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HARRIS, STEPHEN ROBERT. A Comparison of Single- and Multi-
band Attention Models by Use of Short Duration Noise Pulses. 
(1974) Directed by: Dr. David R. Soderquist. Pp. 102. 

Two experiments were conducted to compare the single-

and multi-band models of selective attention. Previous work 

cited in the literature had shown conflicting results both 

confirming and discrediting the models. Some of the data 

may be accounted for by assuming a change in the subject's 

(S's) response criterion. Therefore, the present study ex­

amined the concepts of time-sharing and Theory of Signal 

Detectability (TSD) in relation to auditory selective 

attention. 

The stimuli were two narrowband noise pulses 74 Hz 

wide with low (L) and high (H) center frequencies of 713 

and 966 Hz, respectively. These stimuli were presented either 

separately (H or L) or simultaneously (HL condition). When 

two signals are presented simultaneously, the intensity of 

the resulting combined signal is greater than that of either 

of the component signals (H or L) presented separately. Two 

different HL presentations were used in the experiments to 

eliminate this intensity problem. One HL presentation was 

simple combining of the two component signals (IILj). The 

other was when the two component signals were combined 

again?'however, this time the intensity of the resultant HL 

presentation was lowered to that of the most intense com­

ponent signal (HLp). Stimuli were presented at 15 dB SL with 



a 40 dB SPL white noise background. Responses were re­

corded automatically and dependent variables (d* and false 

alarms) were based on at least 600 trials for each stimulua 

condition. 

Three males served as trained Ss. [In a two alter­

native forced choice (2AFC) paradigm], the Ss were asked 

in Experiment I to indicate (by pushing one of two micro-

switches) their decision as to which interval contained the 

signal* This was studied under four stimulus conditions 

(H, L, HLj and HLp) and three signal durations (0.5, 2.0, 

and 3.5 msec). Experiment II examined the same stimulus 

conditionsi however, these were presented at the Temporal 

Recognition Threshold (TR) which reflects the "minimum 

dwell-time" required to differentiate between the two 

signals (H and L) 75% of the time. The S's task was to 

indicate (by pushing one of three microswitches) his de­

cision as to which signal condition had been presented in 

the second interval of a modified 2AFC paradigm. In this 

modified 2AFC paradigm, the first interval contained one 

of the three stimulus conditions (H, L or HL). 

In Experiment I, it was found that under the HL 

conditions the multi-band model predictions closely re­

sembled the obtained data, which showed an increase in 

detectability for the HLj condition compared to a single 

component signal (H or L) and equal detectability for the HL^ 



condition compared to the most detectable single component 

signal• 

In Experiment II, it was found that when both noise 

pulses were presented simultaneously (either IILj or HL̂  

conditions), recognition was less than when either the H 

or L pulses were presented alone. Analysis of the false 

alarm (F/A) rates showed that the different signal con­

ditions produced significantly different (p ̂0.01) F/A 

rates. 

The results were discussed in relation to attention 

theories, selective attention models, and differences be­

tween recognition and detection analysis of auditory signals 

The experiments indicated that auditory information pro­

cessing and selective attention is a two step process 

involving: (1) a detection process in which this study 

could not determine whether single- or multi-band models 

were functioning; and (2) a recognition process usinjg a 

single-band model (stimulus selection) of selective 

attention. 
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CHAPTER 1: INTRODUCTION 

Much work has been performed in the past two 

decades in the area of selective attention. Recently, the 

work in this area has been applied to the concept of audi­

tory frequency analysis. During the same period of time, 

a psychophysical technique has been developed from decision 

theory which has aided in the study of both the former 

phenomena. This relatively new psychophysical method is 

the Theory of Signal Detectability (TSD). The following 

discussion reviews the relevant literature in selective 

attention from an auditory frequency analysis and TSD point 

of view. Data from experiments in these fields are examined 

and contrasted in order to reveal relationships which may be 

beneficially explored. 

Selective Attention 

The concept of attention is central to psychological 

work. Although it was a position for contention in early 

scientific psychology between the Structuralists (Titchner, 

1908) and the Functionalists (James, 1890), both schools 

agreed that attention was central to psychological thought. 

However, in the early parts of the 20th century with the 

advent of the Gestalt, psychoanalytic, and behavioristic 

schools of psychology, interest in attention diminished. 
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Then in the 1950's, a rebirth of scientific interest in 

attention occurred. With this increase in interest, more -

investigations and theories have been generated and attention 

has been broken down into more specific categories (Moray, 

1969, p. 6), such as mental concentration, vigilance, 

search, activation, set, analysis by synthesis, and selective 

attention. The present review will discuss pertinent 

theoretical and experimental work on this latter category 

of attention; viz., selective attention, from its rebirth 

(i.e., the 1950's) to the present. 

Theories of Selective Attention 

Cherry (1953) stimulated work in the area of selec­

tive attention with his now classical "cocktail party 

effect" experiment. His investigation introduced the 

phenomena of selective attention by showing that an indivi-

, dual could attend to one of two dichotic messages while 

ignoring the other. The extent of this attention was such 

that often a Subject (s) could not report whether the 

ignored message was in a foreign language or not. 

Broadbent's filter theory. About the same time as 

Cherry's experiment, Broadbent (1958) reviewed the work in 

this area and developed an influencial theory of attention 

in his comprehensive book, Perception and Communication. 

Broadbent's theory was mainly developed and tested by 

experiments using speech stimuli, which permitted the 
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inference that information entered the organism through 

parallel sensory pathways and was filtered into a single 

central channel. His model is illustrated in Figure!. 

A single filter is posited so that the central channel 

would not be overloaded. This hypothesized filter, which 

blocks all but one of the sensory inputs at any instant in 

time, makes Broadbent's theory one which uses sensory 

selection to explain attentional processes. The central 

channel may sample more than one input but the single 

filter can only sample one input at a time. Broadbent (1958) 

hypothesized this switching of attention from one input to 

another would take a finite time period (approximately one 

second). This has been called the "filter theory" and 

was modified by A. Treisman (Treisman, 1964, 1967, 1969; 

Treisman & Geffen, 1967) from the concept of an absolute 

filter to that of a partical filter which attenuates 

unwanted incoming signals rather than completely removing 

(filtering) unwanted incoming signals. The reason for 

hypothesizing a new theory was, of course, because Broad-

bent's single channel theory could not explain all the 

data. Among the results obtained by Cherry (1953) was 

that Ss required to attend to a message in one ear could 

perceive their names when they were presented to the non-

attended ear. Also, Moray (1969) reported that Ss required 

to attend to redundant (and therefore easily followed) 

messages would tend to report perceiving material from the 
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non-attended message. These, and similar data which 

indicated faster switching times than, Broadbent proposed, 

led A. Treisman into hypothesizing an alternative theory 

of attention using the partial filter idea. 

Treisman's input selection theory. Treisman postu­

lated that the basic concepts of Broadbent's "filter theory" 

were correct, but the filter was not absolute; rather, it 

was a partial filter (Treisman, 1964, 1967, 1969; Treis­

man & Geffen, 1967). This view has since been incorpor­

ated by Broadbent in the recent discussion of his theory 

(Broadbent, 1971). Treisman's view can be seen in Figure 2 

in which one message is selected for recognition (Ŝ ) and 

all others are rejected (r̂ -r̂ ); however, this rejection 

is not a total rejection (or filtering). This means that 

the non-attended stimulus information from the rejected 

messages is transmitted further along the nervous system 

in addition to the selected message. This information is 

then analyzed by the pattern recognition network (prn) 

located beyond point A in Figure 2. In this network there 

are hypothetical units, with differing thresholds, for 

specific types of stimuli. The stimuli that reach threshold 

for these hypothetical "dictionary" units are then respond­

ed to (the response may be either to attended or non-

attended stimuli, or both). The differences between the 

alternative theories to the Broadbent "filter theory" seem 

to be the emphasis on whether selection of stimuli is a 
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sensory (as described by both Broadbent and Treisman) or 

a response selection, as stated in the Deutsch and Deutsch 

theory to be discussed later (Deutsch & Deutsch, 1967; 

Lindsay, 1967; Treisman, 1967; Treisman & Geffen, 1967). 

Moray (1969), using a time-sharing concept, has also taken 

a sensory selection viewpoint to be discussed below. 

Moray's time-sharing theory. Moray (1969) gave an 

excellent review of attention literature and theorizing up 

to 1969 in his short book, Attention: Selective processes in 

vision and hearing. In addition to these discussions, he 

also has developed his own sensory theory of selective 

attention as illustrated in Figure 3. He advocated time­

sharing between two information channels (Listening Channels 

A and B of Figure 3), and proposed that the internal in­

formation analyzer (as illustrated in Figure 3) can share 

time between the two listening channels by switching from 

one to the other alternately at much shorter intervals than 

Broadbent had hypothesized. Moray postulated that the 

switching time may possibly be instantaneous (as illustrated 

in Figure 3 by the rectangular switching from Listening 

Channel A to Listening Channel B, and vice versa), with 

the analyzer switching back and forth between "attended" 

and "non-attended" stimulus conditions, while Broadbent 

posited that there was a definite time lapse of perhaps a 

second or more for switching time. Moray further stated 

that attended stimuli, if difficult to follow, would retain 
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the analyzer for longer periods of time (a "dwell time") 

and thereby eliminate processing of information from non-

attended stimulus conditions by the analyzer. However, 

when the attended stimulus condition was easily followed, 

the analyzer could switch more often and thereby process 

information from both attended and non-attended stimulus 

conditions. As can be seen from the above discussion, 

this latest theory (Moray's Time-Sharing Theory) is only a 

variation of Broadbent's original theory. The former 

theory includes instantaneous switching time and the latter 

a slow switching time. 

Deutsch and Deutsch's response selection theory. 

A third alternative theory was devised by Deutsch and 

Deutsch (1963) which stated that there was no sensory filter 

(absolute or partial) but that selection was based on the 

response. Thus, this theory would allow more than one 

stimulus to be processed at any one time. In addition, 

Deutsch and Deutsch (1963) stated that three stimulus 

characteristics determine the attentive state; viz., the 

amount of stimulation, the requirement of attending to a 

stimulus or not, and the importance of the stimulation. The 

third characteristic, the importance of the stimulation, 

could be considered a characteristic which possesses 

qualities of basic importance to the S, (i.e., the S's 

name, or impending physical harm). Therefore, the sum 

total of the three stimulus characteristics combined would 
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determine which stimulus is selected to be attended and 

responded to at any one time. Hence in a response selec­

tion theory• as can be seen in Figure 4, all sensory 

information is processed, by channels Sj through , and 

the sensory information which has the greatest total 

stimulus value (i.e., the summated value of the three 

stimulus characteristics) is responded to first. 

In summary, the difference among the above theories 

is that a sensory selection theory (i.e., Broadbent, 

Treisman, and Moray Theories) asserts that there is a 

sensory filter at some point which attenuates the non-

attended signals, while the response selection theory 

(i.e., Deutsch and Deutsch Theory) states that the signal 

responded to is selected because it has more signal 

strength (i.e., stimulus characteristics) than any other 

at that time. The sensory selection theories are differ­

entiated by their interpretation of the sensory filterj 

viz., a partial filter (Treisman) or a total filter (Broad-

bent and Moray). A further differentiation between the 

latter two theories is the concept of switching time. One 

theory (Broadbent) considers switching time to be relatively 

slow, while the other (Moray) asserts that switching time 

is extremely rapid or possibly instantaneous. 

Simple stimuli and auditory selective attention. 

A recent review of attention literature (Swets & Kristof-

ferson, 1970) has shown that data on auditory selective 



11 

Selected 
Floating 
Response 
Criterion 

- -i~ 

2 3 4 

Sensory Inputs 

FIGURE 4. Deutsch and Deutsch's Response Selection Theory 

(after Deutsch and Deutsch, 1963) 



12 

attention may be partitioned into two parts; experiments 

concerning speech stimuli and those concerned with simple 

stimuli (i.e., sinusoids). Experiments using speech 

stimuli are extensive and the previously discussed theories 

of attention depend heavily upon these results. In 

addition, the studies of selective attention using simple 

stimuli are concerned with two types of experimental 

paradigms; viz., the Uncertain Frequency (UF) and the 

Multicomponent Signal (MS) paradigms. Moreover, the most 

frequently cited theoretical models of selective attention, 

based on simple stimuli, are those which are derived from 

signal detection experiments and depend in some manner 

upon the Critical Band (CB) concept of Fletcher (1940). 

