
HAYES, VICTORIA, M.A. The Evolution of Cooperation: A Recreation of
Axelrod’s Computer Tournament. (2017)
Directed by Dr. Jan Rychtář. 70 pp.

The iterated Prisoner’s Dilemma is a commonly studied game in Game

Theory. Many real life situations, such as trench warfare during World War I, can

be modeled by such a game. Robert Axelrod implemented a computer tournament

in order to determine the best strategy during repeated interactions. Various

entries, ranging from very simple to very sophisticated strategies, competed in his

tournament. We recreate the tournament using the programming language Matlab

and examine the results. Although our results are not entirely identical to Axelrod’s

results, we confirm Axelrod’s general findings. In particular, in order for a strategy

to be successful, it should be nice, forgiving, relatively easy to understand by its

opponents and also retaliatory.

THE EVOLUTION OF COOPERATION: A RECREATION OF AXELROD’S

COMPUTER TOURNAMENT

by

Victoria Hayes

A Thesis Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Arts

Greensboro
2017

Approved by

Committee Chair

To my Lord for giving me the strength to do what I could not do by myself.

ii

APPROVAL PAGE

This thesis written by Victoria Hayes has been approved by the following

committee of the Faculty of The Graduate School at The University of North

Carolina at Greensboro.

Committee Chair
Jan Rychtář

Committee Members
Sat Gupta

Sebastian Pauli

Date of Acceptance by Committee

Date of Final Oral Examination

iii

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Dr. Jan Rychtář for

the useful comments, remarks and engagement through the learning process of this

master thesis. Furthermore, I would like to thank my committee members, Dr. Sat

Gupta and Dr. Sebastian Pauli for taking the time to read my thesis, and for their

help and support. Also, I would like to thank my peers for their continual positive

reinforcement as I worked on writing the code for our tournament. I would like to

thank my loved ones, who have supported me throughout entire process. I will be

grateful forever for your love.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

CHAPTER

I. AN INTRODUCTION TO GAME THEORY 1

1.1. Basic Definitions . 1
1.2. Prisoner’s Dilemma . 3

II. FIVE RULES FOR THE EVOLUTION OF COOPERATION 6

2.1. Kin Selection . 7
2.2. Direct Reciprocity . 7
2.3. Indirect Reciprocity . 9
2.4. Network Reciprocity . 9
2.5. Group Selection . 10

III. AXELROD’S ORIGINAL TOURNAMENT . 12

3.1. Background to Axelrod’s Tournament 12
3.2. The Computer Tournament . 13
3.3. The Collective Stability of TFT . 18
3.4. Live-and-Let-Live in WWI . 20

IV. RESULTS OF OUR COMPUTER TOURNAMENT 25

V. CONCLUSIONS . 33

REFERENCES . 34

APPENDIX A. A RECREATION OF AXELROD’S TOURNAMENT 35

APPENDIX B. DESCRIPTIONS OF STRATEGIES IN AXEL-
ROD’S TOURNAMENT . 67

v

LIST OF TABLES

Page

Table 1. Payoff Matrix for Rock-Paper-Scissors . 3

Table 2. Payoff Matrix for Tucker’s Prisoner’s Scenario 4

Table 3. Payoff Matrix for Axelrod’s Tournament . 14

Table 4. Tournament Results: First Tournament . 15

Table 5. Best Results . 27

Table 6. Worst Results . 29

Table 7. Average Results . 31

vi

CHAPTER I

AN INTRODUCTION TO GAME THEORY

1.1 Basic Definitions

Conflict has been widespread throughout the whole of human history. When

two or more individuals have different values or goals, they will compete for control

over the events, and thus conflict appears. Game theory uses mathematics to study

such situations. Its study was greatly motivated in 1944 by the publication of

Theory of Games and Economic Behavior by John Von Neumann and Oskar

Morgenstern [TCB09]. We begin with some basic definitions:

Definition 1.1 ([Sta99]). A game is said to be a situation or conflict between

individuals.

Definition 1.2. The participants in a game are called players.

While there are numerous types of games that model interactions between

individuals, we limit our discussion to 2-player games. In particular, we will focus

primarily on a 2-player game known as the Prisoner’s Dilemma. This game will be

discussed in detail in a section 1.2.

Just as when you sit down to play a board game with your friends, players in

a game must have a strategy to follow in order to win the game. In game theory, a

player is not said to win or lose the game, but rather a strategy can be successful or

unsuccessful toward a particular goal.

1

Definition 1.3. In game theory, a strategy is a specification of what to do in any

given situation.

The success of a player’s strategy in a given game is measured by a payoff.

The payoff is equivalent to the score that a player earns in a particular game. The

payoff is often represented in a payoff matrix.

A very common two player game is Rock-Paper-Scissors. Consider two

players Ruth and Charlie. Saul Stahl [Sta99] gives an explicit description of this

childhood game:

Ruth and Charlie face each other and simultaneously display their hands
in one of the following three shapes: a fist denoting a rock, the forefinger
and middle finger extended and spread to as to suggest scissors, or a
downward facing palm denoting a sheet of paper. The rock wins over the
scissors since it can shatter them, the scissors win of the paper since
they can cut it, and the paper wins over the rock since it can be
wrapped around the latter.

The payoff matrix for Rock-Paper-Scissors game is shown in Table 1. For

each time the game is played, each player will earn either one point for winning, lose

one point for losing, or earn zero points in the case of a tie. The payoffs are

represented by ordered pairs. The first coordinate of the ordered pair is the payoff

for the row player (in this case, Ruth) and the second coordinate is the payoff of the

column player (Charlie). For example, in the first row and second column of the

payoff matrix we see the ordered pair (-1, 1), which is the payoff for when Ruth

plays rock and Charlie plays paper. The -1 in the ordered pair indicates that Ruth

earns a score of -1 because she loses when she plays rock against paper. Analogously,

the 1 in the ordered pair tells that Charlie earns 1 point because paper beats rock.

2

Table 1. Payoff Matrix for Rock-Paper-Scissors: Here the ordered pair (-1,

1) in the rock row and the paper column indicates a payoff of -1 to Ruth and 1 to

Charlie provided that Ruth Played rock and Charlie played paper.

Charlie
Rock Paper Scissors

Rock (0,0) (-1, 1) (1, -1)
Ruth Paper (1, -1) (0, 0) (-1, 1)

Scissors (-1, 1) (1, -1) (0, 0)

Notice that the sum of each ordered pair in Table 1 is zero. This indicates

that Rock-Paper-Scissors is a zero-sum game. In a zero-sum game, one players win

is the other player’s loss. Not all games are zero-sum games. In nonzero-sum games,

the payoff may be a measurable amount as in zero-sum games or it may be

something abstract such as one-upmanship, which is a loss of face [Sta99].

1.2 Prisoner’s Dilemma

We discuss a particular nonzero-sum game, the Prisoner’s Dilemma.

Definition 1.4. A nonzero-sum game is said to be non-cooperative if the players do

not communicate with each other about ways and methods to improve their payoff

[Sta99].

The Prisoner’s Dilemma game is a non-cooperative, nonzero-sum game. This

game was first given its name by a Princeton mathematician, Albert W Tucker, in

1950 [TCB09]. Consider the following scenario:

3

Table 2. Payoff Matrix for Tucker’s Prisoner’s Scenario: Here the ordered

pair (-5, -5) in the Keep Quiet row and the Keep Quiet column indicates a payoff of

-5 to both prisoners, where the negative represents the length of the prison sentence.

Keep Quiet Testify
Keep Quiet (-5, -5) (-15, 0)
Testify (0, -15) (-10, -10)

You and a partner are arrested and held in connection with a certain
robbery. There is not enough evidence to convict you of armed robbery,
but the authorities separate you and your partner for questioning in
hopes that you will confess to the armed robbery. You have the choice to
testify against your partner for a reduced sentence or remain quiet.

Table 2 is the payoff matrix for the scenario. The payoff is in terms of the

length of the prison sentence, where the sentence is represented by a negative

integer. As described in the scenario, you have two choices: keep quiet (cooperate)

or testify (defect). No matter what your partner chooses, your payoff will be greater

if you choose to defect. However, overall, the payoff is better if both cooperate.

Hence, the dilemma!

We can study the interaction of persons who are not prisoners, and this can

still be modeled by a Prisoner’s Dilemma game similar to the scenario above. The

value of the payoff will be different depending on the specifics of the game.

Regardless of the actual values of the payoff, certain factors remain the same:

• There is a reward for mutual cooperation.

• There is a sucker’s payoff for the player who cooperates when the opponent

defects.

4

• There is a temptation to defect for the player who defects when the opponent

cooperates.

If you will only meet your opponent once in such a game, then it pays to take

advantage of the cooperation of your opponent and defect. However, you run the

risk of your opponent implementing the same strategy, and then both players will be

punished with a lesser payoff.

When two players engage with each other more than once in a row, and the

players are able to remember the previous moves of the other player, the game

becomes an iterated Prisoner’s Dilemma. While the overarching principles are the

same, a more complex strategy may be needed.

5

CHAPTER II

FIVE RULES FOR THE EVOLUTION OF COOPERATION

Martin A. Nowak proposes five rules for the evolution of cooperation: kin

selection, direct reciprocity, indirect reciprocity, network reciprocity, and group

selection [Now06]. We discuss these in more detail below. In the subsequent

chapters, we then put more emphasis on the direct reciprocity.

As will be seen in later sections, Nowak gives a simple rule for each strategy

that designates whether natural selection can lead to cooperation. Each rule is

based on certain parameters. The two most important parameters are those of cost

and benefit. One who cooperates pays a certain cost so that another individual may

receive a benefit. A person who is a defector will have no cost and will not pay out

any benefits. Cost and benefit are measured for each individual involved in terms of

fitness. In a mixed population of defectors and cooperators, it is evident that

defectors will have a higher average fitness than cooperators because they pay out

no benefits to others. In a mixed society, the cooperators may fade from the picture

eventually, leading to a population of defectors. In pure, unmixed populations, the

population of cooperators has the highest average fitness, and the population of

defectors has the lowest. Thus, while it may benefit an individual to defect in a

mixed society, this defection will most likely lead to the eventual disappearance of

cooperators. Then, that society will no longer be mixed, and will be a society of

defectors, with the lowest level of fitness. This is not conducive for the evolution of

6

the population. Therefore, cooperation is the preferable strategy for the

continuation of society.

