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Let F be a real quadratic field with OF its ring of integers. Let f be a quadratic

form over F with discriminant D. Using Koecher Theory and the generalized Voronoï

Algorithm, we show that there are finitely many quadratic forms with discriminant

D over F. As there are finitely many quadratic forms, we can enumerate the forms

up to a factor of the determinant of the norm of the form.

As an application, we can use these results to show a correspondence between

the class of quadratic forms over F and the ideal class of a relative extension of F

generated by the field discriminant.
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CHAPTER I

INTRODUCTION

1.1 Basics of Number Fields and Quadratic Forms

While the foundations of integral binary forms is generally attributed to Fermat,

Euler, Lagrange, Legendre and Gauss [Wei07], Lagrange made the first general inves-

tigations of binary quadratic forms.

Definition I.1. A number field F is a finite degree field extension of the field of

rational numbers Q.

Definition I.2. The elements F which satisfy a monic polynomial with integer co-

efficients are called algebraic integers. The algebraic integers of F form a ring called

the ring of integers of F, denoted OF.

Definition I.3. Let F be a number field with ring of integersOF. An F-integral binary

quadratic form is a homogeneous degree 2 polynomial in 2 variables with coefficients

in the ring of integers OF. The form can be written as ax2
1 + bx1x2 + cx2

2.

For example, let F = Q, OF = Z. Then x2
1 + 3x1x2 + 6x2

2 is a Q-integral binary

quadratic form.

A binary quadratic form, f = ax2
1 + bx1x2 + cx2

2, can be represented as a 2 × 2

square symmetric matrix

Af =

a b
2

b
2

c

 such that f =

[
x1 x2

]a b
2

b
2

c


x1

x2

 ,
1



where x1, x2 ∈ OF.

Definition I.4. The discriminant D of a binary quadratic form, f(x1, x2) = ax2
1 +

bx1x2 + cx2
2 is

D = b2 − 4ac.

Equivalently, D = −4 det(Af ).

The following theorem is attributed to Lagrange.

Theorem I.5 ([SO85]). Let r be a divisor of an integer that can be represented by the

form ax2
1 + bx1x2 + cx2

2 with x1, x2, relatively prime. Then r can be represented by a

form AX2
1 +BX1X2 +CX2

2 with X1, X−2 relatively prime and B2−4AC = b2−4ac.

In other words, if a number r can be represented by fax2
1 + bx1x2 + cx2

2 with

discriminant D, then through a suitable change of basis, r can be represented by the

form AX2
1 +BX1X2 + CX2

2 with discriminant equal to D.

Definition I.6. The general linear group of degree 2 over a field, GL2(F), or ring,

GL2(R) is the set of 2× 2 invertible matrices with coefficients in F or R respectively

with matrix multiplication as the group operator.

Recall that an element u ∈ OF is a unit in OF if there exists an element v ∈ OF

such that uv = 1.

Definition I.7. Two F-integral binary quadratic forms f and g are equivalent, de-

noted f ∼ g, if there exists a matrix M ∈ GL2(OF) such that

M tAfM = Ag.
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Theorem I.8. Equivalent forms have the same discriminant up to a square of a unit

in OF.

Proof. Let f and g be equivalent quadratic forms. Then there exist a matrix M ∈

GL2(OF) such that M tAfM = Ag. Let Df and Dg be the discriminants of f and g

respectively. Note that as M ∈ GL2(OF), then det(M) is a unit in OF. Then we have

Dg = −4 det(Ag)

= −4 det(M tAfM)

= −4 det(M t)det(Af )det(M)

= −4 det(M)2det(Af )

= −4 u2det(Af )

= u2Df where u is a unit in OF.

Theorem I.9. Equivalence of F-integral binary quadratic forms is an equivalence

relation.

Proof. Let f, g, and h be F-integral binary quadratic forms.

• The form f ∼ f , because I tAfI = Af , where I is the identity matrix.

• Suppose f ∼ g. Then there exist a matrix M such that M tAfM = Ag, but

as M ∈ GL2(OF), M is invertible and its inverse M−1 ∈ GL2(OF). Thus

Af = (M−1)tAgM
−1. Thus g ∼ f .

