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HARMAN, ANN ELIZABETH, Ph.D. An Investigation of the Comparability 
and Accuracy of Three Differential Item Functioning (DIF) Detection Methods 
Using Empirical and Simulated Data. (1995) Directed by Dr. Lloyd Bond. 125 
pp. 

The purpose of this study was to investigate the comparability and 

accuracy of three differential item functioning (DIF) detection methods: the 

Mantel-Haenszel %2 approach, the IRT Unsigned Area approach, and the log-

linear approach. Based on a review of the professional literature relevant to 

methodologies used for the detection of differentially functioning test items, 

two research questions were developed. The first research question 

addressed the comparability of the DIF indices derived using the three DIF 

detection methods cited above. The second research question addressed the 

accuracy of these three DIF detection methods. To investigate these research 

questions, both empirical and simulated test data were used. 

The investigation of the comparability of the DIF detection methods 

, involved six separate analyses of the DIF indices derived from both the 

empirical and the simulated data. Specifically, for each data set, the analyses 

focused on the Pearson product-moment correlation coefficients, phi 

correlation coefficients, and pairwise comparisons of detection rates between 

each pair of the DIF indices. The investigation of the accuracy of the DIF 

detection methods involved three additional analyses of the DIF indices 

derived from the simulated only. Specifically, these analyses focused on the 

Pearson Product-Moment correlation coefficients, phi correlation coefficients, 



and pairwise comparisons of detection rates, number of Type I errors, and 

number of Type II errors between each of the DIF indices and the actual 

unsigned area between the item characteristic curves (ICCs) for the simulated 

test items. 

The results of this dissertation study indicate that the Mantel-Haenszel 

X2 approach and the IRT Unsigned Area approach yield highly correlated DIF 

indices, but have lower agreement rates when flagging items as displaying 

DIF. Similarly, the Mantel-Haenszel approach and the log-linear approach 

also yield highly correlated DIF indices, and have moderate agreement rates 

in flagging DIF items. The IRT Unsigned Area approach and the log-linear 

approach yield DIF indices which show a low correlation; they also have 

lower agreement rates with respect to the flagging of items which display DIF. 

In terms of the accuracy of the DIF indices, this study found that the 

Mantel-Haenszel approach and the log-linear approach were both moderately 

accurate in identifying items displaying uniform DIF, similarly ineffective in 

detecting nonuniform DIF items, and resulted in few Type II errors. The IRT 

Unsigned Area approach, however, was highly accurate in identifying both 

uniform and nonuniform DIF items, but also committed a large number of 

Type II errors (19 of 47 non-DIF items were flagged). The large number of 

Type II errors committed by the IRT Unsigned Area approach appear to have 

resulted from the approaches' oversensitivity to differences in the b-

parameters. 



ACKNOWLEDGEMENTS 

Over the past few years many people have contributed in both tangible 

and intangible ways to the successful completion of this dissertation and I 

would like to gratefully acknowledge their contributions and express my 

deepest appreciation. First, I would thank my chair, Dr. Lloyd Bond, for his 

support, guidance, patience, and good humor throughout this whole process. 

Over the last five years he has been a teacher, a colleague, and a friend and I 

look forward to many more years of working and laughing together. I would 

also like to thank my committee members, Dr. Terry Cooper and Dr. Rita 

O'Sullivan. The opportunities I have had to work with and learn from each 

of them have rewarded me both personally and professionally. Finally, a 

special thanks to Dr. John Hattie, who gladly joined my committee when I 

needed him and who went above and beyond the call of duty to support me 

and ensure that the finished product was one of which I could be proud. 

I would also like to thank a good friend and fellow student, Robert 

Johnson, who has gone through so much of this process with me. The 

journey is always better when it is made with a friend. Thanks also to Mark 

Price for his skillful editing of the text. His sharp eye has certainly made it a 

better read. 

iii 



I have also received a tremendous amount of support and 

encouragement from my family and many good friends. First and foremost, I 

would like to thank my mother, Catherine C. Harman, who is my staunchest 

supporter, my biggest fan, and my best friend. Without her love, support, 

encouragement and patience, this would not have been possible. My love 

and thanks go also to my other family members, Mary and Mark Milam and 

David and Betty Ann Harman, for their love, support, and encouragement in 

this and every other area of my life. My love goes also to my two wonderful 

nieces, Hannah Catherine Milam and Mary Elizabeth Harman, who, for the 

past year and a half, have brought great joy and many smiles into my life. 

Throughout the long days and nights of writing this dissertation, their 

pictures have surrounded me and always bouyed my spirits. I hope someday 

they will know how much they contributed to this dissertation and the rest of 

my life. 

I would also like to thank my friends and colleagues at the Center for 

Educational Research and Evaluation: Michelle, Wanda, Barbara, Kristen, 

John, Ann and Marnie. The daily doses of laughter and encouragement they 

have provided contributed in no small way to the completion of this process. 

And finally, I would like to lovingly dedicate this dissertation to two 

very special people in my life. First, to my uncle, Thomas G. Church. 

Throughout my life he has been my role model and his accomplishments 

iv 



have served to inspire my own. And second, to my father, A. David Harman. 

Although he did not live to see me complete this process, in many ways he 

will always be with me and I know that he would be proud. 

v 



TABLE OF CONTENTS 

Page 

APPROVAL PAGE ii 

ACKNOWLEDGEMENTS iii 

CHAPTER 

I. INTRODUCTION 1 

Notation and Terminology Conventions of this Study 5 
Organization of the Remainder of this Study 7 

H. REVIEW OF RELEVANT LITERATURE 10 

Judgmental Methods for Detecting DIF 11 
Sensitivity Reviews 15 

Classical Test Theory Methods for Detecting DIF 17 
Transformed Item Difficulty 17 
Correlational Methods : 23 
Analysis of Variance (ANOVA) 24 

Contingency Table Methods for Detecting DIF 26 
Scheuneman's Chi-square 27 
Mantel-Haenszel Chi-square 30 
Standardization Approach 32 
Loglinear Modeling 33 
Logistic Regression Model 36 

Item Response Theory Methods for Detecting DIF 39 
Lord's Chi-square for the Equality of ICC Parameters 41 
Signed and Unsigned Area Between ICCs 41 

Empirical Research Questions Addressed in this Study 44 

HI. METHODOLOGY 46 

Empirical Data Collection Instrument: 
The Graduate Management Admissions Test (GMAT) 47 

Empirical Data Reduction Procedures 50 
Simulation Data Generation Program: DGEN 50 
Simulation Data Generation Procedures 51 

vi 



Methodology for Investigating the First Research Question 54 
Methodology for Investigating the Second Research Question ... 66 

IV. RESULTS 68 

Results of the Preliminary Factor Analyses 68 
Results of Investigation of Research Question 1: 

Comparability of DIF Indices 72 
Results of Investigation of Research Question 2: 

Accuracy of DIF Indices 93 

V. DISCUSSION 99 

Summary of Results of Investigation of Research Questions .... 99 
Implications of Results of this Study for the 

Detection of Differential Item Functioning 110 
Implications of Results of this Study for Further Research 

on the Detection of Differential Item Functioning Ill 

REFERENCES 113 

vii 



1 

CHAPTER I 

INTRODUCTION 

A primary concern for both test developers and test users is the validity 

or "fairness" of the tests they construct and administer. From the early years 

of this century when psychological testing first began, the development and 

use of tests has grown rapidly in many areas of society. Initially, tests were 

seen by many as objective measures of psychological constructs that could be 

used to make sound, reliable, and objective judgments. In the 1950s, when 

concern for the civil rights of racial and ethnic minorities and women began 

to grow in this country, many looked to psychological testing as a means of 

ensuring that members of minority groups were given an equal chance at 

receiving the educational and employment opportunities that they had 

previously been denied. It was believed that testing in education and 

employment settings would ensure the fair distribution of these 

opportunities on the basis of merit alone (Anastasi, 1988). 

By the early 1960s, however, this objective had been far from realized for 

large groups of minorities. Those in the field of psychological testing and 

measurement were then accused of creating biased tests. Many of these 

accusations resulted from studies which compared the performances of 

minority and majority group members on many psychological tests. These 

studies revealed large and consistent differences in the average scores 
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between the members of these groups with majority group members and 

males outperforming minority group members and females (Angoff, 1993; 

Cole, 1981). 

The impact these findings had on society in general, and the 

measurement community specifically, was profound. Test developers could 

no longer assume that the public would accept without question that the tests 

they developed measured only the constructs they were intended to measure. 

The evidence pointed to the fact that many tests might not have been equally 

valid for all groups of people. As a result, the measurement community was 

faced with both the challenge and the responsibility of developing new 

methodologies for comparing the validity of test items across various 

demographic groups of examinees in order to ensure that any observed 

between-group differences in average test scores were due to "real" group 

differences in the construct being measured by the test and not artifactual or 

due to cultural or gender bias in the test items (Camilli & Shepard, 1994; Cole, 

1993; Durovic, 1975). For example, observed between-group differences in the 

average test scores of males and females on a college level mathematics 

achievement test would be considered "real" if they were due to differences in 

high school mathematics preparation. If, on the other hand, the observed 

between-group differences on the test were due to the use of stereotypical or 

otherwise offensive language or content or the unequal familiarity or 
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experience of females with the nominal content of the items, then those 

observed differences would be due to gender bias in the test items. 

The development of these new methodologies required the 

reconceptualization of the conventional definition of validity. The new 

definition stated that test items measure the construct they purport to 

measure with the added stipulation that items also validly measure the 

construct with the same degree of accuracy for all demographic subgroups 

after matching examinees on the construct or latent trait being measured 

(Camilli, 1993; Jensen, 1976; Scheuneman, 1979). If the conditions imposed by 

this new definition held, a fair test item could be defined as one for which the 

probability of a correct response, after controlling for the construct or latent 

trait being measured, is equal regardless of the demographic group 

membership of the examinees. It follows from this definition that if the 

probability of a correct response is not the same for examinees matched on 

latent trait and differing only with respect to some demographic characteristic, 

then the item unfairly disadvantages the members of the lower scoring group 

(Scheuneman, 1979). 

The earliest efforts at identifying and eliminating differential item 

functioning (DIF) in test items began with the use of judgment-based 

methods of item examination. These informal, judgment-based procedures 

focused on the review of test items with respect to the substantive features of 

the items, such as: the use of stereotypical or otherwise offensive language or 
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content; fair representation of minorities and women; equal familiarity or 

experience of subgroup members with the nominal content of the items; and 

the opportunity of subgroup members to learn the item's content or processes 

(Tittle, 1982). Since these methods were first used as a means for identifying 

potential sources of DIF, many test developers have formalized and refined 

these review procedures and mandated their use at all stages of the test 

development process (Green, Coffman, Lemke, Raju, Hendrick, Loyd, 

Carlton, & Marco, 1982; Ramsey, 1993; Tittle, 1982). 

Judgement-based procedures for detecting DIF were quickly followed by 

the development of statistical methodologies based on classical test theory. 

Initially, these methodologies involved the use of correlational and Analysis 

of Variance (ANOVA) procedures to examine classical test indices such as 

item difficulties and validity across groups via the ANOVA response-by-

group interaction term. These methods, however, were quickly recognized as 

flawed because they did not control for the construct or latent trait being 

measured and, therefore, confounded differential impact (i.e., legitimate 

between-group differences) with DIF (Camilli & Shepard, 1994). 

By the early 1980s these classical test theory methods gave way to 

statistical methodologies based on chi-square (%2) techniques and item 

response theory (IRT) models. Over the course of the 1980s and early 1990s, 

the %2 techniques have been extensively investigated and refined, and the 

Mantel-Haenszel approach proposed by Holland and Thayer (1988) has 
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emerged as the preferred %2 -based DIF detection method for many test 

developers and other researchers. The methods based on the IRT models, 

however, are still being investigated and refined, and they continue to be the 

focus of much debate within the measurement community. 

In addition to these more common statistical methodologies, possible 

log-linear approaches to the detection of DIF were proposed first by 

Marascuilo and Slaughter (1981) and Mellenbergh (1982). More recently, 

Green, Crone, and Folk (1989), Kelderman and Macready (1990), and Green 

(1991) have also suggested the use of log-linear models for both differeiitial 

distractor functioning (DDF) and DIF analysis and detection, and have 

proposed tentative models for these purposes. Also, measurement specialists 

at the Educational Testing Service (ETS) have developed what they have 

called the Standardization approach for the analysis and detection of DIF and 

have demonstrated its usefulness in evaluating multiple-choice test items 

(Dorans, 1989; Dorans & Holland, 1993; Dorans & Kulick, 1986; Dorans, 

Schmitt & Bleistein, 1992). The results of these studies have shown the DIF 

indices derived using the Standardization approach to be virtually identical to 

the indices derived using the Mantel-Haenszel procedure. 

Notation and Terminology Conventions of this Study 

Throughout this study several notation and terminology conventions 

will be followed. First, the terms "bias" and "item bias" carry many negative 
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social connotations and have largely been replaced in the professional 

literature with the value-neutral terms "DIF" and "differential item 

functioning." Therefore, for the purposes of the discussion presented here, 

the terms DIF and differential item functioning will be used whenever 

possible. However, when citing directly from other sources or referring to the 

work of others, the terms bias or item bias may be used. In these cases the 

terms DIF, differential item functioning, bias, and item bias are used 

synonymously and should be interpreted as Jensen (1980) proposed: 

In mathematical statistics, "bias" refers to a systematic under-

or over-estimation of a population parameter by a statistic 

based on samples drawn from the population. In 

psychometrics, "bias" refers to systematic errors in the 

predictive validity or construct validity of test scores of 

individuals that are associated with the individual's 

[demographic] group membership. ... The assessment of bias 

is a purely objective, empirical, statistical and quantitative 

matter entirely independent of subjective value judgements 

and ethical issues concerning fairness or unfairness of tests 

and the uses to which they are put. Psychometric bias is a set 

of statistical attributes conjointly of a given test and two or 

more specific subpopulations. (p. 375) 

The term "demographic group" will be used as a generic term to describe 

racial, ethnic, and gender groups. The examples and references used 

throughout Chapter II of this dissertation will not distinguish between the 
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three and all procedures can be generalized to any of these demographic 

groups. Following Holland and Thayer (1988) and for the purpose of 

continuity the demographic groups of interest will be referred to as either the 

reference group (i.e., whites or males) or the focal group (i.e., African 

Americans or females) and will be indexed with either an "r" or an "f" 

respectively. 

For all the DIF detection procedures presented, item responses will be 

classified as either "right" or "wrong" and will be indexed with either a "1" or 

a "0" respectively. In addition, where appropriate, the total test score will be 

assumed to be the criterion for matching examinees on ability, and examinees 

will be grouped into K ability levels. Finally, the specific item that is the focus 

of the DIF analysis will be referred to as the studied item. 

Organization of the Remainder of this Study 

The remainder of this dissertation will be organized into four chapters. 

First, in Chapter II a review of the professional literature relevant to the 

detection of differentially functioning test items is presented. The purpose of 

the chapter is to provide an overview of the dominant DIF detection 

methodologies that have been developed over the last three decades in order 

to provide the larger context for the dissertation study described here. For 

each of the DIF detection methods presented in Chapter II, the discussion 

focuses on the conceptual definition of differential item functioning adopted 

by the approach, the statistical procedures applied by the approach in 
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calculating DIF indices and test statistics, the theoretical and practical 

strengths and weaknesses of the approach, and a discussion of any previous 

research conducted using the approach found in the professional literature. 

Chapter II concludes by identifying the two research questions that are the 

focus of this study. 

Chapter HI outlines the methodology that was followed while 

investigating each research question identified through the review of the 

professional literature presented in Chapter II. Chapter III is divided into six 

sections. The first section provides a brief description of the Graduate 

Management Admissions Test (GMAT), the data collection instrument from 

which the data for the empirical portion of this study was drawn. The second 

section presents a description of the data reduction procedures that were 

followed in preparing these empirical data for analysis. The third section 

provides a brief description of the data generation program, DGEN, which 

was used to generate the item response data for the simulation portion of this 

study. The fourth section presents a description of the procedures that were 

followed in generating the item response data used in the simulation portion 

of this study. The fifth section provides a discussion of the methodology used 

to investigate the first research question. And finally, the last section of this 

chapter provides a discussion of the methodology used to investigate the 

second research question. 
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Chapter IV presents the results of the statistical analyses that were 

performed while investigating the research questions that were defined in 

Chapter n. The chapter is divided into three sections. The first section 

presents the results of two preliminary factor analyses. The second section 

presents the results of the investigation of the first research question. And 

the last section presents the results of the investigation of the second research 

question. 

Finally, Chapter V provides a discussion of the results of the study. This 

discussion focuses in three areas. First, a summary and discussion of the 

results of the study are presented. Second, the implications that the results of 

the study have for the detection of DIF items are identified and discussed. 

And finally, the implications that the results of this study have for future 

research on the detection of DIF are presented. 
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CHAPTER II 

REVIEW OF RELEVANT LITERATURE 

The purpose of this chapter is to review and synthesize the professional 

literature relevant to differential item functioning detection methods. The 

discussion presented here focuses on the evolution of DIF detection methods 

from the early 1960s to the present. The methods discussed in this chapter fall 

into four broad categories: judgmental methods, classical test theory 

methods, contingency table methods, and methods based on item response 

theory. 

The first section of this chapter focuses on the early use of judgmental 

methods for the detection of DIF and the present day use of sensitivity 

reviews to identify and eliminate, in advance, potential sources of DIF from 

test items. The second section describes DIF detection methods that are based 

on classical test theory, including the Transformed Item Difficulty (TID) or 

Delta-Plot method, correlational methods and the Analysis of Variance 

(ANOVA) method. Contingency table methods for detecting DIF are 

discussed in the third section. These methods include Scheuneman's Chi-

square procedure, the Full Chi-square procedure, the Mantel-Haenszel Chi-

square approach, the Standardization approach, and the use of log-linear 

modeling and logistic regression approaches. Finally, the fourth section 



presents a discussion of Item Response Theory (IRT) methods for detecting 

DIF including Lord's Chi-square procedure for testing the equality of item 

characteristic curve (ICC) parameters, and procedures based on the signed and 

unsigned area between ICCs. 

For each of the DIF detection methods presented, the discussion focuses 

on four areas: the conceptual definition of differential item functioning 

adopted by the method; the statistical procedures applied by the method in 

calculating DIF indices and test statistics; the theoretical and practical 

strengths and weaknesses of the method; and previous research conducted 

using the method that can be found in the professional literature. The final 

section of this chapter defines the research questions that are investigated 

through this dissertation study. 