2.1 Kin Selection

This first rule stems from the idea that natural selection will favor

cooperation if the individuals involved are genetic relatives. This rule of interaction

is known as Hamilton’s Rule. Hamilton’s rule takes into account a new parameter

called relatedness. Relatedness is the probability of sharing a gene. For example, the

probability that two brothers share a gene is 1
2
and the probability of two cousins

sharing a gene is 1
8
. So, we see that this rule is motivated by "selfish genes" that

wish to propel themselves [Daw16]. In order for individuals to cooperate with this

strategy, the relatedness must be greater than the cost-to-benefit ratio of the one

paying the benefit. Thus, natural selection will tend toward cooperation with this

rule:

r >
c

b
(2.1)

where r is the relatedness, c is the cost of the cooperation and b is the benefit of

cooperation.

2.2 Direct Reciprocity

Kin selection applies only to interaction of relatives. While it is a viable rule

for the evolution of cooperation in such a population of relatives, it is not sufficient

to only consider such relationships. Direct reciprocity is a mechanism for the

evolution of cooperation among individuals who are not related. This mechanism

works best in a scenario of repeated encounters between two individuals, where each

7

individual has the choice to cooperate or defect, otherwise known as the Prisoner’s

Dilemma as discussed in Section 3.1. In Axelrod’s computer tournaments simulating

such games of interaction, he found that a strategy of direct reciprocity called TFT

was the best strategy [Axe84]. TFT always begins with cooperation, and then it

does whatever the other player did in the previous round. Simple though it is, this

strategy came out on top for both of Axelrod’s tournaments. No strategy is perfect,

and so TFT has its own weaknesses. TIT FOR TAT cannot correct any mistakes.

For example, if the other player accidentally defects, this may lead to a long line of

retaliation from the player using the TFT strategy. A slight variation of TFT, the

GENEROUS TIT FOR TAT strategy allows the player to cooperate sometimes

following a defection. This idea of forgiveness is crucial to move toward cooperation.

In time, TFT was replaced by an even simpler rule of engagement, WIN-STAY,

LOSE-SHIFT. This rule says that you will repeat your previous move when you are

"winning," but you will change your move otherwise. With these two rules of direct

reciprocity, TFT is still effective at leading toward cooperation in a society where

most individuals are defectors. However, once cooperation is established, the best

rule to follow is WIN-STAY, LOSE-SHIFT.

Regardless of the actual strategy being used, direct reciprocity may lead

natural selection to the evolution of cooperation if the probability of another

encounter with the same two individuals is high enough. This probability is denoted

by w. Again, this probability must exceed the cost-to-benefit ratio. Natural

selection will favor cooperation with the rule:

w >
c

b
(2.2)

8

2.3 Indirect Reciprocity

Direct reciprocity is a good rule to follow when there are repeated

interactions among the same individuals. However, it is more likely for interactions

among people to be fleeting. In direct reciprocity, both individuals must be able to

provide help. With indirect reciprocity, one person is in a position to help another

individual, but the individual receiving the benefit has not opportunity to

reciprocate the act. This can be seen in society in our donations to charities. The

fuel behind indirect reciprocity is reputation. When one person helps another, it

establishes a good reputation for the donor. This good reputation is noted by others

in the population, and it may be rewarded by others. As a result, individuals will

tend toward cooperation if the probability of knowing someone’s probability is good

enough. The probability of knowing one’s reputation is denoted by q. This rule

seems like a selfishly motivated rule of operation, and in fact it is. Indirect

reciprocity will only promote the evolution of cooperation if the following rule is

satisfied:

q >
c

b
(2.3)

2.4 Network Reciprocity

The argument has been made that natural selection will tend toward

defection in a mixed population [Now06]. This conclusion is based on the idea that

everyone in the population interacts equally with every other member in the society.

While this is possible, it is not likely to happen in human populations. Most

populations are not well-mixed. This leads to another evolutionary approach to

9

analyzing these interactions–evolutionary graph theory. In this approach, the

individuals in a society are represented by the vertices of the graph. The edges

represent the interactions with others. In the simplest of terms with cooperators

and defectors, we see that cooperators pay a cost for the neighbor to receive a

benefit. Defectors pay no cost and their neighbors receive no benefits. In these

terms, cooperators will form network clusters, and so cooperation prevails. This is

network reciprocity. Network reciprocity introduces another parameter into the

equation, and that is the average number of neighbors that an individual has. The

average number of neighbors is called k. For natural selection to lead to

cooperation, the benefit-to-cost ratio must be greater than the average number of

neighbors. Hence, we see cooperation with this simple rule:

b

c
> k (2.4)

2.5 Group Selection

Thus far, we have viewed natural selection as it acts upon individuals. In

turn, the individuals shape society. Selection also acts on groups as a whole. This

method for the evolution of cooperation uses a simple model of society divided in

different groups. Cooperators will help others in their group. Defectors help no one.

An individual reproduces proportional to their payoff. Offspring are added to the

same group. Groups may split in two if the population of the group reaches a

certain size. As a result of the creation of this new group, another group will

become extinct to limit the total population size. As a result, there is competition

between groups because certain groups grow faster than others, and thus split more

10

often. As a general rule, pure cooperator groups grow faster than pure defector

groups. In mixed groups, individuals who defect will increase faster than

cooperators. This may eventually lead to the group becoming pure defectors. Using

this simple model, letting n be the maximum group size and m is the number of

groups, we find another simple rule for the evolution of cooperation:

b

c
> 1 +

n

m
(2.5)

11

CHAPTER III

AXELROD’S ORIGINAL TOURNAMENT

3.1 Background to Axelrod’s Tournament

Interactions among individuals–whether the individuals are cells, animals, or

humans–occur all the time. These relationships have been studied across many

disciplines. In Prisoner’s Dilemma game, these individuals have two choices:

cooperate or defect. The innate tendencies of individuals are to be selfish. This

selfishness may lead to cooperation or defection depending on the payoff to the

individual. Studies have indicated that cooperation leads to the better payoff for all

involved over time [Axe84,Now06]. From an evolutionary perspective, cooperation is

imperative if the natural evolution process will construct new levels of organization

[Now06]. While all societies are based on cooperation, human society is the one

society that engages in the most complex games of interaction. In the lens of

natural selection, competition is the leader in motivation for behaviors, and this

competition naturally opposes cooperation. Nevertheless, it holds true that

cooperation is necessary to construct the new levels of organization in society, and

so there must be some strategies that will push individuals to cooperation.

In 1980, Robert Axelrod implemented a project that stemmed from one

simple question: When should a person cooperate or be selfish in an ongoing

interaction with another person? This type of situation can be represented by an

iterated Prisoner’s Dilemma game.

12

Many real life situations may be modeled by such a game, and Axelrod set

out to determine the best strategy to use in such situations. He invited experts in

game theory to submit programs for a computer Prisoner’s Dilemma tournament.

Fourteen entries were sent in as contenders in Axelrod’s computer tournament. In

the first tournament, he ran the fourteen entries and a random rule against each

other and determined a winner. After the initial tournament, the results were

circulated and another tournament took place. The same strategy surfaced as the

winner again. The winner for both tournaments was a program called TIT FOR

TAT (TFT), which is a strategy that begins with cooperation, and thereafter

returns what the other player did on the previous move. The specifics of the

tournament are discussed in the following section.

3.2 The Computer Tournament

Axelrod’s computer Prisoner’s Dilemma tournament set out to determine

how to choose effectively in an iterated Prisoner’s Dilemma situation. His

tournament was set up as a round robin, where each entry was paired with each

other entry. Each entry was also paired with its twin and with RANDOM, which

was a strategy that chose randomly to cooperate or defect with equal probability.

Each game involved 200 moves. The payoffs were as follows:

• Mutual cooperation resulted in both players earning the reward of 3 points.

• Mutual defection resulted in both players earning the punishment of 1 point

each.

13

Table 3. Payoff Matrix for Axelrod’s Tournament: Here the ordered pair (3,

3) in the Cooperate row and the Cooperate column indicates a payoff of 3 to both

players.

Cooperate Defect
Cooperate (3, 3) (0, 5)
Defect (5, 0) (1, 1)

• If one player cooperated and the other defected, the one who cooperated

would earn 0 points – known as the sucker’s payoff, while the one who

defected would earn 5 points – known as the temptation to defect.

TFT was the simplest of all the programs submitted to the tournament, and

it proved to be the best overall. In a second tournament, other entries were

submitted that were based upon TFT, but even with their attempts to improve it,

TFT still won. However, all of the strategies that were top runners in the

tournament had something in common with TFT. The best strategies share the

property of being nice. A strategy is nice if it is never the first to defect, or to say it

will not be the first to defect before the last few moves. See Table 4 for the results

from the first tournament.

14

Table 4. Tournament Results: First Tournament: Here the number 214 in the Joss row and the Tideman

indicates Joss’s score when playing a game with 200 moves against Tideman. Other numbers are to be interpreted

similarly.

Strategy TFT Tideman Nydegger Grofman Shubik Stein & Rap Friedman Davis Graaskamp Downing Feld Joss Tullock Unnamed Random Average Score
TFT 600 595 600 600 600 595 600 600 597 597 280 225 279 359 441 504
Tideman 600 596 600 601 600 596 600 600 30 601 271 213 291 455 573 500
Nydegger 600 595 600 600 600 595 600 600 433 158 354 374 347 368 464 486
Grofman 600 595 600 600 600 594 600 600 376 309 280 236 305 426 507 482
Shubik 600 595 600 600 600 595 600 600 348 271 274 272 265 448 543 481
Stein & Rap 600 596 600 602 600 596 600 600 319 200 252 249 280 480 592 478
Friedman 600 595 600 600 600 595 600 600 307 207 235 213 263 489 598 473
Davis 600 595 600 600 600 595 600 600 307 194 238 247 253 450 598 472
Graaskamp 597 305 462 375 348 314 302 302 588 625 268 238 274 466 548 401
Downing 597 591 398 289 261 215 202 239 555 202 436 540 243 487 604 391
Feld 285 272 426 286 297 255 235 239 274 704 246 236 272 420 467 328
Joss 230 214 409 237 286 254 213 252 244 634 236 224 273 390 469 304
Tullock 284 287 415 293 318 271 243 229 278 193 271 260 273 416 478 301
Unnamed 362 231 397 273 230 149 133 173 187 133 317 366 345 413 526 282
Random 442 142 407 313 219 141 108 137 189 102 360 416 419 300 450 276

15

Each of the top eight rules in the tournament were nice rules. The factor

that sets apart the top eight entries was their interaction with strategies that were

not nice. There were two strategies called kingmakers that made the biggest

difference among the top eight entries in the tournament.

DOWNING is the most important kingmaker. It focuses on "outcome

maximization" [Axe84]. The reasoning behind DOWNING is very different from

that of TFT. It is based on understanding what the other player will decide to do.