• Let f ∼ g and g ∼ h. Then there exist matrices M and N ∈ GL2(OF) such

that M tAfM = Ag and N tAgN = Ah. Then by substitution for Ag by M tAfM

3



in the second equation, we get N tM tAfMN = Ah. Note that (MN)t = N tM t.

As GL2(OF) is a group, then MN ∈ GL2(OF). Thus, by definition I.7, f ∼ h.

Definition I.10. A positive definite Q-integral binary quadratic form is an F-integral

binary quadratic form f(x1, x2) = ax2
1 + bx1x2 + cx2

2 with coefficients in Q such that

for every (x, y) ∈ Q with (x1, x2) 6= (0, 0), f(x2, x2) > 0. If f(x1, x2) is positive

definite then a > 0 and c > 0.

Definition I.11. The special linear group SL2(Z) ⊂ GL2(Q) is the group of 2 × 2

invertible matrices with coefficients in Z and determinant 1.

Definition I.12. Two forms, f and g, are properly equivalent if there exists M ∈

SL2(Z) such that Af = M tAgM .

The following theorem is attributed to Lagrange.

Theorem I.13 ([SO85]). There are only finitely many proper equivalence classes of

Q-integral positive binary quadratic forms with a given discriminant D.

Theorems I.5 and I.13, while based only over Q, form the basis of a reduction

theory of binary quadratic forms, by providing a definition of equivalence (Definition

I.7) and showing that finitely many classes of forms exist per discriminant (Theorem

I.13). Gauss, Dirichlet, and Minkowski [SO85] extended these theories to quadratic

forms in n variables. Koecher Theory [Koe60] and Voronoï’s reduction theory [Vor08]

have been used to extend reduction theory to n-ary forms over totally real number

fields.
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1.2 Reduction Theory of Binary Quadratic Forms over Q

With a definition of equivalence classes, reduction theory for F-integral binary

quadratic forms can be defined. Essentially, given a reduction algorithm, a reduction

theory allows us to determine if two elements of a set are equivalent. Given two

elements of a set, we apply the reduction algorithm to the elements. If they are both

reduced to the same reduced element, the two elements are equivalent.

For example, there is an equivalence relation on Q defined as

a

b
∼ c

d
if and only if ad = bc, where

a

b
,
c

d
∈ Q.

Thus, if a
b
∼ c

d
, then

[
a
b

]
and

[
c
d

]
are the same equivalence class. A number a

b
∈ Q

is reduced if (a, b) = 1 with b 6= 0. Given a number x
y
∈ Q, if (x, y) = 1, then x

y
is

reduced. If (x, y) 6= 1 then x and y have a greatest common factor z greater than

1, which means x = za, y = zb for some a, b ∈ Z such that (a, b) = 1. Thus divide

numerator and denominator by the greatest common factor to get the representative

a
b
∈
[
x
y

]
. The representative a

b
such that (a, b) = 1 is a reduced form of x

y
.

Definition I.14. A Q-integral positive definite binary quadratic form, f(x1, x2) =

ax2
1 + bx1x2 + cx2

2, is reduced over Q if either

c > a and − a < b ≤ a,

or

c = a and 0 ≤ b ≤ a.
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We need to prove existence of such a form in every equivalence class and that

there is exactly one such form in each class. See Theorem I.15.

Theorem I.15. Each equivalence class of Q-integral positive definite binary quadratic

forms over Q contains a unique reduced form.

Proof. To prove existence, let C be an equivalence class of positive definite quadratic

forms of discriminant D. Let f(x1, x2) = ax2
1 + bx1x2 + cx2

2, represented by Af =a b
2

b
2

c

, be an element of C such that a is the smallest among elements in C. In such a

case, we necessarily have c ≥ a, or else

 0 1

−1 0


a b

2

b
2

c


0 −1

1 0

 =

 c −b
2

−b
2

a

 gives

the form g(x1, x2) = cx2
1 − bx1x2 + ax2

2 which is an equivalent form with c minimal.

Then we just relabel c and a so that a is minimal.