Consequently, a brief review of the CB idea and the 

associated data is necessary and will precede the discussion 

of simple stimuli and the two prominent selective attention 

models currently extant in the literature. 

Critical Bands 

The ability of the auditory system to analyze com­

plex sound into its components has been a central area of 

concern since the 19th century. It was explored in the work 

of Ohm, which culminated in the formation of Ohm's Psycho-

acoustic Law , which states that the ear is capable of 

analyzing sound in a Fourier manner. Helmholtz, in 1863, 

developed an influencial theory on hearing based on Ohm's 



13 

Psychoacoustic Law. He hypothesized a mechanism which could 

perform a frequency analysis on the periodic waveforms. 

Furthermore, masking experiments produced evidence for the 

concept of a limited frequency analyzer in the ear along 

the lines of Ohm's Psychoacoustic Law (Plomp, 1964; 

Soderquist, 1970). Several years after Helmholtz had out­

lined his theory, Mayer (1876) reported that masking of 

pure tones was non-symmetrical (low frequency signals mask 

higher frequency signals easier than higher frequency sig­

nals mask low frequency ones). However, it was not until 

1924 when Wegel and Lane (1924) produced quantitative re­

sults with respect to pure tone masking, that these latter 

experimenters confirmed Mayer's earlier qualitative results. 

Concomitantly, they found that masking occurred primarily 

near the frequency of the signal. These results were not 

of great interest to auditory workers until Fletcher (1940) 

investigated the extent of masking using a sinusoid as a 

signal and wideband noise as the masker. He found that 

decreasing the noise bandwidth symmetrically around the 

sinusoidal signal would produce no effect on signal 

detectability until a critical band width was reached. 

After reaching this critical width, further decreases in the 

noise bandwidth were accompanied by increases in signal 

detectability. Fletcher argued that his experiment showed 

that the effective masker for a specific sinusoidal signal 

was solely the noise energy within a critical frequency 
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range centered at the signal frequency. This frequency 

range is what Fletcher called a "critical band." He 

also found that the CBs varied in size dependent upon the 

signal frequency (the higher the frequency, the larger the 

critical bandwidth). Much work has been done in the field 

of CBs since Fletcher's effort. An excellent review is 

presented by Scharf (1970). The most acceptable estimates 

of the CBs are found in an article by Zwicker (1961). 

As reviewed by Scharf (1970), CB investigations have 

shown that stimulus parameters other than signal frequency 

may affect the size of the CB. Recently, debate has de­

veloped concerning a variable or adjustable CB (Green, 

1960; Jeffress, 1964; Sorkin, Pastore, & Gilliom, 1968; 

Swets, 1963; van den Brink, 1964). These later studies, 

consequently, brought a new direction to the study of 

auditory frequency analysis; i.e., the study of attentional 

control of peripheral mechanisms (CBs) which presumably 

underlie auditory frequency analysis (i.e., the ability to 

analyze or select parts from a stimulus waveform). This 

attentional control could be hypothesized to be either a 

response selection or a sensory selection type of theory. 

In light of physiological experiments in selective attention 

(Galambos, 1956; Hernandez-Peon, Jouvet, & Scherrer, 1957) 

which show a suppression of sensory neural activity at the 

cochlear nucleus, or at the peripheral organ itself (via 

Rasmussen's tract), it seems that the attentional control 

could easily be sensory in function. 
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The argument for adjustable CBs has been advanced 

due to the results of recent research. The first supporting 

data have been reported by experimenters who have used TSD 

' to demonstrate that human Ss use relevant information about 

the stimulus parameters to approach a theoretical ideal 

lievel of performance (Swets, 1961 j Tanner & Swets, 1954i 

Swets & Sewall, 1961). Closely related to these findings 

were the results showing that the S may be able to adjust 

the size of his CB to reflect the probability characteristics 

;of signal presentation (Sorkin, Pastore, Gilliom, 1968j 

Schulman & Greenberg, I960; Markowitz & Swets* 1967). In 

these experiments, it was found that Ss would attain de-

tec tability scores reflecting the probability of stimulus 

presentation in an uncertain frequency paradigm (i.e., the 

S does not know which of two or moire signals is to be pre­

sented on any one trial). However, when the probabilities 

of signal presentation were changed, the detectability scores 

of the Ss changed in the same manner [i.e., when stimulus 

probability was changed from 50-50 (probability is .50 that 

a signal will occur) to 70-30 (probability of a signal is 

.70), the detecability of the signals changed from equal 

detectabilities to those of approximately 70%]. This may 

possibly be interpreted as a "cognitive" or response selection 

type of selective attention. 

Another aspect of recent research which indicated 

attentional factors in frequency analysis was the inability 
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of data to consistently confirm either of the two models of 

auditory selective attention hypothesized to account for 

the data. The failure to confirm either of the two models 

'(single-band or multi-band) forced experimenters into a 

tentative conclusion that the auditory system was able to 

function under either or both of the two modes of processing 

[i.e., selecting the method (model) most suitable to the 

contingencies of a specific experiment]. It is important, 

therefore, to delve into the description of these two models 

and discuss research aimed at differentiating between them. 

Models of Auditory Selective Attention 

In 1963 Swets presented a description of the two 

competing models of auditory selective attention and a 

review of empirical evidence up to that time. Swets' con­

clusion was that both models were partially supported. A more 

recent review (Swets & Kristofferson, 1970) presented the 

same two theories with further empirical evidence for both 

views, but again no convincing data were found to determine 

which theory explained the data more accurately'. A brief 

overview of these two theories and their data are discussed 

below. 

Single-band Scanning Model 

The first model of auditory selective attention to be 

discussed is called the single-band scanning model which was 

introduced by Tanner, Swets, and Green (1956). This model 
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assumes the basic tenets of the CB concept; viz., that the 

ear is sensitive to energy within a limited frequency range 

for any given signal frequency. This model, however, also 

assumes that the center frequency of the CB is under in­

telligent (i.e., deliberate) control and that the center 

frequency may be changed by sweeping it through intervening 

frequencies to a new and different CB having a different 

center frequency. Therefore, if a measure could be made of 

the time required to change center frequencies one would 

expect increases in time as a function of the frequency separa­

tion between the centers of the CBs. This model follows the 

earlier discussion concerning Broadbent's single channel 

theory of attention and Moray's time-sharing theory, if 

switching time is not instantaneous. 

The single-band model, then, assumes that there is a 

summation of energy within each critical band and the signal 

"to noise ratio (S/N) within the attended CB determines a S's 

report. Assuming that some time factor is involved in switch­

ing from one CB to another, it is apparent that if two 

signals were simultaneously presented, each within non-over­

lapping CBs, the duration of the signals must exceed the 

switching time if both signals are to be detected. Recent 

experimentation (Kristofferson, 1967a, 1967b) has shown that 

this switching time may be extremely fast (from 0 to 50 

msec.). These short switching time estimates (short relative 

to Broadbent's original estimate) suggest that the duration 
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of the signal is an important parameter. The basic pre­

mise, however, of the single-band model is that at any one 

time only one CB is monitored and signal detectability is 

dependent upon the S/N within the CB. 

Multi-band Model 

The second theory of auditory selective attention was 

developed by Green (1958) and called the multi-band model. 

This model also assumed the basic tenets of the CB concept; 

but in addition, the multi-band model assumes that a S can 

combine linearly the energy of several CBs simultaneously. 

The detectability of the signal, then, is assumed to be 

based upon the summated S/N ratio of several CBs. Just 

as Broadbent't theory seemed to foreshadow the single-

band model, the multi-band model parallels the theories 

of Treisman (Treisman, 1964, 1967, 1969; Treisman & 

Geffen, 1967) and the Deutsches (Deutsch & Deutsch, 

1963). Green's (1958) model states that there is a 

summation of all the energy produced by the CBs being moni­

tored, and the total S/N ratio will determine whether a S 

detects a signal. This, then, is an energy summation model, 

just as is the single-band model; however, in the multi-

band model the energy summation extends over the several CBs 

rather than a single CB. It should also be clearly noted 

that the multi-band model does not require a switching time 

in order to monitor more than one CB; hence, the duration of 

the signals are of little importance in the multi-band model. 
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Support for the Two Models 

Many attempts have been made to differentiate between 

the two models. Some data favor one model; whereas, data 

favoring the other model are also abundant. As mentioned 

previously, the two paradigms used to study selective 

attention with simple stimuli are the Uncertain Frequency 

(UF) and the Multicomponent Signal (MS) paradigms. These 

experimental paradigms and the resulting data have been 

reviewed extensively in two recent publications and thus 

will only be briefly summarized here (Swets & Kristofferson, 

1970; Gilliom, 1971). 

Uncertain frequency paradigm. In the UF paradigm, 

the S is to detect one of two or more specified frequencies 

(sinusoidal signals) in a noise background. When there are 

only two specified frequencies, the signal may be presented 

on various occurrence schedules (signal probabilities); for 

example, the signal may be presented on half the trials 

(p = .5). Furthermore, when a signal occurs, the probability 

is .5 that it is one of two frequencies. If the frequency 

separation between the two possible signals is small enough 

to place both "within" one CB, the predictions of both models 

would be equivalent. Swets, Shipley, McKey, and Green (1959) 

and Green and Swets (1966, pp. 283-291) have described 

methods for making quantitative differential predictions be­

tween the two models. The single-band model would predict 

performance in a UF paradigm by the following formula: 
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di = <di)(1/nob) + /"(ncb - 1)/nob7 (dob) (1) 

where d̂  is the detectability when there are n possible 

frequencies, d| is the detectability (assuming all possible 

signals are equally detectable) of a signal under conditions 

when the frequency of the signal is known, d̂  is the chance 

detectability of a signal in a non-monitored CB, and n̂  is 

the number of CBs in which the signals fall. In this formula, 

(again assuming that all signals are equally detectable) it 

can be seen that the detectability of a signal under un­

certain conditions d̂  (i.e., any one of several signals 

falling in different CBs may occur on any one trial), would 

be less than the detectability for a known signal presenta­

tion, d£. This formula simply follows the basic tenet of 

the single-band model; namely, that one CB is monitored at 

a time and the probability of any particular CB being moni­

tored is l/nĉ . Further, the single-band model assumes 

that the probability of a signal occurring in an unmonitored 

CB is Cncb"*l)/ncb at any instant. Thus, the detectability 

of a signal at any instant in time, in any one of the "non-

attended" CBs, wouLd be at chance level (d' = 0). This reduces 

formula 1 to: 

d- = <dp<l/ncb) (2) 

In turn this yields the maximum detectability a S could 

obtain in a UF paradigm if the single-band model is correct 

and he can monitor only one CB on any one trial. 
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The multi-band model, on the other hand, would pre­

dict performance in a UF task as follows: 

° di ' \P£b (3) 

where d̂  is the detectability when there are n possible 

frequencies, d£ is the detectability of any one component 

sinusoid (once again assuming that all component sinusoids 

are equally detectable), and n̂  is the number of CBs being 

monitored. In this formula, it can be seen that d̂  is 

again less than d£ when more than one CB is monitored. 

Thus, both models predict a decrement in performance under 

uncertain frequency conditions (when compared to the situ­

ation where a signal is a known frequency and when the 

frequency separation between the component sinusoids ex­

ceeds one CB). 