Judgmental Methods for Detecting DIF 

Although the origins of modern psychological testing and measurement 

can be traced back to the early years of the 20th century and the work of Sir 

Francis Galton (1822-1911) in England and James McKeen Cattell (1860-1944) 

in the United States, issues of validity relating to the development and use of 

psychological tests were of only incidental importance at the time (Anastasi, 

1988; Linden & Linden, 1968). It was not until the 1940s that the issue of 

validity was considered seriously by psychologists and psychometricians. 

Initially, however, the conception of validity was quite narrowly focused and 

the codification of validity standards at the time reflected this narrow focus. 



The earliest attempts at articulating and formalizing validity standards for 

psychologists and other professional test developers required only that they 

demonstrate that the test measured what it claimed to measure for the 

population of examinees for whom the test was intended (American 

Psychological Association, 1954; Camilli & Shepard, 1994). To fulfill this 

requirement, test developers relied on judgment-based evidence to 

demonstrate the connections between the tests they developed and the 

psychological constructs that the tests claimed to measure. By the early 1960s 

when issues of test bias and differential validity first emerged, these 

judgment-based methods were all that were available to test developers to 

address the issues. 

The earliest attempts at detecting and eliminating bias from test items 

involved the examination of potential test items by persons who were 

considered "experts" in identifying sources of racial, cultural, or gender bias 

(Tittle, 1982). The examination of test items by experts usually involved a 

review of the potential items which focused on the substantive features of the 

items. The substantive features on which the reviewers focused were: the 

use of stereotypical or otherwise offensive language or content; fair 

representation of minorities and women; equal familiarity or experience of 

subgroup members with the nominal content of the items; and the 

opportunity of subgroup members to learn the item's content or processes 

(Tittle, 1982). Often, those considered to be "experts" were simply members of 



the various minority groups against whom it was thought the items might be 

biased. For example, test items were reviewed by racial minorities to 

determine whether the language, context, content, or other features of the 

item might be perceived by members of the minority group as stereotypical or 

offensive in any way (Tittle, 1982). 

It was not until the development of statistical methods for the detection 

of DIF in the early 1970s that test developers fully realized the inadequacies of 

these judgment-based procedures. It became clear at that time that although 

the expert review of test items for stereotypical or offensive language and 

content may remove some of the potential sources of bias from those test 

items, there are often many more subtle features of test items that result in 

DIF which go undetected by expert reviewers (Tittle, 1982). In fact, 

throughout the history of item bias and DIF detection, researchers have 

hypothesized about what these subtle features of items might be. They have, 

over the years, analyzed various item types and, based on their analyses, 

attempted to either predict or explain the characteristics of items that function 

differently for matched groups of examinees (McPeek & Wild, 1987; Medley & 

Quirk, 1974; O'Neill & McPeek, 1993; O'Neill, McPeek, & Wild, 1989; 

Pearlman, 1987; Rengel, 1986; Schmitt, 1988; Schmitt & Bleistein, 1987). Due 

to what is apparently the highly idiosyncratic nature of DIF, these attempts 

have not been very successful. What this research has shown is that 

although we can define what a differentially functioning test item is via 
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empirical and statistical methods, often we can not recognize one when we 

see it (Bond, 1993; Engelhard, Hansche, & Rutledge, 1990; Hambleton & Jones, 

1992). 

Although these judgment-based reviews ultimately proved to be 

inadequate as a DIF detection method in and of themselves, their use during 

these early years served a number of important purposes. First, they focused 

public and professional attention on the existence of racial, cultural, and 

gender bias within the popular culture. Second, they gave professional 

credibility to the notion that features of a test item, such as language or 

content which is stereotypical or offensive, can impinge upon an examinee's 

performance on the item and, thus, is a source of invalidity (McLarty, Noble, 

& Huntley, 1989; Roid & Wendler, 1983). Finally, although these methods are 

inadequate on their own, they play an essential role in the development of 

tests and test items and their use should be continued. This understanding by 

test developers of the important role judgment-based review procedures play 

in the development of fair and unbiased tests has lead, over the years, to the 

incorporation of sensitivity review procedures as a standard part of the test 

development process (Green, Coffman, Lemke, Raju, Hendrick, Loyd, 

Carlton, & Marco, 1982; Hunter & Slaughter, 1980; McLarty, Noble, & Huntley, 

1989; Ramsey, 1993; Tittle, 1982). 



Sensitivity Reviews 

Over the last 20 years, many of the large test developers in this country, 

as well as the professional organizations associated with test development 

and test use, have formalized sensitivity review guidelines and procedures 

and incorporated their use into the test development process (American 

Psychological Association, 1977; Macmillian, 1975; McGraw-Hill, 1968; 

McGraw-Hill, 1974). The sensitivity review process is a formal, judgment-

based process that is an extension of the early judgmental procedures used for 

the purpose of detecting biased test items. The sensitivity review process, in 

addition to reviewing items for offensive language or content, also screens 

items for the use of other words and phrases that have been classified by the 

test developer as "caution" words and phrases and, as such, are to be avoided 

whenever possible (Green, Coffman, Lemke, Raju, Hendrick, Loyd, Carlton, & 

Marco, 1982; Hunter & Slaughter, 1980; Ramsey, 1993). 

The Educational Testing Service was among the first of the large test 

development companies to formalize and mandate the use of sensitivity 

reviews for all test items as well as test-related publications, nonprinted 

materials, and research and statistical reports (Ramsey, 1993). Among the 

words that the ETS sensitivity review process flags as caution words are: 

backward, barbarian, birthrate, class, colonialism, crime, culturally 

disadvantaged, developing nation, gangs, ignorant, illegitimate, and inferior 

(Hunter & Slaughter, 1980; Ramsey, 1993). Although the use of these words, 
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within certain contexts, would not be considered offensive, they have been 

recognized by ETS to have that potential within other contexts and, therefore, 

their use in test items and publications is closely monitored. 

As the use of sensitivity reviews has become more commonplace, and 

the list of words and phases that are considered to be potentially offensive has 

grown, a number of attempts have been made to standardize sensitivity 

review procedures and to provide review guidelines for test developers as a 

whole. Among the earliest attempts at a standardization of procedures, 

Hambleton (1980) developed an Item Bias Review Form which could be used 

by any test developer to review test items for potential sources of racial, 

cultural, and gender bias. The form is used to flag test items which do not 

meet one or more of eight criteria for bias-free language and content. The 

eight criteria specified by Hambleton (1980) are: 

1. Is the item free of offensive sexual, cultural, racial, and/or ethnic 
content? 

2. Is the item free of sexual, cultural, racial, and/or ethnic 
stereotyping? 

3. Is the item free of language that would be offensive to a segment of 
the examinee population? 

4. Is the item free from descriptions that would be offensive to a 
segment of the examinee population? 

5. Will the activities or situations described in the item be familiar to 
all examinees? 

6. Will the words in the item have a common meaning to all 
examinees? 

7. Is the item free of difficult vocabulary and/or sentence structure? 
8. Will the item format be familiar to all examinees? 



In addition to the Item Bias Review Form developed by Hambleton 

(1980), a number of other sensitivity review forms have been developed and 

used over the years to screen test items (Jensen & Beck, 1979; Saario, Jacklin, & 

Tittle, 1973; Science Research Associates, 1976). Each of these review forms 

provides test developers with a useful rubric for evaluating test items and 

determining whether they could be viewed as offensive to racial, cultural, or 

gender group members. 

Classical Test Theory Methods for Detecting DIF 

Although these judgment-based procedures could be used to detect 

language and content that members of various minority groups might find 

offensive, they were generally inadequate on their own. By the early 1970s 

test developers had begun to develop more objective, empirically-based 

methods for identifying test items that functioned differently for matched 

groups of examinees. The earliest methods were firmly based in classical test 

theory and included the Transformed Item Difficulty (or Delta-Plot method) 

developed by Angoff (1972), ANOVA-based procedures that used significant 

group-by-item interaction to flag DIF items, and correlational methods 

(Crocker & Algina, 1986). 

Transformed Item Difficulty 

The Transformed Item Difficulty (TID) method was first used by Angoff 

(1972) in the early 1970s as a method for detecting DIF. The TID method (also 

known as the Delta-Plot method) conceptualizes DIF as differential difficulty 



(Oosterhof, Atash, & Lassiter, 1984). That is, any item that is relatively more 

difficult for members of one group than it is for members of the other group 

is considered to be functioning differently for the two groups (Angoff, 1972; 

Angoff, 1993; Angoff & Ford, 1973). The TID method provides a graphical 

representation of item difficulty values based upon Thurstone's (1925) 

classical Method of Absolute Scaling (Camilli & Shepard, 1994). 

The procedures used to create these graphical representations are quite 

straightforward. First, for each subgroup of examinees, the classical item 

difficulty or p-value is calculated. This value is simply the proportion of 

examinees within a subgroup who answered the item correctly. Once these 

values have been calculated for each item within each subgroup, these values 

are normalized, typically to a mean of 13 and a standard deviation of 4, but 

theoretically any mean and standard deviation could be used. (It is from this 

normalizing or transforming of the classical item difficulties that the method 

derives its name.) For each item on a test, a pair of transformed item 

difficulty values, often referred to as deltas, are calculated. These deltas are 

then plotted on a bivariate graph with the deltas for one group placed along 

the x-axis and the deltas for the other group placed along the y-axis (Angoff, 

1972; Angoff, 1982; Camilli & Shepard, 1994). 

This plot, then, is used to identify individual test items that are 

functioning differently for the two groups. If the item is of exactly equal 

difficulty for members of the two subgroups, the deltas would fall along a line 



that extends from the lower left-hand corner of the bivariate graph and raises 

at a 45° angle toward the upper right-hand of the graph. Using real test data, 

this exact relationship between deltas for two groups is never achieved. 

Typically, however, if the two groups of examinees are fairly closely matched 

on the ability being measured by the test items, the plot of the deltas will form 

a narrow ellipse around a major axis which lies at nearly a 45° angle 

extending from the lower left- to the upper right-hand corner of the graph. 

This type of graph indicates that, for each group, the items have roughly the 

same rank ordering with respect to the difficulty and, thus, the correlation of 

the deltas for the two groups is quite high (Angoff, 1982). If one group is of 

higher ability on the construct being measured by the test items, the deltas for 

the two groups will still fall narrowly around a nearly 45° line, however, the 

line will be displaced either vertically or horizontally depending on which is 

the higher ability group (Angoff, 1982; Camilli & Shepard, 1994). If, on the 

other hand, the groups come from different populations, or if the items do 

not have the same meaning for members of the two groups, the deltas will 

scatter more widely around the major axis indicating a different rank 

ordering of the item difficulties within each group and, by definition, a lower 

correlation between the deltas (Angoff, 1982; Angoff, 1993). 

Using the plot of the delta values a TID index can be calculated for each 

item. The TID index for an item is defined simply as the perpendicular 

distance from the point on the bivariate graph which represents the pair of 
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deltas for an item and the major axis. This TID index has been proposed as an 

indicator of the amount of DIF being displayed by the items on a test (Angoff, 

1982). 

Although the Transformed Item Difficulty method has, in the past, had 

great appeal due to its conceptual simplicity, low cost, the ease with which it 

can be implemented, and the relatively small sample sizes needed to apply 

the procedures, it has been criticized by many as being seriously flawed 

(Hambleton & Rogers, 1991; Harris & Kolen, 1989). The three primary 

criticisms of the TID method are, first, that the delta values calculated for the 

two subgroups being compared may not be equally reliable, second, that the 

method, because it is based on classical item p-values, confounds DIF with 

legitimate differences in group means, and third, again because the method is 

based on classical item p-values, DIF is also confounded with legitimate 

differences in item discriminations (Angoff, 1982; Hunter, 1975; Lord, 1977). 

To overcome the problem of unequal reliabilities of the deltas, Cardall 

and Coffman (1964) and Coffman (1961,1963) proposed using an arcsine 

transformation of the p-values in order to control for different item variances 

(i.e., difficulties). Plake and Hoover (1979) investigated this solution and 

obtained results which demonstrated that such a transformation is quite 

effective in equalizing the item variances. 

The second criticism, (i.e., confounding DIF with legitimate differences in 

group means) is more difficult to overcome. Cleary and Hilton (1968) and 



Angoff and Sharon (1974), have both shown that the use of the within-groups 

items-by-subjects interaction as an error term virtually always yields results 

that are statistically significant. This is the case because even when both the 

sample size and the test length are small, the degrees of freedom will be large, 

resulting in nearly any effect size being statistically significant regardless of 

whether the effect size is of any practical significance. 

Camilli and Shepard (1994) provided an example which illustrates the 

third criticism noted above by demonstrating that when the two groups being 

compared are not of equal ability on the construct being measured by the test 

items, highly discriminating items (i.e., items that distinguish well between 

members of the lower ability group and members of the higher ability group) 

will appear to be functioning differently simply because they do discriminate 

so well. 

In spite of these criticisms of the TID method, and his own 

acknowledgment of its limitations, Angoff (1982, 1993) continued to defend 

the TID method and its associated statistics for the evaluation of DIF in test 

items. He offered a number of remedies for the flaws noted previously. 

Specifically, he suggested the use of some relevant external criterion measure 

of the construct being measured by the items as a way to overcome the 

problem of confounding which results from differences in group means. The 

criticisms that have been made of this remedy are two-fold. First, although 

matching the groups on some external criterion prior to applying the TID 



method would likely reduce the effects of the confounding, it would not 

eliminate the confounding altogether. Second, in practice, a 

relevant external criterion on which to match the two groups rarely exists 

(Camilli & Shepard, 1994). 

In addition, Angoff (1982) suggested that the confounding which is the 

result of different item discriminations can be remedied by making a simple 

adjustment to the delta values based on the item-test point-biserial 

correlations. To make this adjustment, he recommended that, prior to 

constructing the plot of the delta values, each delta value should be divided 

by its respective item-test point-biserial correlation. Angoff (1982) 

recommended this as a remedy because, in classical test theory, the item-test 

point-biserial correlation is an estimate of the item's discriminating power 

and, by making this transformation, any differences in item discrimination 

are adjusted out of the deltas. Although Angoff (1982) recommended this 

transformation, he also notes that point-biserial correlations are generally 

quite unreliable and, therefore, the adjustment is similarly unreliable. A 

comparative study by Shepard, Camilli, and Williams (1985) showed that this 

adjustment actually resulted in a lower rate of agreement between the TID 

index and other DIF indices based on preferred methodologies. 

Angoff (1982) also defended the TID method as a legitimate approach to 

the analysis of test items for purposes other than the detection of DIF. In 

support of this position, Angoff (1982) noted that the TID or Delta-Plot 



method has been used for a variety of purposes other than the detection of 

DBF, "including the study of cultural and sex differences (Angoff & Ford, 1973; 

Angoff & Herring, 1976; Breland, Stocking, Pinchak, & Abrams, 1974; 

Coffman, 1961), equating of scores across groups presumed to be culturally 

different (Angoff & Modu, 1973; Angoff & Stern, 1973), general score equating 

(Thurstone, 1925), and the standardization and equating of item difficulties 

(Thurstone,1947). Additionally, delta-plots have been used to identify 

miskeyed items, items which have become obsolete, and items having 

different 'psychological meaning' for different groups." (p. 101-102) 

Correlational Methods 

The use of correlational methods to detect DIF has also been investigated 

(Strieker, 1982; Strieker, 1984). One correlational method involved the 

calculation of classical item difficulties, p-values, for each item within each 

subgroup. The items were then ranked within each subgroup according to 

their difficulties and the rank-order correlation of the items for the two 

subgroups was calculated (Camilli & Shepard, 1994). It was believed that a 

rank-order correlation close to 1.0 indicated that the relative difficulty of the 

items across the subgroups was the same and, therefore, the items were 

measuring similarly for the two groups. If, on the other hand, the rank-order 

correlation was significantly lower than 1.0, a group membership-by-item 

difficulty interaction was present. 



The other correlational method investigated by Green (1971) and Green 

and Draper (1972) involved calculating, for each subgroup, the item-test 

point-biserial correlation. The point-biserial correlations within each 

subgroup were then classified as either "high" or "low" with high 

correlations falling in the upper half of all the correlations for the subgroup 

and low correlations falling in the lower half. Then items which were among 

the high correlations for one subgroup and among the low correlations for 

the other subgroup were flagged as biased. 

As with the DIF detection methods based on classical test theory 

discussed previously, these correlational methods are criticized for the same 

flaws and, therefore, have not been widely used and are not recommended 

(Hunter, 1975; Camilli & Shepard, 1994). 

Analysis of Variance 

The use of analysis of variance (ANOVA) for the detection of DIF was 

widely used throughout the 1970s and into the early 1980s. The popularity of 

the ANOVA method is probably most directly attributable to two features of 

the method. First, it is a statistical approach and, therefore, preferred by many 

over approaches which rely on observational methodologies. And second, 

ANOVA is a well-known procedure that is easily understood, applied, and 

explained. 

From the ANOVA perspective, DIF is conceptualized as the differential 

performance (i.e., differential difficulty) by subgroups on a set of test items 



and, as such, it can be detected via the group-by-item interaction term in the 

ANOVA model (Dreger & Miller, 1968; Medley & Quirk, 1974; Schmeiser, 

1982; Shuey, 1966). DIF analyses using ANOVA are performed by setting up a 

two-factor, repeated measures ANOVA with examinee subgroup 

membership as one factor and the test items as the within-groups factor 

(Camilli & Shepard, 1994). A significant main effect due to groups is 

interpreted as an indication of average group differences in the construct 

being measured, while a significant group-by-item interaction is interpreted 

as an indication of differential difficulty. 

In spite of its theoretical and computational appeal, the ANOVA 

approach to the detection of DIF suffers from the same fundamental 

weakness that other classical test theory-based methods do. That is, because it 

relies on the classical p-value or proportion correct score it confounds DIF 

with legitimate differences in the mean performance of the groups on the 

items. This weakness has been investigated and discussed in detail by Hunter 

(1975), Lord (1977), and Camilli and Shepard (1987). Camilli and Shepard 

(1987) demonstrated, both algebraically and through a simulation study, that 

when the true group differences in mean performance on the test items is 

larger than the true DIF of the test items, the ANOVA will attribute a larger 

proportion of the true DIF to the group main effect and less to the interaction 

effect. In fact, Camilli and Shepard (1994) conclude, on the basis of their own 

analyses and the analyses of others, that the "ANOVA should no longer be 



recommended as a bias detection procedure, even for preliminary screening 

of items." (p. 34) This well-documented weakness, in conjunction with the 

recent proliferation of other theoretically preferred methods, has made 

ANOVA essentially obsolete as a method for the detection of DIF. 