Now letting

1 h

0 1

 ∈ SL2(Z) act on f for h = b(a − b)/2ac gives an equivalent

form j(x1, x2) = a′x2
1 + b′x1x2 + c′x2

2, where a = a′ and b′ ∈ (−a′, a′]. Since a′ = a

is minimal, similarly as above, we have a′ ≤ c′. If a′ < c′ or a′ = c′ and b′ > 0,

the form is reduced by Definition I.14. However, if a′ = c′ and b′ < 0, we see that

j ∼ k(x1, x2) = c′x2
1 +−b′x1x2 + a′x2

2 is an equivalent form that results in a reduced

form. So every equivalence class of positive definite quadratic forms of discriminant

D has a reduced form.

To prove uniqueness, let f(x1, x2) = ax2
1 + bx1x2 + cx2

2 and g(x1, x2) = a′x2
1 +

b′x1x2 + c′x2
2 be reduced forms of C. Since f ∼ g there exist M =

p q

r s

 ∈ SL2(Z)
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such that MAfM
t = Ag. Computing

MAfM
t =

 p2a+ prb+ r2c pqa+ (pqrs) b
2

+ rsc

pqa+ (pqrs) b
2

+ rsc q2a+ qsb+ s2c

 =

a′ b′

2

b′

2
c′

 ,
we have a′ = ap2 + bpr + cr2. As f is reduced, a is minimal among the equivalent

forms in C and |b| ≤ a ≤ c.

If r
p
< 1, we have that 0 ≤ 1 + b

a
r
p
≤ 2 and

a′ = ap2 + bpr + cr2 = ap2

(
1 +

br

ap

)
+ cr2.

Thus a′ ≥ ap2
(

1 + br
ap

)
+ ar2 ≥ a(p2 + r2) ≥ a.

Similarly, if p
r
< 0 we have that 0 ≤ 1 + b

c
p
r
≤ 2 and

a′ ≥ ap2 + ar2

(
1 +

bp

cr

)
≥ a(p2 + r2) ≥ a.

This means that a′ is minimal if and only if a′ = a. Then a′ = a and M is of

the form

1 h

0 1

, which means that b′ = b + 2ah for some h. As f and g are both

reduced, then b, b′ ∈ (−a, a], which means that h = 0. With h = 0, M is the identity

matrix, and Af = Ag.

Over Q every equivalent form has the same discriminant up to the square of a unit

in Z. Since 1 and −1 are the only units in Z, every form in a given equivalence class

has the same discriminant. We show that there are finitely many equivalence classes

per discriminant and therefore have finitely many reduced forms per discriminant.
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Theorem I.16. For D < 0, there are finitely many equivalence classes of Q-integral

positive definite binary quadratic forms per discriminant D. Denote this number by

c(D).

Proof. Let f(x1, x2) = ax2
1 + bx1x2 + cx2

2 be a reduced Q-integral positive definite

binary quadratic form. Because |b| ≤ a ≤ c then

4a2 ≤ 4ac = b2 −D ≤ a2 −D,

and so

−a < b ≤ a ≤
√
−D

3
.

Thus, the values for a and b have an upper limit. As c is a function of D, a, and b, c

also has a limited number of values.

Example I.17. Assume that D = −4. By Theorem I.16, a reduced form with

discriminant D can only have the values a = 1 and b ∈ {0, 1}. However, b cannot be

an odd integer, because D ≡ 0 (mod 4) and 4ac ≡ 0 (mod 4), thus b ≡ 0 (mod 4).

Therefore b 6= 1. Thus there can only be one reduced form in the equivalence class

of Q-integral positive definite binary forms for discriminant −4. Namely, f(x1, x2) =

x2
1+x2

2 is positive definite and the reducedQ-integral positive definite binary quadratic

form with D = −4.

Example I.18. Assume that D = −15 ≡ 3 (mod 4). By Theorem I.16, a reduced

form with discriminant D can only have the values a ∈ {1, 2}. As b must be odd,

then b ∈ {−1, 1} depending on the value of a. Recall that c is determined by D, a

and b. Thus we see in Table 1 that there are only two reduced forms with D = −15.

