported at least one fall 

during the prior 12 months were assigned to the “faller” group (n = 15), while those who 

reported no falls were assigned to the “non-faller” group (n = 27).  
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Participants then completed five tests used to assess intrinsic fall risk factors, including 

the BTrackS balance test, the EquiTest Sensory Organization Test (SOT), 30s Chair Stands, the 

Trail Making Test, and the second edition of the Beck Depression Inventory (BDI-II). To 

account for potential physical and mental fatigue, assessments were performed in a randomized 

order. Participants completed the BTrackS balance test, the EquiTest SOT, and 30s Chair Stands 

without shoes. 

The BTrackS balance test was used to assess postural control and consists of a 

lightweight, portable force plate used to track the center of pressure (CoP) during quiet standing 

(Goble et al., 2016). Importantly the test has demonstrated to be a reliable and valid measure of 

postural control in older adults (Goble et al., 2017; Goble & Baweja, 2018; Levy et al., 2018). 

The test consists of three 20 second trials where participants stand on the force plate with feet hip 

width apart, hands on hips, and eyes closed. The test score is calculated by the BTrackS software 

and is equivalent to the average total CoP path length in centimeters across the three trials. Poor 

balance control is defined as a greater test score (increased CoP path length). 

To assess vestibular function, the SOT was administered using the EquiTest (NeuroCom 

International) dynamic postural testing system. The device includes dual-force plates, which can 

be translated in the anterior-posterior direction or pitched up and down to provoke dorsiflexion / 

plantar flexion rotations about the ankles, and a visual surround that can be stationary or sway-

referenced. During the test, participants stand upright on the force plates, and foot placement is 

standardized with the medial malleoli of the ankles centered over the axis of rotation of the force 

plates. A safety harness is worn throughout the test to provide support in the event of a fall. The 

SOT consists of six conditions, each with three 20-second trials, in which visual, somatosensory, 

and vestibular stimuli are manipulated. The six SOT conditions have been described in greater 
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detail elsewhere (Pletcher et al., 2017), only conditions 5 and 6 will be described here as they 

have demonstrated to be moderately correlated (r  ≤ .72) with traditional vestibulo-ocular test 

results (Evans & Kers, 1999). During condition 5, participants stand on a sway-referenced 

platform with their eyes closed, and for condition 6, participants stand on a sway-referenced 

platform with their eyes open and fixed on a sway-referenced visual surround. The best of the 3 

trials for each condition is used to calculate an equilibrium score. The equilibrium score is 

expressed as a percentage and calculated as the angular difference between the maximum 

anterior-posterior center of gravity displacement and the theoretical maximum of 12.5 degrees. A 

score of 100 indicates no anterior-posterior excursion, and scores approaching 0 indicate 

increased excursion (Evans & Kers, 1999). If participants fall during a trial, a score of 0 is given, 

and foot placement is reset for the subsequent trial.  

The 30s Chair Stand test was used as an assessment of lower extremity strength (Cho et 

al., 2012; Jones et al., 1999). To complete the test, participants begin seated in a chair with no 

arms and a seat height of 17 inches. With arms across the chest, participants stand and return to a 

seated position as many times as possible in 30 seconds. The score of the test is recorded as the 

total number of stands executed properly.  

As a measure of executive function, participants completed parts A and B of the Trail 

Making Test (Arbuthnott & Frank, 2000; Bowie & Harvey, 2006). Part A involves drawing a 

line connecting numbers from 1 to 25 in ascending order, and part B involves drawing a line 

connecting numbers (1 to 25) and letters (A to L) in a sequence (e.g., 1-A-2-B, etc.). The 

outcome measure of the test is the ratio of the time required to complete B/A (Lamberty et al., 

1994). 
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Depression was measured using the BDI-II. A 21-item questionnaire that asks 

participants to describe how they have felt for the “past two weeks, including today” by rating 

each symptom on a 4-point scale ranging from 0 to 3  (Beck et al., 1996). Symptom ratings are 

summed to create a total score ranging from 0 to 63. Higher scores suggest more depressive 

symptoms.  