If the other player seems responsive to the choices that DOWNING makes, then

DOWNING will cooperate. On the other hand, if the other player does not seem to

be responsive to DOWNING’s choices, then it will lean toward the advantage that

comes from defecting. To make these decisions about the responsiveness of the other

player, DOWNING estimates two different conditional probabilities: the probability

that the other will cooperate given that DOWNING cooperates, and the probability

that the other will cooperate given that DOWNING defects. It then chooses the

probability that will maximize the long term payoff. Since DOWNING has no

conditional probabilities to begin with, it begins with an initial assumption that the

other player will be unresponsive. This forces it to defect for the first two moves.

Depending on the other strategy, DOWNING could be doomed to punish itself, or

against certain opponents, such as TFT, it learns to be cooperative. In our

recreation of the tournament, this error is corrected, and we implement a revised

version of DOWNING that does not defect on the first two moves, but rather it

begins with the assumption that the opponent will be responsive.

Another important factor in the success of a nice rule is the idea of

forgiveness. Forgiveness is the idea of cooperating following a defection by the other

16

player. The nice rules that were least forgiving did not do as well as TFT. One such

entry that was lacking in forgiveness was FRIEDMAN. FRIEDMAN is a totally

unforgiving rule that uses permanent retaliation. It will never be the first to defect,

but once the other player defects, it will defect every time. In comparison to the

winner, TFT is unforgiving for one move, but then it is totally forgiving of that

defection.

While TFT reigned supreme in the tournament, there do exist certain

strategies that were not in the tournament that could have won had they entered

[Axe84].

TIT FOR TWO TATS is a strategy that defects only if the other player had

defected on the two previous turns. This makes it more forgiving than TFT, and it

proves that being more forgiving contributes to a higher payoff.

LOOK AHEAD was used in Axelrod’s preliminary tournament, and was the

winner of that preliminary. LOOK AHEAD is a rule that is inspired by techniques

used in artificial intelligence programs in playing chess.

There is one unlikely contender for the top spot in the tournament, and that

is a slight variation on DOWNING. If it had begun with an initial assumption that

the other player would be responsive instead of unresponsive, then DOWNING

could have been a winner of the tournament. However, as it is, DOWNING is a

pessimistic rule, and it therefore suffers the consequences.

In the second round of the tournament, there were strategies that used a

controlled number of defections. These "not nice" strategies were big indicators in

the level of success of the nice strategies. Two such strategies were TESTER and

TRANQUILIZER. TESTER is written to exploit the other player. It always defects

17

for the first move. If the other player ever defects, TESTER apologizes by

cooperating for the next move, and then plays TFT for the remaining moves of the

game. Otherwise, it cooperates on the second and third moves and then defects for

every move afterward. As a result, TESTER does not score well, but it does do a

good job at exploiting some of the nicer rules.

TRANQUILIZER is a rule that is somewhat sneaky. Initially, it tries to

establish a mutually rewarding relationship. Once the rewarding relationship has

been established, it will try to exploit the other player. TRANQUILIZER will

cooperate for the first couple dozen moves as long as the other player is cooperating.

Then, it will attempt an unprovoked defection. TRANQUILIZER will never defect

twice in a row, and it will not defect more than one-fourth of the time.

While it was shown that TFT was the winner of Axelrod’s two computer

tournaments, that does not guarantee that it is the best strategy to employ in every

situation. Through strong testing including hypothetical tournaments, TFT proved

itself to be the winner again. Also, through ecological tests, TIT FOR TAT

remained at the top of the list. Consequently, it can be said that TFT is a robust

strategy. That is, it would be successful in a wide variety of environments. The

reasons for TFT’s robust nature stem from its combination of niceness, forgiveness,

retaliation, and clarity. Clarity allows the other player to recognize it for what it is,

and appreciate its behavior and lack of exploitability.

3.3 The Collective Stability of TFT

Axelrod’s computer tournament indicated that TFT would thrive as a

strategy. It follows that eventually all players might adopt the strategy. If this

happened, would there ever be a need to use an alternative strategy? If an

18

alternative rule is able to infiltrate a population using a single strategy, and it is

able to score higher than the population average, then that alternative rule is said

to have invaded the population. If a particular strategy cannot be invaded, it is said

to be collectively stable. Thus arises the question of the stability of TFT. Axelrod

states a proposition about the collective stability of TFT.

Proposition 3.1 ([Axe84]). TIT FOR TAT is collectively stable if and only if the

probability of the game ending is small enough.

The current move in a game always carries more weight than a future move

because there is no guarantee of a future move. Now, we are faced with deciding

what is "small enough." Axelrod discovered that if the probability to end is 1
3
or

smaller, then TFT is collectively stable. If the probability grows to over 1
2
, then

TFT is no longer stable, and it would be best to defect every move [Axe84].

Through analysis of Axelrod’s tournament, there are four suggestions for how

to do well in an iterated Prisoner’s Dilemma:

(1) Don’t be envious (Forgive).

(2) Don’t be the first to defect (Be nice).

(3) Reciprocate both cooperation and defection (Retaliate).

(4) Don’t be too clever (Have clarity).

It is clear that TFT abides by all four of those guidelines, and so it is easy to

see why it is such an effective strategy. Therefore, implementation of a strategy

similar to TFT can lead to the evolution of cooperation in a population.

19

3.4 Live-and-Let-Live in WWI

During World War I, along the Western front in Europe, a level of

cooperation emerged among members of opposing armies. Trench warfare was very

common, and along the Western front there were many gruesome battles. However,

in between battles, a philosophy developed among the soldiers. Soldiers in opposing

armies could be clearly seen walking within shooting distance behind their

respective lines, yet no one was shot. The men in those trenches had adopted a

"live-and-let-live" philosophy. This policy among soldiers thrived, despite all the

efforts of Senior officers. The idea of "live-and-let-live" contradicts military logic.

The cooperation between enemies persisted when it should have never existed in the

first place.

While it may not appear to be as such, the interaction between two small

units in a quiet section along the Western front is a Prisoner’s Dilemma. Each unit

is a player and the choices in the game are to shoot to kill or to shoot in a manner

that does not inflict damage. The dilemma stems from the fact that if a major

battle should arise, one army would want the enemy’s army to be weakened prior to

battle. Thus, when looking at the short term goals, it may be wise to shoot to kill

whether the enemy is returning fire or not. This leads to the idea that mutual

deflection may be ideal in the short term. This mutual deflection is better for an

army than unilateral restraint, unless it is the opponent’s army that restrains

[Axe84]. As a result, both sides would prefer mutual restraint to random acts of

aggression between the units.

The different units interacted with each other for extended periods of time.

So, just as in the earlier discussion of interaction among players, while defection

20

may benefit a player in the short term, strategies develop for interaction over an

extended period of time. What we have here is the evolution of cooperation between

the players. The choices and behaviors of the units in the trenches in World War I

support the expected outcomes from game theory. Just as TFT was a successful

strategy that implemented cooperation that was based upon reciprocity, the

"live-and-let-live" strategy operates in the same manner. Both sides would mutually

restrain themselves and keep from shooting to kill. If there was a defection, and one

army caused the death of some soldiers, then the opposing army would retaliate

causing damage that was comparable or sometimes slightly more devastating. Then,

the two armies would slip back into a state of cooperation.

Where did such cooperation first develop among enemies? The early battles

of World War I were very mobile and very destructive. As time progressed, the

enemy lines stabilized. The result was trenches along the front lines for opposing

armies with an empty "no man’s land" in between the front lines. According to

diary entries of soldiers, the cooperation developed quite spontaneously in many

different places along the Western front. The initial cases of such cooperation are

connected with common meal times. It became obvious to the soldiers in the

trenches that the enemies across the way must have been partaking in a similar

routine at the same time because things were quiet on both sides. Eventually,

communication began between the units, and truces were made. One such famous

verbal truce was the Christmas truce during the first Christmas in the trenches.

However, such verbal truces were quickly and easily punished. Other factors, such

as inclement weather contributed to the evolution of cooperation among enemies.

Certain weather conditions made it impossible to shoot at each other. If that

21

condition lasted long enough, then the cooperation sometimes continued after the

weather cleared. Ultimately, the biggest contributor to the development of the

"live-and-let-live" mentality was the idea of self-preservation. Soldiers knew that

their enemies shared the same needs as they did. The armies learned that a

unilateral attack would just result in retaliation from the other side. However,

restraint on one side would most likely result in restraint on the other side. Then

everyone involved would be able to live to fight another day.

Once started, the cooperation among enemies could easily spread from troop

to troop, down the line. One reason that cooperation was so sustainable was

because opposing armies made it clearly known that they could retaliate if

necessary. In a sense, each army would "flex their muscles" in an attempt to prove

that they were a worthy opponent that should not be reckoned with. The strategy

of "live-and-let-live" continued on in the trenches even as battalions would change

out since the soldiers moving out of the trench were familiar with the soldiers

moving in the trench. The agreements and policies would be passed along like a

legacy to the new soldiers who would occupy the front lines.

The "live-and-let-live" policy could not last forever (else, we would still be in

World War I). Military officials instituted a type of attack known as the raid. A raid

was a carefully planned attack on an enemy’s trench. A successful raid would collect

prisoners, while an unsuccessful raid would collect bodies. Either way, there would

be evidence of an attack. Unlike when soldiers could pretend to shoot to kill, when

in fact they were shooting to avoid inflicting damage, soldiers could not pretend to

implement a raid. Thus, this new strategy quickly brought an end to the

camaraderie in the trenches.

22

When examining the "live-and-let-live" strategy, cooperation did not evolve

through blind mutation or survival of the fittest. This strategy developed as the

result of conscious decisions made by the players to cooperate on the basis of

reciprocation [Axe84]. The strategy did not thrive because of survival of the fittest

because even with a poor strategy in place, soldiers could easily be replaced, and

the unit would still remain in its location in the trenches. The surviving presence of

the players on both sides had nothing to do with the particular strategies

implemented by those on the front lines.

The "live-and-let-live" strategy follows the theory of the evolution of

cooperation, but there are two new developments that arise from this particular

method: ethics and ritual. In time, the interactions between the two opposing units

led to the development of concern for the fellow human being. Soldiers did not want

to violate an agreement of trust, nor did they want to see another person hurt.

Through extended interaction, the values and payoffs changed for the players. After

persistent cooperation, the payoff for this mutual cooperation became higher than it

initially was for the units. The raids brought out more ethics among the players. A

soldier feels an obligation to retaliate for a fallen comrade, and so revenge resulted

from the raids. Revenge drove soldiers to retaliate.

The other development that follows from "live-and-let-live" is the

development of rituals. What is meant by rituals in the trenches? Since both sides

agreed not to shoot to kill, the use of artillery was limited and used in a manner

that would be less than effective. Additionally, the smaller arms were used more

often in warfare. Also, different armies would follow a regular schedule when

attacking targets. This allowed the opposing army to know when and where the

23

attack would take place so that the army could protect its soldiers and equipment

from such an attack. Another purpose for the rituals was to satisfy the higher

military authorities. Such attacks appeared to be aggressive acts of war, and so the

superiors were satisfied. However, with such precision and regularity, the attacks

were a beacon of peace to the enemy army on the other side.