8



Table 1. Reduced Q-integral binary quadratic forms with D = −15.

a b c positive definite? reduced?
1 1 4 True Yes
2 −1 2 True No, because c = a so 0 ≤ b.
2 1 2 True Yes

Table 2. Reduced Q-integral binary quadratic forms with D = −47.

a b c positive definite? reduced?
1 1 12 True Yes
2 −1 6 True Yes
2 1 6 True Yes
3 −1 4 True Yes
3 1 4 True Yes
3 3 14

3
True No, because c is not an integer.

Example I.19. Assume that D = −47 ≡ 3 (mod 4). By Theorem I.16, a reduced

form with discriminant D can only have the values a ∈ {1, 2, 3}. As b must be odd,

then b ∈ {−1, 1, 3} depending on the value of a. Recall that c is determined by D, a

and b. Thus we see in Table 2 that there are five reduced forms with D = −47.

In the next chapter, we will discuss Koecher Theory from which we can describe

a reduction theory of positive definite forms over totally real number fields. We will

then use a generalization of Voronoï’s algorithm to find a domain for these forms and

then prove that there are finitely many equivalence classes of positive definite forms

of a given discriminant. Those conditions allow us to count the number of classes of

positive definite forms.

9



CHAPTER II

KOECHER THEORY

Let V be the 3-dimensional vector space of 2 × 2 symmetric matrices with co-

efficients in R, Sym2(R). A binary quadratic form can be represented by a matrix

in Sym2(Q) ⊂ Sym2(R). Let C ⊂ V be the set of positive definite matrices. Then

for c ∈ C, λc ∈ C for λ > 0. So we see that C is a cone. Voronoï [Vor08] proved

that C could be decomposed into a union of cells parameterized by perfect binary

quadratic forms over Q. He showed that there are finitely many rational perfect n-ary

quadratic forms up to GLn(Z) equivalence and that the cones defined by nonequiv-

alent perfect forms form a domain, containing representatives from each equivalence

class of quadratic forms. A fundamental domain is a subset of the space containing

exactly one representative from each orbit of the action of GLn(Z) on the space. The

domain Voronoï produced is not a fundamental domain, as there are more than one

representative from most equivalence classes. However if we consider the action of

the stabilizer of the cone, we can choose unique representatives. Thus up to an action

of the stabilizer of the cone, Voronoï created a reduction theory.

Koecher [Koe60] generalized Voronoï’s reduction theory to positivity domains over

arbitrary number fields using perfect points. For a description of Koecher’s reduction

theory of positivity domains, we’ll closely follow Gunnells and Yasaki’s explanation

in [GY12].

Let V be a finite dimensional vector space over R. Let 〈 , 〉 : V × V → R be a

positive definite symmetric bilinear form. For a subset C ⊂ V , let C represent the

10



closure of C. Let C◦ represent the relative interior of C and ∂C = C \ C◦ represent

the boundary of C.

Definition II.1. A subset C ⊂ V is called a positivity domain if the following

conditions hold:

• C is open and nonempty.

• 〈x, y〉 > 0 for all x, y ∈ C.

• For each x ∈ V \ C there is a nonzero y ∈ C such that 〈x, y〉 ≤ 0.

Let D ⊂ C \ {0} be a nonempty discrete subset. Then for x ∈ C, let

µ(x) = inf
d∈D
{〈d, x〉}.

Koecher [Koe60] proved that µ(x) > 0 and that there are finitely many d ∈ D for

which the infimum is achieved. This finite set, denoted M(x), is referred to as the

set of minimal vectors for x and defined by:

M(x) = {d ∈ D | 〈d, x〉 = µ(x)}.

Definition II.2. A point x ∈ C is called perfect if the span M(x) = V .

Note that if x ∈ C is perfect, then λx for λ > 0 is also perfect, because M(λx) =

M(x) still spans V . Let Φ(D) denote the set of all perfect points x with µ(x) = 1.

Definition II.3. A nonempty discrete subset D ⊂ C \ {0} is said to be admissible if

for any sequence {xi}, converging to a point in ∂C, we have limµ(xi) = 0.