Contingency Table Methods for Detecting DIF 

By the late 1970s, the inadequacies of DIF detection methods based on 

classical measures of differential item difficulty were so well established that 

the search for other, statistically sound and theoretically preferred, methods 

was well underway. Among the first methodologies to emerge from the 

research on the detection of DIF were contingency table methods. 

Scheuneman (1979) was one of the first (and ultimately the most well-

known) researchers to offer a contingency table approach. Though her 

original computation of the statistic, known as Scheuneman's yj-, contained a 

flaw, a variation of her method remained in use for many years through a 

minor correction to the computation of the statistic proposed by Baker (1981) 

and acknowledged by Scheuneman (1981). This corrected version of 

Scheuneman's %2 is often referred to as the Full %2. 

The most widely used of the contingency table methods is the Mantel-

Haenszel approach. Originally developed by Mantel and Haenszel (1959), the 

use of the method for the detection of DIF has been popularized in recent 

years by Holland and Thayer (1988). More recently, a closely related 
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contingency table method, the Standardization approach, has been developed 

and extensively investigated by researchers at ETS (Dorans, 1989; Dorans & 

Kulick, 1983; Dorans & Kulick, 1986; Dorans, Schmitt, & Curley, 1988; Rivera 

& Schmitt, 1988; Schmitt & Bleistein, 1987; Schmitt & Dorans, 1990). Finally, 

several approaches based on the log-linear modeling of contingency table data 

and logistic regression have been developed and investigated. 

Scheuneman's Chi-Square 

Scheuneman (1979) was among the first to propose a %2 -based procedure 

for the detection of DIF. According to Scheuneman (1979), "an unbiased item 

is defined as an item for which the probability of a correct response is the 

same for all persons of a given ability, regardless of their [demographic] group 

membership." (p. 145) To test the hypothesis that an item is unbiased 

according to this definition, Scheuneman proposed a modified %2 procedure 

that is analogous to the item characteristic curve procedures used by the IRT-

based methods (Scheuneman, 1979). Scheuneman's procedure proposed that 

examinees from two demographic groups of interest be matched with respect 

to total test score and then grouped into K score levels across the range of total 

test scores with three to five groups as a recommended number. 

Theoretically, the total number of matched groups can range from one to 

N+1, where N is the total number of items on the test, but the choice of the 

number of matched groups is largely dependent upon the amount of r 

available data. In general, a larger number of matched score levels is 



28 

preferred. The individual observations at each score level are then cross-

classified according to the general format depicted in Table 1 below. 

Table 1. 
Data for the Matched Set of Examinees at the k(th) Score Level 

Score on Studied Item 

1 0 Total 

Reference Group A Irk B(Vk n-rk 

Focal Group Qfk Dofk n.fk 

Total mi.k m0.k T..k 

The element "A" in the table represents the number of reference group 

members who answered the studied item correctly, while the element "B" 

represents the number of reference group members who answered the 

studied item incorrectly. The elements "C" and "D" are all interpreted 

similarly for the focal group members. The row marginal n rk represents the 

total number of reference group members at the k(th) ability level for the 

studied item. The remaining marginal totals (row and column) are, again, 

interpreted similarly. Finally, the element T ^ represents the total number of 

respondents at the k(th) ability level for the studied item. 



Scheuneman's %2 statistic for these K 2x2 contingency tables is 

expressed as: 

y2 _ V (Fek ~ FokP + (Rek ~ RokP 
k=l FeJ; Rek 

where Fek is the expected value for the focal group at the k(th) score level, F(,k 
> 

is the observed value for the focal group at the k(th) score level, R*k is the 

expected value for the reference group at the k(th) score level, and R<,k is the 

observed value for the reference group at the k(th) score level. 

Scheuneman (1979) originally believed that, under the null hypothesis 

of no DIF, this statistic is distributed as an approximate y} with K-l degrees of 

freedom. It was quickly shown that this was not, in fact, the distribution of 

the statistic (Baker, 1981; Scheuneman, 1981). 

Baker*(1981), in response to Scheuneman (1979), demonstrated that, 

under the null hypothesis of no DIF, the expected value of Scheuneman's y} 

statistic is dependent upon the total number of incorrect responses for each of 

the K 2x2 tables. He further demonstrated that this dependency could be 

corrected by including a minor multiplicative factor in the denominator of 

the statistic (Baker, 1981). This corrected J} statistic is often referred to as the 

Ful l  X 2 -  The mathemat ica l  fo rm of  the  Ful l  % 2 i s :  

= V (Fek " Fok)^ (Rek ~ RokP 
1 kti Fek(l-Pk) Rek(l-Pk) 
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In the equation for the Full %2 statistic, the term (1- Pk) is the proportion of 

incorrect responses at the k(th) score level. Scheuneman (1981) acknowledged 

the need for the correction to the original formulation of the statistic and 

showed that the appropriate degrees of freedom for the Full %2 statistic is K in 

the case of two demographic groups and K(J-l) in the case of J demographic 

groups. 

The principal weakness of Scheuneman's corrected %2 statistic is that 

although it can be used to identify DIF via a statistical test of the null 

hypothesis of no DIF, it does not provide an index that can be used to estimate 

the amount of DIF displayed by the item. The lack of a DIF index associated 

with the statistical test of the null hypothesis is a significant weakness of 

Scheuneman's %2 method because whenever the statistical test is carried out 

using the data from a large numoer of examinees, trivially small differences 

in item functioning will often result in statistical significance and the 

judgement that items are functioning differentially across groups when, in 

fact, they are not. 

Mantel-Haenszel Chi-Square 

Since the early 1980s, the most widely used %2 procedure for the 

detection of DIF has been the Mantel-Haenszel y} procedure (Mantel & 

Haenszel, 1959; Dorans & Holland, 1993; Holland & Thayer, 1988). The 

primary advantage of the Mantel-Haenszel procedure over Scheuneman's 



31 

corrected %2 is that, in addition to a test of statistical significance, it provides 

an index that can be used to estimate the amount of DIF displayed by the item. 

Like Scheuneman's %2 statistic, the Mantel-Haenszel approach uses data from 

K 2x2 tables for matched groups of examinees. Using the proportions of 

examinees in the reference and focal groups instead of frequencies, the 

Mantel-Haenszel X2 approach provides a statistical test of the null hypothesis 

of no DIF against the specific alternative hypothesis that a constant odds ratio 

exists, OCMH / which, when different from 1, represents that average amount by 

which the item is relatively more difficult for members of one group than for 

members of the other group (Dorans & Holland, 1993). The computational 

form of the CCMH constant-odds ratio is: 

ocmh = [llcRrkWfk / N,J / [ikRfkWrk / Ntk] 

An additional advantage to using the Mantel-Haenszel X2 approach for 

detecting DIF in test items is that it matches examinees on ability at each score 

level across the range of scores. Therefore, unlike Scheuneman's X2 statistic 

which groups examinees into three to five score levels, the Mantel-Haenszel 

X2 approach does not confound DIF with legitimate differences in mean 

group performance. In addition, much research has been conducted over the 

last decade on the use of the Mantel-Haenszel approach to the detection of 

DIF and the indication has been that it is a theoretically and statistically sound 



32 

approach which is computationally simple and, as such, has many advantages 

over most of the other methods discussed previously (Allen & Donoghue, 

1991; Baghi & Ferrara, 1989; Baghi & Ferrara, 1990; Camilli & Smith, 1988; 

Clauser, Mazor, & Hambleton, 1991; Donoghue & Allen, 1993; Donoghue, 

Holland, & Thayer, 1993; Englehard, et. al, 1990; Hambleton, Clauser, Mazor, 

& Jones, 1993; Hambleton & Rogers, 1989; Hambleton, Rogers, & Arrasmith, 

1986; Mazor, et. al, 1992; Raju, Bode, & Larsen, 1989; Ryan, 1990; Ryan, 1991). 

Standardization Approach 

The Standardization approach has been developed and extensively 

investigated by researchers at the Educational Testing Service (Dorans, 1989; 

Dorans & Kulick, 1983; Dorans & Kulick, 1986; Dorans, Schmitt, & Curley, 

1988; Rivera & Schmitt, 1988; Schmitt & Bleistein, 1987; Schmitt & Dorans, 

1990). The Standardization approach has been described by Dorans and 

Holland (1993) as "an IRT-like approach" which compares empirical item 

response curves using total test score as an estimate of examinee ability. The 

Standardization approach defines DIF as differences in expected performance 

on an item for examinees of equal ability from different subgroups (Dorans & 

Holland, 1993). That is, an item exhibits DIF if equally able examinees from 

different subgroups do not have the same probability of answering the item 

correctly (Dorans, Schmitt, & Bleistein, 1992; Wright, 1987). 

The Standardization approach is a nonparametric approach which 

indexes DIF via a weighted difference in proportion correct between focal and 
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reference group members across K score levels. The mathematical form of 

the standardized P-DIF index is: 

STD P-DIF = I {Wk [PfK - Prk]} / ZWk 

The weighting factor, Wk, at each of the K score levels is typically the number 

of focal group examinees at score level k, and the term in the denominator is 

the summation of all of these weighting factors across the K score levels 

(Dorans, 1989; Dorans & Holland, 1993; Dorans, Schmitt, & Bleistein, 1992). 

Several comparative studies have shown that the Standardization and 

Mantel-Haenszel approaches yield highly correlated indices of DIF (Dorans, 

1987; Dorans, 1989; Dorans & Holland, 1992). One primary advantage of the 

Standardization approach over other methods for detecting DIF is that it has 

been demonstrated to be quite versatile in investigating other factors which 

affect subgroup performance on test items such as differential speededness 

and differential distractor functioning (Dorans & Kulick, 1983; Dorans & 

Kulick, 1986; Dorans, Schmitt, & Curley, 1988; Rivera & Schmitt, 1988; 

Schmitt & Bleistein, 1987; Schmitt & Dorans, 1990; Schmitt, Dorans, Crone, & 

Maneckshana, 1991). 

Log-linear Modeling 

A method that is closely related to the Standardization method just 

discussed and the other methods for detecting DIF based on chi-square 

analyses across K two-way contingency tables is the log-linear approach 



(Green, 1991; Green, Crone, & Folk, 1989). Log-linear models are a logical 

extension of the other contingency table methods discussed. The primary 

distinction between the log-linear models and the other contingency table 

methods is that, for each item, the log-linear models are applied to the data 

after they have been cross-classified into a single three-way contingency table 

according to group membership, response option, and ability group. Like 

Scheuneman's %2 approach, examinees are matched with respect to total test 

score and then grouped into K score levels across the range of total test scores 

with three to five groups as a recommended number. Theoretically, the total 

number of matched groups can range from one to N+1, where N is the total 

number of items on the test, but the choice of the number of matched groups 

is largely dependent upon the amount of available data. In general, a larger 

number of matched score levels is preferred. Using the cell frequencies from 

the three-way cross-classification of the data, log-linear models are applied 

(Bishop, Feinberg, & Holland, 1975; Feinberg, 1990; Green, 1991; Green Crone, 

& Folk, 1989; Kelderman & Macready, 1990; Knoke & Burke, 1980; Kok, 

Mellenbergh, & van der Flier, 1985; Marascuilo & Slaughter, 1981; 

Mellenbergh, 1982). Like an analysis of variance (ANOVA) the log-linear 

analysis partitions out the three main effects associated with the three 

classification variables in the model, as well as the three two-way interaction 

terms associated with each combination of main effects, and the three-way 

combined effect. 



Using the log-linear approach, DIF is operationalized as the two-way 

interaction effect between group membership and item response. If this 

interaction term is important in helping to explain the observed cell 

frequencies that resulted from the three-way cross-classification of the data, 

then the item is said to be functioning differentially for the different groups. 

The significance of the group x item response interaction term is calculated by 

taking the difference between the Likelihood Ratio y} statistic associated with 

the model that includes the three main effect terms and the three two-way 

interaction terms and the Likelihood Ratio y} statistic associated with the 

model that has only the three main effect terms and the two remaining two-

way interaction terms, ability group x group and ability group x item response. 

The resulting statistic is G2 and it is distributed as a %2 with degrees of 

freedom equal to the degrees of freedom associated with the second model 

minus degrees of freedom for the first model. This test statistic can be 

compared to the appropriate %2 table to determine its statistical significance 

(Green, 1991; Green, Crone, & Folk, 1989). 

Like the standardization approach, the log-linear approach has the 

advantage of being quite versatile in investigating other factors which affect 

subgroup performance on test items such as differential speededness and 

differential distractor functioning (Green, 1991; Green, Crone, & Folk, 1989). 



Logistic Regression 

Swaminathan and Rogers (1990) investigated the use of the logistic 

regression model for characterizing DIF in test items. The logistic regression 

model is a special case of the log-linear model where individuals are cross-

classified by group membership and item response, but ability level is treated 

as a continuous, not a categorical variable. Swaminathan and Rogers (1990) 

argued that the logistic regression procedure extended both the Mantel-

Haenszel procedure and the log-linear models in two important ways: first, it 

takes into account the continuous nature of the ability scale and second, it is 

capable of identifying both uniform and nonuniform DIF. 

When investigating DIF in test items, the logistic regression model is 

used to predict the probability of a correct response to a test item by an 

examinee given his or her particular ability level. The logistic regression 

model is: 

p(uifc = 11 eik) = i = l nt, k = 1.2 
1 + e'P'k + Plkfllk/ 

where uik is the response of the ith examinee at the k(th) score level to the 

test item, 0^ is the ability level of the i(th) examinee at the k(th) score level, 

and Po and Pi are the intercept and slope of the regression line, respectively. 

Using this model, separate regression equations are calculated for the two 

groups of interest and the parameters of the regression equations are the 

compared. Within the context of logistic regression, DIF is defined as the 



unequal probability of a correct response to a test item by members of different 

groups who have been matched on the construct or latent trait being 

measured by the item. If the parameters of the two regression equations are 

the same, then members of the two groups who are at the same level of the 

construct or latent trait being measured by the item have the same probability 

of a correct response. If the regression equations have equal intercept 

parameters, (30, but different slope parameters, pi, the curves defined by the 

two regression equations are parallel but not coincident, thus indicating 

uniform DIF. If, on the other hand, the regression equations have unequal 

intercept parameters, Po, but equal slope parameters, pi, the curves defined by 

the two regression equations are not parallel and not coincident, indicating 

nonuniform DIF. 

As noted earlier, Swaminathan and Rogers (1990) argued that the 

logistic regression procedure for the detection of DIF has a number of 

advantages over both the Mantel-Haenszel procedure and the more general 

log-linear models discussed previously. First, the logistic regression model is 

more general and flexible than the Mantel-Haenszel procedure because it 

takes into account the continuous nature of the ability scale. In fact, 

Swaminathan and Rogers (1990) demonstrate algebraically that the Mantel-

Haenszel procedure can be characterized as a special case of the logistic 

regression model where "the ability variable is discrete and no interaction 

between the group variable and ability is permitted" (p. 365). 



A second advantage is that the logistic regression model is capable of 

identifying both uniform and nonuniform DIF while the Mantel-Haenszel 

procedure and the general log-linear models are blind to nonuniform DIF. 

Using simulated data, Swaminathan and Rogers (1990) showed that the 

logistic regression procedure "is as powerful as the Mantel-Haenszel 

procedure in detecting uniform DIF and more powerful than the Mantel-

Haenszel procedure in detecting nonuniform DIF" (p. 368-369). It should be 

noted, however, that the simulated data only included nonuniform DIF 

items resulting from a disordinal interaction between ability level and group 

membership. That is to say, the item characteristic curves for the 

nonuniform DIF items crossed in the middle of the ability scale. The results 

of this study, therefore, may not generalize to nonuniform DIF which results 

from the ordinal interaction of ability level and group membership where the 

item characteristic curves cross at either the low or high end of the ability 

scale. 

A final advantage of the logistic regression model noted by 

Swaminathan and Rogers (1990) is that it provides a model-based approach to 

the investigation of DIF which allows for the inclusion of curvilinear terms 

or transformations of the ability variable in the model, In addition, other 

variables considered relevant or important to the understanding of DIF in the 

test items being investigated can also be included in the model. 



The primary disadvantage noted by Swaminathan and Rogers (1990) to 

the use of the logistic regression model for the investigation of DIF is cost. 

Unlike the Mantel-Haenszel procedure which is quick and inexpensive to 

carry out, the logistic regression procedure is iterative and, therefore, more 

expensive. Based on their own experiences, Swaminathan and Rogers 

estimated the logistic regression procedure was 3 to 4 times more expensive 

than the Mantel-Haenszel procedure in terms of necessary computer 

resources. 

Item Response Theory Methods for Detecting DIF 

The most recent advances in the area of DIF analysis have been made 

in the use of Item Response Theory (IRT) methods to model examinee 

responses to test items and to identify DIF (Thissen, Steinberg, & Wainer, 

1988; Thissen, Steinberg, & Wainer, 1993; Thissen, Wainer, & Steinberg, 1985; 

Wilson-Burt, Fitzmartin, & Skaggs, 1986). Although the mathematical 

foundations of IRT models were first described by Lord (1952), it wasn't for 

another 20 years that these models were applied to the investigation of DIF. 

According to the IRT approach, examinees responses to an item can be 

modeled using the logistic function. The logistic function is a monotonically 

increasing curve that represents the probability of a correct response to the 

item as a function of ability. These s-shaped curves are called item 

characteristic curves (ICCs) and can be defined using three parameters: a 
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difficulty parameter, a discrimination parameter, and a pseudo-guessing 

parameter, referred to as the b, a, and c parameters, respectively. 

The value of the difficulty parameter indicates the point along the 

ability scale, called the theta scale, where examinees at that ability level have a 

probability of 0.50 of correctly responding to the item. The discrimination 

parameter is the slope of the ICC at that point on the ability scale where 

examinees at that ability level have a probability of 0.50 of correctly 

responding to the item. Finally, the pseudo-guessing parameter is the lower 

asymptote of the ICC indicating the probability that examinees of extremely 

low ability will answer the item correctly. From within the IRT framework, 

then, an item is considered to be displaying DIF if the ICCs for two subgroups 

do not overlap. This lack of overlap indicates that for subgroup examinees of 

equal ability on the construct being measured there exists an unequal 

probability of answering the item correctly. 

The inequality of ICCs across subgroups can be measured in two ways. 