24

CHAPTER IV

RESULTS OF OUR COMPUTER TOURNAMENT

In the Appendix A, we include our Matlab code for the recreation of

Axelrod’s computer tournament. We have written two different programs: one that

replicates the computer tournament, and one that analyzes the results from the

tournament. The code for the actual computer tournament is modified from a file

written by Mark Broom and Jan Rychtář [BR13]. The descriptions for the

strategies originate from The Axelrod Library [KCH+17]. Dr. Jan Rychtář and Dr.

Sebastian Pauli contributed to the writing and revision of these programs.

In Section A.1 we include the code that is a recreation of Axelrod’s original

computer tournament. The code includes all fourteen of the original entries in the

tournament, as well as the RANDOM strategy. Our computer tournament is a

round robin tournament, where each game consists of 200 moves. In the program,

you are given the option to determine how many times you wish to play the

tournament. We played the tournament 1,000 times.

There are some slight variations in our code from the original computer

tournament. The most notable change is to the DOWNING strategy. In our code,

we write a revised DOWNING strategy. In the original strategy, DOWNING was a

pessimistic strategy that assumed that its opponent would not be cooperative.

Because of this fact, DOWNING did not perform well in the first computer

tournament. In Table 4, we see that DOWNING came in tenth place overall.

Axelrod suggested that if DOWNING initially assumed that its opponent was

25

cooperative, then it could potentially be the winner of the computer tournament

[Axe84]. We followed this suggestion and made the appropriate adjustments to our

DOWNING rule.

Section A.2 includes the code used to perform data analysis on the

computer tournaments that were played using the code in Section A.1. The code

produces three different spreadsheets: best, worst, and average. The best

spreadsheet displays the best scores earned against each opponent in each of the

1,000 tournaments. It also includes the best average score that was attained by each

strategy in the tournament. In addition, the best spreadsheet gives the best overall

ranking for each strategy. This is useful because it allows us to easily see how the

strategies ranked against each other. Similarly, the worst and average spreadsheets

give the worst scores and average scores, respectively.

The results from our computer tournament differ from Axelrod’s tournament

in several ways. TFT did not do as well in our tournament. In Table 5 we see that

the best that TFT ranked in any of the 1,000 tournaments was second place. TFT

even did as poorly as ninth place, and on average TFT ranked at about 6.7 out of

15. TFT’s lack of success in our computer tournament may be attributed to a

couple of factors. Several of the competing strategies make decisions about

cooperation and defection at some given probability. That element of chance can

greatly affect the outcome when playing a game versus TFT. In effect, one could

argue that TFT was simply lucky in Axelrod’s two computer tournaments. To be

more accurate, TFT’s success in Axelrod’s first tournament is due largely in part to

the kingmakers [RSC15]. DOWNING was a major kingmaker in the original

tournament, and with the newly revised DOWNING, this characteristic is changed.

26

Table 5. Best Results: Here the number 594 in the Downing row and the Stein column means that out of all

1,000 runs of the tournament, the best score that Downing achieved while playing against Stein was 594 points.

Also, the best average score that Downing earned in all 1,000 tournaments was 548.7 and the best ranking was 1.

Other numbers are to be interpreted similarly.

TFT Tideman Nydegger Grofman Shubik Stein Grim Davis Graaskamp Downing Feld Joss Tullock Unnamed Random Average Order
TFT 600 600 600 600 600 595 600 600 525 600 244 210 561 469 490 518.1 2
Tideman 600 600 600 600 600 595 600 600 596 600 260 211 565 568 616 535.9 1
Nydegger 600 600 600 600 600 594 600 600 582 600 378 108 579 312 377 503.5 5
Grofman 600 600 600 600 600 595 600 600 650 600 373 172 559 422 505 523.3 2
Shubik 600 600 600 600 600 595 600 600 740 600 260 217 410 560 630 532.6 1
Stein 600 600 604 604 600 596 600 600 522 604 239 210 588 605 655 536.1 1
Grim 600 600 600 600 600 595 600 600 303 600 235 207 373 599 693 507.9 4
Davis 600 600 600 600 600 595 600 600 303 600 231 209 371 580 681 509.3 4
Graaskamp 525 586 656 614 551 522 303 303 610 658 349 146 574 559 629 478.5 10
Downing 600 600 600 600 600 594 600 600 588 600 393 209 582 593 674 548.7 1
Feld 249 296 840 621 302 244 235 236 669 798 227 209 281 535 589 399 11
Joss 215 284 984 680 282 222 210 238 744 257 212 209 267 617 677 389.5 11
Tullock 566 560 668 611 430 578 363 351 632 666 249 206 468 487 529 410.6 11
Unnamed 469 405 880 631 280 429 156 177 705 589 325 195 436 492 564 384.5 11
Random 495 472 848 617 269 485 141 154 679 802 353 183 474 454 554 379.8 13

27

In Table 6, we see that DOWNING’s worst average score in our 1,000

tournaments was 511.8. In particular, the worst that DOWNING ever scored in a

game occurred when playing against JOSS, and DOWNING scored only 198 points.

Even so, the worst that DOWNING ever did in our tournament was fourth place. In

fact, DOWNING’s best average score in our computer tournaments was

approximately 549. The benchmark for success for a good strategy in a game with

200 moves is a score of 600. A score of 600 is achieved when both players cooperate

with each other on every move. The success of the revised DOWNING confirms

Axelrod’s assumption that DOWNING would become a contender for the top spot

in the tournament if it was altered to become more optimistic. With a slight

revision, DOWNING transforms from a tenth place kingmaker to a tournament

champion.

28

Table 6. Worst Results: Here the number 525 in the TFT row and the Graaskamp column means that out of

all 1,000 tournaments, the worst score that TFT achieved while playing against Graaskamp was 525 points. Also,

the worst average score that TFT earned in all 1,000 tournaments was 490.5 and the worst ranking was 9. Other

numbers are to be interepreted similarly.

TFT Tideman Nydegger Grofman Shubik Stein Grim Davis Graaskamp Downing Feld Joss Tullock Unnamed Random Average Order
TFT 600 600 600 600 600 595 600 600 525 600 203 201 224 348 402 490.5 9
Tideman 600 600 600 600 600 595 600 600 563 600 205 183 216 350 393 497 8
Nydegger 600 600 600 600 600 594 600 600 516 600 240 24 498 175 228 482.9 9
Grofman 600 600 600 600 600 594 600 600 557 600 239 92 390 254 336 497.5 8
Shubik 600 600 600 600 600 595 600 600 607 600 201 183 220 401 472 509.1 5
Stein 600 600 604 600 600 596 600 600 522 604 205 199 224 359 415 498.7 7
Grim 600 600 600 600 600 595 600 600 303 600 203 201 225 423 491 490.7 9
Davis 600 600 600 600 600 595 600 600 303 600 202 193 225 421 509 489.5 9
Graaskamp 525 555 612 465 324 522 303 303 527 608 224 77 378 244 300 432.3 10
Downing 600 600 600 600 600 594 600 600 513 600 199 198 501 357 297 511.8 4
Feld 208 264 748 523 263 210 207 221 566 214 203 201 225 389 441 347.1 14
Joss 206 271 928 587 271 210 205 228 652 205 204 201 234 413 494 368.2 13
Tullock 229 286 614 500 286 229 219 218 449 612 203 192 227 369 412 362.1 14
Unnamed 348 198 764 507 199 131 104 135 183 108 227 123 275 326 380 306.5 15
Random 402 186 732 465 186 114 82 111 174 89 236 102 304 296 370 289.5 15

29

There were other strategies that were able to win the tournament at least

once in our computer simulations. SHUBIK and STEIN performed very well in our

computer tournament. In the original tournament, SHUBIK came in fifth place.

Table 7 shows that SHUBIK’s average ranking is approximately 2.3. At the worst,

SHUBIK matched its performance in Axelrod’s tournament and came in fifth.

Similarly, STEIN was much improved in our computer tournament. STEIN followed

SHUBIK in the original tournament with a ranking of sixth place. While STEIN

did earn a seventh place spot in its worst performance of the tournaments, it still

averaged about 3.7 out of 15. These results make both SHUBIK and STEIN good

candidates for rules in an iterated Prisoner’s Dilemma situation. Both performed

better than TFT. Interestingly, both SHUBIK and STEIN are variations of TFT.

SHUBIK is less forgiving and more retaliatory than TFT. STEIN checks for a

random strategy, and takes advantage of the randomness of its opponent by

defecting. Otherwise, STEIN remains cooperative.

30

Table 7. Average Results: Here the number 600 in the Grim row and the Davis column means that out of all

1,000 tournaments, the average score that Grim achieved while playing against Davis was 600 points. Also, the

average of all average scores that Grim earned in all 1,000 tournaments was 499.01 and the average ranking was

6.9. Other numbers are to be interpreted similarly.

TFT Tideman Nydegger Grofman Shubik Stein Grim Davis Graaskamp Downing Feld Joss Tullock Unnamed Random Average Order
TFT 600 600 600 600 600 595 600 600 525 600 217.267 201.627 305.983 407.344 448.491 500.0475 6.677
Tideman 600 600 600 600 600 595 600 600 582.904 600 233.815 190.774 281.798 459.635 544.971 512.5931 3.702
Nydegger 600 600 600 600 600 594 600 600 553.488 600 309.66 63.285 543.834 241.426 301.277 493.798 8.63
Grofman 600 600 600 600 600 594.752 600 600 597.345 600 299.99 130.661 466.991 346.2 407.719 509.5772 4.406
Shubik 600 600 600 600 600 595 600 600 668.951 600 233.754 190.7 267.094 477.017 545.918 518.5623 2.339
Stein 600 600 604 600.992 600 596 600 600 522 604 216.969 200.181 305.938 464.915 578.529 512.9016 3.663
Grim 600 600 600 600 600 595 600 600 303 600 214.528 201.59 256.508 517.536 597.048 499.014 6.982
Davis 600 600 600 600 600 595 600 600 303 600 216.894 196.182 258.406 507.554 584.78 497.4544 7.555
Graaskamp 525 572.664 631.008 552.655 433.976 522 303 303 572.492 631.04 288.057 111.395 486.103 397.015 549.596 458.6001 10
Downing 600 600 600 600 600 594 600 600 553.44 600 275.855 201.364 543.675 510.86 563.35 536.1696 1.046
Feld 222.267 278.13 793.56 574.435 278.509 222.059 216.078 223.874 616.992 560.29 210.563 201.542 242.265 459.681 518.614 374.5906 12.252
Joss 206.627 276.369 957.81 638.701 276.33 214.191 206.085 236.067 701.065 207.404 206.452 202.408 240.533 507.411 584.683 377.4757 12.236
Tullock 310.978 335.553 637.444 553.756 318.439 310.143 239.398 240.516 573.578 637.55 220.795 195.308 288.729 424.905 469.874 383.7977 11.575
Unnamed 410.259 277.5 835.126 567.935 230.187 261.94 126.091 155.544 437.115 144.345 276.596 151.901 364.315 407.291 479.608 341.7169 14.017
Random 451.011 228.601 795.157 548.954 226.833 150.579 106.988 135.135 220.476 184.845 288.034 138.048 403.059 380.643 449.197 313.8373 14.92

31

The results from our computer tournament parallel those in Axelrod’s

tournament in numerous ways. On average, the nice strategies still ranked in the

top eight in our tournaments. A few of the nice strategies did slip into ninth place

for at least one of the tournaments, but this makes sense because DOWNING made

a big move from tenth place into the top four places. There is also a clear

distinction between the scores of the nice strategies in comparison to the scores of

the not nice strategies. The ranking of the remaining not nice rules performed

similarly in our tournaments as they did in Axelrod’s tournament. The RANDOM

and UNNAMED strategies still remained in the bottom two spots on average.