11



The definition of an admissible setD is important because Koecher [Koe60] proved

that if D is admissible, then Φ(D) is a discrete subset of C and provides a polyhedral

decomposition of C. That decomposition is what makes Koecher’s reduction theory

work.

Definition II.4. A polyhedral cone in a real vector space V is a subset σ such that

σ = σ(v1, . . . , vp) =

{
p∑
i=1

λivi | λi ≥ 0

}
,

where v1, . . . , vp is a fixed set of vectors. We say that v1, . . . , vp span σ and the

dimension of σ is the dimension of its linear span. If the dimension of σ is n, call σ

an n-cone.

Recall that if x ∈ Φ(D), then x is perfect and the linear span of its minimal

vectors M(x) = V , so we can talk about the cone defined by M(x). Let σ(x) denote

the cone

σ(x) =
{∑

λdd | λd ≥ 0, d ∈M(x)
}
,

which Koecher calls the perfect pyramid of x.

Let Σ be the set of all perfect pyramids with all their proper faces as x ranges

over all points in Φ(D), the set of all perfect points. Koecher [Koe60, § 5.1] proved

that for admissible D, the perfect pyramids have the following properties:

(a) Any compact subset of C meets finitely many perfect pyramids.

(b) Two different perfect pyramids have no interior point in common.

(c) Given any perfect pyramid σ, there are only finitely many perfect pyramids σ′

such that σ ∩ σ′ contains a point of C. Such σ′ is referred to as a neighbor of σ.

12



(d) The intersection of any two perfect pyramids is a common face of each.

(e) Let F be a codimension one face of a perfect pyramid σ(x). If F meets C, then

there exists another perfect pyramid σ(x′) such that σ(x)∩σ(x′) = F . Note that

if F ∈ ∂C, F is referred to as a dead end, because σ(x′) does not exist outside C.

(f) Then C =
⋃
σ∈Σ σ ∩ C.

Definition II.5. A fan ∆ is a collection of cones that satisfy the following conditions.

(1) If F is a face of σ and σ ∈ ∆, then F ∈ ∆.

(2) if σ, σ′ ∈ ∆, then σ ∩ σ′ = F is a face of both σ and σ′.

Condition d implies that Σ is a fan. We refer to Σ as the Koecher fan, and σ ∈ Σ

as the Koecher cones.

Theorem II.6. Let G ⊂ GL(V ) be the group of automorphisms of C. Let Γ ⊂ G

be a discrete subset such that ΓD = D. Koecher [Koe60, § 5.4] proved that if D

is admissible, then Γ acts properly discontinuously on C. Thus we have a reduction

theory for Γ in that

(RT1) There are finitely many Γ-orbits in Σ.

(RT2) Every x ∈ C is contained in a unique cone in Σ.

(RT3) Given any cone σ ∈ Σ with σ ∩ C 6= ∅, the group {γ ∈ Γ | γσ = σ} is finite.

If we choose representatives σ1, . . . , σn of the orbits of Γ in Σ and let Ω =
⋂

(σi∩C),

then every form of C is represented in Ω, but not uniquely. Each of the σi have a

finite stabilizer subgroup Γi of Γ. So, to construct a fundamental domain, we take a

form from the set {γtjxγj | γj ∈ Γi, x ∈ σi}.

13



Definition II.7. A totally real number field is a number field F in which all the

embeddings into the complex numbers, C, are real numbers.

Example II.8. The number field Q(
√

2) is a totally real number field. It has two

embeddings into C,

(1) ϕ1 : Q(
√

2) ↪→ C defined by ϕ1(a+ b
√

2) = a+ b
√

2, and

(2) ϕ2 : Q(
√

2) ↪→ C defined by ϕ2(a+ b
√

2) = a− b
√

2

with a, b ∈ Q. Because a, b, and
√

2 are real numbers, then all the embeddings of

elements in Q(
√

2) are real numbers.

However, Q(
√
−2) is not a totally real number field because the embedding

ϕ : Q(
√
−2) ↪→ C defined by ϕ(a+ b

√
−2) = a+ b

√
−2

is not a real number.