The predictions of both formulae 2 and 3 are in the 

same direction (a decline) but the theoretical assumptions 

are different and the amount of decline is different.. The 

multi-band model states that the decrement in detectability 

is due to a linear summation of the noise energy in all the 

CBs monitored. That is, there is an increase in noise due 

to the linear summation of two or more CBs. However, there 

is only one signal, so the S/N ratio decreases. This lower 

S/N ratio would be reflected in the Ss performance by a de­

crease in detectability. However, the lowered performance 

using the multi-band model explanation would not be affected 

by switching time as the single-band model would be. 
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In the single-band model, it is assumed that only 

one CB is monitored on any one triali or. if a S attempts 

to monitor more than one CB, there is a switching time 

introduced which may prevent the S from increasing his 

performance. If the switching time is longer than the 

signal duration, the S obviously cannot shift from one CB 

to another and increase his detection rate. However, if the 

switching time is ishort, relative to the signal, then it may 

be possible to increase performance (detectability) by 

rapid switching between (or among) CBs. This latter 

possibility is one of the factors which makes the differen­

tiation between the two models difficult. The multi-band 

predicts (formula 3) a decrement in detection just as the 

single-band model does (formula 2). However, the multi-

band model predicts a smaller decrease than the single-band 

model. Thus, if data appear to support the multi-band model, 

the single-band theory is in no trouble because a single-

band theorist simply invokes the assumption of a short 

switching time and states that the S could monitor several 

CBs and thus increase his performance accordingly. Hence, 

it is evident that switching time and signal duration are 

important factors in terms of differentiating the models 
) 

under UF conditions if one is to differentiate between the 

two models. 
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Multicomponent signal paradigm. In the MS para­

digm, the S is to detect the presence of a complex signal 

embedded in a whitenoise background. A complex signal is 

defined as any soundwave containing more than one sinusoidal 

component of different frequency. When the component sinus­

oids all lie within one CB, both.models again predict the 

same result, an energy summation. However, as the frequency 

separation between component sinusoids exceeds the width of 

the CB, the single-band model predicts that, at a specific 

instant in time, detectability of the MS signal will be no 

better than the most detectable signal in the complex. In 

contrast, the multi-band model predicts that detectability 

will be a linear energy summation of the CBs involved. 

The formulae for predicting results between the single-

and multi-band models in experiments using the MS paradigm 

are based upon the same assumptions as those for experiments 

using the UF paradigm (Green & Swets, 1966, pp. 283-291; 

Swets, et al.» 1959). The single-band model states that the 

components "within" one CB may be processed at any one time 

and the energy "within" that CB will be linearly summated. 

The sinusoids "within" the attended CB would be summated 

linearly to produce the formulas 

d' = (&'b2)̂  (4) 

where d̂  is the detectability of the complex signal, d̂  is 

the detectability of each sinusoid (assuming that each 
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sinusoid is equally detectable) "within" the monitored CB 

when the signal is a single known sinusoid. An example 

of this prediction is in Appendix A. Since the MS paradigm 

assumes that all component sinusoids occur simultaneously, 

there is no adjustment for probability of occurrence of a 

signal in any one CB as there is in the UF paradigm. There­

fore, formula 4 predicts an increase in detectability, if 

there are more than one component sinusoid in a CB. In 

the single-band model, there is an even larger increase 

in detectability above the predicted value, if the signal 

duration is sufficiently long so as to allow switching be­

tween monitored bands. Note, however, that if each signal 

in the Multicomponent Stimulus is within different CBs (not 

overlapping) and signal duration is extremely short, then, 

the model would predict that detectability of the MS would 

be no bietter than the detectability of the most detectable 

single component. That is, since the single-band model 

assumes that only one CB can be monitored (attended) at any 

single instant in time, and if the signal is extremely short 

or the switching time very long, the S will be able to moni­

tor only one CB per trial; hence, detectability will be the 

same as the most detectable component. 

The formula to predict performance in a MS task 

using the multi-band model would be: 

"i = < I"i2̂  <5) 
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where d* is the detectability of the complex signal» and 

dJ is the detectability of each component sinusoid (assum­

ing that each sinusoid is equally detectable) of the complex 

'signal when the sinusoid is to be presented singly. This 

formula then is a linear energy summation of all component 

sinusoids of the complex signal and the accompanying noise. 

Both predictive formulae indicate an increase in detectability 

greater than that of a single component sinusoid. The 

multi-band model predicts an increase because it is monitor­

ing all CBs constantly, thereby additional component 

signals will produce an increase in the S/N ratio and in 

turn produce an increase in detectability. The single-band 

.model, on the other hand, is monitoring one CB at any in­

stant in time and therefore would only summate the signals 

"within" one CB and detectability would increase only in 

relation to the S/N ratio of one CB. The single-band model 

assumes that only one CB is monitored because of either a 

long dwell time or a long switching time relative to the 

duration of the signal* However, if this assumption is 

invalid, then the single-band model can predict an increase 

in detectability commensurate with that of the multi-band 

model. If the assumptions of the single-band model are 

correct, the difference in predicted d' between the two 

models could be substantial enough to aid in determining 

which of the models better reflects auditory • selective 

attention. 



26 

In summary, the experiments in these two areas have 

shown results which both support as well as refute the two 

models. Perhaps this conflict is due to differing experi­

mental conditions in the various experiments; e.g.. , re­

sponse criteria, signal intensity, undetected individuality 

in S response criteria, and signal duration (Creelman, I960; 

Gassier, 1954; Green, 1968, 1961; Green, McKey & Licklider, 

1959; Marill, 1956; Schafer & Gales, 1949; Swets, 1963; 

Swets & Sewall, 1961; Swets, Shipley, McKey, & Green, 1956; 

Veniar, 1958a, 1958b). Furthermore, a major problem in the 

research has been the inconsistency within individual experi­

ments. In an attempt to distinguish between the two models, 

one must evaluate the data among experiments as well as 

within individual studies and the evaluation must be done 

by using the prediction formulae and the associated assump­

tions of the two models. 

Experimental Background. By using the single-band 

and multi-band differential prediction formulae for asymptotic 

levels of performance, several conflicting results appear 

which will be reviewed at this point. In Tanner, Swets, and 

Green's (1956) original work, three of their four Ss were 

consistent with single-band predictions, while the fourth 

followed predictions of the multi-band model. Swets, Shipley, 

McKey, and Green (1959) also show conflicting results when 

only two of their three Ss followed the single-band prediction. 

Veniar (1958a, 1958b) showed similar conflicts but to even a 
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greater degree. In a UF experiment, she showed one S to be 

superior to a second S in detecting a sinusoidal signal of 

an unknown frequency. However, in a MS detection task the 

second S was superior to the first. This again showed one 

S operating within the realm of the single-band prediction 

and the other consistent with the multi-band prediction. 

Green (1961) found even more perplexing results. When 

detectability was studied with extreme uncertainty (i.e., 

the signal could be any frequency between 500 and 4,000 HZ), 

he found a smaller decrement than predicted by either model. 

The results of experiments using the MS paradigm 

have been even more obscure because the qualitative results, 

once again, do not consistently confirm one or the other 

model. Schafer and Gales (1949) while studying the detecta­

bility of complex signals, composed of two, four, and eight 

component sinusoids, found that detection of the complex 

signal would increase with the addition of more sinusoidal 

components. All the components used in this study had 

frequencies which separated the sinusoids by more than 2 CBs. 

Gassier (1954), also using a MS paradigm, presented signals 

composed of varying numbers of component sinusoids spaced 

at intervals of 20 Hz. This means that he deliberately 

began with signals contained "within" a CB and added com­

ponent sinusoids until the CB was exceeded. His results 

showed that the energy required for signal detection remained 

constant so long as the component sinusoids were all confined 
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to a single CB. Further addition of signal components, 

making the complex signal exceed a single CB, indicated that 

the energy required to maintain the same signal detectability 

had to increase. This result is in disagreement with the 

earlier study by Schafer and Gales (1949), but does agree 

with the single-band model in that there is an energy sum­

mation for the signal within one critical bandwidth and 

not when there are large frequency separations. Marill 

(1956) modified Gassier's technique by using only two com­

ponents but varying the frequency separation for his complex 

signal. The results were consistent with Gassier's, showing 

a complete energy summation with small frequency separations, 

while detectability of the pair of sinusoids with a fre­

quency separation of 600 Hz (i.e., 500 to 1100 Hz) was no 

better than the most detectable member of the pair. In con­

trast to the Marill (1956) and Gassier (1954) studies, two 

studies by Green and his colleagues (Green, 1958; Green, 

McKey, & Licklider, 1959) are consistent with the earlier 

study by Schafer and Gales (1949) and support the multi-

band model. In the first experiment, Green (1958) found 

that the complex signal (composed of two sinusoids) was more 

detectable than either member sinusoid. This proved to be 

the case in fifty-three out of fifty-four possible combina­

tions of frequency and duration used in the experiment, in­

cluding separations up to 1500 Hz, a separation exceeding 

the CB in the experiment. The second study (Green, McKey, & 
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Licklider, 1959) was designed specifically to force a 

difference in the predictions of the single-band and multi-

band models. The experimenters matched the first sixteen 

harmonics of 250 Hz for level 9f detectability, and used 

these as the components for a complex signal. Green and 

his colleagues used formulae 4 and 5, described earlier, to 

predict the detectability for each model. Since d' is 

roughly proportional to signal energy, the complex signal's 

detectability could be converted to signal energy. This in 

turn can be used in a ratio of d̂ /d̂ , assuming that the com­

ponent signals are all equally detectable, to determine the 

ratio of signal detectability of the complex signal to 

detectability of a single component. They found almost an 

exact 6 dB improvement as predicted by the multi-band model. 

However, the formation of the signal and the analysis of the 

data assumed that none of the harmonics used fell within the 

same CB. At the higher frequencies, this view is doubtful 

especially in view of the Zwicker (1961) estimates of critical 

bandwidth. The larger CBs at the higher frequencies may in­

clude more than one of the components and thus could also 

explain the 6 dB improvement in performance. This would 

salvage the single-band model because it could predict a 

higher detection level due to energy summation "within" a 

single bandwidth in the higher frequencies. This contra­

dictory and confusing state of affairs for a central point 

in psychoacoustics seems to be the present situation. 
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In summary, as can be seen in the above discussion, 

a real differentiation between a single-band and a multi-

band model of selective attention has not been completely 

delineated. The. most convincing arguments perhaps favor the 

multi-band model of selective attention as the better pre­

dictor, although this conclusion is tenuous at best (Green, 

1958; Green, McKey, & Licklider, 1959). 

Recent Theory and Data 

As noted previously, Moray (1969, 1970a, 1970b) has 

proposed that attention is an all-or-nothing switching 

mechanism. This theory, you will recall, is essentially a 

reintroduction of Broadbent's single channel theory and the 

single-band switching model of selective attention. Moray's 

theoretical view supposedly explains the fate of "nonattended" 

signals by assuming that those which are attended are the 

only ones causing effects. As has been discussed earlier, 

Moray's view is not the only possible position. Treisman 

(Treisman, 1964, 1967, 1969; Treisman & Geffen, 1967) and 

the Deutsches (1963) believe that shadowing experiments show 

some "nonattended" inputs do get through to cause effects. 

To explain the ability to analyze "nonattended" stimuli, 

the single channel advocates (Broadbent, 1958, 1971; Moray, 

1969) state that there may be some switching during an 

attentional task and thereby some sampling of the "nonattended" 

channels. If this switching concept is correct, the 
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multi-band model of auditory selective attention may be in 

difficulty because single channel theory could then explain 

the detection of more than one signal in the shadowing 

experiments noted above. 

Tulving and Lindsay (1967) have supported the all-or-

nothing hypothesis (Moray's theory) in attentional mechan­

isms using simple stimuli rather than the usual speech 

stimuli. They showed that when presented simultaneously, 

simple visual and auditory stimuli could not be attended or 

responded to simultaneously. They concluded that attention 

may possibly be an all-or-nothing process with extremely 

fast switching time, perhaps instantaneously. This experi­

ment, even though using simple stimuli, may have produced a 

complex situation by using, two sensory modalities (i.e., 

attention may only be focused on one sensory modality at a 

time; however, within a sensory modality more than one 

signal may be monitored). If the results from the Tulving 

and Lindsay (1967) experiment held true within a single 

sensory modality then the multi-band model of selective 

attention would possibly be in jeopardy. 

The issue of all or none switching between channels 

has been examined recently by Moray (1969, 1970a, 1970b). 

He studied the ability of observers to detect a signal pre­

sented in either ear or both ears simultaneously. If the 

signal were presented to the right ear, the S would press 

the "right" button; if to the left, the "left" button; and 
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if to both ears, the "both" button. In these experiments, 

the S was tested under four conditions: first, he was to 

respond to the signal, while the signal was presented to 

one ear and the second ear received no signal; second, he 

was to respond to the signal only if it occurred in one ear 

but not the other (signals in this condition may randomly 

be presented to either ear).; third, he was to respond 

correctly to the signal (i.e., if the signal were presented 

in the right ear, respond by pressing the ''right" button 

and if presented to the left ear, press the "left" button) 

and no signals would be presented simultaneously to both 

ears; fourth, he was to respond correctly to. the signal 

once again except in this condition the signals could be pre­

sented simultaneously in bath ears as well as the left or 
% " 

right ear singly (See Appendix B for an outline of Moray's 

paradigms). The signals used were intensity increments in 

a train of pulses of 3000 Hz to one ear and 2100 Hz to the 

other ear. His results (Moray, 1970a) showed a dramatic 

decline in detectability from condition 1 when the task was 

to detect the signal while monitoring both ears (conditions 

3 and 4 cited above). This result, Moray argued, showed 

attention working on an all-or-nothing basis and that 

attempts to listen to two channels (ears) simultaneously 

causes a decrement in performance. He (Moray, 1970b) then 

performed the same experiment, but varied the signal duration, 

finding that the longer the signal duration, the more 
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detectable the signal in a two channel monitoring task. 