After participants completed laboratory-based assessments, they were equipped with a 

heart rate monitor and accelerometer, Polar H10 chest strap (Polar Elector, Bethpage, NY) and 

Actigraph GT9X Link (Actigraph, Pensacola, FL) respectively. R-R intervals were collected at a 

rate of 1000 Hz by the Polar H10 sensor and stored on the GT9X Link accelerometer. Collection 

of R-R intervals began two hours after participants left the lab. The gap in time, allowed 

participants to return to their normal daily activities prior to collection. Participants were 

instructed to wear the monitions for 30 hours, including during nighttime sleep, and with 

exception of when bathing. They were also instructed to continue their normal daily activities 

inR-R intervals were collected for 28 hours of the 30-hour wear period. To be included in 

analyses, HRV recordings had to include a minimum of 18 hours of successive R-R intervals, 

and the entire period of nighttime sleep (“Heart Rate Variability,” 1996). When monitors were 

collected, participants also returned a wear time log that included times monitors were removed 

for bathing as well as the time participants went to sleep at night and woke up the next morning.    

HRV Data Reduction 

The Kubios Premium software (Kubios Premium 3.4.1, Biosignal Analysis and Medical 

Imaging Group, Kuopio, Finland) was used to conduct HRV analysis. R-R intervals were uploaded 

to the Kubios software following extraction from the GT9X Link accelerometer using the ActiLife 

software (Actigraph, Pensacola, FL). The time series of R-R intervals was first visually inspected 
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for inclusion of the entire nighttime sleep period. One participant in the fallers group was missing 

data for a portion of the nighttime sleep period and was therefore removed from analyses. Data was 

then visually inspected for excessively noisy segments, and identified segments were manually 

removed. To correct for ectopic beats, an automatic artefact correction algorithm with a ‘medium’ 

threshold (0.25 seconds) was employed. Finally, the entire 24-hour time series was used to calculate 

the time-domain (SDNN) and the non-linear (DFA α1 and α2) parameters, and the average of 5-

minute segments was used to calculate the frequency-domain parameters (LF and HF Power). 

Analysis 

Statistical analysis was performed using R (R, Version 4.2.0; R Foundation for Statistical 

Computing, Vienna, Austria). Models were screened for normality of t residuals using visual 

inspection of Q-Q plots, and outliers were screened for using Cook’s distance. n = 2 were 

identified as outliers in three of the models and were removed from the analysis. Following 

removal of n = 1 participant due to incomplete nighttime HRV data and n = 2 identified as 

outliers, 39 participants were included in data analyses (Table 6). Multicollinearity amongst the 

independent variables was also assessed by calculating the variance inflation factor (VIF) for 

each predictor. This was executed by conducting a linear regression with one predictor on all 

other predictors to obtain the R2 value and then computing 1/(1-R2). No VIF’s greater than 5 

were observed (Johnston et al., 2018); thus, all predictor variables were retained in the models. 

Multivariate linear regressions quantified the associations of the independent variables BTrackS 

test score (CoP path length), equilibrium scores for SOT conditions 5 and 6, 30s Chair Stand test 

score (number of sit to stands completed in 30s), Trail Making Test score (ratio of time to 

complete part B/A), and BDI II score with the dependent variables of HRV indices (SDNN, LF 

and HF Power, and DFA α1 and α2. Models included main and interaction effects for the above 
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independent variables and group (fallers vs. non-fallers). When significant interactions were 

observed, simple slopes were performed to probe the interaction. When interactions were non-

significant (p > 0.05), models were refit without interactions. Model fit was assessed using the 

adjusted R2 statistic, comparing the full model with all possible interaction terms to the reduced 

model. Additionally, full and reduced models were compared using Akaike’s information 

criterion (AIC). The statistical model with the lowest AIC reflects the most parsimonious model 

explained by the fewest variables.  
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Table 6. Participant Demographics 

  Fallers (n=14) Non-Fallers (n=25) p 

Sex Male (n) 4 9  
Female (n) 10 16  

Age (years) 77 ± 6.18 72.48 ± 4.46 0.012 
Height (cm) 163.89 ± 11.01 166.33 ± 8.95 0.456 
Weight (kg) 66.94 ± 14.32 74.51 ± 12.97 0.100 
MMSE 29.07 ± 0.73 29.36 ± 0.95 0.333 
BTrackS 40.50 ± 29.70 36.60 ± 18.03 0.660 
TUG 9.82 ± 1.53 9.99 ± 1.86 0.771 
FGA 22.57 ± 2.41 22.04 ± 3.55 0.583 
Chair Stands 15.71 ± 3.24 13.68 ± 4.05 0.096 
SOT 5 54.93 ± 16.77 55.36 ± 13.96 0.936 
SOT6 44.55 ± 19.12 48.94 ± 21.19 0.513 
Trail Making Ratio 2.53 ± 0.91 2.34 ± 0.83 0.534 
BDI-II 5.57 ± 4.70 2.52 ± 2.96 0.041 