Let F be a totally real number field with d embeddings in R and ring of integers

OF . Define σ : F→ R as

σ(α) =
d∑

1=i

σi(α)

where α ∈ F and σi(α) is the ith embedding of α in R. We set αi = σi(α). Similarly,

if A ∈ Matn×n(F), then Ak refers to the matrix whose (ij)th entry is σk(Aij).

Let V = Sym2(R)d, where Sym2(R) =


a b

b c

 | a, b, c ∈ R

 . Let Sym+
2 (R)

represent the set of positive definite symmetric matrices with entries in R. For A ∈ V ,

A = (A1, A2, . . . , Ad).

14



Definition II.9. The inner product 〈 , 〉 : V × V → R is defined as

〈A,B〉 =
∑

Tr(AiBi) for 1 ≤ i ≤ d.

There exists a natural embedding φ : Sym2(F)→ V given by

φ(A) = (A1, . . . , Ad),

which defines a rational structure on V .

Define the map q : O2
F → Sym2(F) by

q(v) = vvt.

Let C ⊆ V =
∏

Sym+
2 (R). Then C is a positivity domain [Koe60, §9].

Let D = {q(v) | v ∈ O2
F \ {0}} ⊂ C \ {0}. Then D is an admissible set [Koe60,

Lemma 11]. Thus Φ(D) is finite, and we have a Koecher fan.

The group GL2(R)d acts on V by

(g · A) = gAgt.

This action preserves C and is the automorphism group of C.

If we then find the stabilizers of the individual cones, Γσ(x), in our Koecher Fan,

we have a reduction theory for C. For each x ∈ Φ(D), fix d ∈ M(x). Then a form

A ∈ σ(x) is reduced if

〈A, q(d)〉 = min{〈γA, q(d)〉 | γ ∈ Γσ(x)}.
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Note that C can be viewed as the space of real-valued positive definite quadratic

forms in n variables. If A ∈ C, then define QA on F n by

QA(x) =
∑

xtAix.

Thus we have a reduction theory on the set of positive definite quadratic forms over

F.

We also have a reduction algorithm for forms in C.

Algorithm II.10.

Input: y ∈ C,Σ

Output: y′ ∼ y such that y′ ∈ Σ

Let ν = min{〈y, σ〉|σ ∈ Σ} and F = σ associated with ν.

• For each neighbor σ′ of F , compute 〈y, σ′〉.

• If there exists a neighbor σ′ with 〈y, σ′〉 < ν, replace F with σ′, ν with 〈y, σ′〉,

and return to step one.

• Otherwise, terminate the procedure: y lines in the cone F .

• For each σ ∈ Σ and each neighbor σ′ of σ there is γ ∈ G the automorphism

group of C such that γσ′ ∈ Σ. So γy ∈ Σ.
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CHAPTER III

VORONOÏ ALGORITHM

Theorem II.6 gives a reduction theory on the set of positive definite quadratic

forms over a totally real number field, but such a theory isn’t particular helpful in

finding the Koecher fan and cones over F. Fortunately Voronoï [Vor08] created an

algorithm for finding these cones, defined by perfect forms (see Definition II.2), over

Q, which can be generalized to cones over F (see Algorithm III.3). Ong [Ong77]

used this algorithm to find cells associated with perfect binary quadratic forms over

Q(
√

2),Q(
√

3) and Q(
√

5) and Leibak [Lei05] used it to find cells associated with

perfect binary quadratic forms over Q(
√

6).

To find the representatives of the perfect pyramids in the Koecher fan, σ ∈ Σ, we

begin with a perfect form x1 and its cone σ(x1). We then find the neighboring

cones σ(x2), . . . , σ(xn), which we already know to be finite by Theorem II.6. Retain

neighboring cones σ(xi), i ∈ {2, . . . , n}, which are mutually non-equivalent and not

equivalent to σ(x1). Then the procedure is repeated for each new non-equivalent

perfect form. As the classes of perfect forms are finite, so are the cones representing

them. We eventually come to a point such that we find no new non-equivalent perfect

forms and thus obtain Σ.