This, he argued, was further evidence for an all-or-nothing 

switching hypothesis (single-band model), because the more 

time given to sample both channels the easier it would be 

to detect a signal". In contrast, Sorkin and Pastore (1971). 

differed with Moray (1970a, 1970b) when they performed a 

similar experiment using a single frequency (500 Hz) rather 
• 

than a different tone for each ear. They found that when 

the signal was of the same frequency for both ears, "no 

apparent decrement in sensitivity exists when the observer 

must simultaneously monitor both channels ..." when com­

pared to monitoring signals in one channel (Sorkin & Pastore, 

1971). Extending their previous experiment, Pastore and 

Sorkin found that observers could perform a simultaneous 

two-channel detection task with no decrement in performance 

(sensitivity) while the signals were in phase but showed a 

'decrement when the signals were out of phase (Pastore & 

Sorkin, 1972; Sorkin, Pastore, & Pohlman, 1972). These 

latter experimenters believed the decrease to be due to 

cross-channel masking rather than a limitation imposed by 

processing capacity. 

M. Treisman (1972) also differed with Moray as to the 

time-sharing (or switching) aspects of attention. Treisman 

used portions of Moray's (1970a, 1970b) data to illustrate, 

using probability statistics and TSD methods, how the data 

could be analyzed differently (See Appendix C for a more 
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detailed description of Treisman's analysis). Treisman 

wished to critically examine whether Moray's data did in 

fact provide unambiguous evidence for a "slow" (relative to 

"instantaneous") switching mechanism or whether the results 

could be more simply explained in terms of established 

processes (Treisman, 1972). The "established processes" 

which Treisman mentioned is in reference to acknowledged 

results of simultaneous processing (analogous to multi-

band model) provided by auditory localization and masking-

level difference experimentation. More specifically, 

Treisman inferred that Moray's results could be attributed 

to the use of an heretofore unrecognized response criterion. 

Examining the data from Moray's (1970a, 1970b) fourth con­

dition, (i.e.,. the S knows the signal could be in the left 

ear, right ear, or both and is instructed to respond 

accordingly). Treisman (1972) indicated that there was an 

explanation other than the single channel switching hypo­

thesis (time-sharing). He stated that there was an inferred 

postulate in Moray's explanation which was not supported. 

This postulate, Treisman explained, was that the S main­

tains a single criterion for each ear, regardless of the . 

mode of signal presentation (single criterion model). Further­

more Treisman (1972) hypothesized that it was possible to 

have another criterion in addition to that assumed by Moray. 

This combination of two criteria was called the double 

criterion model. Using TSD concepts, Treisman showed that 
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the double criterion model could predict the outcome of 

Moray's data (See Appendix C for detailed explanation). 

Howeveri Treisman could not empirically support his hypo­

thesis because false alarm data were not available from 

Moray's original studies (Moray, 1970a, 1970b). Neverthe­

less, Treisman (using a hypothetical situation) showed that 

the false alarm rates would be practically identical 

when Ss adopted a double criterion rather than a single 

criterion in the detection task. Moreover, when Ss adopt 

the double criterion the decrease in the detection of "both" 

signals disappears. That is, the decrease in detectability 

of two simultaneously presented signals, each from inde­

pendent channels, is due to the mode of responding rather 

than to a loss of information due to "slow channel switching." 

Treisman (1972) has, then, theorized that a decrement in 

performance may be due to the use of two (double) criteria 

when both channels are to be monitored and the data from 

Moray's (1970a, 1970b) experiments are interpretable in more 

than one manner. Moray's interpretation supports the 

single-band model and Treisman's suggestion is that a 

double criterion also explains the data. It should be 

noted that Treisman explicitly assumes a multi-band signal 

processing model. The analysis by M. Treisman, thus may 

prove to be a valuable tactic in discriminating between 

single-band and multi-band attentional processes or models. 
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The Problem 

Immediate Background 

The evidence presented earlier leads to the con­

clusion that auditory inputs may be under attentional in­

fluences. The two models outlined to account for the 

attentional influences were the single-band and the multi-

band models. These models seem to parallel the two theoreti­

cal viewpoints of attention theory, viz., the single channel 

switching theory and the multi-channel theory. 

A further concern in the area has recently been 

elucidated by McFadden (1970). He has shown that there 

are three ways to calculate the percentage correct (P/C) 

in a two alternative forced choice (2AFC) paradigm. In his 

theoretical paper, he illustrated how some of the procedures 

used to calculate P/C may include a response bias. In his 

explanation, he also illustrated the effect a response bias 

would have on the detectability index (P/C). Since many of 

the earlier studies cited above may have estimated P/C 

with different calculation procedures, there may have been 

some slight inaccuracies in the estimates involved in 

testing between the two auditory selective attention models. 

McFadden's conclusions, together with Treisman's (1972) 

view of response bias (the double criterion model), then, 

may also help explain why predictive formulae have not 

accurately accounted for the obtained data. 
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Another important consideration for any experimenta­

tion in the area of attentional processes has been previously 

noted, viz., the duration of the signal. Data relevant to 

this point have been reported by Doughty and Garner (1947). 

These investigators have determined that in order for a 

sinusoid to have a definite "tone," the signal must be at 

least 10.2 msec in duration. However, their study was not 

designed to investigate the possibility that the response 

criterion used for "tonal quality" was the same as the re­

sponse criterion used when the S is required to differentiate 

between two different tones. For example, a 1000 Hz tone of 

10.2 msec, can easily be differentiated from a 1500 Hz tone 

of the same duration. Hence, it appears that the temporal 

duration required to differentiate between two signals having 

different spectral components is less than 10.2 msec. It is 

clear that a S need not "dwell" on a signal the full 10.2 

msec, in order to obtain enough information to differentiate 

it from a signal having a different spectral composition. 

The importance of this point comes into clear focus when one 

considers the MS paradigm used to test the two models of 

selective attention (single- and multi-band models). . Under 

the single-band concept, if two signals were separated by 

more than a CB and presented simultaneously (the MS paradigm) 

there would be (theoretically) no time available for the S 

to switch from one CB to the other and thus detect both 

signals, if the single duration were short enough. Under 
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the single-band model the entire signal duration would be 

required by the S in order for him to recognize and/or 

detect just one of the two signals. In summary, if signal 

duration were too short the S could not detect/recognize 

both signals because the entire signal duration would be. 

required for the detection of just one tone. If this were 

the case, the single-band model would predict not an increase 

in detectability, as suggested by the formula (formula 4, 

p. 23) but a detection rate equivalent to the detection of 

a single known signal. In contrast, the multi-band model 

would predict an increase (formula 5, p. 24) because both 

signals (critical bands) were monitored. This would cause 

an increase in the S/N ratio and an increase in the detec­

tability. 

In conclusion, if the signal duration were short 

enough, it is possible that a distinction may be obtained 

between the predictions of the single-band and multi-band 

models. The single-band model would predict no increase in 

detectability over that of the most detectable component; 

whereas, the multi-band model would predict an increase in 

detectability over the most detectable component. 

Preliminary Investigation 

As implied above, it is important that the duration of 

the signal be carefully controlled. Furthermore, some quan­

titative data are necessary to substantiate the logical use 
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of short duration signals in selective attention para­

digms. In this respect, two experiments were performed to 

determine the signal duration required to recognize the 

difference between twp equally detectable suprathresho1d 

signals having different frequency composition (Soderquist 

& Harris, 1973). Since the investigation was germane to 

the proposed experiments concerning selective attention, a 

brief summary is included here. 

In the first experiment the stimuli were two gated 

narrow-band (74 Hz) white noise pulses having a center 

frequency of either 966 Hz (H) or 713 Hz (L). The character­

istics of the two filters are illustrated in Figure 5. The 

five Ss were instructed to respond to that interval of a 

2AFC paradigm which contained the high pitched signal (H). 

The signals were presented monaurally to the S's right ear 

at a sensation level of 15 dB (determined for a one msec 

signal). The 75% detection level determined the threshold 

for each stimulus (H or L). The signals were presented with 

an instantaneous rise and decay time (fast setting on the 

Electronic Switch). A constant background of wideband white 

noise (40 dB SPL) was presented during the stimulus presen­

tation intervals. The H and L signals were randomly pre­

sented in either the 1st or 2nd interval of the 2AFC para­

digm. Each S completed 400 trials for each stimulus dura­

tion (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 msec). The Ss 

were tested in a sound-attenuated room. Results showed that 
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the signal duration to reach a 75% recognition threshold 

varied slightly from S to S (i.e., from 1.3 to 2.4 msec). 

A least squares procedure showed the mean recognition 

threshold to be 1.8 msec (illustrated by the solid line in 

Figure 6). Since this experiment disregarded the fact that 

short duration signals have less energy then long duration 

signals, a second preliminary experiment was performed to 

control the intensity difference across signal durations. 

In this second preliminary experiment stimulus in­

tensity controls were added so that intensity remained the 

same across all signal durations. In this way, the recog­

nition of the signal could not be ascribed to intensity 

differences but due purely to the ability to recognize the 

signal at different durations. Three of the original five 

Ss participated using the same signals and paradigm as the 

first experiment. However, in the second preliminary ex­

periment the signal was presented at a sensation level of 

15 dB for each stimulus duration (0.5, 1.0, 1.5, 2.0, 2.5, 

3.0, and 3.5 msec). In this way, the signal was perceived 

as equally loud at each duration and the ability to recog­

nize the signal depended on duration alone. Results 

again showed that the 75% recognition' threshold varied 

slightly from S to S (i.e., from 2.3 to 2.8 msec). A least 

squares procedure showed the mean recognition threshold to 

be 2.54 msec (dotted line in Figure 6). The recognition 

threshold, then, appeared to be a logical place to initiate 
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further experiments concerning selective attention. That 

is. for these stimuli, the signals must be presented (on 

the average) for 2.54 msec before a S can recognize the 

difference between a "high" and a "low" signal. 

Further, these results suggest several implications 

for the single- and multi-band theories. First, if one 

assumes that Ss use a multi-band approach to the recognition 

task, then the S's problem was simply to "pay attention" to 

both CBs simultaneously (one centered at 7l3 Hz, the other 

CB centered at 966 Hz) and contrast the inputs on each 

trial to determine when the High signal occurred (1st or 

2nd interval). Further, since the multi-band model assumes 

that (a) both CBs are continuously attended and (b) no 

"switching time" is necessary, it may be postulated that the 

Temporal Recognition Threshold (TRT) of 2.5 msec reflects 

the "minimum dwell time" required to differentiate between 

the two signals 75% of the time. That is, given these data 

and the multi-band assumptions, it may be inferred that the 

minimum time required to attend (dwell) on a particular CB, 

in order to obtain sufficient information to differentiate 

the two signals, in equal to the TRT. A "dwell time" less 

than 2.5 msec results is a loss of information and a decrease 

in performance} whereas, a "dwell time" longer, than 2.5 msec 

increases the amount of information available and increases 

performance accordingly. In the second instance, if one 

assumes that the Ss use the single-band model in the 
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recognition task, the TRT represents the maximum dwell time 

necessary to obtain sufficient information to differentiate 

the two signals. For example, if during the first interval 

of the trial, the S is "tuned" to the correct CB (i.e.., the 

1st Interval is, by chance, a High signal and the S is 

attending to this High CB), then he will obtain the maximum 

information available from this particular frequency 

region (CB). Since the S has two CBs to monitor, it is 

logical to assume that the S will switch to the other-CB 

(the Low frequency region, for example) once sufficient in­

formation has been obtained from the initial High CB. 