However, both of these strategies were able to improve slightly at least once in the

1,000 tournaments, with UNNAMED placing in eleventh place once and RANDOM

moving into thirteenth place. GRAASKAMP’s performance in our computer

tournament is comparable to the original tournament. Actually, GRAASKAMP’s

performance was the most consistent of all the strategies. In each of the 1,000

tournaments played, GRAASKAMP always came in tenth place. We can argue that

GRAASKAMP performed exactly the same in our computer tournament as it did in

the original tournament. While GRAASKAMP did slide back one position into

tenth place, we have to remember that DOWNING was much improved, and so

DOWNING’s improved performance should shift all the other players back.

32

CHAPTER V

CONCLUSIONS

We have seen in Chapter II that there are several potential mechanisms for

the evolution of cooperation: kin selection, direct reciprocity, indirect reciprocity,

and group selection. In this thesis, we have focused on direct reciprocity as

implemented in the repeated interactions between individuals. In an effort to better

understand the best rules to follow when in an iterated Prisoner’s Dilemma, we have

slightly modified Axelrod’s original computer tournament to simulate the evolution

of cooperation using Matlab. We have found that several strategies, most notably

DOWNING, STEIN and SHUBIK, did perform actually much better than what

Axelrod’s results suggested and, surprisingly, TFT performed worse than in the

tournament. At the same time, however, STEIN and SHUBIK are simply variations

of TFT. Thus, we can conclude, that in order to be successful in the iterated

Prisoner’s Dilemma, the strategy should have the following characteristics:

• Forgive.

• Be nice.

• Retaliate.

• Be clear.

33

REFERENCES

[Axe84] Robert M Axelrod, The evolution of cooperation, Basic books, 1984.

[BR13] Mark Broom and Jan Rychtář, Game-theoretical models in biology, CRC
Press, 2013.

[Daw16] Richard Dawkins, The selfish gene, Oxford university press, 2016.

[KCH+17] Vince Knight, Owen Campbell, Marc Harper, James Campbell, Karol M.
Langner, VSN Reddy Janga, Nikoleta, Thomas Campbell, Jason Young,
Geraint Palmer, Kristian Glass, Malgorzata Turzanska, Martin Jones,
Cameron Davidson-Pilon, Sourav Singh, Ranjini Das, Aaron Kratz,
Timothy Standen, Paul Slavin, Adam Pohl, andy boot, WonkySpecs,
Jochen Müller, Georgios Koutsovoulos, Tomáš Ehrlich, Karl, Luis
Visintini, Martin Chorley, Brice Fernandes, and ABarriscale,
Axelrod-python/axelrod: v2.6.0,
https://doi.org/10.5281/zenodo.322624, February 2017.

[Now06] Martin A Nowak, Five rules for the evolution of cooperation, Science 314
(2006), no. 5805, 1560–1563.

[RSC15] Amnon Rapoport, Darryl A Seale, and Andrew M Colman, Is
Tit-For-Tat the answer? on the conclusions drawn from Axelrod’s
tournaments, PloS one 10 (2015), no. 7, e0134128.

[Sta99] Saul Stahl, A gentle introduction to game theory, American
Mathematical Society, 1999.

[TCB09] Alan D. Taylor, Bruce P. Conrad, and Steven J. Brams, For all practical
purposes: mathematical literacy in today’s world, W.H. Freeman and
Company, 2009.

34

https://doi.org/10.5281/zenodo.322624

APPENDIX A

A RECREATION OF AXELROD’S TOURNAMENT

A.1 Matlab Code for Tournament

1 function IPD_Tournament

2 % implementation of a round robin tournament of iterated PD game

3 % User specifies the PD payoff matrix

4 % User also specifies the list of strategies and their definition

5

6 %% User defined parameters

7 PD_payoff =[1,5;

8 0,3]; %payoff matrix for PD game

9

10

11 %%Init and auxiliar variables

12 strategy = {@TFT, @Tideman, @Nydegger, @Grofman, @Shubik, @Stein, ...

@Grim, @Davis, @Graaskamp, @Downing, @Feld, @Joss, @Tullock, ...

@Unnamed, @Random};% list of strategies

13 strategy_names = {'TFT', 'Tideman', 'Nydegger', 'Grofman', ...

'Shubik', 'Stein', 'Grim', 'Davis', 'Graaskamp', 'Downing', ...

'Feld', 'Joss', 'Tullock', 'Unnamed' 'Random'};

14

15

16 Defect = 1;

17 Cooperate = 2;

18 %with the above notation, PD_payoff(Defect, Cooperate)

19 %determines the payoff to a player that defected if the other

35

20 %cooperated

21 Nplayers = length(strategy); % how many players entered

22 score = zeros(1,Nplayers); % init of scores as 0

23

24 %% init counters for the strategies

25

26 % Shubik counters

27 Retaliation_Counter = 0; % init the count of retaliation

28 Moves_to_retaliate = 0; % not retaliating anymore

29

30 %Downing

31 C_count = 0; %count of my own cooperations

32 D_count = 0; %count of my own defections

33 DC_count = 0; %count of opponent cooperations after my defection

34 CC_count = 0; %count of opponent cooperations after my cooperation

35 good = 1; %probability opponent is responsive

36 bad = 0; %probability opponent is unresponsive

37

38 %Stein

39 Stein_move_counter = 0; %initialize the move counter

40 Opponent_is_random = 0; %assume opponent is not random

41

42 %Feld

43 probability_to_cooperate = 1;

44

45 %Tideman

46 opp_D_counter = 0; %initializ the opponent deflection counter

47 last_refresh_round = −20;

48

36

49

50 %% User defined functions specifying strategies

51 % functions take my and opponent's history of the moves

52 % as an input and produce my move as an output

53

54 function move=TFT(My_hist, Opp_hist)

55 %Tit for Tat Strategy

56 %Always cooperates on the first move. After the first

57 %move, it reciprocates the opponent's last move.

58

59 if isempty(My_hist) % if first move

60 move=Cooperate; % cooperate on the first move

61 else % not first move

62 move=Opp_hist(end); % repeat opponent's last move

63 end;

64 end

65

66 function move=Grim(My_hist, Opp_hist)

67 %Grim Stategy

68 %This strategy was known as Grudger by Friedman in the

69 %Axelrod Tournament.

70 %This strategy will cooperate until the opponent defects.

71 %Then, it will always defect for all of the remaining moves.

72

73 if any(Opp_hist==Defect) % if opponent ever defected

74 move=Defect;

75 else

76 move=Cooperate;

77 end;

37

78 end

79

80 function move=Random(My_hist, Opp_hist)

81 %Random Strategy

82 %Cooperates and defects on a completely random basis, not

83 %dependent on the opponent's moves.

84

85 move = randi(2); %randomly choose between cooperate and

86 %defect

87 end

88

89 function move=Grofman(My_hist, Opp_hist)

90 %Grofman Strategy

91 %It cooperates on the first two moves, and then returns the

92 %opponent's moves for the next five moves (i.e. It

93 %cooperates on the first move and then plays TFT for moves

94 %2−6). For the remaining moves of the game, it cooperates if

95 %both it and the opponent made the same move in the previous

96 %round. Otherwise,it cooperates randomly with a probability

97 %of 2/7.

98

99 if isempty(My_hist) %if first move

100 move=Cooperate; %cooperate on first move

101 else %not first move

102 if (length(My_hist))<6 % moves 2 through 6

103 move=TFT(My_hist, Opp_hist);%play TFT for moves

104 %2 through 6

105 else %not moves 2−6

106 if My_hist(end)==Opp_hist(end) %if the previous

38

107 %move is the same

108 %for both players

109 move=Cooperate; %Cooperate on the next move

110 else %if the previous move is not the same for

111 %both players

112 if rand()≤ 2/7

113 move=Cooperate; %cooperate randomly with

114 %prob 2/7

115 else %the other 5/7 of the time

116 move=Defect;%defect

117 end

118 end

119 end;

120 end;

121 end

122

123 function move=Davis(My_hist, Opp_hist)

124 %Davis Strategy

125 %Cooperates on the first 10 moves, then it plays

126 %Grim (Friedman) for the remaining moves of the game.

127

128 if length(My_hist)<10 %for the first 10 moves

129 move=Cooperate; %Cooperate on first 10 moves

130 else %after the first 10 moves

131 move=Grim(My_hist, Opp_hist); %Play Grim after first

132 %10 moves

133 end;

134 end

135

39

136 function output = ISRANDOM(Opp_hist)

137 %takes a sequence of 1's and 2's and returns 1 if the

138 %sequence can be random

139

140 %This function will be used with the Graaskamp strategy

141 %below.

142

143 L = length(Opp_hist);

144 C_count_random = sum(Opp_hist)−L; %defect is 2, coop is 1

145 if ((C_count_random < (L/2 − ...

3*sqrt(L/4)))||(C_count_random > (L/2 + 3*sqrt(L/4))))

146 %takes the number of 1's and checks against binomial

147 %distribution; if outside of usual bounds, it is not

148 %random

149 output = 0;

150 else

151 %can be random

152 %check pairs

153

154 %initialize

155 CC_count_random = 0;

156 CD_count_random = 0;

157 DC_count_random = 0;

158 DD_count_random = 0;

159 for i = 1:L−1

160 pair = Opp_hist(i:i+1);

161 if pair == [1 1]

162 CC_count_random = CC_count_random +1;

163 elseif pair == [1 2]

40

164 CD_count_random = CD_count_random +1;

165 elseif pair == [2 2]

166 DD_count_random = DD_count_random +1;

167 elseif pair == [2 1]

168 DC_count_random = DC_count_random +1;

169 end

170 end

171 %all counts should be roughly 1/4 of the L−1 pairs

172 % CC_count

173 % CD_count

174 % DC_count

175 % DD_count

176 % L

177 % L/4 − 3*sqrt(L*3/16)

178 % L/4 + 3*sqrt(L*3/16)

179 L=L−1; %here we have only L−1 pairs

180 if ((CC_count_random < (L/4 − ...