First, Lord (1980) has developed a statistic for testing the equality of the ICC 

parameters called Lord's %2. The other approach often used it to calculate the 

area between the two ICCs. The first of these methods allows for a statistical 

test of the null hypothesis of no DIF, while the second is an index of the 

amount of DIF displayed by the item with respect to the two groups of 

interest. 
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Lord's Chi-square for the Equality of ICC Parameters 

By definition, if two ICCs overlap, the parameters that define those 

ICCs must be equivalent. Therefore, the statistic developed by Lord (1980) 

uses the parameters of the ICCs for the two subgroups to test the null 

hypothesis of no DBF (i.e., that the two ICCs are equal in all of their 

parameters) against the alternative that the two ICCs differ with respect to at 

least one of the parameters. 

Lord's %2 statistic for testing the equality of ICC parameters is: 

where S"1 is the inverse of the variance-covariance matrix for the item 

parameters. Lord's y} statistic is distributed as a y} with 2 degrees of freedom. 

Signed and Unsigned Area Between ICCs 

The signed and unsigned area between ICCs has been developed as an 

index of the amount of DIF displayed by an item (Rudner, 1977; Rudner, 

Getson, & Knight, 1980a; Rudner, Getson, & Knight, 1980b; Raju, 1977; Shealy 

& Stout, 1993; Thissen, Steinberg, & Wainer, 1988; Thissen, Steinberg, & 

Wainer, 1993; Thissen, Wainer, & Steinberg, 1985). These two indices are 

closely related and the calculations for each are, therefore, quite similar. The 

signed area between the ICCs is calculated as the integral: 

X2 = (br - bf, ar - af)' S"1 (br - bf, ar - af) 



The probability of a correct response by a focal group member at ability level 

theta is subtracted from the probability of a correct response by a reference 

group member at ability level theta, and these differences in probability are 

integrated across the ability scale. Using the signed area calculated as 

described above, if the reference group members have a greater chance than 

the focal group members of answering the item correctly across the ability 

scale, the sign on the index will be positive. If the opposite is true, the sign on 

the index will be negative. If the ICCs cross at some point along the ability 

scale, the item is said to display nonuniform DIF and the sign may be either 

positive or negative. 

The unsigned area is calculated as the integral: 

For the unsigned area, however, the probability of a correct response by the 

focal group at ability level theta is subtracted from the probability of a correct 

response by the reference group at ability level theta. To remove the sign, 

these differences in probability are squared and then integrated across the 

ability scale. To place the unsigned area on the same scale as the signed area, 

the square root of the squared area integral is calculated. The unsigned area 

will always be positive because of the squaring of the individual differences in 

probabilities. The unsigned area indexes the total area between the two ICCs 

without regard to which group is advantaged. The unsigned area index is 



unaffected by nonuniform DIF, and when the DIF displayed is uniform (i.e., 

one group is consistently advantaged by the item), the signed and unsigned 

areas will be the same (Camilli & Shepard, 1994). 

The IRT approach to DIF detection has been the focus of much 

attention in the field of DIF analysis, primarily because the mathematical 

models on which the approach is based have many desirable statistical 

features. Like all of the models discussed here, the use of the IRT model is 

appropriate if the normal ogive or logistic function adequately represents the 

data, and the data are unidimensional (Hambleton, Swaminathan, & Rogers, 

1991; Ironson, 1982). If these assumptions are met, many researchers have 

argued that the three-parameter IRT model is, both theoretically and 

statistically, the most appropriate method for investigating DIF (Bejar, 1980; 

Hunter, 1975; Lord, 1980; Petersen, 1977). The advantages and disadvantages 

of the IRT approach have been extensively investigated and documented in 

the professional literature (Craig & Ironson, 1981; Hambleton, Swaminathan, 

& Rogers, 1991; Ironson & Subkoviak, 1979; Rudner & Convey, 1978; Rudner, 

Getson, & Knight, 1980a; Rudner, Getson, & Knight, 1980b; Shepard, Camilli, 

& Averill, 1980; Subkoviak, Mack, & Ironson, 1981). The principal advantage 

of the IRT method is the sample invariant nature of the item and ability 

parameter estimates. This feature essentially eliminates the confounding of 

difficulty and discrimination indices, as well as the potential for legitimate 

differences in average group performance to be mislabeled as DIF (Ironson, 
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1982). The principal disadvantages of the IRT methods are largely practical in 

nature. First, it has been argued that the computer programs used to calculate 

the IRT parameters (e.g., LOGIST) are more expensive to run, in terms of 

computer time, than are the computer programs used to generate many other 

DIF indices (Swaminathan & Rogers, 1990). And finally, the sample sizes 

necessary for reliable parameter estimation are generally quite large. 

Empirical Research Questions Addressed in this Study 

A review of the professional literature indicates that over the last three 

decades a variety of methodologies for the detection of differential item 

functioning have been developed. Many of these methodologies initially 

appeared to have promise but have since been shown to be statistically 

unsound. Three of the more recently developed methodologies do not suffer 

from these same flaws and are currently being used by test developers to 

screen items for indications of DIF. These methods are the Mantel-Haenszel 

%2 approach, the IRT Unsigned Area approach, and the log-linear approach. 

Each of these methods, however, have features which may make their 

application in certain testing and research situations impractical. Therefore, it 

is of interest to the measurement community to determine, first, the degree 

to which these three methodologies yield comparable results with respect to 

the detection of DIF in test items and, second, which, if any, of these 

methodologies is more accurate in detecting DIF which present in test items. 
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This dissertation study focuses on two major research questions. The 

first research question investigated is: To what degree do the Mantel-Haenszel 

X2 approach, the IRT Unsigned Area approach, and the log-linear approach 

yield comparable indices with respect to the amount of DIF displayed by test 

items? The second research question investigated is: How accurately does 

each DIF detection method identify test items with respect to the amount of 

DIF displayed by each item. The methodology used to investigate these two 

research questions is presented in Chapter III. 
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CHAPTER III 

METHODOLOGY 

At the end of the previous chapter, two research questions were 

identified through a review of the professional literature relevant to methods 

used for the detection of differentially functioning test items. Those 

questions are, first, To what degree do the Mantel-Haenszel y} approach, the 

IRT Unsigned Area approach, and the log-linear approach yield comparable 

indices with respect to the amount of DIF displayed by test items?, and 

second, How accurately does each DIF detection method identify test items 

with respect to the amount of DIF displayed by each item? The purpose of 

this chapter is to outline the methodology that was used to investigate these 

research questions. 

This chapter is divided into six sections. The first section provides a brief 

description of the Graduate Management Admissions Test (GMAT), the data 

collection instrument from which the data for the empirical portion of this 

study was drawn. The second section presents a description of the data 

reduction procedures that were followed in preparing these empirical data for 

analysis. The third section provides a brief description of the data generation 

program, DGEN, which was used to generate the item response data for the 

simulation portion of this study. The fourth section presents a description of 
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the procedures that were followed in generating the item response data used 

in the simulation portion of this study. The fifth section provides a 

discussion of the methodology used to investigate the first research question. 

And finally, the last section of this chapter provides a discussion of the 

methodology used to investigate the second research question. 

Empirical Data Collection Instrument: 
The Graduate Management Admissions Test 

The data for the empirical portion of this study was drawn from a retired 

form of the Graduate Management Admissions Test (GMAT). The GMAT, 

developed and administered by the Educational Testing Service (ETS), is a 

multiple choice standardized test "designed to help graduate schools assess 

the qualifications of applicants for advanced study in business and 

management." (Educational Testing Service, 1986, p. 9) Each form of the 

GMAT consists of eight separately timed sections which measure the 

examinee's verbal and mathematical skills and abilities. Two of the eight are 

non-operational sections containing trial items from two of the five areas 

described below. These items are needed for pretesting and equating purposes 

only and are not used in calculating the examinee's verbal or quantitative 

scores. 

Three of the operational sections on each form of the GMAT contain 

items which measure the examinee's verbal skills and abilities using three 

types of questions: Reading Comprehension questions, Analysis of Situations 
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questions, and Sentence Correction questions. The Reading Comprehension 

questions measure the examinee's ability to understand, analyze, and apply 

information and concepts presented in a written format. The Analysis of 

Situations questions measure the examinee's ability to analyze and evaluate 

the major aspects of business or management situations. And finally, the 

Sentence Correction questions measure two aspects of an examinee's 

language proficiency: correct expression and effective expression (Educational 

Testing Service, 1986). Each of the three verbal sections contains either 20 or 

25 multiple choice items. For each item, the examinee is presented with five 

response options from which the examinee is to choose the most appropriate 

option. The three operational sections which make up the verbal subtest 

contain a total of 75 items which are used in calculating the examinee's verbal 

score. 

Similarly, the three remaining operational sections on each form of the 

GMAT contain items which measure the examinee's mathematical or 

quantitative skills and abilities using two types of questions: Problem Solving 

questions and Data Sufficiency questions. The Problem Solving questions 

measure the examinee's ability to understand verbal descriptions of situations 

and to solve mathematical problems by applying arithmetic, elementary 

algebra, or commonly known concepts of geometry. The Data Sufficiency 

questions measure the examinee's ability to analyze a quantitative problem, 

to recognize which information is relevant, and to determine at what point 



there is sufficient information to solve the problem (Educational Testing 

Service, 1986). Each of the three quantitative sections contains either 20 or 25 

multiple choice items from one of these two types of questions. Again, for 

each item, the examinee is presented with five response options from which 

the examinee is to choose the most appropriate option. The three 

operational sections which make up the quantitative subtest contain a total of 

65 items. These items are used in calculating the examinee's quantitative 

score. 

From the six operational sections, four subtest scores are calculated: a 

verbal number-right score, a verbal formula score, a quantitative number-

right score and a quantitative formula score. The verbal and quantitative 

number-right scores are simply the sum of the number of items on each 

subtest that the examinee answered correctly. For the verbal and quantitative 

subtests, formula scores are calculated by taking the examinee's number-right 

score and subtracting from it one-quarter times the number of items the 

examinee answered incorrectly. This adjustment to the number-right score is 

a correction for guessing. To this number 0.5 is added and the result is 

rounded to the nearest whole number to yield the examinee's formula score 

for the subtest (Educational Testing Service, 1986). 

Data from the June 20 and 22, 1987 administrations of the GMAT have 

been provided to the researcher by the ETS on a public access, computer-

readable magnetic tape. The data file provided to the researcher by ETS 



contains the records for the 68,342 examinees who registered to take the 

GMAT in June 1987. 

Empirical Data Reduction Procedures 

For the empirical portion of this study a random sample of 5,000 male 

and 5,000 female examinees was drawn from among the examinees that took 

the GMAT in June 1987 and a reduced data file was compiled containing 

information for these examinees only. The empirical sample was drawn 

from among examinees whose gender group membership code was available; 

who identified their racial/ethnic group membership as white/non-Hispanic; 

who identified their country of citizenship as the United States; who 

identified their intended degree objective as a Master's in Business 

Administration (including both MBA and Master of Science in Industrial 

Management); and who had no missing or miscoded responses to any of the 

65 quantitative items. Each record in the reduced data file included: a code 

identifying the examinee's gender group membership; a vector containing the 

examinee's responses to the 65 quantitative items; and the examinee's 

quantitative number-right score. 

Simulation Data Generation Program: DGEN 

The computer program DGEN, a FORTRAN V program for the 

generation of dichotomously scored item response data, was used for the 

simulation portion of this study. The original program was written in 1973 by 
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Dr. Ron Hambleton and Dr. R. J. Rovinelli, both from the University of 

Massachusetts, Amherst. The current version of the program was modified 

in 1992 by Dr. H. Jane Rogers at Teachers College, Columbia University1. 

Simulation Data Generation Procedures 

For the simulation portion of this study a random sample of 5,000 male 

and 5,000 female examinees was generated using the DGEN program. A 

profile for each of the 10,000 simulated examinees, dichotomously scored 

item response data for a 65 item test was generated according to the three-

parameter logistic IRT model. A data file was compiled and, for each 

simulated examinee, the data file included a code identifying the examinee's 

gender group membership and a vector containing the examinee's responses 

to the 65 simulated test items where a 1 indicated an item to which the 

examinee responded correctly arid a 0 indicated an item to which the 

examinee responded incorrectly. In order to replicate as nearly as possible the 

methods used to analyze the empirical data, for each examinee a number-

right score for the 65 item test was calculated. This number-right score was 

used as the matching criteria for the Mantel-Haenszel and log-linear analyses 

of the simulated data. 

Specifications for generating the ability parameters for the simulated 

examinees, by gender group, were based on an analysis of the distribution of 

1 The DGEN program was provided to this researcher by Dr. Hariharan Swaminathan of the 
University of Massachusetts, Amherst. 
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ability estimates for each gender group in the empirical sample. Using the 

estimates of theta for each gender group (which were output by LOGIST as 

part of the empirical data analysis), ability parameters for each group of 

simulated examinees were randomly chosen from normal distributions with 

the same mean and standard deviation. Similarly, specifications for 

generating the item difficulty, discrimination, and lower asymptote 

parameters were based on an analysis of these same item parameter estimates 

for each group in the empirical sample. Using the results of these analyses to 

identify the range of a-, b-, and c-parameter values found in the empirical 

data, the item parameter values for the simulated examinees, by group, were 

selected from these values are specified within the DGEN program in order to 

create nine items displaying varying degrees of uniform DIF and nine items 

displaying varying degrees of nonuniform DIF. 

The nine uniform DIF items were created by holding the a- and c-

parameters constant for each group at 0.70 and 0.20, respectively, and varying 

both the value of the b-parameters and the difference between the b-

parameters. The value of the b-parameters for these nine items ranged from 

-2.40 to 1.25, while the difference between the b-parameters for the two groups 

ranged from 0.21 to 0.90. The combinations of b-parameters and differences 

between b-parameters were chosen to create unsigned areas between the ICCs 

that ranged from 0.15 to 0.71. 



The nine nonuniform DIF items were similarly created by holding the b-

and c-parameters constant across the groups and varying the value of the a-

parameters and the difference between the a-parameters. The value of the a-

parameters for these nine items ranged from 0.35 to 0.90 for the females and 

from 0.55 to 1.40 for the males; the difference between the a-parameters for 

the two groups ranged from 0.20 to 0.50. The combinations of a-parameters 

and differences between a-parameters were chosen in order to create unsigned 

areas between the ICCs that ranged from 0.20 to 0.46. The b-parameters for 

these items ranged from -2.25 to 1.14 so that both ordinal and disordinal 

interactions between ability level and group membership would be 

represented. The c-parameters for these items were again held constant at 

0.20 except in the case of four items where the c-parameter for the females was 

adjusted slightly downward (three to 0.18 and one to 0.15) in order to increase 

the unsigned area. 

The remaining 47 items were non-DIF items for which the a-, b-, and c-

parameters for each item were identical for the two groups. For these items 

the a-parameters ranged for 0.20 to 1.10 by increments of 0.30. Similarly, the b-

parameters for these items ranged from -4.50 to 3.50 by increments of 1.00. 

Each of these b-parameter values was paired with each of these a-parameter 

values, creating 45 items that varied systematically by level of discrimination 

and level of difficulty. The two remaining non-DIF items both had b~ 

parameter values of 0.00; the a-parameter for the first of these items was set at 



0.50 and the other was set at 1.10. Like the 18 DIF items, the c-parameter value 

for all 47 non-DIF items was held constant at 0.20. 

Methodology for Investigating the First Research Question 

Analyses of both the empirical and the simulation data were used to 

investigate the first research question, To what degree do the Mantel-

Haenszel y} approach, the IRT Unsigned Area approach, and the log-linear 

approach yield comparable indices with respect to the amount of DIF 

displayed by test items? To answer this question using the empirical data 

drawn from the GMAT, the analysis of these data was divided into three 

parts, one corresponding to each DIF detection method. Similarly, to 

investigate this question using the simulation data, the analysis was also 

divided into three parts, one corresponding to each DIF detection method. 

However, due to certain constraints imposed by the use of simulated data, 

slightly different DIF indices were calculated using the simulated data for the 

log-linear approach than were calculated using the empirical data. 

Specifically, when using the empirical data, the DIF indices calculated 

according to the log-linear approach were all based on 10 score levels, but 

varied on the number of item response classifications used. When the 

simulation data was used, the DIF indices calculated according to the log-

linear approach were all based on a single item response classification, but 



varied on the number of score levels used. These differences are discussed in 

greater detail at a later point in this section. 

Regardless of the type of data used (empirical or simulation), the focus of 

all analyses was on, first, the Pearson Product-Moment correlation between 

each pair of DIF indices, second, the phi correlation coefficient calculated for 

each pair of DIF indices after items had been "flagged" as either displaying DIF 

or not, and third, comparison of the detection rates between the pairs of DIF 

detection methods. The Pearson product-moment correlation coefficients 

were used as measures of the degree to which the pairs of DIF indices 

corresponded to each other in terms of magnitude and direction. The phi 

correlation coefficient and the comparison of the detection rates between the 

pairs of DIF detection methods was used to determine the degree of 

agreement between each pair of DIF detection methods in terms of flagging 

items as displaying DIF. 

Prior to conducting any of these DIF analyses, two preliminary analyses 

were necessary. As discussed in Chapter II, a fundamental assumption of all 

the DIF detection methodologies used here is that the data are 

unidimensional, that is, that a single ability underlies the examinees' 

performances on the set of test items. Although this assumption of 

unidimensionality can never be strictly met, it is necessary to demonstrate 

that a single factor dominates the performances of the examinees on the test. 

To demonstrate that a single dominant component or factor underlies the 



performances of the examinees on the 65 quantitative items of the GMAT, a 

principal axis factor analysis was performed. The SPSS and SAS FACTOR 

procedures were both used to perform two separate factor analyses; the SPSS 

FACTOR procedure was used to determine the proportion of the total 

variance explained by the first two factors while the SAS FACTOR procedure 

was used to determine the proportion of the common variance explained by 

the first two factors. Similarly, to demonstrate that a single dominant 

component or factor underlies the responses of the examinees on the 65 

simulation items, a principal axis factor analysis was also performed on these 

data. Again, the SPSS and SAS FACTOR procedures were both used to 

perform two separate factor analyses; the SPSS FACTOR procedure was used 

to determine the proportion of the total variance explained by the first two 

factors while the SAS FACTOR procedure was used to determine the 

proportion of the common variance explained by the first two factors. 