Household 
Income 

(n) 

$15,000 - $29,999 1 1  
$30,000 - $44,999 1 3  
$45,000 - $59,999 0 3  
$60,000 - $74,999 0 4  
$75,000 - $89,999 4 2  
$90.000 or above 5 9  

Chose not to answer 3 3  

Highest 
Level of 

Education 
(n) 

Technical School 0 1  

2 Year College 3 6  

4 Year College 3 8  

Graduate School 7 8  

Professional School 1 2  

Note. Values are reported as mean ± SD, MMSE = Mini Mental State Examination, 
BTrackS = BTrackS Balance Test score, TUG = Timed Up and Go, FGA, Functional Gait 
Assessment, Chair Stands = 30s Chair Stand test score, SOT5 = Sensory Organization Test 
5, SOT6 = Sensory Organization Test 6, BDI-II = Beck Depression Index II, Household 
Income = based on annual income for the three years prior to retirement.  
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Results 

SDNN 

Full model results are presented in Table 7a. All simple effects (p > 0.26) and tests of 

group interactions (p > 0.14) failed to reach significance. Therefore, the model was refit without 

interactions. In the reduced model (Table 7b), no significant effects of intrinsic fall risk factors 

on SDNN were observed (p > 0.27). The full model explained 36.2% of the variation in SDNN 

(AIC = 373.06). Removing the interaction terms did not significantly change the proportion of 

variation explained by the model (adjusted R2 = 0.389, AIC = 352.41, p = 0.486). 

LF Power 

 Full model results are presented in Table 8a.  All main (p > 0.10) and group interaction (p 

> 0.15) effects failed to reach significance; therefore, the model was refit without interactions. In 

the reduced model (Table 8b), no significant effects of intrinsic fall risk factors on LF Power 

were observed (p > 0.31).  The full model explained 52.2% of the variation in LF Power (AIC = 

359.21). Removing the interaction terms did not significantly change the proportion of variation 

explained by the model (adjusted R2 = 0.499, AIC = 340.84, p = 0.323). 

HF Power 

 Full model results are presented in Table 9a.  All main (p > 0.18) and group interaction (p 

> 0.39) effects failed to reach significance; therefore, the model was refit without interactions. In 

the reduced model (Table 9b), equilibrium score for SOT condition 6 was significantly, 

negatively associated with HF Power (β = -0.22, p = 0.04). This suggests that as the equilibrium 

score for SOT condition 6 increases, the HF Power decreases. No other significant effects of 

intrinsic fall risk factors on HF Power were observed (p > 0.16).  The full model explained 

58.6% of the variation in HF Power (AIC = 324.54). Removing the interaction terms did not 
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significantly change the proportion of variation explained by the model (R2 = 0.641, AIC = 

298.81, p = 0.912). 

DFA α1 

 Full model results are presented in Table 10a.  A significant, negative effect of BTracks 

score on DFA α1 was observed (β = -0.01, p = 0.03), and the interaction effect of group and SOT 

condition 6 approached significance (β = -0.010, p = 0.06), All other simple (p > 0.12) and group 

interaction (p > 0.06) effects failed to reach significance; therefore, the model was refit without 

interactions. In the reduced model (Table 10b), the equilibrium score for SOT condition 6 was 

significantly, negatively associated with DFA α1 (β = -0.005 p = 0.05), suggesting that as 

equilibrium score for SOT condition 6 increases, the value of DFA α1 decreases. Additionally, 

simple effect of SOT condition 5 trended towards significance (β = 0.004 p = 0.06). No other 

significant effects of intrinsic fall risk factors on DFA α1 were observed (p > 0.16).  The full 

model explained 72.8% of the variation in HF Power (AIC = 23.07). Removing the interaction 

terms did not significantly change the proportion of variation explained by the model (adjusted 

R2 = 0.709, AIC = 5.58, p = 0.272). 