3*sqrt(L*3/16)))||(CC_count_random > (L/4 + ...

3*sqrt(L*3/16)))) ...

181 || ((CD_count_random < (L/4 − ...

3*sqrt(L*3/16)))||(CD_count_random > (L/4 ...

+ 3*sqrt(L*3/16)))) ...

182 || ((DC_count_random < (L/4 − ...

3*sqrt(L*3/16)))||(DC_count_random > (L/4 ...

+ 3*sqrt(L*3/16)))) ...

183 || ((DD_count_random < (L/4 − ...

3*sqrt(L*3/16)))||(DD_count_random > (L/4 ...

+ 3*sqrt(L*3/16))))

184 %distribution; if outside of usual bounds, it is

41

185 %not random

186 output = 0;

187 else

188 output = 1;

189 end

190 end

191 end

192

193 function output = DO_I_KNOW_THIS_STRATEGY(My_hist, Opp_hist)

194

195 %compares the sequence of moves of the opponent to any

196 %known strategy (other than random), returns 1 if I know

197 %this strategy

198

199 %take all strategies we know

200 %strategy = {@TFT, @Grim, @Random, @Tester, @Grofman,

201 %@Davis, @Graaskamp, @Joss, @Tideman, @Nydegger, @Shubik,

202 %@Stein, @Downing, @Feld, @Tullock, @Unnamed};

203

204 %This function will be used within the Graaskamp strategy

205 %below.

206

207 known_deterministic_strategies = [1,7,8] ;

208

209 output = 0; %start with the hypothesis that I do not know

210 %the strategy

211 for str = known_deterministic_strategies

212 m=1; %start the hypothetical moves

213 %go all the way to the end of the history or to the

42

214 %place where I deviate from TFT

215 while (m<length(Opp_hist)) && (Opp_hist(m) == ...

strategy{str}(Opp_hist(1:m−1), My_hist(1:m−1)))

216 m = m+1;

217 end

218 if m== length(Opp_hist) %if I got all the way to the

219 %end it means I played like

220 %TFT

221 output = 1; %it can be strategy that I know

222 end %there is no if, if I know it

223 %can be one, it could be the other, but I

224 %will never assign 0 to output once I test

225 %for a strategy

226 end

227 end

228

229 function move=Graaskamp(My_hist, Opp_hist)

230 % Graaskamp Strategy

231 % Plays TFT for 50 rounds, defects on round 51, plays TFT

232 %for rounds 52−56, a check is then made to see if the

233 %opponent is playing randomly, if so it defects for the

234 %rest of the rounds. The strategy also checks to see if

235 %the opponent is playing some other strategy that it

236 %recognizes. If so, it plays TFT for the remaining moves

237 %of the game.Otherwise, if the opponent is not is

238 %playing a recognizable strategy, it cooperates and

239 %randomly defects every 5 to 15 moves. The last bit will

240 %be addressed by randomly defecting with probability 0.1

241

43

242 M = length(My_hist)+1; %denotes the current round

243 if M≤ 50 %for the first 50 rounds

244 move=TFT(My_hist, Opp_hist);%Play TFT for first 50 rounds

245 else

246 %50 or more moves were played

247 if M==51

248 move=Defect; %defect on 51st move

249 else %51 or more moves were played

250 if (51 < M) && (M < 57) %for moves 52−56 plays TFT

251 move=TFT(My_hist, Opp_hist); %play TFT for

252 %the next 5 moves

253 else %56 or more were played

254 if ISRANDOM(Opp_hist) %if opponent plays

255 %random strategy

256 move = Defect;

257 else %if opponent does not play a random strategy

258 if DO_I_KNOW_THIS_STRATEGY(My_hist, Opp_hist)

259 %if opponent's strategy is recognized

260 move = TFT(My_hist, Opp_hist);

261 else

262 %if opponent's stategy is not recognized

263 %we code it as defect randomly with

264 %probability 10%

265 if rand()≤0.1 %defect 10% of the time

266 move = Defect;

267 else %cooperate 90% of the time

268 move = Cooperate;

269 end;

270 end;

44

271 end;

272 end;

273 end;

274 end;

275 end

276

277 function move=Joss(My_hist, Opp_hist)

278 %Joss Strategy

279 %Plays a variation of TFT; it always defects when the

280 %opponent defects, but it cooperates when the opponent

281 %cooperates with a probability of .9

282

283 if isempty(My_hist) %if first move

284 move=Cooperate;

285 else %if not first move

286 if Opp_hist(end)==Cooperate %if the opponent

287 %cooperated on last move

288 if 0.9 ≤ rand()

289 move=Cooperate; %cooperate with a probability

290 %of 0.9

291 else

292 move=Defect; %defect 10% of the time when the

293 %opponent cooperates

294 end;

295 else %if the opponent defected on the last move

296 move=Defect;

297 end;

298 end;

299 end

45

300

301 function output = A_SCORE(My_hist, Opp_hist)

302 %Implements the function: A = 16a1 + 4a2 + a3

303 %a1 is the score from the previous round

304 %a2 is the score from 2 moves before

305 %a3 is the score from 3 moves before

306 %ai = 3 if both defect

307 %ai = 2 if only the opponent defects

308 %ai = 1 if only it defects

309 %ai = 0 if both cooperate

310

311 %%This function will be used within the Nydegger strategy

312 %below.

313

314 score_map =[3,1; %score map matrix

315 2,0];

316 %if both players defect, score 3 points

317 %if I defect and opponent cooperates, score 1 point

318 %if I cooperate and opponent defects, score 2 points

319 %if both players cooperate score 0 point

320

321 A_SCORE = 16*score_map(My_hist(end), Opp_hist(end)) + ...

4*score_map(My_hist(end − 1), Opp_hist(end−1)) + ...

score_map(My_hist(end − 2), Opp_hist(end−2));

322 %implement the score function

323 output = A_SCORE;

324 end

325

326 function move=Nydegger(My_hist, Opp_hist)

46

327 %Nydegger Strategy

328 %Plays a variation of TFT for 3 rounds: if it is the only

329 %one to cooperate on first round, and only one to defect on

330 %second round, then then it defects on round 3. After first

331 %3 moves, the following moves are based on the previous 3

332 %rounds based on a score given by making a calculation:

333 %A = 16a1 + 4a2 + a3, where ai is the score for the

334 %previous ith round, ai = 3 if both strategies defect,

335 %ai=2 if only the opponent defects, and ai = 1 if only it

336 %defects. The strategy defects if and only if

337 %A = {1, 6, 7, 17, 22, 23, 26, 29, 30, 31, 33,38, 39, 45,

338 %49, 54, 55, 58, 61}

339

340 M = length(My_hist) + 1; %denotes the current round

341 if M ≤ 2 %for the first 2 moves

342 move = TFT(My_hist, Opp_hist);

343 else %if more than 2 moves have been played

344 if M==3 %on the third move

345 %if it is the only one to

346 %cooperate on first round, and only one to defect

347 %on second round, then it defects

348 if (My_hist(end−1) == Cooperate) && ...

(Opp_hist(end−1) == Defect) ...

349 && (My_hist(end) == Defect) && ...

(Opp_hist(end) == Cooperate)

350 move = Defect;

351 %I am the only one to cooperate in the first

352 %round and I am the only one to defect in

353 %the second round

47

354 else

355 move = Cooperate;

356 end;

357

358 else %if more than 3 moves are played

359 a = [1 6 7 17 22 23 26 29 30 31 33 38 39 45 49 ...

54 55 58 61];

360 %possible output values from the A Score function

361 if ismember(A_SCORE(My_hist, Opp_hist), a) == 1

362 %defect if the A Score is one of the scores in "a"

363 move = Defect;

364 else %if A_Score is not one of those values in "a"

365 move = Cooperate;

366 end

367 end

368 end

369 end

370

371 function move=Shubik(My_hist, Opp_hist)

372 %Shubik Strategy

373 %Plays a variation of TFT. It cooperates when the

374 %opponent cooperates, and it begins with a single

375 %defection if the opponent defects. But,the retaliation

376 %increases by 1 each time the opponent defects when it had

377 %cooperated on the previous round.

378

379 if isempty(My_hist) %if first move

380 move=Cooperate; %cooperate on first move

381 Retaliation_Counter = 0; % init the count of retaliation

48

382 Moves_to_retaliate = 0; % not retaliating anymore

383

384 else %if not first move

385 if Moves_to_retaliate > 0

386 %if I am retaliating

387 %ignore opponent completely and defect

388 %this has to go for a total of

389 %Retaliation_Counter moves. It is done by

390 %an auxiliary counter Moves_to_retaliate that

391 %decreases by 1 every time we defect

392 move = Defect;

393 Moves_to_retaliate = Moves_to_retaliate − 1;

394 %decrease the number of moves I still have to

395 %retaliate

396 else %I am not retaliating

397 if (Opp_hist(end) == ...

Defect)&&(My_hist(end)==Cooperate)

398 %this means unprovoked defection

399 %I have to start retaliating

400 move = Defect;

401 Moves_to_retaliate = Retaliation_Counter;

402 %how many more moves I have to retaliate

403 Retaliation_Counter = Retaliation_Counter + 1;

404 %next time I will retaliate one move longer

405 else

406 move = Cooperate;

407 end;

408 end;

409 end;

49

410 end

411

412 function move=Stein(My_hist, Opp_hist)

413 %Stein and Rapoport Strategy

414 %This strategy plays a modification of Tit For Tat

415 %Cooperates for first 4 moves, then plays TFT, checking

416 %every 15 moves to see if the opponent is playing randomly.

417 %If the opponent is playing randomly, it defects. Otherwise,

418 %it cooperates.

419 %It defects on last 2 moves.