For the analysis of the GMAT data, the reduced data file discussed 

previously was used to create a scored data file to be used to calculate the (XMH 

statistic. For each examinee the scored data file included a vector that 

represented his or her scored responses to the 65 quantitative items, with a 1 

indicating a correct response and a 0 indicating an item to which the 

examinee responded incorrectly or not at all. The scored response vector was 

followed by a code identifying the examinee's gender (1 for female and 2 for 

male) and his or her quantitative number-right score. 
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Using this scored data file and the SAS macro developed by Harnish 

(1991), the (XMH statistic for each item was calculated. As discussed in Chapter 

II, the (XMH statistic represents the estimate of the common odds ratio for the 

focal group over the reference group and ranges from a lower bound of 0 to 

an upper bound of °° with a value of 1 indicating equal odds of a correct 

response for the two groups. For example, a value of the (XMH statistic of 0.5 

indicates that the reference group is twice as likely as the focal group to 

answer the item correctly, while a value of 2.0 indicates just the opposite. A 

separate data file was generated that included the item number and the value 

of the (XMH statistic. 

For the second part of the analysis, the reduced data file discussed 

previously was used to create two additional scored data files to be used to 

calculate the unsigned area between the focal and reference group ICCs. The 

first of these new data files included a vector that represented for each female 

examinee her scored responses to the 65 quantitative items, with a 1 

indicating a correct response to the item, a 0 indicating an incorrect response 

to the item, and a 2 indicating an item to which the examinee did not 

respond. Similarly, the second of these new data files included a vector that 

represents for each male examinee his scored responses to the 65 quantitative 

items, with, again, a 1 indicating a correct response to the item, a 0 indicating 
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an incorrect response to the item, and a 2 indicating an item to which the 

examinee did not respond. 

Each of these new data files was submitted separately to the LOGIST 

program and the item response function parameters for each item were 

calculated according to the three-parameter logistic IRT model. These item 

parameters, along with the item numbers to which they correspond, were 

output by LOGIST into a data file. These item parameters, generated for 

males and females separately, were used in conjunction with one another in 

a SAS program written by the researcher to calculate for each item the 

unsigned area between ICCs for females and males. These estimates of the 

unsigned area between the ICCs for each item were added to the data file 

which contained the OCMH statistics calculated previously. In addition, the 

ICCs for each item was plotted using a Microsoft Excel spreadsheet program 

in order to visually depict the item response functions for each group. 

For the third part of the analysis, the reduced data file was again used to 

create two additional scored data files. These data files were used to calculate 

the G2 statistic associated with the log-linear models discussed in Chapter II. 

The first of these files included a vector that for each examinee that 

represented his or her scored responses to the 65 quantitative items, with a 1 

indicating a correct response and a 0 indicating an item to which the 

examinee responded incorrectly or not at all. The scored response vector was 
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followed by a code identifying the examinee's gender and his or her 

quantitative number-right score. 

The second of these scored data files again included a vector that for each 

examinee represented his or her scored responses to the 65 quantitative items, 

with a 1 indicating a correct response, a 0 indicating an incorrect response, and 

a 2 indicating an item to which the examinee did not respond. The scored 

response vector was again followed by a code identifying the examinee's 

gender and his or her quantitative number-right score. 

The log-linear analysis began with a univariate analysis of the 

quantitative number-right scores of all examinees, regardless of gender. 

Following Green, Crone, and Folk (1989), the results of the univariate analysis 

were used to divide the sample of examinees into 10 ability groups based on 

their quantitative number-right scores, with each ability group representing 

approximately ten percent of the sample. Using these ability groupings, for 

each of the data files described above, a three-way contingency table was 

formed using the SAS FREQ procedure. The contingency table provided 

gender x ability group x response (right, wrong, or omitted) frequencies which 

were used as the data for the log-linear analysis. 

The log-linear portion of the empirical data analysis generated two G2 

statistics for each item: one based on the classification of examinee responses 

as either right or wrong and one based on the classification of examinee 

responses as either right, wrong, or omitted. In each case, the G2 statistics for 
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each item was calculated using the BMDP statistical software for log-linear 

analyses. For each item within each of the two response formats, two log-

linear models were fit: an "expanded" model containing all three two-way 

interaction terms (gender x ability group (GA), gender x response (GR), and 

ability group x response (AR)), and a "reduced" model containing only two of 

the three two-way interaction terms: gender x ability group (GA) and ability 

group x response (AR). For each item, the G2 statistics were calculated by 

subtracting the Likelihood Ratio y} value for the reduced model from the 

Likelihood Ratio y} value for the expanded model. This G2 statistic was used 

as an index of the relative importance of the GR interaction term in the log-

linear model. Larger values of G2 indicating the greater relative importance 

of knowing the examinees' cross-classification with respect to gender and 

response (i.e., right or wrong) in explaining the observed distribution of 

frequencies in the three-way contingency table. Under the null hypothesis of 

no DIF, the variables gender and response should be independent after 

controlling for ability group membership. A large G2 statistic would indicate 

a dependency between gender and response and, therefore, that the item is 

functioning differently for males and females. The G2 statistics for each item 

within each of the two response formats were added to the data file which 

contained the (XMH statistics and the unsigned area estimates calculated 

previously. 



Finally, for each item four new variables were created: FlagMH/ FlageuA/ 

FlagG2RW(iO)/ and FlagG2RWO(i()>- Each of these new variables took on a value 

of either 1 or 0 depending upon whether the item was "flagged" as either 

displaying DIF or not, respectively. For each of the three DIF detection 

methods a seperate flagging criteria was applied. For the FlagMH variable, if 

the value of the (XMH was either greater than or equal to 1.33 or less than or 

equal to 0.75 the item was flagged as displaying DIF. These values of the CXMH 

log-odds ratio were chosen for flagging items because they represent the point 

at which one group is 25% more likely than the other to respond correctly to 

the item. For example, if the (XMH log-odds ratio equals 1.33, then the 

reference group is 25% more likely to respond correctly to the item than the 

focal group. Conversely, an (XMH log-odds ratio equal to 0.75 indicates just the 

opposite because 0.75 is simply the inverse of 1.33. 

For the FlaguA variable, if the value of the unsigned area estimate was 

greater than or equal to 0.40, again, the item was flagged as displaying DIF. 

Finally, the two remaining new variables, Flagc2Rw arid Flagc2RWO/ were 

flagged as displaying DIF if the following three conditions were all met: 1) the 

p-value associated with the Likelihood Ratio %2 value for the reduced model 

was less than or equal to 0.05, indicating that the reduced model did not fit the 

data; 2) the p-value associated with the Likelihood Ratio y} value for the 

expanded model was greater than or equal to 0.05, indicating that the 



expanded model fit the data; and 3) the p-value associated with the G2 statistic 

was less than or equal to 0.05, indicating the importance of including the 

gender x response interaction term in the model. 

As mentioned previously, the analysis of the simulation data was also 

divided into three parts, each corresponding to one of the DIF detection 

methods that are the focus of this dissertation study. For the first part of the 

analysis, the simulated data file discussed previously was used to calculate the 

OCMH statistic. Using this data file and the SAS macro developed by Harnish 

(1991), the (XMH statistic for each item was calculated. As in the empirical data 

analysis, the calculated values of the OCMH statistic were so that the OCMH statistic 

consistently represented an estimate of the common odds ratio for the higher 

scoring group over the lower scoring group for each item, with a value of 1 

indicating equal odds of a correct response for each group and values larger 

than 1 indicating greater amounts of DIF being displayed by the items. A 

separate data file was generated that included each simulated item number 

and the value of the OCMH statistic associated with that item. 

For the second part of the analysis, the simulated data file was used to 

create two additional data files used to calculate the unsigned area between 

the focal and reference group ICCs. The first of these data files included a 

vector that represented for each simulated female examinee her responses to 

the 65 items, with a 1 indicating a correct response to the item and a 0 
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indicating an incorrect response to the item. Similarly, the second of these 

files included a similar vector for each simulated male examinee. 

Each of these data files was submitted separately to the LOGIST program 

and the item response function parameter estimates for each item were 

calculated according to the three-parameter logistic IRT model. These item 

parameter estimates, along with the item numbers to which they 

corresponded, were output by LOGIST into a data file. These item parameter 

estimates, generated for males and females separately, were used in 

conjunction with one another in the SAS program used in the empirical 

portion of this study to calculate for each item the unsigned area between the 

females' and males' ICCs. These estimates of the unsigned area for each item 

were added to the data file which contains the OCMH statistics calculated 

previously. In addition, the ICCs for each item were plotted using a MicroSoft 

Excel spreadsheet program in order to visually depict the item response 

functions for each group. 

For the third part of the analysis, the simulated data file was used to 

calculate three separate G2 statistics associated with the log-linear models 

discussed in Chapter II: one based on five ability groups; one based on ten 

ability groups; and one based on twenty ability groups. As with the analysis of 

the empirical data, each of the three log-linear analyses of the simulated data 

began with a univariate analysis of the number-right scores of all simulated 

examinees, regardless of gender. The results of the univariate analysis were 



used to divide the sample of simulated examinees into either five, ten, or 

twenty ability groups based on their number-right scores, with each ability 

group representing approximately twenty, ten, or five percent of the sample, 

respectively. Using these ability groupings, three three-way contingency 

tables were formed using the SAS FREQ procedure. Each contingency table 

provided gender x ability group x response (right or wrong) frequencies which 

were used in the log-linear analyses. 

For each of the three ability groupings used in the log-linear portion of 

the analysis of the simulated data, a single G2 statistic was calculated for each 

item based on the classification of examinee responses as either right or 

wrong. The G2 statistics for each item were calculated using the BMDP 

statistical software for log-linear analyses. For each item an "expanded" log-

linear model containing each of the three two-way interaction terms (gender 

x ability group (GA), gender x response (GR), and ability group x response 

(AR)) was fit to the data. In addition, a "reduced" log-linear model containing 

only the gender x ability group (GA) and ability group x response (AR) two-

way interaction terms will also be fit to the data. For each item, the G2 

statistics were calculated by subtracting the Likelihood Ratio y} value for the 

reduced model from the Likelihood Ratio %2 value for the expanded model. 

As before, these G2 statistics were used as indices of the relative importance of 

the GR interaction term in the log-linear model. The G2 statistic for each 



item was added to the data file which contained the (XMH statistics and the 

unsigned area estimates calculated previously. 

Finally, for each item four new variables were also created: FlagMH, 

FlagEUA/ FlagG2RW(05)/ Flagc2RW(IO)/ and FlagG2RW(2O>- Each of these new 

variables took on a value of either 1 or 0 depending upon whether the item 

was "flagged" as either displaying DIF or not, respectively. For each index 

associated with one of the three DIF detection methods a separate flagging 

criterion was applied. For the FlagMH variable, if the value of the (XMH was 

either greater than or equal to 1.33 or less than or equal to 0.75 the item was 

flagged as displaying DIF. For the FlagEUA variable, if the value of the 

estimated unsigned area was greater than or equal to 0.15, again, the item was 

flagged as displaying DIF. Finally, the three remaining new variables, 

FlagG2RW(05), Flagc2RW(io), and FlagG2RW(2(>)/ were flagged as displaying DIF if 

each of the following three conditions were met: 1) the p-value associated 

with the Likelihood Ratio %2 value for the reduced model was less than or 

equal to 0.05, indicating that the reduced model did not fit the data; 2) the p-

value associated with the Likelihood Ratio y} value for the expanded model 

was greater than or equal to 0.05, indicating that the expanded model did fit 

the data; and 3) the p-value associated with the G2 statistic was less than or 

equal to 0.05, indicating the importance of including the gender x response 

interaction term in the log-linear model. 
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The two data files containing the DIF indices and the flagging variables 

for each item were submitted separately to a SAS program and two 

correlation analyses were run on each set of indices. First, for each data file 

the Pearson product-moment correlation was calculated for each pair of DIF 

indices as a measure of the degree to which the pairs of indices corresponded 

to each other in terms of magnitude and direction. And second, for each data 

file the phi correlation coefficient was calculated as a measure of the degree of 

agreement between each pair of DIF detection methods in terms of flagging 

items as displaying DIF. The results of these correlation analyses form the 

basis for assessing the degree to which the Mantel-Haenszel %2 approach, the 

IRT Unsigned Area approach, and the log-linear approach yield comparable 

indices with respect to the amount of DIF displayed by each item. 

Methodology for Investigating the Second Research Question 

Only the simulation data were used to investigate the second research 

question, How accurately does each DIF detection method identify items with 

respect to the amount of DIF displayed by each item? The focus of this part of 

the analysis, again, was on the Pearson product-moment correlation 

coefficient, the phi correlation coefficient, and the DIF detection rate for each 

methodology. For these analyses, however, the item parameter values used 

in generating the simulation data were treated as population parameters and 

the actual unsigned area between the ICCs for the two groups was calculated 



using the SAS program used to calculate the estimated unsigned area for the 

previous analyses. The values for the actual unsigned area for each item 

were then added to the simulation data file which contained the aMH 

statistics, the unsigned area estimates, the three G2 statistics, and the five 

flagging variables calculated previously. One additional flagging variable, 

Flag AUA/ was also added to the simulation data file. The variable Flag AUA 

took on a value of 1 for the 18 DIF items included in the simulation data file 

and 0 for the remaining 47 non-DIF items. 

For this part of the study, the Pearson product-moment correlation 

coefficient was calculated for each DIF index and the actual unsigned area as a 

measure of the degree to which each DIF index corresponded to the actual 

unsigned area between the ICCs in terms of magnitude and direction. The 

phi correlation coefficient and the detection rates for each of the DIF detection 

methods were also calculated as measures of the degree of agreement between 

each DIF detection method and the actual unsigned area in terms of flagging 

items as displaying DIF. The results of these correlation analyses form the 

basis for assessing how accurately the Mantel-Haenszel y} approach, the IRT 

Unsigned Area approach, and the log-linear approach identify test items with 

respect to the amount of DIF displayed by each item. 
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CHAPTER IV 

RESULTS 

This chapter is divided into three sections. The first section presents the 

results of the preliminary factor analyses performed on both the empirical 

and the simulated data. The second section presents the results of the 

investigation of the first research question, To what degree do the Mantel-

Haenszel %2 approach, the IRT Unsigned Area approach, and the log-linear 

approach yield comparable indices with respect to the amount of DIF 

displayed by test items? The final section presents the results of the 

investigation of the second research question, How accurately does each DIF 

detection method identify test items with respect to the amount of DIF 

displayed by each item? 

Results of the Preliminary Factor Analyses 

Prior to performing the primary analyses that form the basis of this 

study, two preliminary factor analyses were performed. As discussed in 

Chapter II, a fundamental assumption underlying all the DIF detection 

methodologies used here is that the data are unidimensional, that is, that a 

single ability underlies the examinees' responses to the set of test items. To 

demonstrate that a single dominant component or factor underlies the 

responses of the examinees to the 65 quantitative items of the GMAT and the 



65 simulated items generated using the DGEN data generation program, two 

principal axis factor analyses were performed on each of the data sets using 

both the SPSS and SAS FACTOR procedures. 

As indicated in Chapter III, the simulated items were generated such that 

a single dominant component or factor would underlie the responses of the 

examinees to the items. In order to confirm that such a factor did, in fact, 

underlie the examinees' responses to the simulated items, two principal axis 

factor analyses were performed. The SPSS procedure FACTOR was used to 

determine the proportion of the total variance explained by the first two 

factors. The SPSS principal axis factor analysis used squared multiple 

correlations as prior communality estimates and a two factor extraction 

criteria. The first factor had an eigenvalue of 7.04 and accounted for 10.8% of 

the total variance in examinees' responses. The second factor had an 

eigenvalue of 1.95 and accounted for an additional 3.0'%. of the total variance 

in examinees' responses. 

The SAS procedure FACTOR was used to determine the proportion of 

the common variance explained by the first two factors. Again, using the 

squared multiple correlations as prior communality estimates, the first factor 

had an eigenvalue of 6.19 and accounted for 93.7% of the common variance 

in examinees' responses. The second factor had an eigenvalue of 1.06 and all 

remaining factors had eigenvalues of less than 1.00. Based on these 



results, it was concluded that a single dominant factor did, in fact, underlie 

the responses of the examinees to the 65 simulated items. 

For the empirical data the SPSS procedure FACTOR was again used to 

determine the proportion of the total variance explained by the first two 

factors underlying the examinees' responses to the 65 quantitative items on 

the GMAT. The SPSS principal axis factor analysis of these data used squared 

multiple correlations as prior communality estimates and a two factor 

extraction criteria. The first factor had an eigenvalue of 5.29 and accounted 

for 8.1% of the total variance in examinees' responses. The second factor had 

an eigenvalue of 2.58 and accounted for an additional 4.0% of the total 

variance in examinees' responses. All the remaining factors had eigenvalues 

of 1.73 or less. 

The SAS procedure FACTOR was used to determine the proportion of 

the common variance explained by the first two factors. Again, using the 

squared multiple correlations as prior communality estimates, the first factor 

had an eigenvalue of 4.43 and accounted for 67.2% of the common variance 

in examinees' responses. The second factor had an eigenvalue of 1.69 and 

accounted for an additional 25.7% of the common variance in examinees' 

responses. All the other factors had eigenvalues of less than 1.00. Based on 

these results, it was concluded that a single dominant factor also underlied 

the examinees' responses to the 65 quantitative items of the GMAT. 



Perhaps the most convincing evidence, however, of the underlying 

unidimensionality of the empirical data comes from comparing the first 

eigenvalue derived from the empirical data with the first eigenvalue derived 

from the simulated data. As indicated above, the simulated data was 

specifically generated such that a single dominant factor underlied the 

examinees' responses to the items. The first eigenvalue derived from the 

simulated data indicated that the first factor accounted for 10.8% of the total 

variance in the data. By comparison, the first eigenvalue derived from the 

empirical data indicated that the first factor underlying the examinees' 

responses to the 65 quantitative items on the GMAT accounted for 8.1% of the 

total variance. The comparability of the percentage of the total variance 

accounted by the first factors underlying each of these data sets further 

supports the conclusion that the empirical data are unidimensional. 

To visually represent the comparability of the underlying 

unidimensionality of the empirical and the simulated data, Figure 1 below 

presents an overlay of the scree plots from the two SPSS factor analyses. 