DFA α2 

Full model results are presented in Table 11a. A significant interaction effects was 

observed for group × BTrackS test score (β = 0.005, p = 0.05). Simple slopes suggested a 

negative association in non-fallers (β = -0.01, p = 0.03) but not in fallers (β = -0.002, p = 0.62). 

All other main effects (p > 0.09) and tests of group interactions (p > 0.06) failed to reach 

significance. The full model explained only 13.0% of the variation in DFA α2 (AIC = -42.73).  
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Table 7. SDNN Model Results 

Variable Coeff Std.Err. p 
Adjusted 

R2 AIC 
Intercept 68.91 51.00 0.189 0.362 373.06 
Fall -15.12 35.53 0.674   
Age -0.43 0.75 0.570   
30s Chair Stands -0.42 0.65 0.529   
Trail Making -4.88 8.89 0.588   
BTrackS 0.49 0.43 0.263   
BDI II 0.75 0.81 0.360   
SOT 5 -0.08 0.24 0.742   
SOT 6 -0.16 0.39 0.678   
Fall*30s Chair 
Stands 1.55 1.00 0.136   
Fall*Trail Making 4.30 11.53 0.713   
Fall*BTrackS -0.37 0.51 0.470   
Fall*BDI II -1.28 1.44 0.383   
Fall*SOT 5 -0.34 0.43 0.439   
Fall*SOT 6 0.40 0.47 0.397   

Variable Coeff Std.Err. p 
Adjusted 

R2 AIC 
Intercept 43.37 42.77 0.319 0.389 352.41 
Fall 4.14 6.52 0.530   
Age -0.18 0.66 0.789   
30s Chair Stands 0.07 0.44 0.882   
Trail Making -6.85 6.11 0.271   
BTrackS 0.05 0.23 0.815   
BDI II 0.43 0.61 0.486   
SOT 5 -0.06 0.18 0.748   
SOT 6 0.22 0.20 0.266   
Note. Fall = group assignment, Trail Making = Part B / Part A, 
BTrackS = CoP path length, BDI II = Beck Depression Index II, SOT 5 
= Sensory Organization Test condition 5, SOT 6 = Sensory 
Organization Test condition 6. 
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Table 8. LF Power Model Results 

Variable Coeff Std.Err. p 
Adjusted 

R2 AIC 
Intercept 44.24 42.70 0.311 0.522 359.21 
Fall -3.41 29.74 0.910   
Age 0.68 0.63 0.293   
30s Chair Stands -0.23 0.55 0.683   
Trail Making -2.16 7.44 0.774   
BTrackS -0.62 0.36 0.100   
BDI II -0.80 0.67 0.250   
SOT 5 -0.07 0.20 0.744   
SOT 6 0.30 0.33 0.374   
Fall*30s Chair 
Stands -0.87 0.84 0.308   
Fall*Trail 
Making -2.07 9.65 0.832   
Fall*BTrackS 0.45 0.43 0.301   
Fall*BDI II 0.92 1.21 0.455   
Fall*SOT 5 0.52 0.36 0.158   
Fall*SOT 6 -0.56 0.39 0.162   

Variable Coeff Std.Err. p 
Adjusted 

R2 AIC 
Intercept 57.31 36.88 0.131 0.499 340.84 
Fall -5.09 5.62 0.373   
Age 0.47 0.57 0.416   
30s Chair Stands -0.37 0.38 0.332   
Trail Making 1.27 5.27 0.811   
BTrackS -0.17 0.20 0.391   
BDI II -0.52 0.52 0.329   
SOT 5 0.01 0.15 0.929   
SOT 6 -0.17 0.17 0.311   
Note. Fall = group assignment, Trail Making = Part B / Part A, 
BTrackS = CoP path length, BDI II = Beck Depression Index II, SOT 
5 = Sensory Organization Test condition 5, SOT 6 = Sensory 
Organization Test condition 6. 
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Table 9. HF Power Model Results 