3.1 Over Q

Following Schürmann [Sch09] we illustrate the Voronoï algorithm for the space of

positive definite binary quadratic forms over Q.
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Example III.1. Let x1 = 2a2 + 2ab + 2b2 represented as Ax1 =

2 1

1 2

. Then, the

minimum value of x1 is µ(x1) = 2, and the set of minimum vectors for x1 is

M(x1) =


1

0

 ,
0

1

 ,
 1

−1


 .

Finding the minimal vectors is nontrivial. For this, we can use the Algorithm of Fincke

and Pohst [FP85]. Given a perfect form x and a constant C > 0, this algorithm will

find all d ∈ Zn such that x(d) < C. Then M(x) consist of those d ∈ Zn for which

x(d) = µ(d). To find the neighbors of σ(x1), we now need the extreme rays that define

the faces of our σ1(x1). Let R be the set of rays, ri such that ri is perpendicular to a

face of σ(x), defined by a subset ofM(x), and 〈ddt, ri〉 > 0 for all other d ∈M(x). The

neighboring forms of σ1(x1) are of the form x1 + ρri for ri ∈ R, i ∈ {1, 2, 3} and ρ is

the smallest positive number such that µ(x1) = µ(x1 +ρri) andM(x1 +ρri) 6⊆M(x1).

To find ρ use the following algorithm.

Algorithm III.2 (Determination of ρ.).

Input: Initial upper and lower bound.

Output: ρ.

(1) Initialize upper and lower bounds for ρ. Say u = 1 and l = 0.

(2) If x1 + uri is not positive definite, then u is too large. If µ(x1 + uri) = µ(x1),

then u is too small. So do the following until x1 + uri is positive definite and

µ(x1 + uri) 6= µ(x1).
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(a) If x1 + uri is not positive definite, set u = (l + u)/2, else set l = u and

u = 2u.

This provides an upper and lower bound of ρ.

(3) If M(x1 + lri) ⊆ M(xi), then l 6= ρ and we have to reduce the range of our

bounds. Begin by setting a = (u+ l)/2.

(a) If µ(x1 +ari) ≥ µ(xi), then ρ is in the upper half of the range, so set l = a.

Otherwise µ(x1 + ari) < µ(xi), then ρ is in the lower half of the range, so

set

u = min{(µ(xi)− xi(v))/ri(v) | v ∈M(xi + ari), ri(v) < 0} ∪ {a}.

(b) If µ(x1 + uri) = µ(xi), just set l = u.

Then repeat until M(x1 + lri) 6⊆M(xi).

(4) Now we have that l = ρ.

Following Voronöi’s algorithm, as described by Schümann, we get the neighbors

of x1 to be Nx1 =


 2 −1

−1 2

 ,
6 3

3 2

 ,
2 3

3 6


 . Then, when we check for equiva-

lence, we find that these neighbors are equivalent to our perfect form x1 via matrices−1 1

1 0

 ,
−1 −1

0 −1

 and

−1 0

−1 −1

, respectively. Thus, Σ = {σ(x1)} for positive

definite binary quadratic forms over Q.
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3.2 Over A Totally Real Number Field

Let F be a totally real number field with d embeddings in R and ring of integers

OF. Let V = Sym2(R)d and 〈, 〉 : V × V → R be the inner product defined in II.9.

Recall from the previous chapter that C ⊆ V =
∏

Sym+
2 (R) is a positivity domain

and D = {q(v) | v ∈ OF \ {0}} is an admissible set. Recall that M(x) = {d ∈

D | x(d) = µ(x)}. We can still use Fincke and Pohst to find M(x) by utilizing the

map ϕ in equation IV.1 that takes forms from Sym2(F) → Sym4(Q). The extreme

rays, ri ∈ R, can be found using linear inequalities such that 〈ri, didti〉 = 0 for all

d ∈M(x) that define the face Fi and 〈ri, ddt〉 > 0 for the remaining d ∈M(x).

Algorithm III.3 (Generalized Voronoï Algorithm).

Input: Number of variables, n, in the n-ary form and F.

Output: A complete list of nonequivalent perfect forms in Sym+
nF.

Begin with a perfect form x.