Since there are no data which indicate that switching; -

time (the time needed to switch from one CB to another) 

requires more than 1.0 sec and several studies which suggest 

that switching-time is much less than this value (Moray, 

1969, 1970a, 1970b; Tulving & Lindsay, I967), the amount of 

time required to change from one frequency region (CB) to 

another is unimportant. The time interval between signal 

presentations (in the 2AFC task) was greater than 1.0 sec 

and therefore allowed sufficient time for the S to change 

CBs and not lose information as a result of a-long switching-

time. Hence, if the S were always attending to the correct 

CB at the start of a trial, the TRT would once again repre­

sent the minimum "dwell-time" required to recognize one 

signal from the other. The assumption that the S is always 

attending to the correct CB at the outset of each trial is, 
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of course, unwarranted since the High and Low signals 

occurred in either the 1st or 2nd interval on a random 

schedule and the S had no way of knowing which CB to moni­

tor at the beginning of each trial* Since this was the 

case, the S would, on the average, be attending to the in­

correct CB.on half the trials. Further, since the signals 

are all presented at 15dB SL (second preliminary experiment) 

it is reasonable to assume that S's attention will be 

"drawn" to the correct frequency region in those cases when 

he is initially attending the incorrect CB. Even if switch­

ing -time were practically instantaneous, there would be some 

loss of information before the S could switch and attend to 

the signal. In this case the 2.5 msec value represents an 

inflated estimate of dwell-time. Under the single-band 

model, the reasonable assumption is, then, that the 2.5 

msec TRT is an average between the larger estimate of 

dwell-time (when S is always monitoring the incorrect CB 

at the start) and the minimum dwell-time (when S is always 

monitoring the correct CB at trial onset). 

In summary, the preliminary experiments allow one to 

estimate the dwell-time (the minimum period of time that a 

CB must be attended if one is to obtain sufficient informa­

tion to differentiate (recognize) these two stimuli 75% of 

the time) if certain assumptions are made. Under the multi-

band model the TRT of 2.5 msec represents a minimum 

dwell-time. The time required to monitor (attend) the CB 



and still get the necessary information may be less, but 

very likely is not greater than this estimate. Under 

the single-band model, the TRT may, once again, be some­

what less than 2.5 msec, but probably is not greater than 

this value. 
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CHAPTER lis THE EFFECT OF SIGNAL DURATION ON DETECTABILITY 

IN A MULTICOMPONENT SIGNAL PARADIGM 

Introduction 

The following experiment was performed in an attempt 

to differentiate the single- and multi-band models of . 

auditory selective attention using the earlier determined 

"dwell-time" as a possible restraining factor. Even though 

the current experiment is based on recognition relation­

ships, it has been developed from detection paradigms. 

Furthermore, this experiment, and the previous ones, have 

defined "dwell-time" in terms of "recognition dwell-time" 

rather than "detection dwell-time." In short, it is very 

likely that the time required to recognize a signal (rec­

ognition dwell-time) differs from the time required to 

detect a signal (detection dwell-time). However, even 

though the "detection" and "recognition" dwell-times very 

likely are different, the logic underlying the predictions 

may be derived from the models in the same manner, regard­

less of whether or not the task is recognition or detection. 

The multi-band model predicts that the detectability 

of a complex or "both" signal (HL) increases as a function 

of the number of component signals (H or L) at any duration 

(formula 5). This prediction is made because the multi-

band model hypothesizes that all CBs are monitored 
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simultaneously and the total S/N ratio increases with the 

increased number of signals. However, the single-band 

model predicts, if the signal duration were equal to or less 

than the detection dwell-time, that only one CB can be moni­

tored at any single period of time and therefore the de-

tectability of the HL signal will equal the most detec­

table single component signal. Hence, if a detection dwell-

time is used in a MS paradigm, the two models predict 

different results. The single-band model predicts a 

detectability equal to the most detectable component; 

whereas, the multi-band model predicts an increase in 

detectability of the multicomponent signal. Since, however, 

switching of bands can occur in the single-band model, there 

will be a decrease in the difference between the single-

and multi-band model predictions as the detection dwell-

time is exceeded by the.signal duration. That is, if the 

signal is long enough, the S may monitor several CBs by 

rapid switching. This will, of course, add signal energy 

and increase the detectability of the multicomponent signal. 

In view of these predictions, this initial experiment was 

done using signal durations which "bracket" the prede­

termined "recognition dwell-time" of 2.5 msec (0.5, 2.0, 

and 3.5 msec). The strong possibility that the "recognition 

dwell-time" and the "detection dwell-time" are not the same, 

suggests that the results will be the same under both models. 

However, the belief that the times are different is based on 



logic and extrapolations from related research. Thus, 

this experiment is necessary to more strongly substantiate 

this possibility. 

Methods 

Subjects and training 

Three male £s, 21 to 39 years, were used in the 

experiment. All of the Ss had participated in the pre­

liminary experiments. Training was given to the Ss in 

detection of the signals (H and L) at each duration. During 

this training the 75% correct detection level for each com­

ponent signal was determined. 

Design 

A block diagram of the experimental design is shown 

in Figure 7. The experiment followed the standard multi-

component signal (MS) paradigm with a 2AFC task. The signal 

were presented at short durations (0.5, 2.0, and 3.5 msec). 

The component signals were the same signals (H and L) used 

in the preliminary experimentation on recognition dwell time 

These signals were gated narrowband noise pulses each 

having a 74 Hz bandwidth and si center frequency of 966 Hz 

.(H) and 713 Hz (l). The characteristics of the< two signal 

filters were illustrated in Figure 5. A gated noise back­

ground was presented at a spectrum level of 40 dB ret 

0*0002 dynes/cm^ and filtered with a Kron-Hite (model 3100) 
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Signal 
Duration 
Signal 
Condition 

0.5 msec. 2.0 msec. 3.5 msec. 

H L HLt HLD H L H4 HLD H L HLj HL0 

0 

FIGURE 7. A Block Diagram of the Experimental Design for 

Experiment I. H represents a gated narrowband 

noise pulse having a 74 Hz bandwidth and a center 

frequency of 966 Hz. L refers to a gated narrow­

band noise pulse having a 74 Hz bandwidth and a 

center frequency of 713 Hz. HLj represents a 

combined signal using the above two noise pulses. 

HLD is the same combination presented at a lower 

intensity (equal to the most physically intense 

single component signal, i.e., H or L). 
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Bandpass Filter. The settings on the filter were 10 Hz 

and 6,000 Hz, respectively, at the 3 dB roll-off. 

The use of the MS paradigm produced four conditions, 

the component signal H, the component signal L, and two 

complex signals (HL^ and HL-j-). The normal combination of 

the two component signals to produce a complex signal yields 

an increase in signal intensity at the earphone (the HLj 

condition). Thus, as a control, another condition was 

added (the HL^ condition) where the complex signal, 

had an intensity level equal to the most intense single 

component signal. The independent variables studied in 

the experiment were the signals (H, L, HLD, or HL^) and the 

duration of the signal presentation (0.5, 2.0, and 3.5 

msec). The dependent variable was signal detectability 

expressed in d' units (cf. Elliot, 1964). 

Experimental Sessions and Apparatus 

The order of presentation of signal duration was 

randomly selected for each S. Following the training 

trials, three experimental sessions were run. A session 

contained 6 blocks of 100 trials with each block being 

preceded by about 20 warmup trials. During each daily ex­

perimental session, at least one block of each signal was 

presented. Each block of trials was replicated four times 

for a total of 400 trials per signal. A rest period of 5 

minutes was given between each block of trials. The signal 
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(H, L, HLJ-J, or HL^-) that was presented in each individual 

block of trials was randomly selected. 

In each experimental session, the S was seated in 

a sound-attenuated room.before a panel of indicator lights 

and response keys. A calibrated earphone (Grason-Stadler 

model TDH49-10Z) mounted in a MX-41/AR muff was placed on 

the preferred ear. On each trial, the S was instructed to 

respond by pressing one of the microswitch.es to indicate 

his decision regarding in which interval of the 2AFC task 

the signal occurred. Responses (Hits and Misses) were 

automatically recorded on electromechanical counters. On 

each trial, the S was informed by feedback lights whether 

his response was correct. 

The overall timing of the experimental intervals 

was determined by Lehigh Valley Electronics and Coulbourn 

Instruments solid state programming equipment. The experi­

mental sequence was as follows: intertrial interval 

(0 sec.); light for onset of observation interval (0.1 sec.); 

observation interval A (1.0 sec.); light for midpoint of 

observation interval (0.1 sec.); observation interval B 

(1.0 sec.); light for end of observation interval (0.1 

sec.); response interval (2.0 sec.); feedback light 

(0.1 sec.). Each signal was presented at the midpoint of 

either the first or second observation interval (See 

Figure 8). 
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FIGURE 8. A Diagraraatic Illustration of a Typical Trial 
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Each component signal was generated by a Grason-

Stadler noise generator and filtered by specially built 

noise filters with characteristics illustrated earlier. 

Rise-decay time (fast) was determined by a Grason-Stadler 

829-C electronic switch. The signal duration was gated 

by a Grason-Stadler 471-1 interval timer. The background 

noise was gated by Lehigh Valley Electronics modular pro­

gramming equipment. Hewlett-Packard 350-Dattentuators 

controlled the signal and noise intensities. An audio 

mixer (Calrad model 10-75.) was used to mix the component 

signals to produce the HLp and HL^ conditions. Measure­

ments of signal and noise level were made at the ear­

phone prior to each experimental session with a Ballantine 

true RMS voltmeter. Impedance matching was performed 

antecedent to the earphone with a Grason-Stadler E 10589A 

impedance matching transformer. The use of Lehigh Valley 

Electronics modular programming equipment permitted the 

presentation of the signal in either the 1st or 2nd inter­

val with a probability of 0.50. A figure schematic of 

the experimental apparatus is presented in Figure 9. 

Predictions 

The d' units were based on the four replications; 

consequently, d' values were determined on 400 trials. The 

d' obtained from each component signal was used in formulae 

4 and 5 to predict the d' units for the HLj signal condition 
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for each individual S. For the HL^ condition, only a 

prediction for the Multi-band model could be made. 

When the signal is presented at or below the mini­

mum detection.dwell-time,-there should be a. differentiation, 

between the two proposed models: formula 4 predicts that 

the HLj- signal will be no more detectable than the most 

detectable component signal (the single-band model)} formu­

la 5 predicts that the HLj signal will be more detectable 

than the most detectable component signal (the multi-band 

model). The HLJ-J condition also should produce a differ­

entiation between the two models when the signal is pre­

sented at or below the minimum detection dwell-time: the 

single-band model would predict a decrease in detectability 

of the HLp condition compared to the most detectable single 

component signal; while the multi-band would predict the 

HLp signal would equal the most detectable component signal. 

As noted previously, if the "recognition dwell-time" 

used in this experiment is the same as the "detection 

dwell-time" the above predictions hold. However, under 

the logical assumption that the two "dwell-times" are not 

equivalent; viz., the "detection dwell-time" is less than 

the "recognition dwell-time," the prediction changes. The 

single-band model may also yield an increase in performance 

(d') if the S can switch from one CB to another and obtain 

an increase in signal energy. 
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Results and Discussion 

The results are outlined in Table I. Table I 

compares the obtained and predicted d' values for the two 

MS conditions (the HL^ condition and the HLj condition). 

It can be seen that the multi-band model seems to predict 

the obtained values in the HL^ condition at all signal 

durations; however, neither of the models, on the average, 

predicts indices as large as those obtained.. The data 

initially seem to suggest that the multi-band model is the 

better predictor, for the HLj condition at all durations, 

in that the obtained and predicted values are very close. 

This conclusion, however, may be erroneous in that the in­

crease in detectability may also be explained in terms of 

the single-band model. For the single-band model to account 

for the results, all that is necessary is to assume that 

the Ss switch between the two CB and that the minimum 

dwell-time for detection was exceeded. That is, the 

"recognition dwell-time" used in the experiment is not 

appropriate for detection experiments which attempt to 

differentiate between the two models. 

The data obtained for the HL^ condition was also 

closely predicted by the multi-band model (based upon the 

premise that the d' would be approximately equal to that of 

the most detectable component signal). These results, 

unfortunately, can also be explained by either model. The 

multi-band model simply predicts that performance is equal 
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TABLE I. Predicted Versus Obtained d' Values for 

Complex Signals at Each Signal Duration 

hld 

Obtained 
hld 

MB(Pred) 
HLj 

Obtained 
HLj. 