Variable Coeff Std.Err. p 
Adjusted 

R2 AIC 
Intercept 27.89 27.38 0.319 0.586 324.54 
Fall 20.89 19.07 0.284   
Age -0.09 0.40 0.829   
30s Chair Stands 0.16 0.35 0.652   
Trail Making 6.63 4.77 0.178   
BTrackS 0.02 0.23 0.929   
BDI II -0.37 0.43 0.400   
SOT 5 0.06 0.13 0.628   
SOT 6 -0.29 0.21 0.183   
Fall*30s Chair 
Stands -0.16 0.54 0.770   
Fall*Trail 
Making -3.66 6.19 0.560   
Fall*BTrackS -0.24 0.27 0.387   
Fall*BDI II 0.47 0.78 0.550   
Fall*SOT 5 -0.16 0.23 0.493   
Fall*SOT 6 0.10 0.25 0.705   

Variable Coeff Std.Err. p 
Adjusted 

R2 AIC 
Intercept 40.25 21.51 0.072 0.641 298.81 
Fall 0.42 3.28 0.899   
Age -0.14 0.33 0.673   
30s Chair Stands 0.07 0.22 0.764   
Trail Making 4.37 3.07 0.165   
BTrackS -0.09 0.11 0.454   
BDI II -0.25 0.31 0.412   
SOT 5 0.01 0.09 0.928   
SOT 6 -0.22 0.10 0.037   
Note. Fall = group assignment, Trail Making = Part B / Part A, 
BTrackS = CoP path length, BDI II = Beck Depression Index II, SOT 
5 = Sensory Organization Test condition 5, SOT 6 = Sensory 
Organization Test condition 6. 
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Table 10. DFAα1 Model Results 

Variable Coeff Std.Err. p 
Adjusted 

R2 AIC 
Intercept 1.606 0.574 0.010 0.728 23.07 
Fall -0.294 0.400 0.469   
Age -0.001 0.008 0.933   
30s Chair Stands -0.007 0.007 0.341   
Trail Making -0.059 0.100 0.560   
BTrackS -0.011 0.005 0.027   
BDI II -0.015 0.009 0.121   
SOT 5 0.003 0.002 0.209   
SOT 6 0.004 0.004 0.401   
Fall*30s Chair 
Stands 0.003 0.011 0.761   
Fall*Trail Making 0.042 0.130 0.750   
Fall*BTrackS 0.100 0.006 0.107   
Fall*BDI II 0.014 0.016 0.382   
Fall*SOT 5 0.005 0.005 0.297   
Fall*SOT 6 -0.010 0.005 0.056   

Variable Coeff Std.Err. p 
Adjusted 

R2 AIC 
Intercept 1.397 0.501 0.009 0.709 5.58 
Fall 0.024 0.076 0.756   
Age 0.001 0.008 0.936   
30s Chair Stands -0.005 0.005 0.311   
Trail Making 0.009 0.072 0.898   
BTrackS -0.004 0.003 0.160   
BDI II -0.005 0.007 0.531   
SOT 5 0.004 0.002 0.056   
SOT 6 -0.005 0.002 0.049   
Note. Fall = group assignment, Trail Making = Part B / Part A, 
BTrackS = CoP path length, BDI II = Beck Depression Index II, SOT 
5 = Sensory Organization Test condition 5, SOT 6 = Sensory 
Organization Test condition 6. 
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Table 11. DFAα2 Model Results 

Variable Coeff Std.Err. P 
Adjusted 

R2 AIC 
Intercept 0.914 0.247 0.001 0.130 -42.73 
Fall -0.156 0.172 0.373   
Age -0.007 0.004 0.085   
30s Chair Stands 0.000 0.003 0.904   
Trail Making 0.003 0.043 0.947   
BTrackS -0.003 0.002 0.110   
BDI II -0.001 0.004 0.805   
SOT 5 0.001 0.001 0.321   
SOT 6 0.004 0.002 0.070   
Fall*30s Chair Stands 0.005 0.005 0.278   
Fall*Trail Making 0.020 0.056 0.721   
Fall*BTrackS -0.005 0.002 0.048   
Fall*BDI II 0.002 0.007 0.777   
Fall*SOT 5 0.001 0.002 0.694   
Fall*SOT 6 -0.004 0.002 0.064   
Note. Fall = group assignment, Trail Making = Part B / Part A, BTrackS = 
CoP path length, BDI II = Beck Depression Index II, SOT 5 = Sensory 
Organization Test condition 5, SOT 6 = Sensory Organization Test condition 
6. 