420

421

422 M = length(My_hist) + 1; %denotes the current round

423 if M ≤ 4 %for the first 4 moves

424 move=Cooperate; %Cooperate for the first 4 moves

425 Stein_move_counter = 0; %initialize the move counter

426 Opponent_is_random = 0; %assume opponent is not random

427 else %if more than 4 moves have been played

428 if (4 < M) && (M < 199)

429 Stein_move_counter = Stein_move_counter +1;

430 %increase the move counter

431 if (Stein_move_counter ==15)

432 %every 15 moves, check if opponent

433 %is random

434 Opponent_is_random = ISRANDOM(Opp_hist);

435 Stein_move_counter = 0; %reset the counter

436 end

437 if Opponent_is_random == 1 %if my opponent is random

438 move = Defect;

50

439 else %if my opponent is not random

440 move = TFT(My_hist, Opp_hist);

441 %play TFT for all rounds up

442 %until last 2 moves

443 end

444 end

445 end

446 if M ≥ 199 %for the last 2 moves

447 move = Defect;

448 end

449 end

450

451 function move=Downing(My_hist, Opp_hist)

452 %Revised Downing Strategy

453 %In the original tournament, Downing defected on the

454 %first two moves. This is corrected and we implement

455 %the Revised Downing strategy.

456

457 %It calculates conditional probability that the opponent

458 %will cooperate given that it defected and the conditional

459 %probability that the opponent will cooperate given that it

460 %cooperated. If the opponent seems unresponsive to what

461 %it is doing, it will defect as much as possible. If the

462 %opponent seems responsive, it cooperates. It uses these

463 %probabilities to estimate the opponent's next move. These

464 %probabilities are continuously updated and the strategy

465 %attempts to make moves that will maximize the score on

466 %the long term.

467

51

468 if isempty(My_hist) %if first move

469 move = Cooperate; %cooperate on first move

470 %initialize counters

471 good = 1;

472 bad = 0;

473 C_count = 0; %count of my own cooperations

474 D_count = 0; %count of my own defections

475 DC_count = 0; %count of opponent cooperations after

476 %my defection

477 CC_count = 0; %count of opponent cooperations after

478 %my cooperation

479 else

480 if length(My_hist)<2 %if 2nd move

481 move = Cooperate; %cooperate on the 2nd move too

482 else %third move or more

483 if My_hist(end) == Defect %if I defected on the

484 %last move

485 D_count = D_count + 1; %increase the count

486 %of my defections

487 if Opp_hist(end) == Cooperate %if opponent

488 %cooperated

489 %despite my

490 %defection

491 DC_count = DC_count + 1;

492 end

493 bad = DC_count/D_count; %update the

494 %probability

495 %of the opponent

496 %cooperating despite

52

497 %a defection

498 %This is the probability that the

499 %opponent is unresponsive.

500 else %if I cooperated

501 C_count = C_count + 1; %increase the count of

502 %my cooperations

503 if Opp_hist(end) == Cooperate %if the

504 %opponent

505 %cooperated

506 %following

507 %my cooperation

508 CC_count = CC_count + 1;

509 end

510 good = CC_count/C_count; %update the

511 %probability

512 %of the opponent

513 %cooperating following

514 %a cooperation

515 %This is the probability that the

516 %opponent is responsive.

517 end

518 %Next, make a decision based on the updated

519 %probabilities.

520 c = 6.0*good − 8.0*bad − 2;

521 alt = 4.0*good −5.0*bad − 1;

522

523 if c ≥ 0 && c ≥ alt %if opponent seems responsive

524 move= Cooperate;

525 else

53

526 if (c ≥ 0 && c < alt) || (alt ≥ 0)

527 move=3−My_hist(end); %do the opposite of

528 %my last move

529 else %if the opponent doesn't seem responsive

530 move = Defect;

531 end

532 end

533 end

534 end

535 end

536

537 function move=Feld(My_hist, Opp_hist)

538 %Feld Strategy

539 %Plays TFT in that it begins with a cooperation and

540 %defects every time the opponent defects, but it

541 %cooperates with a decreasing probability until it

542 %reaches 0.5. We decrease the probability each time by

543 %0.05

544

545 if isempty(My_hist) %if first move

546 move=Cooperate;

547 probability_to_cooperate = 1;

548 else %if not first move

549 if Opp_hist(end)==Defect %and it defected on the last

550 %move

551 move=Defect;

552 else %opponent cooperates

553 if probability_to_cooperate ≥ rand() %cooperate

554 %with a given

54

555 %probability

556 move=Cooperate;

557 else %defect the other 0.5 of the time

558 move=Defect;

559 end;

560 %decrease the probability to cooperate by 0.05

561 %but always keep it at least 0.5

562 probability_to_cooperate = max(0.5, ...

probability_to_cooperate−0.05);

563 end;

564 end;

565 end

566

567 function move=Tullock(My_hist, Opp_hist)

568 %Tullock Strategy

569 %Cooperates the first 11 rounds, and then randomly

570 %cooperates 10% less than the opponent cooperated

571 %in the previous 10 rounds

572

573 if length(My_hist) < 11 %if less than 11 rounds have been

574 %played

575 move=Cooperate;

576 else %if more than 11 rounds have been played

577 Opp_last_10_moves = Opp_hist(end−10+1:end); %get the

578 %last 10

579 %moves

580 prob_to_coop = ...

max(0,sum(Opp_last_10_moves==Cooperate)/10 − 0.1);

581 if rand()≤prob_to_coop

55

582 move=Cooperate;

583 else

584 move = Defect;

585 end;

586 end;

587 end

588

589 function move=Unnamed(My_hist, Opp_hist)

590 %Unnamed Strategy

591 %It cooperates with a given probability P. This

592 %probability is initially 0.3. Then P is updated

593 %every 10 rounds based on whether the opponent

594 %seems very random, very cooperative, or very

595 %uncooperative. Also, after 130 rounds, P is adjusted

596 %if it is losing to the opponent.

597

598 %The original code is not available, and has been deemed

599 %"complicated" but based on public descriptions, it can

600 %be determined that this strategy cooperates with a random

601 %probability between 0.3 and 0.7

602

603 random_number=rand(); %generate random number

604 if 0.3<random_number && 0.7>random_number %for a

605 %probability

606 %between 0.3

607 %and 0.7

608 move=Cooperate;

609 else %in the other 0.3 to 0.7 of the time

610 move=Defect;

56

611 end;

612 end

613

614 function score = get_score(My_hist, Opp_hist)

615 %returns my current total score in the IPD Game

616 %checks every round of the game, collects scores in that

617 %round and adds them up

618

619 %This function is used in the Tideman strategy below.

620

621 score = 0; %initialize the counter of the score

622 if isempty(My_hist)

623 score = 0;

624 else

625 for i=1:length(My_hist)

626 score = score + PD_payoff(My_hist(i), Opp_hist(i));

627 end

628 end

629 end

630

631 function move=Tideman(My_hist, Opp_hist)

632 %Tideman and Chieruzzi Strategy

633 %It plays the Shubik Strategy with a slight variation.

634 %The opponent is given a "fresh start" if certain criteria

635 %are met:

636 % 1. The opponent is 10 points behind this strategy

637 % 2. AND if the opponent has not just begun a run of

638 % defections

639 % 3. AND if it has been at least 20 rounds since the

57

640 % last "fresh start"

641 % 4. AND there are 10 or more rounds left in the tournament

642 % 5. AND the total number of defections differs from a

643 % 50−50 random sample by at least 3.0 standard deviations.

644 %A "fresh start" is a sequence of 2 cooperations and an

645 %assumption that the game has just started (so all is

646 %forgotten)

647

648 last_refresh_round = −20; % init of the counter keeping

649 %track of last refreshing, has

650 %to be −20 to make sure we can

651 %refresh soon if needed

652

653 if isempty(My_hist) %if first move

654 move=Cooperate; %cooperate on first move

655 Retaliation_Counter = 0; % init the count of retaliation

656 Moves_to_retaliate = 0; % not retaliating anymore

657

658 else %if not first move

659 %check if I should restart the counter

660 % 1. The opponent is 10 points behind this strategy

661 % 2. AND if the opponent has not just begun a run

662 % of defections

663 % 3. AND if it has been at least 20 rounds since

664 % the last "fresh start"

665 % 4. AND there are 10 or more rounds left in the

666 % tournament

667 % 5. AND the total number of defections differs

668 % from a 50−50 random sample by at least 3.0

58

669 % standard deviations.

670 %get the scores

671 My_score = get_score(My_hist, Opp_hist); % get the

672 %score for

673 %me based on

674 %the history

675 Opp_score = get_score(Opp_hist, My_hist); %get the

676 %score for

677 %me based on

678 %the history

679 current_round = length(My_hist)+1; %round number to

680 %be played

681 n = length(My_hist); %number of rounds already played

682 opp_D_counter = sum(Opp_hist==Defect); %count of

683 %opponent's

684 %defection so far

685 if (My_score − Opp_score ≥ 10) ...

686 && (Opp_hist(end)==Cooperate) ...

687 && (current_round−last_refresh_round≥ 20) ...

688 && (current_round ≤ 190) ...

689 && ((opp_D_counter < (n/2 − ...

3*sqrt(n/4)))||(opp_D_counter > (n/2 + ...

3*sqrt(n/4))))

690 %now I can give a fresh start

691 Retaliation_Counter = 0; % init the count of

692 %retaliation

693 Moves_to_retaliate = 0; % not retaliating anymore

694 last_refresh_round = current_round; % I just

695 %refreshed,

59

696 %so I need to

697 %store the info

698 move = Cooperate;

699 else

700 %I did not give a fresh start, so I am doing Shubik

701 %I can't call Shubik because of internal counting

702 %in this procedure

703 if Moves_to_retaliate > 0

704 %if I am retaliating

705 %ignore opponent completely and defect

706 %this has to go for a total of

707 %Retaliation_Counter moves. It is done by

708 %an auxiliary counter Moves_to_retaliate that

709 %decreases by 1 every time we defect

710 move = Defect;

711 Moves_to_retaliate = Moves_to_retaliate − 1;

712 %decrease the number of moves I still have

713 %to retaliate

714 else %I am not retaliating

715 if (Opp_hist(end) == ...