From these plots it can be seen that for the two data sets the first eigenvalues 

are appreciably larger than the second eigenvalues and all remaining 

eigenvalues are trivial. 
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Figure 1. Scree Plots of Eigenvalues from the SPSS Principal Axis Factor Analysis 

Results of Investigation of Research Question 1: Comparability of DIF Indices 

The focus of the investigation of the first research question involved 

analyses of both the empirical and the simulated data to determine the 

comparability of the various DIF detection indices. The analyses of these data 

were focused in three areas. First, Pearson product-moment correlation 

coefficients between each pair of DIF indices for both the empirical and the 

simulated data were used to measure the degree to which each pair of DIF 



indices corresponded in terms of magnitude and direction. Second, phi 

coefficients were calculated for each pair of DIF indices after items had been 

"flagged" as either displaying DIF or not based on the flagging criteria for each 

DIF detection method described in Chapter II. The phi correlation coefficients 

between the pairs of DIF indices were used to determine the degree of 

agreement between each pair of DIF detection methods in terms of identifying 

items as displaying DIF. Finally, comparisons of the detection rates between 

the pairs of DIF detection methods were also performed. Like the phi 

correlation coefficients, the comparisons of the detection rates between the 

pairs of DIF detection methods were used as a measure of the degree of 

agreement between each pair of DIF detection methods in terms of identifying 

items as displaying DIF. 

The results of the Pearson product-moment correlation analyses of the 

DIF indices derived from the empirical data are presented in Table 2 below. 

The results of this analysis indicate that all of the DIF indices are quite highly 

correlated with one another with the exception of the correlations between 

the Estimated Unsigned Area index and the two G2 indices based on the log-

linear model. Although both G2 indices showed low correlations with the 

Estimated Unsigned Area index, the addition of a third level to the response 

classifications (i.e., omitted items) did result in a slight increase in the 

correlation between the G2RWQ(10) index with the Estimated Unsigned Area 



index. It should also be noted that the correlation between the G2RWO(IO) 

index and the CCMH index was slightly lower than the G2RW(K>) index and the 

(XMH- This is most likely because the (XMH index, like the G2RW(10) is based on 

the dichotomous classification of examinees' responses as either right or 

wrong. (It should also be recalled that the G2 indices derived from the 

empirical data varied on the .number of response categories used to classify 

examinees' responses, and held constant the number of score intervals. The 

G2 indices derived from the simulated data varied on the number of score 

intervals into which examinees were grouped, and held constant the number 

of response categories at two: right and wrong.) 

Table 2. 
Pearson Product-Moment Correlation Coefficients 

Between DIF Indices — Empirical Data 

Estimated 
Unsigned Area OCMH G2RW(IO) G2RWO(IO) 

Estimated 
Unsigned Area 1.00 

0.0* 

<*mh 0.80 
0.0001 

1.00 
0.0 

G2RW(IO) 0.28 
0.0243 

0.93 
0.0001 

1.00 
0.0 

G2RWO(IO> 0.34 
0.0055 

0.91 
0.0001 

0.98 
0.0001 

1.00 
0.0 

* p-value > IRI under HQ: p=0, N=65 
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Table 3 below presents the results of the correlation analyses of the 

pairs of DIF indices derived from the empirical data after the items had been 

flagged as either showing DIF or not based on the flagging criteria for each DIF 

detection method described previously. Compared to the Pearson product-

moment correlation coefficients presented in Table 2, the phi coefficients 

among all of the DIF indices are appreciably lower. This is not surprising, 

however, given the reduction in variance caused by the dichotomization of 

the index variables. 

The phi coefficients among the DIF indices ranged from a low of 0.10 to 

a high of 0.76 compared to a range of 0.28 to 0.98 for the Pearson product-

moment correlation coefficients presented in Table 2. Like the Pearson 

product-moment correlation coefficients, the highest of the phi correlations, 

0.76 and 0.75, were between the two log-linear indices and between the 

G2RWO(iO) index and the OCMH index, respectively. Only slightly lower was the 

correlation between the OCMH index and G2RW(IO) index (^=0.66). The lowest 

correlations were among the Estimated Unsigned Area index and the three 

other DIF indices. For each of the 65 empirical items, Table 4 presents the 

item parameter estimates for both females and males along with an "X" in 

the column representing the DIF indices which identified the item as 

displaying DIF. For greater visual clarity, the data have been sorted by the 

Estimated Unsigned Area index. 
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Table 3. 
Phi coefficients 

Between Flagged Items — Empirical Data 

FlagEUA FlagMH FlagRW(io) FlagRwo(iO) 

FlagEUA 1.00 
0.0* 

FlagMH 0.12 1.00 
0.3291 0.0 

FlagRW(io) 0.10 0.66 1.00 FlagRW(io) 
0.4267 0.0001 0.0 

FlagRwo(iO) 0.11 0.75 0.76 1.00 FlagRwo(iO) 
0.3865 0.0001 0.0001 0.0 

* p-value > 1R1 under H0: p= =0, N=65 

The phi correlations presented in Table 3 can be better understood by 

looking at a matrix of the individual items and whether each DIF index 

identified them as displaying DIF. These data are presented in Table 4 below. 
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Table 4. 
Matrix of Individual Item Parameteis and 
Flagging by DIF Index — Empirical Data 

Females Males DIF Indices 

Item 
Estimated 
Unsigned GSQRW GSQRWO 

Number a b c a b c Area aMH (10) (10) 

55 0.65 0.99 0.29 0.50 -0.52 0.15 X X X X 

59 0.67 0.66 0.23 0.59 -0.48 0.15 X X X X 

49 0.64 -1.10 0.15 0.53 -2.00 0.15 X X X X 

14 0.63 1.67 0.29 0.79 0.84 0.33 X X X X 

10 0.47 1.12 0.09 0.51 0.39 0.15 X X X X 
52 0.85 -0.16 0.15 0.90 -0.87 0.15 X X X X 

47 0.75 -1.51 0.15 0.69 -2.22 0.15 X X X X 

50 0.97 -0.57 0.15 1.08 -1.20 0.15 X X X X 

65 0.87 2.93 0.20 1.05 2.31 0.24 X X X X 

19 0.64 2.25 0.17 0.75 1.64 0.23 X X X X 

2 0.50 -1.67 0.15 0.57 -2.20 0.15 X X X X 

53 0.73 -0.52 0.15 0.83 -1.54 0.15 X X X 

9 0.51 0.40 0.15 0.63 -0.43 0.15 X X X 

63 0.62 2.07 0.22 0.80 1.23 0.25 X X X 

57 0.77 1.20 0.15 0.74 0.51 0.13 X X X 

33 0.66 1.52 0.16 0.52 0.89 0.11 X X X 

16 0.70 2.28 0.12 0.76 1.45 0.12 X x ; 
60 1.08 1.13 0.23 1.21 0.50 0.22 X ! x 
12 0.36 -0.53 0.15 0.86 0.44 0.49 X 1 
44 1.66 4.13 0.21 1.02 3.24 0.20 X i 
28 0.78 0.57 0.26 0.64 -0.29 0.15 X 1 
18 0.66 2.55 0.19 0.84 1.82 0.21 X 1 1 
40 1.61 2.96 0.21 1.20 2.28 0.18 X 
35 0.36 1.51 0.15 0.52 0.91 0.15 X 1 1 
64 0.96 2.63 0.24 0.81 2.09 0.25 X 

1 13 0.86 0.46 0.15 0.87 -0.04 0.14 X 
6 0.89 -0.26 0.15 0.97 -0.75 0.15 X 

15 0.72 0.92 0.08 0.86 0.44 0.11 X 
39 0.79 0.63 0.06 0.79 0.21 0.06 X ! 

17 0.67 0.84 0.10 0.95 0.53 0.19 X i 
23 0.55 -1.02 0.15 0.57 -0.80 0.15 X x x i 
41 0.82 1.09 0.16 1.06 0.88 0.17 X x x ! 
54 0.56 0.19 0.15 0.64 0.02 0.15 X x X 

21 0.41 -3.90 0.15 0.37 -4.02 0.15 X x X 
38 0.67 0.20 0.15 0.74 0.09 0.11 X x X 
30 0.39 0.08 0.15 0.40 0.17 0.15 X X X 
26 0.49 -1.69 0.15 0.48 -1.74 0.15 X X X 
11 0.60 -0.88 0.15 0.71 -0.92 0.15 X X X 
24 0.70 -0.92 0.15 0.71 -0.95 0.15 X X x ! 
4 0.66 -1.28 0.15 0.71 -1.27 0.15 X X x I 
46 0.59 -4.22 0.15 0.60 -4.10 0.15 X ! X t 
56 0.43 0.11 0.15 0.54 -0.11 0.15 X X : 
7 0.53 -1.16 0.15 0.55 -1.35 0.15 X x ! 
29 0.33 -1.25 0.15 0.28 -1.41 0.15 X X 1 



Table 4. (Continued) 
Matrix of Individual Item Parameters and 
Flagging by DIF Index — Empirical Data 

Females Males DIF Indices 

Item 
Number a b c a b c 

Estimated 
Unsigned 

Area aMH 
GSQRW 

(10) 
GSQRWO 

(10) 

27 0.67 -0.40 0.15 0.78 -0.58 0.15 X ! 
37 0.55 1.01 0.09 0.66 0.67 0.12 X 
8 0.36 -1.28 0.15 0.44 -1.32 0.15 X 
1 0.30 -5.28 0.15 0.26 •6.27 0.15 
42 0.62 2.02 0.21 0.45 1.44 0.15 
22 0.70 -2.69 0.15 0.62 -3.21 0.15 
58 0.95 0.42 0.12 0.91 -0.06 0.11 
43 0.82 1.65 0.13 0.74 1.22 0.12 
62 0.86 2.20 0.20 0.85 1.78 0.19 
32 0.73 0.09 0.15 0.74 -0.30 0.15 
45 0.95 2.28 0.14 1.11 1.91 0.15 
20 0.74 1.77 0.07 0.64 1.46 0.07 1 
5 0.82 -1.42 0.15 0.85 -1.72 0.15 ; 

61 0.91 1.54 0.28 0.78 1.27 0.30 i 

34 0.21 0.79 0.15 0.23 0.53 0.15 
36 0.96 0.75 0.25 0.98 0.51 0.30 1 
51 0.41 -2.07 0.15 0.43 -2.31 0.15 • 

31 0.27 -0.35 0.15 0.30 -0.54 0.15 
48 0.58 -2.76 0.15 0.58 -2.94 0.15 
25 0.56 -2.19 0.15 0.71 -2.06 0.15 

• 

3 0.47 -2.63 0.15 0.50 -2.70 0.15 1 i 
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The individual comparisons for the data from Table 4 are presented in 

Tables 5 through 10 below. For each combination of DIF indices, the tables 

indicate the total number of items that were identified as displaying DIF by 

both indices, by each index separately, arid by neither index in the pair. In 

addition, the total number of items identified by each DIF detection method 

individually are indicated along with the percentage of the 65 items that the 

number represents. 

Table 5. 
DIF Detection Rates Using the Estimated Unsigned Area 

and the OCmh — Empirical Data Only 

No. of 
Items Flagged Percent 

Both 13 20.0 

Estimated 
Unsigned 
Area Only 17 26.2 

ocMH Only 11 16.9 

Neither 24 36.9 

Estimated 
Unsigned Area 30 46.2 

«MH 24 36.9 



Table 6. 
DIF Detection Rates Using the Estimated Unsigned Area 

and G2RW(IO) — Empirical Data Only 

No. of 
Items Flagged Percent 

Both 15 23.1 

Estimated 
Unsigned 
Area Only 15 23.1 

G2RW(10) Only 14 21.5 

Neither 21 32.5 

Estimated 
Unsigned Area 30 46.2 

G2RW(10) 29 44.6 

Table 7. 
DIF Detection Rates Using the Estimated Unsigned Area 

and G2RWO(IO) — Empirical Data Only 

No. of 
Items Flagged Percent 

Both 17 26.2 

Estimated 
Unsigned 
Area Only 13 20.0 

G2RWO(IO) Only 16 24.6 

Neither 19 29.2 

Estimated 
Unsigned Area 30 46.2 

G2RWO(IO) 33 50.8 



Table 8. 
DIF Detection Rates Using the AMH 

and G2RW(IO) — Empirical Data Only 

No. of 
Items Flagged Percent 

Both 21 32.3 

AMH Only 3 4.6 

G2RW(10) Only 8 12.3 

Neither 33 50.8 

«MH 24 36.9 

G2RW(10) 29 44.6 

Table 9. 
DIF Detection Rates Using the <XMH 

and G2RWO(IO) — Empirical Data Only 

No. of 
Items Flagged Percent 

Both 24 36.9 

AMH Only 0 0.00 

G2RWO(10) Only 9 13.8 

Neither 32 49.2 

AMH 24 36.9 

G2RWO(IO) 33 50.8 



82 

Table 10. 
DIF Detection Rates Using G2RVVUO) 

and G2
Rwono) — Empirical Data Only 

No. of 
Items Flagged Percent 

Both 27 41.5 

G2RW(IO) Only 2 3.1 

G2RWO(IO> Only 6 9.2 

Neither 30 46.2 

Estimated 
Unsigned Area 29 44.6 

G2RWO(1<)) 33 50.8 

The simulated data was also used in the investigation of the first research 

question. It should be noted that where the G2 indices derived from the 

empirical data varied in the number of response categories used to classify 

examinees' responses, the G2 indices derived from the simulated data varied 

in the number of score intervals used to group examinees. The results of the 

Pearson product-moment correlation analysis of the DIF indices calculated 

from the simulated data are presented in Table 11 below. 
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Table 11. 
Pearson Product-Moment Correlation Coefficients 

Between DIF Indices — Simulated data 

Estimated 
Unsigned Area OCMH G2RW(05) G2RW(IO) G2RW(20) 

Estimated 
Unsigned Area 1.00 

0.0* 

«MH 0.49 
0.0001 

1.00 
0.0 

G2RW(05) 0.65 
0.0001 

0.75 
0.0001 

1.00 
0.0 

G2RW(IO) 0.65 
0.0001 

0.75 
0.0001 

0.99 
0.0001 

1.00 
0.0 

G2RW(20) 0.58 
0.0001 

0.74 
0.0001 

0.94 
0.0001 

0.94 
0.0001 

* p-value > IRI under Ho: p=0, N=65 

As expected, the highest correlations were again between the log-linear 

indices. The G2 index based on five score groups and the G2 index based on 

ten score groups showed a nearly perfect correlation, while the G2 index based 

on 20 score groups showed only a slightly lower correlation with each of 

these. The correlations between each of the three G2 indices and both the 

CXMH index and the Estimated Unsigned Area index are all moderately high 

ranging from 0.58 to 0.75. The lowest correlation, 0.49, was between the (XMH 

index and the Estimated Unsigned Area index. 

Table 12 below presents the results of the phi correlation analyses of the 

pairs of DIF indices derived from the simulated data after the items had been 
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identified as either displaying DIF or not based on the flagging criteria for each 

DIF detection method described previously. 

Table 12. 
Phi coefficients 

Between Flagged Items — Simulated data 

FlagEUA 

FlagHUA 

1.00 
0.0* 

F^gMH FlagRW(05) FlagRWao) 

FlagMH 0.21 
0.0913 

1.00 
0.0 

FlagRW(05) 0.0014 
0.9913 

0.2.0 
0.1112 

1.00 
0.0 

FlagRW(io) 0.075 
0.5531 

0.49 
0.0001 

0.53 
0.0001 

1.00 
0.0 

FIagKW(2o> 0.31 
0.0115 

0.53 
0.0001 

0.29 
0.0183 

0.37 
0.0022 

1.00 
0.0 

p-value > IRI under HQ; p=0, N=65 

As with the empirical data, compared to the Pearson product-moment 

correlation coefficients presented in Table 11, the phi coefficients among all 

the DIF indices are, again, appreciably lower. As with the empirical data, 

these lower correlations can again be attributed, at least in part, to the 

reduction of variability in the data caused by the dichotomization of the index 

variables. 

The phi coefficients among the DIF indices derived from the simulated 

data ranged from a low of 0.0014 to a high of 0.54 compared to a range of 0.36 

to 0.99 for the Pearson product-moment correlation coefficients. Unlike the 

Pearson product-moment correlation coefficients, however, the two highest 
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of the phi coefficients, both 0.53, were between the G2RW(20) index and the 

OtMH index and between the G2RW(05) index and the G2RW(10) index. The phi 

correlation between the (XMH and G2RW(IO) was moderate (0.49) while the 

correlation between G2RW(20) and the two other log-linear DIF indices, 

G2RW(05) and G2RW(10)/ were fairly low at 0.29 and 0.37, respectively. 

As with the Pearson product-moment correlation coefficients, the lowest 

phi correlations were among the Estimated Unsigned Area index and all of 

the other indices. Of the four other indices, the largest calculated correlation 

coefficient was between the Estimated Unsigned Area and the G2RW(20) index 

(0.31), with the correlations between the Estimated Unsigned Area and the 

OCMH index (0.21), the G2RW(10) index (0.075), and the G2RW(05) index (0.0014) all 

being lower. 

The phi correlations presented in Table 3 can be better understood by 

looking at a matrix of the individual items and whether each DIF index 

identified them as displaying DIF. These data are presented in Table 13 below. 



Tabic 13. 