 

Figure 4. Simple Slopes for the Interaction of BTrackS Score and DFA α2 
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Discussion 

To confirm the relationship between HRV and fall risk, this study examined associations 

between intrinsic fall risk factors and HRV parameters in healthy, community dwelling older 

adult fallers and non-fallers. Participants self-reported whether they had experienced a fall during 

the 12 months prior to testing (n = 14 fallers, 77 ± 6.18 years, and n = 25 non-fallers, 72.48 ± 

4.46 years) and completed five assessments of intrinsic fall risk (BTrackS, SOT, 30s Chair 

Stands, Trail Making Test, and BDI-II) in a randomized order. Following lab-based assessments, 

HRV was assessed for 24 hours via a heart rate monitor chest strap in the free-living 

environment. Multiple regressions were used to examine associations between fall risk factors 

and HRV. 

For the dependent variable DFA α2, a significant interaction effect (p = 0.05) was 

observed for fall risk group and BTrackS test score (CoP displacement). Post hoc analysis 

demonstrated a significant negative association in non-fallers (p = 0.03) but not in fallers, 

suggesting that as non-faller’s CoP displacement increased (decrements in balance control), the 

value of DFA α2 decreased. Figure 4 depicts this interaction and demonstrates that there is a 

point at which path length and DFA α2 values begin to look similar for fallers and non-fallers.  

This interaction point may provide clinically important information regarding the point at which 

path length and DFA α2 may indicate increased fall risk. It is important to note that the BTrackS 

path length score was chosen above other CoP outcomes (e.g., velocity) because it is the 

outcome measure provided by the BTracks software and represents a clinical accessible measure. 

Additional CoP outcomes can be derived by performing computations on the raw data collected 

by the BTrackS force plate; however, this takes time and computational knowledge. 

Additionally, a normative data set for the BTrackS path length metric has been established with 
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16,357 community-dwelling individuals ranging from 5 to 100 years old (Goble & Baweja, 

2018) and can assist in determining abnormalities in postural sway.   

With regard to simple effects, a significant, negative effect of BTracks score on DFA α1 

was also observed (p = 0.03), with the simple effect of SOT condition 6 approaching significance 

(p = 0.06). In reduced models without interaction terms, SOT condition 6 was significantly, 

negatively associated with HF power (p = 0.04) and DFA α1 (p = 0.05). This suggests that as 

SOT condition 6 scores increased (better vestibular function) HF power and DFA α1 values 

decreased. Together, these findings demonstrate that alterations in postural control and vestibular 

function are represented in HRV parameters.  

Non-linear measures such as DFA α1 and α2 index the unpredictability of a time series, 

which results from the complex mechanisms that regulate a physiological system, such as the 

cardiovascular system. In alignment with our hypothesis, poor postural control was associated 

with depressed non-linear values. However, contrary to what was hypothesized, superior 

vestibular function was associated with depressed DFA α1 values. While stressors and disease 

can depress non-linear measurements, elevated values do not always represent ‘health’ (Shaffer 

& Ginsberg, 2017). For example, increased values of non-linear HRV metrics is an independent 

risk factor for mortality in post myocardial infarction patients (Stein & Reddy, 2005). Thus, with 

non-linear measures it is best to interpret the magnitude as opposed to the direction of the effect.  

In the current study, no effects for the intrinsic fall risk factors lower extremity strength 

(30s Chair Stands), executive function (Trail Making Test), or depression (BDI-II) on HRV were 

observed. These findings were surprising as previous work has demonstrated alterations in HRV 

in response to executive functions tasks and emotion regulation (Lane et al., 2009; Thayer & 

Lane, 2000). However, based on the BDI-II, no participants were categorized as having greater 
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than mild to moderate depression (score of 10-18 out of a possible 63). Thus, in the current 

sample, depression may not have impacted fall risk. Furthermore, while the ratio score of Trail B 

/ Trail A was chosen for its utility to assess executive function in older adults (Arbuthnott & 

Frank, 2000; Drane et al., 2002), the range of scores created may be too narrow to detect an 

effect. Future research should consider using Trail Making Test Part B as others have suggested 

that it is a more sensitive measure of cognitive flexibility (Kortte et al., 2002). Finally, regarding 

the 30s Chair Stand test, to identify fall risk research has suggested a cutoff score of <9.75 chair 

stands in 30s (Roongbenjawan & Siriphorn, 2020). All participants in both groups completed ≥ 

10 chair stands in the allotted 30s; therefore, this assessment may not have been sensitive enough 

to detect a difference between groups. Future research should consider using a more sensitive 

measure, such as isokinetic dynamometry, to assess lower extremity strength.  