Defect)&&(My_hist(end)==Cooperate)

716 %this means unprovoked defection

717 %I have to start retaliating

718 move = Defect;

719 Moves_to_retaliate = Retaliation_Counter;

720 %how many more moves I have to retaliate

721 Retaliation_Counter = Retaliation_Counter ...

+ 1;

722 %next time I will retaliate one

60

723 %move longer

724 else

725 move = Cooperate;

726 end;

727 end;

728 end;

729 end;

730 end

731 %

732

733 %%Sample Play

734

735 function [hist1, hist2]=SamplePlay(Strat1,Strat2, n_of_moves)

736 % produces two histories for a game of n_of_moves rounds

737 %of strategy Strat1 playing against strategy Strat2

738

739 aux_hist1=[]; %initialize auxiliary histories

740 aux_hist2=[]; %initialize auxiliary histories

741 for round=1:n_of_moves

742 move1 = strategy{Strat1}(aux_hist1, aux_hist2);

743 %move for player 1

744 move2 = strategy{Strat2}(aux_hist2, aux_hist1);

745 %move for player 2

746 aux_hist1 = [aux_hist1, move1];

747 %update history of player 1

748 aux_hist2 = [aux_hist2, move2];

749 %update history of player 2

750 end;

751 hist1 = aux_hist1;

61

752 hist2 = aux_hist2;

753 end

754

755

756 %% Actual tournament (round robin)

757

758 function [score1, score2]=Axelrod(Strat1,Strat2, n_of_moves)

759 % produces two histories for a game of n_of_moves rounds

760 % of strategy Strat1 playing against strategy Strat2

761 % also produces two scores from a game of n_of_moves rounds

762

763 aux_hist1=[]; %initialize auxiliary histories

764 aux_hist2=[]; %initialize auxiliary histories

765 P1score = 0; %initialize player 1 score

766 P2score = 0; %initialize player 2 score

767 for round=1:n_of_moves

768 move1 = strategy{Strat1}(aux_hist1, aux_hist2);

769 %move for player 1

770 move2 = strategy{Strat2}(aux_hist2, aux_hist1);

771 %move for player 2

772 aux_hist1 = [aux_hist1, move1];

773 %update history of player 1

774 aux_hist2 = [aux_hist2, move2];

775 %update history of player 2

776 P1score = P1score + PD_payoff(move1, move2);

777 %update score of player 1

778 P2score = P2score + PD_payoff(move2, move1);

779 %update score of player 2

780 end;

62

781 score1 = P1score;

782 score2 = P2score;

783 end

784

785 %%Display Outcomes from Actual Axelrod Tournament

786

787 for k = 1:1000 %play the tournament 100 times

788 display(['playing round ' num2str(k)])

789 for Strat1 = 1:15 % all players will play

790 for Strat2 = Strat1:15 % with every other player

791 [score1, score2]=Axelrod(Strat1, Strat2, 200);

792 SCORES_OUTPUT(Strat1, Strat2) = score1;

793 SCORES_OUTPUT(Strat2, Strat1) = score2;

794 end

795 SCORES_OUTPUT(Strat1, 16) = mean(SCORES_OUTPUT(Strat1, ...

1:15));

796 end

797

798

799 total_scores = SCORES_OUTPUT(:, 16);

800

801 [¬, indices] = sort(total_scores, 'descend');

802

803

804 %AUTOMATICALLY INCLUDE THE ORDER

805 for ii=1:15

806 SCORES_OUTPUT(indices(ii),17) = ii;

807 end

808

63

809 %this is for number outputs only

810 xlswrite('number_outputfile', SCORES_OUTPUT, k);

811

812 %uncomment the things below for getting nice tables

813 % SCORES_TO_WRITE(2:16, 2:18) = SCORES_OUTPUT;

814 % xlswrite('outputfile', SCORES_TO_WRITE, k);

815 % TABLE(1, 2:16) = strategy_names;

816 % TABLE(1, 17:18) = {'Average', 'Order'};

817 % xlswrite('outputfile', TABLE, k);

818 % TABLE2(2:16,1) = strategy_names;

819 % xlswrite('outputfile', TABLE2, k);

820

821 end

822 end

A.2 Matlab Code for Data Analysis for Tournament

1 function data_analysis

2 %reads outputs generated by IPD Axelrod Tournament and

3 %analyzes it.

4 %It collects the best, worst, and average scores from each

5 %of the sheets in the outputfile from the IPD_Tournament.

6

7 strategy_names = {'TFT', 'Tideman', 'Nydegger', 'Grofman', ...

'Shubik', 'Stein', 'Grim', 'Davis', 'Graaskamp', 'Downing', ...

'Feld', 'Joss', 'Tullock', 'Unnamed' 'Random'};

8

9

64

10 number_of_sheets = 1000;

11 %read the output file into one single variable

12 for sheet=1:number_of_sheets

13 display(['now reading sheet ' num2str(sheet)])

14 output(:,:,sheet) = xlsread('outputfile.xls',sheet);

15 end

16

17

18 for row = 1:15

19 for column = 1:17

20 aux = output(row,column,:);

21 if column <17

22 best_score(row,column) = max(aux);

23 %looking for the maximum score

24 worst_score(row,column) = min(aux);

25 %looking for the minimum score

26 average_score(row,column) = mean(aux);

27 %looking for the average score

28 else

29 best_score(row,column) = min(aux);

30 %looking for the highest place

31 worst_score(row,column) = max(aux);

32 %looking for the lowest place

33 average_score(row,column) = mean(aux);

34 %looking for the minimum score

35 end

36 end

37 end

38

65

39

40 function write_it_nicely(input, filename)

41 %writes input matrix into a nice table with the headings

42 %into the specified file

43 TO_WRITE(2:16, 2:18) = input;

44 xlswrite(filename, TO_WRITE);

45 TABLE(1, 2:16) = strategy_names;

46 TABLE(1, 17:18) = {'Average', 'Order'};

47 xlswrite(filename, TABLE);

48 TABLE2(2:16,1) = strategy_names;

49 xlswrite(filename, TABLE2);

50 end

51

52 write_it_nicely(best_score,'best.xls')

53 write_it_nicely(worst_score,'worst.xls')

54 write_it_nicely(average_score,'average.xls')

55 end

66

APPENDIX B

DESCRIPTIONS OF STRATEGIES IN AXELROD’S TOURNAMENT

Here we include a description of each of the strategies that competed in

Axelrod’s original computer tournament. Any variations that were implemented in

our computer tournament are also indicated in the description. The descriptions

listed here were compiled using information in the Axelrod Library [KCH+17].

(1) TIT FOR TAT. Always cooperates on the first move. After the first move, it

reciprocates the opponent’s last move.

(2) TIDEMAN. It plays the Shubik Strategy with a slight variation. The

opponent is given a "fresh start" if certain criteria are met:

(a) The opponent is 10 points behind this strategy

(b) AND if the opponent has not just begun a run of defections

(c) AND if it has been at least 20 rounds since the last "fresh start"

(d) AND there are 10 or more rounds left in the tournament

(e) AND the total number of defections differs from a 50-50 random sample

by at least 3.0 standard deviations.

A "fresh start" is a sequence of 2 cooperations and an assumption that the

game has just started (so all is forgotten).

(3) NYDEGGER. Plays a variation of TFT for 3 rounds: if it is the only one to

cooperate on first round, and only one to defect on second round, then then it

defects on round 3. After first 3 moves, the following moves are based on the

67

previous 3 rounds based on a score given by making a calculation:

A = 16a1 + 4a2 + a3, where ai is the score for the previous ith round:

(a) ai = 3 if both strategies defect.

(b) ai = 2 if only the opponent defects.

(c) ai = 1 if only it defects.

The strategy defects if and only if A = {1, 6, 7, 17, 22, 23, 26, 29, 30, 31,

33,38, 39, 45, 49, 54, 55, 58, 61}.

(4) GROFMAN. It cooperates on the first two moves, and then returns the

opponent’s moves for the next five moves (i.e. It cooperates on the first move

and then plays TFT for moves 2-6). For the remaining moves of the game, it

cooperates if both it and the opponent made the same move in the previous

round. Otherwise, it cooperates randomly with a probability of 2/7.

(5) SHUBIK. Plays a variation of TFT. It cooperates when the opponent

cooperates, and it begins with a single defection if the opponent defects.

But,the retaliation increases by 1 each time the opponent defects when it had

cooperated on the previous round.

(6) STEIN & RAPOPORT. This strategy plays a modification of TIT FOR

TAT. It cooperates for first 4 moves, then plays TFT, checking every 15 moves

to see if the opponent is playing randomly. If the opponent is playing

randomly, it defects. Otherwise, it cooperates. Finally, it defects on last 2

moves.

68

(7) FRIEDMAN. This strategy will cooperate until the opponent defects. Then,

it will always defect for all of the remaining moves.

(8) DAVIS. This strategy cooperates on the first 10 moves, then it plays

FRIEDMAN for the remaining moves of the game.

(9) GRAASKAMP. Plays TFT for 50 rounds, defects on round 51, plays TFT

for rounds 52-56, a check is then made to see if the opponent is playing

randomly, if so it defects for the rest of the rounds. The strategy also checks to

see if the opponent is playing some other strategy that it recognizes. If so, it

plays TFT for the remaining moves of the game.Otherwise, if the opponent is

not playing a recognizable strategy, it cooperates and randomly defects every 5

to 15 moves. The last bit is coded by randomly defecting with probability 0.1.

(10) DOWNING. In the original tournament, DOWNING defected on the first

two moves. This is corrected and we implement the REVISED DOWNING

strategy. It calculates the conditional probability that the opponent will

cooperate given that it defected and the conditional probability that the

opponent will cooperate given that it cooperated. If the opponent seems

unresponsive to what it is doing, it will defect as much as possible. If the

opponent seems responsive, it cooperates. It uses these probabilities to

estimate the opponent’s next move. These probabilities are continuously

updated and the strategy attempts to make moves that will maximize the

score on the long term.

69

(11) FELD. This strategy plays TFT in that it begins with a cooperation and

defects every time the opponent defects, but it cooperates with a decreasing

probability until it reaches 0.5. We decrease the probability each time by 0.05.

(12) JOSS. It plays a variation of TFT. It always defects when the opponent

defects, but it cooperates when the opponent cooperates with a probability of

.9.

(13) TULLOCK. Cooperates the first 11 rounds, and then randomly cooperates

10% less than the opponent cooperated in the previous 10 rounds.

(14) UNNAMED. It cooperates with a given probability P. This probability is

initially 0.3. Then P is updated every 10 rounds based on whether the

opponent seems very random, very cooperative, or very uncooperative. Also,

after 130 rounds, P is adjusted if it is losing to the opponent. The original

code is not available, and has been deemed "complicated," but based on

public descriptions, it can be determined that this strategy cooperates with a

random probability between 0.3 and 0.7.

(15) RANDOM. Cooperates and defects on a completely random basis–not

dependent on the opponent’s moves.

70

	List of Tables
	I An Introduction to Game Theory
	1.1 Basic Definitions
	1.2 Prisoner's Dilemma

	II Five Rules for the Evolution of Cooperation
	2.1 Kin Selection
	2.2 Direct Reciprocity
	2.3 Indirect Reciprocity
	2.4 Network Reciprocity
	2.5 Group Selection

	III Axelrod's Original Tournament
	3.1 Background to Axelrod's Tournament
	3.2 The Computer Tournament
	3.3 The Collective Stability of TFT
	3.4 Live-and-Let-Live in WWI

	IV Results of our Computer Tournament
	V Conclusions
	References
	A A Recreation of Axelrod's Tournament
	A.1 Matlab Code for Tournament
	A.2 Matlab Code for Data Analysis for Tournament

	B Descriptions of Strategies in Axelrod's Tournament