Matrix of Individual Item Parameters and 

Bagging by DIF Index — Simulation Data 

Femalfs I I Males j I DIF Indices 

Item 
Number Type of DIF a 

Estim. 
a* b 

Estim. 
b* c 

Estim. 
c* a 

Estim. 
a* b 

Estim. 
b* c 

Estim. 
c• 

Actual 
Unsigned 

Area 

Estimated 
Unsigned 
Area Index aMH 

GSQRW 
(05) 

GSQRW 
(10) 

GSQRW 
(20) 

1 Uniform 0.70 0.65 1.56 1.39 0.20 0.16 0.70 0.82 0.91 0.91 0.20 0.22 0.50 X X X X X 
7 Uniform 0.70 0.76 •0.86 -0.85 0.20 0.18 0.70 0.78 -1.41 -1.36 0.20 0.17 0.42 X X X X X 
8 Uniform 0.70 0.72 -0.27 -0.30 0.20 0.18 0.70 0.74 -0.87 -0.96 0.20 0.17 0.47 X X X X 
6 Uniform 0.70 0.73 0.73 0.63 0.20 0.19 0.70 0.73 -0.17 -0.26 0.20 0.17 0.71 X X X X 
3 Uniform 0.70 [ 1.01 1.42 1.27 0.20 0.22 0.70 0.89 0.67 0.63 0.20 0.22 0.58 X X X X 
10 Nonuniform 0.35 0.37 1.14 1.00 0.20 0.18 0.55 0.66 1.14 1.15 0.20 0.22 0.46 X X X 
5 Uniform 0.70 0.83 1.24 1.21 0.20 0.21 0.70 0.81 0.39 0.25 0.20 0.18 0.66 X X X 
11 Nonuniform 0.60 0.63 -2.25 -2.14 0.20 0.18 1.00 0.96 -2.25 -2.27 0.20 0.17 0.34 X X 
14 Nonuniform 0.50 0.59 0.72 0.64 0.18 0.17 0.80 0.94 0.72 0.68 0.20 0.21 0.37 X X X 
34 No DIF 0.20 0.22 -1.50 -1.63 0.20 0.18 0.20 0.18 -1.50 -1.80 0.20 0.17 0.00 X X 
49 No DIF 0.20 0.23 1.50 1.03 0.20 0.18 0.20 0.20 1.50 1.27 0.20 0.17 0.00 X X 
4 Uniform 0.70 0.71 -0.83 -0.91 0.20 0.18 0.70 0.71 -1.12 -1.16 0.20 0.17 0.23 X X 
33 No DIF 1.40 1.30 -2.50 -2.70 0.20 0.18 1.40 1.46 -2.50 -2.53 0.20 0.17 0.00 X , 
63 No DIF 1.40 2.00 3.50 4.23 0.20 0.20 1.40 1.46 3.50 3.36 0.20 0.20 0.00 X 
27 No DIF 1.10 0.92 -3.50 -4.11 0.20 0.18 1.10 1.12 -3.50 -3.67 0.20 0.17 0.00 X 
47 No DIF 1.10 1.27 0.50 0.38 0.20 0.17 1.10 1.36 0.50 0.57 0.20 0.22 0.00 X 
57 No DIF 1.10 1.25 2.50 2.73 0.20 0.22 1.10 2.00 2.50 2.19 0.20 0.21 0.00 X 
62 No DIF 1.10 1.60 3.50 3.06 0.20 0.20 1.10 0.94 3.50 4.34 0.20 0.20 0.00 X 
18 Nonuniform 0.90 0.95 0.52 0.47 0.18 0.17 1.40 1.65 0.52 0.48 0.20 0.18 0.25 X 
17 Nonuniform 0.85 0.94 -0.47 -0.48 0.20 0.18 1.10 1.16 -0.47 -0.61 0.20 0.14 0.17 X 
31 No DIF 0.80 0.78 -2.50 -2.54 0.20 0.18 0.80 0.95 -2.50 -2.29 0.20 0.17 0.00 X 
51 No DIF 0.80 0.86 1.50 1.44 0.20 0.17 0.80 1.00 1.50 1.31 0.20 0.19 0.00 X 
56 No DIF 0.80 0.74 2.50 2.41 0.20 0.18 0.80 0.98 2.50 2.29 0.20 0.20 0.00 X 
61 No DIF 0.80 0.55 3.50 4.09 0.20 0.20 0.80 1.14 3.50 2.83 0.20 0.20 0.00 X 
IS Nonuniform 0.75 0.75 -1.04 -1.09 0.20 0.18 0.95 1.07 -1.04 -1.01 0.20 0.17 0.17 X 
9 Uniform 0.70 0.83 0.84 0.69 0.20 0.18 0.70 0.66 0.09 -0.01 0.20 0.17 0.59 X 
15 Nonuniform 0.65 0.81 0.18 0.27 0.18 0.22 0.90 1.16 0.18 0.19 0.20 0.22 0.22 X 
13 Nonuniform 0.55 0.60 -0.88 -0.89 0.20 0.18 0.85 0.87 -0.88 -0.85 0.20 0.17 0.37 X 
50 No DIF 0.50 0.62 1.50 1.43 0.20 0.22 0.50 0.47 1.50 1.27 0.20 0.17 0.00 X 
55 No DIF 0.50 0.53 2.50 2.48 0.20 0.19 0.50 0.54 2.50 2.26 0.20 0.18 0.00 X 
60 No DIF 0.50 0.40 3.50 3.38 0.20 0.17 0.50 0.66 3.50 3.05 0.20 0.21 0.00 X 
12 Nonuniform 0.45 0.64 0.94 1.06 0.15 0.21 0.75 0.87 0.94 0.98 0.20 0.23 0.38 X 
29 No DIF 0.20 0.20 -2.50 -2.92 0.20 0.18 0.20 0.25 -2.50 -2.29 0.20 0.17 0.00 X 
39 No DIF 0.20 0.27 •0.50 •0.51 0.20 0.18 0.20 0.18 -0.50 -0.80 0.20 0.17 0.00 X 
44 No DIF 0.20 0.25 0.50 0.43 0.20 0.18 0.20 0.21 0.50 0.15 0.20 0.17 0.00 X 
59 No DIF 0.20 0.41 3.50 2.74 0.20 0.29 0.20 0.22 3.50 2.70 0.20 0.17 0.00 X 



Table 13. 

Matrix of Individual Item Parameters and 

Flagging by DIF Index — Simulation Data 

Females 1 1 Males 1 DIF Indices | 

Item 
Number TypeofDIF a 

Estim. 
a' b 

Estim. 
b* c 

Estim. 
c* a 

Estim. 
a* b 

Estim. 
b* c 

Actual 
Estim. Unsigned 

e* Area 

Estimated 
Unsigned 

Area Index OiMH 
GSQRW 

(05) 
GSQRW 

(10) 
GSQRW 

(20) 

23 No DIF 1.40 0.83 -4.50 -6.21 0.20 0.18 1.40 1.33 -1.50 -4.43 0.20 0.17 0.00 X 

22 No DIF 1.10 0.64 -4.50 -6.90 0.20 0.18 1.10 0.89 -4.50 -5.88 0.20 0.17 0.00 X 

42 No DIF 1.10 1.31 -0.50 -0.48 0.20 0.21 1.10 1.27 -0.50 -0.49 0.20 0.17 0.00 X X 

65 No DIF 1.10 1.35 0.00 0.00 0.20 0.22 1.10 1.26 0.00 0.03 0.20 0.21 0.00 X X 

41 No DIF 0.80 0.92 -0.50 -0.52 0.20 0.18 0.80 0.92 -0.50 -0.50 0.20 0.17 0.00 X X 

45 No DIF 0.50 0.51 0.50 0.35 0.20 0.18 0.50 0.52 0.50 0.39 0.20 0.17 0.00 X 

43 No DIF 1.40 1.54 -0.50 -0.59 0.20 0.13 1.40 1.55 -0.50 -0.54 0.20 0.16 0.00 X 

28 No DIF 1.40 1.39 -3.50 -3.80 0.20 0.18 1.40 1.07 -3.50 -4.17 0.20 0.17 0.00 

38 No DIF 1.40 1.47 -1.50 -1.50 0.20 0.18 1.40 1.49 -1.50 -1.52 0.20 0.17 0.00 

48 No DIF 1.40 1.57 0.50 0.48 0.20 0.19 1.40 1.62 0.50 0.48 0.20 0.20 0.00 

53 No DIF 1.40 1.91 1.50 1.40 0.20 0.21 1.40 1.70 1.50 1.41 0.20 0.20 0.00 

58 No DIF 1.40 2.00 2.50 2.18 0.20 0.20 1.40 1.78 2.50 2.25 0.20 0.20 0.00 

32 No DIF 1.10 1.12 -2.50 -2.54 0.20 0.18 1.10 1.00 -2.50 -2.68 0.20 0.17 0.00 

37 No DIF 1.10 1.36 -1.50 -1.35 0.20 0.18 1.10 1.27 -1.50 -1.44 0.20 0.17 0.00 
52 No DIF 1.10 1.27 1.50 1.37 0.20 0.19 1.10 1.47 1.50 1.34 0.20 0.21 0.00 

21 No DIF 0.80 0.58 -4.50 -5.80 0.20 0.18 0.80 0.77 -4.50 -4.60 0.20 0.17 0.00 
26 No DIF 0.80 0.81 -3.50 -3.59 0.20 0.18 0.80 0.78 -3.50 -3.54 0.20 0.17 0.00 

36 No DIF 0.80 0.82 -1.50 -1.51 0.20 0.18 0.80 0.83 -1.50 -1.52 0.20 0.17 0.00 
46 No DIF 0.80 0.82 0.50 0.44 0.20 0.18 0.80 0.84 0.50 0.44 0.20 0.19 0.00 

2 Uniform 0.70 0.69 -2.29 -2.39 0.20 0.18 0.70 0.70 -2.50 -2.59 0.20 0.17 0.15 
20 No DIF 0.50 0.52 -4.50 -4.42 0.20 0.18 0.50 0.48 -4.50 -4.70 0.20 0.17 0.00 

25 No DIF 0.50 0.48 -3.50 -3.59 0.20 0.18 0.50 0.49 -3.50 -3.74 0.20 0.17 0.00 
30 No DIF 0.50 0.54 -2.50 -2.40 0.20 0.18 0.50 0.55 -2.50 -2.45 0.20 0117 0.00 

35 No DIF 0.50 0.56 -1.50 -1.37 0.20 0.18 0.50 0.57 -1.50 -1.35 0.20 0.17 0.00 
40 No DIF 0.50 0.51 -0.50 -0.47 0.20 0.18 0.50 0.54 -0.50 -0.57 0.20 0.17 0.00 

64 No DIF 0.50 0.51 0.00 -0.07 0.20 0.18 0.50 0.50 0.00 -0.13 0.20 0.17 0.00 
19 No DIF 0.20 0.21 -4.50 -4.26 0.20 0.18 0.20 0.21 -4.50 -4.54 0.20 0.17 0.00 
24 No DIF 0.20 0.21 -3.50 -3.64 0.20 0.18 0.20 0.21 -3.50 -3.34 0.20 0.17 0.00 
54 No DIF 0.20 0.24 2.50 2.05 0.20 0.18 0.20 0.23 2.50 2.05 0.20 0.17 0.00 
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For each of the 65 simulated items, Table 13 presents the item parameter 

estimates for both females and males along with an "X" in the column 

representing the DIF indices which identified the item as displaying DIF. For 

greater visual clarity the data have been sorted by the Estimated Unsigned 

Area index. 

The individual comparisons for these data are presented in Tables 14 

through 23 below. For each combination of DIF indices the tables indicate the 

total number of items that were identified by both indices, by each one 

separately, and by neither one in the pair. In addition, the total number of 

items identified by each method individually are indicated along with the 

percentage of the 65 items that the number represents. 

Table 14. 
DIF Detection Rates Using the Estimated Unsigned Area 

and the C*MH — Simulated Data Only 

No, of 
Items Flagged Percent 

Both 8 12.3 

Estimated 
Unsigned 
Area Only 28 43.1 

aMH Only 2 3.1 

Neither 27 41.5 

Estimated 
Unsigned Area 36 55.4 

<*MH 10 15.4 



Table 15. 
DIF Detection Rates Using the Estimated Unsigned Area 

and G2
RVV(05) — Simulated Data Only 

No. of 
Items Flagged Percent 

Both 5 7.7 

Estimated 
Unsigned 
Area Only 31 47.7 

G2RW(05) Only 4 6.2 

Neither 25 38.5 

Estimated 
Unsigned Area 36 55.4 

G2RW(05) 9 13.8 

Table 16. 
DIF Detection Rates Using the Estimated Unsigned Area 

and G2RW(IO) — Simulated Data Only 

No. of 
Items Flagged Percent 

Both 7 10.8 

Estimated 
Unsigned 
Area Only 29 44.6 

G2RW(IO) Only 4 6.2 

Neither 25 38.5 

Estimated 
Unsigned Area 36 55.4 

G2RW(IO> 11 16.9 
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Table 17. 
DIF Detection Rates Using the Estimated Unsigned Area 

and G2rw(20) — Simulated Data Only 

No. of 
Items Flagged Percent 

Both 7 10.8 

Estimated 
Unsigned 
Area Only 29 44.6 

G2RW(20) Only 0 0.0 

Neither 29 44.6 

Estimated 
Unsigned Area 36 55.4 

G2RW(20) 7 10.8 

Table 18. 
DIF Detection Rates Using the (XMH 

and G2RVV(05) — Simulated Data Only 

No. of 
Items Flagged Percent 

Both 3 4.6 

(*MH Only 7 10.8 

G2RW(05) Only 6 9.2 

Neither 49 75.4 

«MH 10 15.4 

G2RW(05) 9 13.8 



Table 19. 
DIF Detection Rates Using the (XMH 

and G2
RW(IO) — Simulated Data Only 

No. of 
Items Flagged Percent 

Both 6 9.2 

(XMH Only 4 6.2 

G2RW(IO> Only 5 7.7 

Neither 50 78.5 

(*MH 10 15.4 

G2RW(10) 11 16.9 

Table 20. 
DIF Detection Rates Using the OCMH 

and G2
RW(20) — Simulated Data Only 

No. of 
Items Flagged Percent 

Both 5 7.7 

<*MH Only 5 7.7 

G2RW(20) Only 2 3.1 

Neither 53 81.5 

OTMH 7 10.8 

G2RW(20) 7 10.8 
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Table 21. 
DIF Detection Rates Using G2RW<05) 

and G2
RW(IO) — Simulated Data Only 

No. of 
Items Flagged Percent 

Both 6 9.2 

G2RW(05) Only 3 4.6 

G2RW(10) Only 5 7.7 

Neither 51 78.5 

G2RW(05) 9 13.8 

G2RW(IO) 11 16.9 

Table 22. 
DIF Detection Rates Using G2RW(OS) 

and G2RW(20) — Simulated Data Only 

No. of 
Items Flagged Percent 

Both 3 4.6 

G2RW(05) Only 6 9.2 

G2RW(20) Only 4 6.2 

Neither 52 80.0 

G2RW(05) 9 13.8 

G2RW(20) 7 10.8 
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Table 23. 
DIF Detection Rates Using G2

Rw(10) 
and G2RW(20) — Simulated data Only 

No. of 
Itgm $ Flqgggd Percent 

Both 4 6.2 

G2RW(IO) Only 7 10.8 

G2RW(20) Only 3 4.6 

Neither 51 78.5 

G2RW(IO> 11 16.9 

G2RW(20) 7 10.8 

Results of Investigation of Research Question 2: Accuracy of DIF Indices 

The investigation of the second research question involved analysis of the 

simulated data only. As before, the analyses of these data also focused in 

three areas. First, Pearson product-moment correlation coefficients between 

each DIF index and the Actual Unsigned Area index were used as measures of 

the degree to which each DIF index corresponded to the Actual Unsigned 

Area in terms of magnitude and direction. Second, phi coefficients were 

calculated for each DIF index and the Actual Unsigned Area after items had 

been "flagged" as either displaying DIF or not based on the flagging criteria for 

each DIF detection method described previously. The phi coefficients 

between each DIF index and the Actual Unsigned Area index were used as 

measures of the accuracy with which each DIF detection method was able to 

correctly identify the simulated items which displayed DIF. Finally, 

comparisons of the detection rates of each DIF detection method were also 
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performed. Like the phi coefficients, the comparisons of the detection rates of 

each DIF detection method were used as measures of the accuracy with which 

each DIF detection method was able to correctly identify the simulated items 

which displayed DIF. 

Table 24 below presents the Pearson product-moment and phi coefficients 

between each DIF index and the Actual Unsigned Area. 

Table 24. 
Pearson and Phi coefficients Between 

Each DIF Index and the Actual Unsigned Area 

Estimated 
Unsigned 
Area 

«MH 

G2RW(05) 

G2RW(10) 

G2RW(20) 

*p-value > IRI under Ho: p=0, N=9 

+p-value > IRI under Hp: p=0, N=65 

Pearson Phi 

Non-
Unifprm Uniform Overall Overall 

0.82 0.57 0.68 0.36 
0.0071* 0.1099* 0.0001+ 0.0037+ 

0.56 -0.01 0.60 0.50 
0.1174 0.9784 0.0001 0.0001 

0.75 0.43 0.77 0.15 
0.0192 0.2456 0.0001 0.2328 

0.75 0.44 0.77 0.27 
0.0194 0.2333 0.0001 0.0291 

0.59 0.22 0.71 0.56 
0.0927 0.5710 0.0001 0.0001 

The Pearson product-moment correlation coefficients clearly indicate a 

moderately strong relationship between each of the DIF indices and the 

Actual Unsigned Area indicating that each of the DIF indices investigated are 
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reasonably good measures of the difference between two item characteristic 

curves. 

The phi correlations are much weaker in most cases. The largest 

correlations are between the G2RW(20) index and the OCMH index and the 

Actual Unsigned Area index. These correlations indicate that of the five DIF 

indices investigated, these two DIF indices and their associated flagging 

criteria most accurately identify DIF items. 

The individual comparisons of detection rates for each of the DIF 

detection indices are presented in Tables 25 through 29 below. For each 

comparison, the table presents the number of uniform and nonuniform DIF 

items that the DIF detection method was able to correctly identify. In 

addition, each table also presents the number of Type I errors made by the DIF 

detection method. 

Table 25. 
DIF Detection Rate and Type I Errors 
Using the Estimated Unsigned Area 

Uniform 

Type of No. of No. of No. of 
DIE Items on Test Items Flagged Type I Errors 

fniform 9 8 (88.9%) 1 ( 5.6%) 

Nonuniform 9 9 (100.0%) 0 ( 0.0%) 

No DIF 47 19(40.4%) N/A 

m 



96 

Table 26. 
DIF Detection Rate and Type I Errors Using qcMH 

Type of 
DIF 

No. of 
Items pn Test 

No. of 
Items Flagged 

No. of 
Typ? I Error? 

Uniform 9 6 (66.7%) 1 (33.3%) 

Nonuniform 9 2 (22.2%) 7 (77.8%) 

No DIF 47 2 (40.4%) N/A 

Table 27. 
DIF Detection Rate and Type I Errors Using G2RW<OS) 

Type of No. of No. of No. of 
DEF Items on Test Items Flagged Tvpe I Errors 

Uniform 9 3 (33.3%) 6 ( 66.7%) 

Nonuniform 9 1 (11.1%) 8 ( 88.9%) 

No DIF 47 5 (10.6%) N/A 

Table 28. 
DIF Detection Rate and Type I Errors Using G2RW{IO) 

Type of 
DIF 

No. of 
Items on Test 

No. of 
Items Flagged 

No. of 
Tvpe I Errors 

Uniform 9 5 ( 55.6%) 4 ( 44.4%) 

Nonuniform 9 1 (11.1%) 8 ( 88.9%) 

No DIF 47 5 (10.6%) N/A 
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Table 29. 
DIF Detection Rate and Type I Errors Using G2RVV<20) 

Type of 
DIF 

No. of No. of 
est Items Flagged 

No. of 
Tvpe I Errors 

Uniform 9 6 (66.7%) 3 (33.3%) 

Nonuniform 9 1 (11.1%) 9 (100.0%) 

No DIF 47 0 ( 0.0%) N/A 

The data from these tables indicate that in one sense the Estimated 

Unsigned Area index was the most accurate DIF detection method in that it 

correctly identified the greatest number of both the uniform and nonuniform 

DIF items. However, the Estimated Unsigned Area approach also had the 

largest Type II error rate of air of the DIF detection methods investigated with 

19 of the 47 non-DIF items (40.4%) being incorrectly identified as displaying 

DIF. It is this high Type II error rate that is reducing the phi correlation 

between the Estimated Unsigned Area index and the Actual Unsigned Area 

noted above. The second highest Type II error rate was associated with both 

the G2RW(05) and the G2RW(10) indices which each incorrectly identified 5 of 

the non-DIF items (10.6%) as displaying DIF. 