MB(Pred) 
HL-j-

SB(Pred) 

S1 .92 .96 1.45 1 .27 .96 

0.5 S2 .72 .91 1.16 1.24 .91 
msec o 

.98 .88 1.26 1 .15 .88 

Mean .87 .91 1.29 1.22 • 91 

si .80 .89. 1.60 1.25 .89 

2.0 S2 1.12 1.04 1.67 1.47 1.04 
msec c 

b3 1.01 1.23 1.42 1.48 1.23 

Mean .97 . 1.05 1.56 1.40 1.05 

S1 .84 .90 1.61 1.25 .90 

3.5 S2 1.11 1.04 1.44 1.21 1.04 
msec c 

3 .78 .80 1.30 1.04 .80 

Mean .91 .91 1.45 1.16 .91 
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to that of a single component signal. The single-band 

model, moreover, explains the results by noting, once again, 

that a S may merely switch channels (CBs) and attends to 

both signals since the minimum dwell-time for detection 

has been exceeded. 

Therefore, the conclusions drawn from this experi-

ment are not clearly definitive but may be summarized by 

saying that if "recognition dwell-time" is equivalent to 

the "detection dwell-time," the multi-band model accounts 

for the obtained results somewhat better than does the 

single-band model. However, even if "recognition dwell-

time" and "detection dwell-time" are the same, a problem 

exists concerning why there is no consistent decrease in 

obtained d' values as a function of decreasing signal 

duration. This may, of course, be due to a poor measure of 

the TRT previously reported or possibly to some uncontrolled 

event. In any event, to state categorically that the multi-

band model is better at this point in unwarranted. The 

safest conclusion is to say that "recognition dwell-time" 

and "detection dwell-time" are not equivalent and both 

models may therefore account for the obtained results. 

This latter conclusion concerning dwell-time also allows 

one to accept the lack of change in obtained d' values 

over different signal durations. The signal durations were 

simply all too long and the Ss could use the single-band 

model, switch CBs, and still do very well.. The "detection 

dwell-time," then, is apparently very short. 
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CHAPTER III: RECOGNITION OF SIGNALS PRESENTED AT SHORT 

DURATIONS IN A MODIFIED UF PARADIGM 

Introduction 

Since the experiment described in Chapter II could 

not adequately differentiate between the two theoretical 

models of auditory selective attention (single-band and 

multi-band models), a second experiment was performed. 

This experiment (Experiment II) used a recognition task 

with signal duration equal to the "recognition dwell-time" 

for each S as obtained in the preliminary experiments. This 

experiment also used a modification of Moray's (19.70a, 

1970b) fourth condition; viz., the S knew the signal could 

be either in one CB (H), the other CB (L) or both CBs (HL). 

The S was instructed to select which case was presented. 

In this experimental paradigm (a modified single-interval 

forced choice), the two models predict sharply different 

results. Whereas previous experiments have provided only 

limited qualitative differentiations (predictions of the 

models are in the same direction - either an increase or 

decrease), this experiment provided both qualitative and 

quantitative predictions, concerning the recognition of the 

HLj signal. If the HL^ signal were presented at a duration 

equal to the recognition dwell-time, the following pre­

dictions can be ma$e: the single-band model predicts a 
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decrease in recognition of the HLj in relation to a single 

known component signal (H or L); however, the multi-band 

model predicts an increase in recognition of the HL^ 

over a single known component signal. The logic of these 

predictions is as follows. When the signal duration is 

equal to the recognition dwell-time, the single-band model 

states that, since either CB may be monitored, the recog­

nition of the HLj signal should decrease in respect to a 

single known component signal (H or L) because the S cannot 

simultaneously monitor (attend) both CBs and obtain an in­

creased S/N ratio. In contrast, the multi-band model states 

that both CBs are monitored simultaneously; consequently, 

an increase in the S/N ratio will occur and produce an 

increase in the recognition of the HL^ signal in relation 

to the most recognizable single known component signal. A 

brief explanation of the theoretical positions concerning 

this paradigm is discussed in Appendix D. 

This second experiment can also aid in determining 

the amount of influence response bias has in this paradigm. 

The use of the modified Moray paradigm allows data to be 

obtained on both Hits (correct detections) and False Alarms 

(signals reported heard when other signals were presented, 

FA). Thus, it becomes possible to determine if the single 

or double criterion model (Treisman, 1972) better describes 

the data. If the signal duration were equal to the minimum 

dwell-time for recognition, the double criterion model would 
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predict that the false positive rates (total False Alarm 

rates for a specific signal) would be maintained at a 

limiting acceptable level (essentially at an equal rate) 

in all response categories. However, the single criterion 

model would predict inequalities in the false positive 

rates. More complete background and an illustrative 

example are given in Appendix C. 

Subjects and Training 

The same Ss that participated in Experiment I partici­

pated in Experiment II. In order to acquaint the Ss with the 

recognition task, a total of 600 training trials were run 

prior to the experiment. In the training trials, the stimuli 

were presented in an uncertain frequency (UF) paradigm (2AFC). 

Design 

A block diagram of the experimental design is shown 

in Figure 10. As stated previously, the experiment used 

Moray's fourth condition (outlined in Appendix B) where 

on each trial there was either a H signal alone, a L signal 

alone, or a HL^ signal. The experiment was replicated using 

an HLp condition as a control. 

The signal parameters were the same as those used 

previously and the duration and intensity wei-e determined in 

the preliminary experiment for each individual. Specifi-

cally^^he signals were gated narrow-band noise pulses each 

having a 74 Hz bandwidth with a center frequency of 966 Hz (H) 
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Signal Conditions 

« 

•2. S 
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CO 

H L HLl I H L HLD 

1 1 1 
FIGURE 10. A Block Diagram of the Experimental Design for 

Experiment II. H represents a gated narrowband 

noise pulse having a 74 Hz bandwidth and a center 

frequency of 966 Hz. L refers to a gated narrow­

band noise pulse having a 74 Hz bandwidth and a 

center frequency of 713 Hz. HLj represents a 

combined signal using the above two noise pulses. 

HLD is the same combination presented at a lower 

intensity (equal to the most physically intense 

single component signal, i.e.,H or L). 
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and 713 Hz (L). The characteristics of the two noise 

filters are illustrated in Figure 5. A gated noise 

background was presented at a spectrum level of 40 dB re 

2 0.0002 dynes/cm and filtered with a Kron-Hite (model 

3100) Bandpass Filter. The settings on the filter were 

10 Hz and 6000 Hz, respectively, at the 3 dB roll-off. 

The dependent variables were Hit rate, F/A rate, and the 

recognition variables were the signal presentation con­

ditions (H, L, HLj or HLp). 

Experimental Sessions and Apparatus 

This experiment consisted of the presentation of at 

least 600 trials for each of the 6 stimulus conditions 

(H, L, HLJ{ or H, L, HLQ). An experimental session con­

sisted of 6 blocks of 100 trials. The signal on any given 

trial was randomly selected by Lehigh Valley Electronics 

, modular programming equipment. Each stimulus condition 

had an a priori probability of 0.33 on any given trial. 

The experiment was continued until at least 600 trials for 

each stimulus condition were accumulated. 

In each experimental session, the S was .seated in 

a sound-attenuated room before a panel of indicator lights 

and three response keys (one for each stimulus condition). 

A calibrated earphone (Grason-Stadler model TDH49-10Z) 

mounted in a MX-41/AR muff was placed on the preferred 

ear. The S was instructed to respond by pressing one of 
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the microswitches to indicate his decision regarding which 

signal occurred in the trial. Responses (Hits and F/As) 

were automatically recorded on electromechanical counters. 

On each response, the S was informed by feedback lights 

whether his decision was correct. 

The overall timing of the experiment was determined 

by a Lafayette 8 Bank Timer. The experimental paradigm 

was a modification of that used in Experiment I. The 

signal to be recognized always occurred at the midpoint 

of the second observation interval and a comparison sig­

nal (H) was always presented at the midpoint of the first 

observation interval (a modified 2AFC paradigm). 

Analysis and Predictions 

In this experiment, one of the S's tasks was to 

recognize the HL signal condition (either HLj or HL^) being 

.presented at minimum recognition dwell-time. If this 

task were done with an HLj presentation and the d' 

increased in relation to the recognition d' of a known 

component signal (H or L), it would support the multi-

band model. If, in contrast, the recognition task (using 

HLj) yielded a decrease in d' in relation to a known com­

ponent signal, the data would support the single-band model. 

Furthermore, if the task were accomplished under an HL^ 

presentation, then the recognition d' would equal the 
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most recognizable component signal, thus supporting the 

multi-band model. Finally, if the HL^ signal showed 

a decrease in recognition d', when contrasted with the 

most recognizable component signal, support would be found 

for the single-band model. 

To calculate the d' for comparison of the single-

band and multi-band models, and in order to differentiate 

between the single and double criterion models, a parti­

tioning of responses was necessary. This partitioning was 

accomplished by recording three response categories for 

each of the three stimulus conditions (H, L, HL-j-; or H, 

L, HLQ). The response categories for the H condition were 

Hits, F/A^ (False Alarm L), and F/A^ (False Alarm HL). 

The other signal conditions had similar response categories 

which produced two TSD contingency tables illustrated 

in Figure 11. These contingency tables were further 

partitioned to obtain individual contingency tables for 

each signal condition (See Appendix E). The d' units were 

calculated from the contingency tables and compared separ­

ately to the single- and multi-band model predictions. 

The false positive rates derived from the contingency 

tables were compared with expectations of equality as 

hypothesized by the double criterion model (Treisman, 1972), 

as illustrated in Appendix C. If Treisman's double 
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FIGURE 11. TSD Contingency Tables for the Results of 

Experiment II 
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criterion model fit the responses given by the Ss, there 

should be an equality in the false positive rates. Thus, 

the experiment yielded data concerning Treisman's (1972) 

hypothesis that the changes in detectability found by Moray 

(1970a» 1970b) were due to shifts in response criterion. 

Results and Discussion 

The results of the experiment are outlined in 

Table II and Table III. Table II compares the recogni­

tion d* values obtained for each HL condition (HL^ or 

HLp) with those of the individual component signals (H 

and L). It can be seen from this table that the single-

band model best predicted the outcome of the experiment. 

In all cases the HL condition had a clearly lower d' value 

than either of the single component signals (H or L). 
» 

Since these data were collected at a time duration equal to 

.the "recognition dwell-time," it appears that there was 

no time to switch between channels and therefore the de­

tection of the HL signal was essentially a chance occurrence. 

This statement is verified by the data exhibited in Table 

II, in that the d' for the HL condition (either HLj or HL^) 

for all Ss was below threshold (d' approximately equal 

to 1.0). When TRT is defined as the minimum period of 

time necessary to recognize a signal, it may be criticized 

that the present experiment adulterated this concept because 

the time used could be the shortest time period in which 
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TABLE II. The d' Scores Obtained When the Signals 

Were Presented at "Recognition Dwell-Time" 

Signal Condition 

H L HLI H L HLD 

S1 .60 1.21 .18 .65 1.12 .16 

S2 .75 1.22 .32 .82 1.11 .12 

s3 .88 1.50 .55 .98 1.26 .48 

Mean .74 1.31 .35 .82 
r 

1.16 .25 



TABLE III. False Alarm Rates of Signals Presented at 

a Duration Equal to "Recognition Threshold 

Dwell-Time" 

Signal Condition 

H L HLJ H L HLD 

S1 .45 .33 .23 .43 .35 .23 

S2 .39 .28 .15 .33 .32 .15 

S3 .43 .37 .30 .39 .38 .27 

Mean .42 .33 .23 .38 .35 .22 
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a single signal could be recognized in addition to the 

portion of time a second signal may be presented before 

being recognized. Even though this may negate the actual 

determination of a "recognition dwell-time," in order for 

the present experiment to determine the effectiveness 

of the two theoretical models this enlarged "recognition 

dwell-time" is adequate. The reasoning behind the pre­

vious statement is that if only one signal could be recog­

nized when the TRT was used, the predicted results would 

still remain diametrically opposed between the two models. 