In conclusion, this study observed significant associations between postural control and 

non-linear HRV indices, as well as vestibular function and non-linear HRV indices. These 

findings suggest that HRV may be a useful measure of fall risk as it is associated with prominent 

intrinsic fall risk factors. Additionally, in alignment with previous literature (Rubenstein, 2006), 

these findings support postural control and vestibular function as primary targets for fall 

prevention interventions. Caution should be taken when interpreting these results as corrections 

for multiple comparisons were not applied, increasing the risk for Type I error. Future research 

should consider assessing the utility of HRV to track changes in intrinsic fall risk factors 

following preventative interventions as this would further confirm HRV as a valuable fall risk 

assessment. Furthermore, future studies should examine association between intrinsic fall risk 

factors and HRV in depressed elderly and in older adults with impaired cognitive function to 

examine the influence of these factors on HRV and fall risk. 
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CHAPTER VII: SUMMARY 

 

Fall risk in the older adult population is identifiable and falls are preventable (Ambrose et 

al., 2013a; Sherrington et al., 2017), yet fall rates continue to increase. One potential reason for 

lack of attenuation in fall rate may be that traditional fall risk assessments fail to address the 

multidimensional nature of fall risk. Additionally, majority are the traditional measures are 

assessed in a controlled environment, negating the dynamic nature of falls. Advances in sensor-

based technologies provide opportunity to address these disparities by assessing physiological 

variables, such as HRV, in the free-living environment. To this end, the purpose of this 

dissertation was to investigate HRV as an assessment of fall risk in community dwelling older 

adults. To do so, three separate studies were conducted. The first study examined differences in 

HRV indices recorded over a 24-hour period in older adults with a history of falls and those with 

no history of falls. The second study compared the discriminative ability of HRV metrics and 

traditional fall risk assessments to correctly identify older adults with a history of falls and those 

with no history of falls. Finally, to confirm HRV as a measure of fall risk, association between 

intrinsic fall risk factors and HRV were examined.     

The findings of study one suggest that the HRV time-domain metric SDNN may provide 

clinically relevant information to differentiate older adults with a history of falls and non-fallers. 

In alignment with these findings, the results of study two suggest that in community dwelling 

older adults, SDNN may be a more accurate measure of fall risk compared to traditional fall risk 

assessments. However, SDNN did exhibit a high rate of false positives. Finally, results of 

manuscript three demonstrated that the HRV metrics DFA α1 and α2 may be associated with 
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postural control and vestibular function. The association of HRV with prominent intrinsic fall 

risk factors advocates for HRV as a useful measure of fall risk. 

The current study is not without limitations. First, caution must be taken when 

interpretating findings due to the small sample, and thus reduced statistical power to detect an 

effect. Second, the current sample was a healthy, community-dwelling population and many of 

the reported falls occurred during high intensity activities (e.g., playing pickle ball, while 

dismounting a bike, when hiking). As a result, both groups (fallers and non-fallers) appeared 

similar regarding fall risk (e.g., scores on traditional fall risk assessments and intrinsic fall risk 

factors) and may not accurately represent fall risk in the general population.   

Future studies examining HRV and fall risk should consider including a more diverse 

older adult population, including individuals with diagnosis of age-related diseases known to 

impact fall risk. To improve the specificity of HRV assessment, future studies should also 

consider employing a time-threshold method, where an alert is triggered after a certain period 

when a parameter (e.g., SDNN) is above or below a threshold point. Additionally, the accuracy 

of HRV measures to assess fall risk may be improved by investigating prospective as opposed to 

retrospective falls. Finally, to further confirm HRV as a valuable fall risk assessment, future 

research should consider assessing the utility of HRV to track changes in intrinsic fall risk 

factors following preventative interventions.
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