Of the four remaining DIF indices, the G2RW(2<)) and the (XMH indices 

yielded comparable results in terms of accurately identifying uniform DIF 

items, number of Type I errors, and number of Type II errors. The least 

accurate of the DIF indices in terms of correct identification of the uniform 

and nonuniform DIF items, number of Type I errors, and number of Type II 

errors were the G2RW(05) AND the G2RW(IO) indices. Both of these indices 
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resulted in low detection rates, particularly with respect to the nonuniform 

DIF items, high Type I error rates, and moderately low Type II error rates. 

Each of these four methods failed to detect more than two of the nonuniform 

DIF items. 
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CHAPTER V 

DISCUSSION 

In the previous chapter the results of the empirical and simulation data 

analyses were presented. The purpose of this chapter is, first, to highlight and 

discuss the results presented in Chapter IV and, based on those findings, 

address the two research questions that were the focus of this study. Next, the 

implications of the results of this study for the detection of differential item 

functioning as a general measurement issue will be discussed. Finally, the 

implications of the study have for further research on the detection of 

differential item functioning will be presented. 

Summary of Results of Investigation of Research Questions 

The first research question focused on the comparability of the three DIF 

detection methods: the Mantel-Haenszel %2 approach, the IRT Unsigned Area 

approach, and the log-linear approach. To investigate this question, several 

DIF indices were derived using each of these approaches with both empirical 

and the simulated tests. In all, six separate analyses were performed using 

these DIF indices in order to address the first research question. Three* of the 

analyses used the empirical data from the GMAT while the remaining three 

analyses used the simulated data. As discussed previously, for both "tests" 

the following DIF indices were derived: the (XMH index, the Estimated 
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Unsigned Area index, and the G2RW(10) index. In addition, several other DIF 

indices based on the log-linear model were derived using only the simulated 

test. These indices were the G2RVV(05) index and the G2RW(20) index. 

For the first part of this analysis, Pearson product-moment correlation 

coefficients were calculated using the DIF indices derived, first, from the 

empirical data and, second, from the simulated data. The results of these 

analyses were presented in Tables 2 and 11 in Chapter IV. The Pearson 

product-moment correlation coefficients between pairs of DIF indices were 

used as one measure of the comparability of the indices. The results of these 

analyses indicated that the Mantel-Haenszel approach and IRT-based 

Estimated Unsigned Area approach yielded comparable DIF indices. The 

correlations between the DIF indices derived using these two approaches were 

r=0.80 (N=65, p<0.0001) for the empirical data and r=0.49 (N=65, p<0.0001) for 

the simulated data. As discussed previously, the reduction in the correlation 

between the two indices for the simulated test is attributable to the reduction 

in the variability in the data resulting from the 47 non-DIF items. 

The Pearson product-moment correlation coefficients between all of the 

DIF indices associated with the log-linear approach (G2RW(10) and G2RWO(IO) 

derived using the empirical data and G2RW(05), G2RW(10)/ and G2RW(20) derived 

using the simulated data) and the Estimated Unsigned Area index associated 

with the IRT-based approach yielded mixed results. The correlations between 

these DIF indices derived using the empirical data were low, ranging from 



0.28 to 0.34. Conversely, the correlations among the three DIF indices 

associated with the log-linear model derived using the simulated data were 

all moderately low and essentially identical, ranging from 0.58 to 0.65. The 

differences between the two sets of results are likely due to the somewhat 

artificial nature of the simulated data in that the 47 non-DIF items in the 

simulated test were all perfectly coincident. As a result, the G2 indices which 

reflect the importance of the ability group x gender interaction term in the 

log-linear model are expected be very small. Similarly, the parameter 

estimates for the simulated items calculated by LOGIST and used to estimate 

the unsigned area between the ICCs should reflect only small random errors 

of estimation. The results from the empirical sample, therefore, reflect the 

more realistic relationship between the indices, namely, that the G2 indices 

investigated are not comparable to the Estimated Unsigned Area index. 

The Pearson product-moment correlation coefficients between all of the 

DIF indices associated with the log-linear approach (G2RW(IO) and G2r<won<>) 

for the empirical data and G2RW(05), G2RW(IO), and G2RW(20) for the simulated 

data) and the DIF index associated with the Mantel-Haenszel approach yielded 

essentially identical results. The correlations between the DIF indices derived 

using the empirical test were high, ranging from 0.91 to 0.93. The correlations 

between these DIF indices derived using the simulated test were also 

moderately high and nearly identical, ranging from 0.74 to 0.75. These 

findings suggest that when two response classifications are used (i.e., right 



and wrong) and the number of score intervals increases toward the number 

of score values (i.e., N+l), the G2 index based on the log-linear model and the 

OCMH index yield essentially identical results. 

Finally, a comparison of the two G2 indices derived from the empirical 

data showed a nearly perfect correlation of 0.98. The correlations between the 

G2 indices derived using the simulated data were also quite high, ranging 

from 0.94 to 0.99. The high correlations among these pairs of DIF indices, 

taken together, highlight two important findings of the present study. First, 

the results from the analysis of the empirical data indicate that the addition of 

a third classification category (i.e., omitted) to the response variable did not 

significantly change the DIF indices derived from the empirical data. Second, 

the results from the analysis using the simulated data also indicate that an 

increase in the number of score levels into which examinees were grouped 

did not significantly change the relationship among the DIF indices. In 

general, the results of these analyses indicate that both G2 indices are highly 

correlated to the OCMH index, but not with the Estimated Unsigned Area index. 

On the other hand, the OCMH index was highly correlated with both G2 indices 

and also with the Estimated Unsigned Area index. 

For the second part of this analysis, phi coefficients were calculated, again 

using the indices derived, first, from the empirical data and, second, from the 

simulated data. The results of these analyses were presented in Tables 3 and 
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12 in Chapter IV. Like the Pearson correlations just discussed, the phi 

coefficients between pairs of DIF indices were also used as a measure of the 

comparability of the indices, but this time in terms of flagging items as 

displaying DIF. The results of these analyses indicate that the Mantel-

Haenszel approach and the IRT-based Estimated Unsigned Area approach do 

not yield similar results. The correlations between the DIF indices derived 

using these two approaches were low for both the empirical (r<},=0.12) and the 

simulated test (^=0.21). 

The phi coefficients between all of the DIF indices associated with the 

log-linear approach (G2RW(10) and G2RWO(1()) derived using the empirical data 

and G2RW(05)/ G2RW(IO), and G2RW(20) derived using the simulated data) and 

IRT-based Estimated Unsigned Area index also indicated a low 

correspondence between items flagged as showing DIF by each of these 

approaches. The correlations between the DIF indices derived using the 

empirical data were very low and quite similar to the correlation between the 

OCMH index and the Estimated Unsigned Area index derived from the 

empirical data. The correlations between the DIF indices derived using the 

simulated data were also quite low, ranging from a low of 0.0014 to a high of 

0.31. These correlations are similar to the correlations found with the 

empirical data. These analyses indicate that neither the Mantel-Haenszel 

approach nor the log-linear approach yield comparable results in terms of 

flagging items as displaying DIF. 



The phi coefficients between all of the DIF indices associated with the 

log-linear approach (G2RW(IO) and G2RWO(1()) derived using the empirical data 

and G2RW(05)/ G2RW(IO), and G2R w(2fl) derived using the simulated data) and 

the Mantel-Haenszel approach also yielded much higher correlations. The 

correlations between the DIF indices derived using the empirical data were 

between 0.66 and 0.75. These correlations are considerably higher than the 

correlation between the 0&MH index and the Estimated Unsigned Area index 

or the G2 indices and the Estimated Unsigned Area index. The correlations 

between the DIF indices derived using the simulated data were low, ranging 

from 0.20 to 0.53. 

Finally, a comparison of the two G2 indices derived from the empirical 

data showed a moderately high correlation of 0.75. The correlations between 

the G2 indices derived using the simulated data were all low, ranging from 

0.29 to 0.53. These results indicate that although the G2 indices were highly 

correlated in their raw form, the application of the flagging criteria discussed 

previously resulted in some discrepancies in terms of the items that are 

flagged using each index. 

The third part of the analyses involved several comparisons of the 

individual items and whether or not each was or was not flagged by the 

various approaches. Tables 4 and 13 presented matrix displays of the items 

and whether or not each item was flagged by the various approaches for both 

the empirical and the simulated data, respectively. In addition, for the 
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empirical data Tables 5 through 10 presented pairwise comparisons of the 

aggregate number of items that were identified in common by the two 

approaches being compared, by each approach separately, and by neither of the 

approaches. Tables 14 through 23 presented the same comparisons for the 

simulated data. Through these analyses, some additional clarification of the 

results of the two correlation analyses can be gained. 

Inspection of these tables, particularly Table 13, indicates that the 

generally low phi correlations between the Estimated Unsigned Area index 

and all of the other indices for both the empirical and the simulated data is 

attributable largely to the larger number of items that were flagged by the 

Estimated Unsigned Area index, but not by the other indices. Table 14 shows 

that the Estimated Unsigned Area index flagged 36 of the 65 simulated items. 

Of those 36, only 17 were DIF items; the remaining 19 were non-DIF items. 

Comparing the parameter estimates for the items that the Estimated 

Unsigned Area index flagged, and the ones that it did not, suggests that the 

Estimated Unsigned Area index is overly sensitive to differences in the fa-

parameters and, as a result, flags items which should not be flagged. This 

tendency for the Estimated Unsigned Area index to flag items with larger 

differences in the b-parameters is also reflected in the empirical data. 

Based on the results of these analyses, the following conclusions can be 

drawn regarding the first research question, To what degree do the Mantel-

Haenszel %2 approach, the IRT Unsigned Area approach, and the log-linear 
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approach yield comparable indices with respect to the amount of DIF 

displayed by test items? First, the Estimated Unsigned Area approach and the 

Mantel-Haenszel approach yield moderately comparable indices with respect 

to the amount of DIF displayed by test items for both the empirical and the 

simulated data. Similarly, the Mantel-Haenszel approach and the log-linear 

approach also yield comparable indices with respect to the amount of DIF 

displayed by test items for both the empirical and the simulated data. The two 

approaches which did not yield comparable indices for both tests used in this 

study were the IRT Unsigned Area approach and the log-linear approach. 

The Pearson correlations derived from the empirical data were much lower 

that the correlations derived from the simulation data. 

Second, the results of this study indicate that the three approaches were 

much less comparable after the flagging criteria had been applied to the 

indices. Based on the phi coefficients between the pairs of DIF indices, the 

indices associated with the log-linear model and the index associated with the 

Mantel-Haenszel approach were moderately comparable in terms of flagging 

items as displaying DIF. However, comparisons of the DIF indices associated 

with the IRT Unsigned Area approach and the DIF indices associated with the 

other two approaches were much less comparable, even to the point of being 

completely uncorrelated, as in the case of the Estimated Unsigned Area index 

and the G2rw(05) index (r<|>=0.0014). 

The second research question investigated in this dissertation study 
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focused on the accuracy of the three DIF detection methods: the Mantel-

Haenszel %2 approach, the IRT Unsigned Area approach, and the log-linear 

approach. To investigate this question, the DIF indices derived from the 

simulated test were used. In all, three separate analyses were performed in 

order to address the second research question. 

The first part of the analysis used the Pearson product-moment 

correlation coefficients between each of the DIF indices derived from the 

simulated data and the Actual Unsigned Area between the ICCs as a measure 

of the accuracy with which each detection method identified the amount of 

DIF displayed by each item. The Pearson product-moment correlation 

coefficients were calculated for the uniform and the nonuniform DIF items 

separately and overall. The results of these analyses indicated that all of the 

approaches were moderately to highly correlated with the Actual Unsigned 

Area for the nine uniform DIF items, with correlation coefficients ranging 

from a low of 0.56 for the Mantel-Haenszel approach to a high of 0.82 for the 

IRT Unsigned Area approach. The results for the nine nonuniform DIF 

items varied much more widely, with correlation coefficients ranging from a 

low of -0.01 for the Mantel-Haenszel approach to a high of 0.57 for the IRT 

Unsigned Area approach. Overall, the correlation coefficients based on all 65 

simulated items indicated that the three approaches yielded indices that were 

all moderately highly correlated with the Actual Unsigned Area, with 

correlation coefficients ranging from a low of 0.60 for the Mantel-Haenszel 
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approach to a high of 0.77 for the G2RW(05) and G2RW(IO) indices which are 

associated with the log-linear model. 

The second part of the analysis used phi coefficients between each of the 

DIF indices derived from the simulated data and the Actual Unsigned Area 

between the ICCs, after the flagging criteria had been applied to the indices, as 

another measure of the accuracy with which each detection method identified 

whether or not the items displayed DIF. Unlike the Pearson product-moment 

correlation coefficients, only the overall phi correlation coefficients could be 

calculated for this part of the analysis. This was the case because if the items 

were disaggregated into uniform and nonuniform DIF items after the flagging 

criteria had been applied, no variability would exist for the Actual Unsigned 

Area index, and as a result, the phi coefficients could not be calculated. The 

results of the overall correlation analysis indicated that the approaches varied 

widely, with phi correlation coefficients ranging from a low of 0.15 for the 

G2RW(05) index associated with the log-linear approach to a high of 0.56 for the 

G2RW(05) index also associated with the log-linear approach. The important 

result to note is that the Estimated Unsigned Area index, which had the 

highest Pearson correlation coefficients with both the uniform and 

nonuniform DIF items, had a phi correlation of only 0.36 with the Actual 

Unsigned Area once the flagging criteria were applied. The reason for this 

disparity can be seen from the third part of the analysis. 
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The third part of the analysis involved individual comparisons of each 

approach's detection rate by type of DIF (i.e., uniform or nonuniform), Type I 

error rate, and Type II error rate. These individual comparisons were 

presented in Tables 25 through 29 in Chapter IV. The results of these 

comparisons clearly indicate that although the Estimated Unsigned Area 

index had the highest detection rate with 17 of the 18 DIF items being correctly 

identified, it also had the highest Type II error rate with 19 of the 47 non-DIF 

items being incorrectly identified. At the other extreme, the G2RW(2<>) index 

correctly identified 6 of the 9 uniform DIF items, only 1 of the nonuniform 

DIF items, and all of the non-DIF items, that is, the G2Rw(2(>) index made no 

Type II errors. All of the other DIF indices had varying levels of success in 

identifying the nine uniform DIF items, relatively little success in identifying 

the nine nonuniform DIF items, and made comparably few Type II errors. 

Based on the results of these analyses, the following conclusions can be 

drawn regarding the second research question, How accurately does each DIF 

detection method identify test items with respect to the amount of DIF 

displayed by each item? First, the results of the investigation of the second 

research question showed mixed results with respect to the accuracy with 

which the various DIF indices were able to correctly identify the 18 simulated 

DIF items. All of the indices were moderately successful in identifying the 

nine uniform DIF items, with the Estimated Unsigned Area index being the 

most accurate. Conversely, with the exception of the Estimated Unsigned 



Area index, all of the DIF indices had difficulty in identifying the nine 

nonuniform items. Therefore, these results indicate that all of the 

approaches could be used to identify uniform DIF in items when it exists, but 

only the Estimated Unsigned Area index can be used to identify nonuniform 

DIF in items. Mitigating these results, however, is the large number of Type 

II errors made using the Estimated Unsigned Area index. The results of these 

analyses, when considered together, clearly indicate that the G2RVV(20) index 

was the most accurate of the DIF detection approaches. 

Implications of Results of this Study for the Detection of 
Differential Item Functioning 

The results of this investigation have several implications for the 

detection of differential item functioning in general. First, the results clearly 

indicate that the Estimate Unsigned Area index used in the analyses was 

extremely sensitive to difference in the b-parameter estimates. Further 

studies should be conducted in order to further explore this finding arid to try 

to determine whether there exists a threshold difference in b-parameter 

estimates beyond which items were likely to be flagged as displaying DIF. 

Second, although the use of log-linear models for the detection of DIF 

have been proposed by a number of researchers over the past 15 years, these 

models have not yet been as thoroughly investigated as other DIF detection 

procedures. The results of this study suggest that there is a need for further 

research into the appropriate application of these models to the detection of 



differential item functioning. One of the most critical issues around which 

further research is needed has to do with the minimum number of score 

levels needed when grouping examinees according on the ability of interest. 

Previous research has indicated that approximately five score levels are 

sufficient for matching examinees (Green, Crone, & Folk, 1989) The results of 

this study, however, suggest that for the 65 item tests used here, fewer than 20 

score groups was not sufficient to reasonably approximate the results of other 

DIF detection methods. In general, the results of this study indicate that the 

finer the interval used in matching the examinees, given the amount of data 

available, the better. 

Finally, although the evidence from this study is limited, it appears that 

the use of the third response level for classifying items to which an examinee 

did not respond, does not significantly enhance the power of the log-linear 

model to more accurately identify differentially functioning items. The 

usefulness of the omitted response category may have been masked by the 

small number of score groups used with the empirical data. Further studies 

are warranted to either support or refute the findings of this study with 

respect to the classification of omitted items. 

Implications of Results of this Study for Further Research on the Detection of 
Differential Item Functioning 

Based on the results of this study a number of avenues for further 

research in this area are indicated. The present study used a test of relatively 
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short length (65 items) and a very large sample size (10,000 examinees) 

Greater understanding of the comparability and accuracy of the log-linear 

models for detecting differential item functioning could be gained through 

further investigation of these models when both the test length and sample 

size are varied. 

As indicated previously, the results of the present study appear to 

indicate that the use of the third response level for classifying items to which 

an examinee did not respond did not significantly enhance the power of the 

log-linear model to more accurately identify differentially functioning items. 

Similar studies to determine whether this finding generalizes to response 

classifications other than the right, wrong, or omitted classifications used here 

would also be important. Some preliminary work has already been done in 

this area with respect to differential distractor functioning (e.g., Green, Crone, 

& Folk, 1989), but other possible applications should also be investigated, such 

as multiple-choice tests in which all of the response options represent correct 

responses, but vary in the level of sophisticated understanding of the material 

required by the examinees. 
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