The false alarm rates determined by using Treisman's 

(1972) method of analysis are shown in Table III. It 

illustrates the differences in the F/A rates for each HL 

condition as compared to that of the individual component 

signals. As can be seen in the table, the F/A rates were 

not similar, strongly suggesting that the single criterion 

model fitted the data. A repeated measures analysis of 

variance (ANOVA) performed on the F/A rates confirmed that 

the rates were not equal. As shown in Table IV, the ANOVA 

showed a significant difference (p<0.0l) between the F/A 

rates for the signal conditions (H, L, HLj, or HLp). This 

result indicated that the phenomena observed in earlier 

experiments (i.e., evidence confirming both the single- and 

multi-band models) could not possibly be interpreted as the 
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TABLE IV. ANOVA on F/A Rates of Signals Presented at a 

Duration Equal to "Recognition Dwell-Time" 

sv df SS MS F 

Signal Condition 3 .072336 .024112 34.628 ** 

Subjects 2 .020010 .010005 

Error 6 .004178 .0006963 

Total 11 .096524 

** P<-01 



establishment of a double criterion. The data then 

support a single-band model of auditory processing and 

a single criterion model for responding. 



74 

CHAPTER IVs DISCUSSION AND CONCLUSIONS 

The results of the two experiments can now be ex­

amined in relation to the concept of single- and multi-band 

models and whether these models operate separately in detec­

tion and recognition tasks. In addition, the two experiments 

have shown areas where possible flaws in previous experimen­

tation have occurred. Consequently, these experiments have 

demonstrated how a listener may efficiently process infor­

mation from any two frequency regions (CBs) to which the 

human auditory system is sensitive. 

All previous experimentation in the area of auditory 

selective attention was involved in the measurement of the 

detectability of a signal and has produced a confusing and 

conflicting literature. The basic premise of Ohm and later 

theorists was that auditory information is processed in a 

Fourier manner. This means that a signal is broken into 

its component parts by the ear and each component part is 

separately analyzed. The previous studies discussed in the 

introduction have used detection paradigms in order to test 

between the single- and multi-band models of auditory 

selective attention and have failed to produce any con­

clusive evidence for either model. This earlier work in the 

area of auditory selective attention is based upon the 

assumptions of the CB concept and concomitant intensity 
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relationships. These assumptions force the experiments 

into intensity detection paradigms because the models that 

were developed by Green and his associates (Tanner, Swets, 

& Green, 1956; Green, 1958) used S/N ratios to prove 

intensity differences between the single- and multi-band 

models as illustrated in Appendix A. However, the basic 

assumptions of the models were such that the two levels of 

infonnation processing might be taking place simultaneously 

(i.e., the single- and multi-band models assume that both 

detection and recognition of a signal occur concurrently). 

Thus, again, the theorists who proposed these models were 

entangled in experimentation using intensity detection 

paradigms. If the two models developed by Green and his 

colleagues are interpreted more broadly, the actual test 

needed to differentiate between them may involve recog­

nizing the different signals when the detection task has 

been minimized. 

The data from the two experiments performed in this 

study indicate that this concept of simultaneous infonnation 

processing is incorrect and that there are two distinct 

levels of information processing. First, there is a de­

tection of the signal to be analyzed and second, there is 

a recognition of the signal's characteristics. The pro­

cess of detection seems mainly to be the procedure whereby 

the intensity aspects of the signal are analyzed. Recog­

nition, however, is a process involving characteristics 
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other than intensity after a signal has been detected. 

In order to analyze or recognize a signal, it must first 

be detected and then a decision has to be made concerning 

its characteristics. This sequential analysis of an 

auditory signal (detection-recognition) may be one reason 

for much of the conflict in the earlier data (Creelman, 

I960; Gassier, 1954; Green, 1958, 1961; Green, McKey & 

Licklider, 1959; Marill, 1.956; Schafer & Gales, 1949; 

Swets, 1963; Swets & Sewall, 1961; Swets, Shipley, McKey 

& Green, 1959; Tanner, Swets, & Green, 1956; Veniar, 1958a, 

1958b). A sequential analysis of an auditory signal can 

explain why the various experiments were equivocal in their 

support for either a single- or multi-band model of selec­

tive attention, because detection must occur before 

recognition. In addition, this ambiguity can possibly be 

explained because some experiments may have been primarily 

detection tasks and others primarily recognition tasks. 

The results of Experiment I confirmed the hypothesis 

that a detection task leads to ambiguous results. Differ­

entiation between the two models may not be established 

in detection paradigms because the signals were presented 

at durations which permit the S to monitor more than one 

CB. It was found that detection of a signal occurs even 

under extremely short (0.5 msec) signal presentations. It 

was further shown that an HL signal could be detected under 

these conditions. This indicated that either the HL 
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signal was being processed under a multi-band model or 

that the detection "dwell-time" and switching time was so 

short that both CBs could be monitored (i.e., single-band 

scanning model). Thus it is hypothesized that a Temporal 

Detection Threshold (TDT) is less than 0.5 msec, and for 

all practical purposes, the data reflects essentially a 

multi-band model of analysis; although both models may 

theoretically account for the results. 

In Experiment II, it was found that recognition of 

a signal (HL) followed a single-band model of selective 

attention (i.e., only one CB is monitored at one point in 

time). It was, also, found in Experiment II that the Ss 

used a single criterion model for responding. The double 

criterion model was postulated by Treisman (1972) in order 

to re-interpret selective attention investigations by using 

Theory of Signal Detectability (TSD) concepts. Treisman 

theorized that the single-channel (CB) switching hypothesis 

(time-sharing) was inadequate and TSD could account for the 

data by assuming a change in Ss' response criterion. This 

was not confirmed in Experiment II. The establishment of 

equal F/A rates under all signal conditions was not found; 

thereby, eliminating Treisman's argument for a multi-band 

interpretation. 

When both of the present experiments are examined, 

it seems that both the single- and the multi-band models 

of selective attention are functioning when a complex signal 
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(HL) is analyzed. In other words, first, the signal is 

detected under the multi-band model conditions or the single-

band model is operating with so short a TDT that it could 

not be determined by the present experiments; second, the 

signal is recognized under the single-band concept at a 

TRT of 2.5 msec. By the time the components of the signal 

are being analyzed for frequency content (recognized), 

the detection information (intensity) has already been 

analyzed separately for each CB. Therefore, this experimen­

ter proposes that there are two networks for processing in­

formation from auditory signals, the Detection Network and 

the Recognition Network. 

The Recognition Network involves a switching mechanism 

with a maximum "dwell-time" of 2.5 msec for these signals 

and possibly instantaneous switching-times. This means 

the Recognition Network uses the single-band model of 

selective attention and is essentially a stimulus selection 

process as hypothesized by A. Treisman, Broadbent, and 

Moray (Broadbent, 1958, 1971; Moray, 1969, 1970a, 1970b; 

Treisman, 1964, 1969; Treisman & Geffen, 1967). The Recog­

nition Network then focuses attentional processes on a 

specific CB to determine the signal frequency and then if 

time remains switches the focus of attention to a second 

CB to be analyzed. Therefore, in a recognition paradigm 

when a single-band model of selective attention is used, 

as was confirmed in Experiment II, the TRT used in the 
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experiment is an average of the larger estimate of "dwell-

time" (when the S is monitoring the incorrect CB at the 

start of the trial and switches to the correct CB) and the 

minimum "dwell-time" (when the S is monitoring the correct 

CB at the trial onset) for recognition. The results of 

Experiment II indicate that the TRT for the present 

experimental conditions was closer to the minimum "dwell-

time" (thus indicating that the majority of the TRT was 

"dwell-time" spent at one CB) because both the HL (HLj 

or HLq) conditions were recognized at a lower detectability 

level. This critical "dwell-time" seems to be different 

for the Detection Network because the signals presented 

at TRT for these experimental conditions were easily 

detected for HL signal conditions. This was confirmed in 

Experiment I when the signals were detected at better than 

chance levels. 

The Detection Network involves analyzing the signal 

either using a multi- or a single-band model with an 

extremely fast (less than 0.5 msec) duration TDT. From 

Experiment I it was not determined which model would apply 

and detection is still an unknown quality. However, the 

two present experiments do confirm that detection must 

first occur prior to recognition. 

The integration of the Detection and Recognition 

Networks is the manner in which auditory information is 

processed and analyzed. The signal as finally perceived 
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is a composite of this integrated system in which the 

signal is first detected, then recognized and finally 

evokes a response. 

Therefore, based on the findings of this study, 

the conclusion is drawn that auditory information proces­

sing and selective attention is a two step processs 

(1) a detection process, in which this study could 

not determine whether single- or multi-band 

models were functioning. 

(2) a recognition process, using a single-band model 

(Stimulus selection) or selective attention. 
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CHAPTER- V» SUMMARY 

Two experiments were conducted to compare the single-- • 

and multi-band models of selective attention. Previous work 

cited in the literature had shown conflicting results both 

confirming and discrediting the models. Some of the data 

may be accounted for by assuming a change in the subject's 

(S's) response criterion. Therefore, the present study ex­

amined the concepts of time-sharing and Theory of Signal 

Detectability (TSD) in relation to auditory selective 

attention. 

The stimuli were two narrowband noise pulses 74 Hz 

wide with low (L) and high (H) center frequencies of 713 

and 966 Hz, respectively. These stimuli were presented either 

separately (H or L) or simultaneously (HL condition). When 

two signals- are presented simultaneously, the intensity of 

the resulting combined signal is greater than that of either 

of the component signals (H or L) presented separately. Two 

different HL presentations were used in the experiments to 

eliminate this intensity problem. One HL presentation was 

simple combining of the two component signals (HLj). The 

other was- when the two component signals were combined 

again; however, this time the intensity of the resultant HL 

presentation was lowered to that of the most intense com­

ponent signal (HLp). Stimuli were presented at 15 dB SL with 
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a 40 dB SPL white noise background. Responses were re­

corded automatically and dependent variables (d' and false 

alarms) were based on at least 600 trials for each stimulua 

condition. 

Three males served as trained Ss. [In a two alter­

native forced choice (2AFC) paradigm ], the Ss were asked 

in Experiment I to indicate (by pushing one of two micro-

switches) their decision as to which interval contained the 

signal. This was studied under four stimulus conditions 

(H, L, HLj and HL^) and three signal durations (0.5, 2.0, 

and 3.5 msec). Experiment II examined the same stimulus 

conditions; however, these were presented at the Temporal 

KooowiltIon Thro.shold (TR) which rofloeta Lho "minimum 

dwell-time" required to differentiate between the two 

signals (H and L) 75% of the time. The S's task was to 

indicate (by pushing one of three microswitches) his de­

cision as to which signal condition had been presented in 

the second interval of a modified 2AFC paradigm. In this 

modified 2AFC paradigm, the first interval contained one 

of the three stimulus conditions (H, L or HL). 

In Experiment I, it was found that under the HL 

conditions the multi-band model predictions closely re­

sembled the obtained data, which showed an increase in 

detectability for the HLj condition compared to a single 

component signal (H or L) and equal detectability foi: the HL^ 
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condition compared to the most detectable single component 

signal. 

In Experiment II, it was found that when both noise 

pulses were presented simultaneously (either HL'j or HL^ 

conditions), recognition was less than when either the H or 

L pulses were presented alone. Analysis of the false alarm 

(F/A) rates showed that the different signal conditions 

produced significantly different (p<0.01) F/A rates. 

The results were discussed in relation to attention 

theories, selective attention models, and differences be­

tween recognition and detection analysis of auditory signals 

The experiments indicated that auditory information pro­

cessing and selective attention is a two step process 

involvings (1) a detection process, in which this study 

could not determine whether single- or multi-band models 

were functioning; and (2) a recognition process, using a 

single-band model (stimulus selection) of selective 

attention. 
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APPENDIX A 

An Example Prediction by the Formula for the Single- and 
Multi-band Models (formulae 4 and 5 respectively). 

(A) Prediction by Single-band Model. 

Assuming that the complex signal is composed of four 

components with two sinusoids in each of two separate 

CBs (as shown), 

4U-, JL-L 

CB CB-

Frequency 

the single-band model predicts: 

dl =(Id'2)t 1/n ,+(n ,-l)/n c %*-~cb y i/A1cb' v"cb A//"cb cb ' , 

The detection of each component alone is 1.00 

(d' = 1.00), thus: 

a. (3d'cb2)^ = (1.002 + l.OO2)^ =(2)^=1.41 

b. -n ^ = 2 (i.e., two CBs in use) 

c. thus s 

(1.41)(%) + (%)(1.41) = 1.41 = d^ 

d. which reduces to: 

 ̂=(Idib2)% = 1.41. 

(B) Prediction by Multi-band Model. 

Assuming the same stimulus configuration as above, the 

multi-band model predicts: 

the detection of each component alone is 1.00 

(d' = 1.00), thus: 
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=(Idi2)^ = (1.002 + 1.002 + 1.002 + l.OO2)^ 

thus: 

=(4)-=2.00. 
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APPENDIX B 

Outline of the Conditions in Moray's Experiments (1970a, 1970b) 

Condition Stimuli Correct 
Response 

Instructions 

L Right S knows the signal will 

occur in the right ear 

only (there is a re­

versal condition for 

the left ear). 

L Respond signal 

R if a signal is 

L in either ear, 

R but not both. 

S knows signal may occur 

in either ear, but is 

just required to detect, 

not specify which ear. 

L Respond Left 

L Respond Right 

S knows signal may occur 

in either ear, and must 

stipulate the ear in 

which the signal occurred. 

(No signals simultan­

eously presented). 

L Respond Left 

L Respond Both 

L Respond Right 

S knows the signal 

could be left, right, 

or both, and is instruc­

ted to respond 

accordingly. 

L = 3000 Hz, R = 2100 Hz 
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APPENDIX C 

Summary of Treisman's Evaluation of Moray's Data 

Treisman states that if a statistical decision model 

(TSD) is applied to the effects of temporal contingencies 

between stimuli, these effects can be understood as result­

ing from changes in the decision criteria employed. In 

assuming the above model, Treisman then states: 

We assume that Moray's subjects analyzed the input to 

each ear continuously and simply attempted to maintain 

their over-all false positive rates (FPR) for each 

response category at or below a limiting acceptable 

value (the Neyman-Pearson criterion). If the de­

cision criteria applied to each ear were initially 

such that the probabilities of reporting a signal on 

the right ear when presented with a signal, or with 

noise, were respectively, §R and €R» and on the left 

ear anc* then the over-all false positive rate 

for the response RIGHT in the binaural condition 

would be: 

FPRR = (17/19) €R(1- €L)+(1/19) €R(1- SL)+(1/19) 
8 r ( i -  S l )  (5) 

and similarly for FPR^. For BOTH RESPONSES: 

FPRG=(17/19) €R €L+(1/19) 8R €L+(1/19) €R §L.(6) 

Since the most important terms in these two equations 

are. ̂ R(l- ^^) and €R respectively, and for € 

reasonably small the former will be much larger than 

the latter, it is evident that with the same response 

criteria FPRg would be much less than FPRR or FPR^. 

If, however, the subject can maintain different 
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criteria for each response category, so as to attain 

the same acceptable limiting FPR in each case, then 

for a BOTH response he can afford to apply criteria 

which are substantially lower than that for the LEFT 

or RIGHT responses, a strategy which may produce 

P(BB) values considerably greater than P(BB)pre(j* 

This model is illustrated in Figure 12 which shows 

an example with arbitrary parameters in order to 

demonstrate the principle. Noise and signal plus 

noise distributions are shown on the left and right 

decision axes, which are scaled in standard devia­

tion (SD) units. It is taken that d'=2.5 on the left 

and 0.5 on the right, and that the criterion for 

left responses, xT T , is 3.59 SD units above the 

noise mean on the left and xRR, the criterion for 

RIGHT responses, is 2.60 units above the noise mean 

on the right. The corresponding criteria for BOTH 

responses, on the two axes are 1.45 units to the 

left of XJĴ  and xRR, respectively. The subject is 

supposed to apply the following irules to each stimu­

lus pair; Respond LEFT if the input on the left 

exceeds and the input on the right is less than 
XRL'" resPond RIGHT if the input on the right exceeds 
XRR anc* n̂Put on the left is less than x B̂; 
respond BOTH if both x B̂ and xRB are exceeded. These 

rules generate the following equations: 
R(BR)= SRR(1- eTR). (7), 
P(BB)= SRB 8lb- c .«> 
FPRR-(17/19) €rr(1- £lb)+(1/19) €rr(- SLB)+ 

(1/19) RR ̂ 1~ ^LB}' (9) 

FPRFI=(17/19) 6rb €lb+(1/19) Srb €lb+(1/19) 

€RB ^LB' 
with corresponding formulas for P(BL) and FPR^. 



94 

Left 

0.641 0.4 LB 
LL 

0.138 

0.016 0.00017 
Right 

0.4 
RB RR 

0.258 

0.018 

0.125 0.006 

FIGURE 12. An Illustration of the Double-Criterion Model. 

Signal plus noise and noise distributions are shown for the 

left and right decision axes. We take it as CTg - 1 

on both sides, and the decision axes are scaled in SD units. 

It is assumed that d'=2.5 on the left ear and 0.5 on the 

right ear, and x B̂ is 2.14 and x L̂ 3.59 SD units above the 

mean of the noise distribution on the left axis, and that 

XRB is 1.15 and x^ 2.60 units above Mn on the right. The 

proportions of the noise and signal plus noise distributions 

to the right of each criterion are indicated on the figure. 

On the left, is shown dotted and 8^ hatched; on the 

right, is dotted and hatched. 
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The values of the proportion of the signal 

plus noise distribution to the right of xRR; 

the proportion of this distribution to the right of 
XPB» the proportion of the noise distribution 

to the right of xRR; etc., corresponding to the 

criterion values assumed above are shown on the 

figure. If the single-criterion model held (i.e., 

if the response BOTH is given only for stimulus 

presentations which exceed both and xRR) , these 

values would generate the following results: 

P(BR)=0.018; P(BL)-0.137; P(BB)=0.002; FPRr=0.007; 

FRP^=0.007; and FPRg=0.000046. But if we apply 

the double-criterion model outlined above, Eqs. 

7-10 generate the following results: P(BR)=0.0l8; 
P(BL)=0.121; P(BB)=0.165; FPRR=FPRL=FPRB=.006. 

Thus, when we have the same limiting false positive 

rate for each response category, there is a very 

considerable improvement in P(BB). If these results 

are compared to the binaural data ..., it will be 

seen that the detection rates given by the double-

criterion model are very similar to the mean data at 

25 msec. This shows that it is well within the power 

of the present model to account for excesses of P(BB) 

over P(BB)pred as larSe as those found in Moray's 

data (Treisman, 1972, pps. 627-629). 

Substituting the estimates used in Figure 12, the 

single criterion model predicts the following: 

FPRr = (17/19)(.006)(1-.00017)+(l/19)(.006)(1-.138) 

+(1/19)(.018)(1-.138) . 

= .006456 or approximately .006 
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FPRl = (17/19)(.00017)(1-.006)+(l/19)(.00017)(1-.018) 

+(1/19)( .138)(1- .018)  

+ .00729 or approximately .007 

FPRF I  = (17/19)( .006)( .00017)+(1/19)( .018)( .00017)  

+(1/19)( .006)( .138)  

= .0000444 

The double criterion model predicts: 

FPRR  = (17/19)( .006)(1- .016)+(1/19)( .006)(1- .641)  

+(1/19)( .018)(1- .641)  

= .0057 or approximately .006 

FPRL  = (17/19)( .00017)(1- .125)+(l /19)( .00017)(1258)  

+(1/19)( .138)(1- .258)  

= .0055 or approximately .006 

FPRF I  = (17/19)( .125)( .016)+(L/19)( .258)( .0L6) .  

+  (1/19)( .125)( .641)  

= .0062 or. approximately .006 
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APPENDIX D 

Comparison of Multi-band and Single-band Model Predictions 

for Experiment II. 

A. The first assumption is that all comparisons are 

contrasted with the presentation of a single (H or L) known 

component signal. 

B. The second .assumption is that signal duration is equal 

to minimum "recognition dwell-time" (as calculated for 

each S). 

C. The single-band model states that, when the signal is 

unknown for any presentation (essentially an UF paradigm), 

there is a switching operation which occurs between the 

two monitored CBs. Therefore: 

a. If the signal on a given trial were a single 

component signal (either H or L), the recognition d' 

would decrease in accordance with formula 2 (p. 20). 

b. If the signal on a given trial were the complex 

signal (HL), it could (because only one CB is moni­

tored) only be recognized as one of the component 

signals (either H or L) and performance would conse­

quently exhibit a decrease in recognition d'. The 

decrease would occur because, to be correct, the Ss 

must perceive BOTH H and L on the HL trial. If they 

do not perceive BOTH they will respond incorrectly and 

d' for HL will decrease. 
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D. The multi-band model states that when the signal is 

unknown for any presentation, both the H and the L CBs 

are monitored simultaneously. Therefore: 

a. If the low signal were presented, noise would 

be monitored from both CBs and a signal monitored 

in only one (i.e., S^/N + -/N =d')« This would 

produce a decrease in d' because the S/N ratio con­

tained only one signal and twice the noise. 

b. The same reasoning would apply to a single 

presentation of the high signal. There would be a 

decrease in d' because the S/N ratio contained only 

one signal and twice the noise. 

c. However, if an HL signal were presented, monitor­

ing of two bands would produce an increase in recog­

nition d' in accordance with formula 5 (a linear 

summation of the S/N ratios of the two component 

signals). 
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. APPENDIX E 

An Illustration of Partitioning the TSD Contingency Tables 

in Order to Determine d' and F/A Rates for the Signals in 

Experiment II. 

When three signals (H, L, and HL) are used each 

having an equal probability of occurrance, the following 

TSD contingency table is established: 

Signal Condition 

H L HL 

a) 
CO 

d 
o a 
to 
0) 
& HL 

H 

L 

1 2 3  

4 5  6 

7 8  9 

This table can then be partitioned into three separate 

contingency tables (i.e., one for each signal condition) 

as follows: 

a. Contingency table for the H condition: 

CD 
CO 

a 
o 
a. 
co 
a> 
03 

H 

H 

Signal Condi tion 

H H 

1 , 3 ,  
7 ,  .9 

2 ,  8  

4,  6  5  

b. Contingency table for the L condition: 



100 

<D 
CO 

d 
o a 
co Q) 
Pi 

Signal Condition 

L L 

L 

L 

5,  6 ,  
8 ,  9  

4 ,  7 

2 ,  3  1  

Contingency table for the HL condition: 

Signal Condition 

HL HL <D 
CO 
Cj 
o 
a 
CO 

0 
c*; 

HL 

ST 

9 7,  8  

3 ,  6  1 ,  2 
4 ,  5  

The numbers within the cells of the individual contingency 

tables refer to the data contained in the corresponding 

numbered cells of the original contingency table as seen 

below for S 1. 

Using data obtained from S 1 in Experiment II, the 

partitioning method may be illustrated thus: 

a. TSD table established from data: 

<D 
CO 

a 
o 
a 
co 
<D 

HL 

H 

L 

H 

Signal Condition 

L HL 

408 (1)  100 (2)  205 (3)  

97 (4)  338 (5)  350 (6)  

102 (7)  175 (8)  231 (9)  

b. The partitioned tables for each signal condi­

tion follows ^ 



i. Contingency table for H condition 

Signal Condition 

H H 

0 
co 
a 
o 
a 
co 
(!) 

Pi 

H 

H 

408 (1)  100 (2)  
205 (3)  175 (8)  
102 (7)  275 
231 ( 9 )  
946 

97 338 (5)  
350 

338 (5)  

447 

ii. Contingency table for L condition 

Signal Condition 

0) 
CO 

a 
o 
ex 
co 
(D 

PH 

338 (5)  
350 (6)  
175 (8)  
231 (9)  

1094 

97 (4)  
102 (7)  
199 

100 (2)  
205 (3)  
305 

408 (1)  

iii. Contingency table for HL condition; 

Signal Condition 

HL HL 
.0) 
CO 

C 
o 
a 
co 
CD 
Pi 

HL 

HL 

231 (9)  '  102 (7)  
175 (8)  
277 

205 (3)  
350 (6)  
555 

408 (1)  
100 (2)  

97 (4)  
338 (5)  
943 
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The F/A rates were obtained from the above tables 

by calculating the percentage of responses falling within 

the cell containing F/As (Response - signal present, Signal 

Condition - no signal present). The F/A rates for the 

above data were 45%, 33%, and 23% respective!}^ for the 

signal conditions H, L, and HL. 

The percentage of responses falling within the other 

cells was, also, calculated in order to determine the d' 

value. Using the percentages of Hits (correct detections) 

and F/As, the d1 values were determined from the tables 

established by Elliot (Elliot, 1964). In the above ex­

ample, the d* values were 0.60, 1.21, and 0.18 respec­

tively for the signal conditions H, L, and HL. 