(1) Compute M(x) and R.

(2) Enumerate r ∈ R such that R = {r1, . . . , rk}.

(3) Determine contiguous perfect forms xi = x+ ρri, i ∈ {1, ..., k}.

Algorithm III.4 (Find Contiguous Perfect Forms).

Input: Perfect form x and ri.

Output: ρ > 0 with µ(x+ ρri) = µ(x) and M(x+ ρri) 6⊆M(x).

(l, u)← (0, 1)

while x+ ρri is not positive definite or µ(x+ ρri) = µ(x) do
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if µ(x+ ρri) 6= µ(x) then

u← (l + u)/2

else

(l, u)← (u, 2u)

endif

while M(x+ ρri) 6⊆M(x) do

a← (u+ l)/2

if µ(x+ ρri) ≥ µ(x) then

l← a

else

u← minµ(x)− 〈x, vvt〉/〈ri, vvt〉 | v ∈M(x+ ρri) ∪ {a}

endif

if µ(x+ ρri) = µ(x) then

l← u

endif

end while

return l

(4) Test if xi is equivalent to known perfect forms.
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Repeat steps 1− 4 for new perfect forms.

Definition III.5. A collection of n elements of OF, s1, s2, . . . , sn, such that every

element of OF can be written as a Z linear combination of these elements is called an

integral basis for OF. We say that OF = [s1, s2, . . . , sn].

Theorem III.6. Let F = Q(
√
d) where d ∈ Z, d ≥ 2 and d is square free. Then

[1, ω] = {a1 + bω | a, b ∈ Z} is an integral basis for OF, where

ω =


√
d if d ≡ 2, 3 (mod 4)

1+
√
d

2
if d ≡ 1 (mod 4).

Theorem III.7. There are exactly two perfect positive definite quadratic forms over

Q(
√

2).

Proof. Apply Algorithm III.3 to the space of positive definite forms over Q(
√

2). We

have that x1 = (1
2

+ 1
4
ω)a2 + (1

2
+ 1

2
ω)ab + (1

2
+ 1

4
ω)b2, is a perfect form represented

by Ax1 =

 1
4
(ω + 2) 1

8
(2ω + 2)

1
8
(2ω + 2) 1

4
(ω + 2)

. Then µ(x1) = 1 and

M(x1) =


−ω + 1

ω − 1

 ,
 1

−1

 ,
−ω + 1

0

 ,
1

0

 ,
 0

−ω + 1

 ,
0

1


 .

Using the generalized algorithm above, we find that σ(x1) has six neighbors:

Nx1 = {n1, n2, n3, n4, n5, n6}
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where

n1 =

 1
4
(ω + 2) 1

4
(2ω + 3)

1
4
(2ω + 3) 1

2
(2ω + 3)

 , n2 =

1
2
(2ω + 3) 1

4
(2ω + 3)

1
4
(2ω + 3) 1

4
(ω + 2)

 ,
n3 =

1
2

1
4

1
4

1
4
(ω + 2)

 , n4 =

1
4
(ω + 2) 1

4

1
4

1
2

 ,
n5 =

 1
4
(ω + 2) 1

4
(−ω − 1)

1
4
(−ω − 1) 1

4
(ω + 2)

 , and n6 =

1
4
(ω + 2) 1

4
(ω + 1)

1
4
(ω + 1) 1

4
(ω + 2)

 .
When we check for equivalence, we find that n1 is not equivalent to x1, so we place

it in our list of nonequivalent perfect forms as x2. Then ni for i ∈ {2, 3, 4, 5, 6} are

either equivalent to x1 or x2.

We repeat the process for x2, finding that µ(x2) = 1 and

M(x2) =


 1

ω − 2

 ,
−ω + 1

ω − 1

 ,
 1

−1

 ,
ω + 1

−1

 ,
−ω + 1

0

 ,
1

0

 ,
ω + 1

−ω

 ,
 1

−ω + 1

 ,
 2

−1

 ,
−ω

1

 ,
 0

−ω + 1

 ,
 ω

−ω + 1


 .

We find that σ(x2) has 24 neighbors. When tested for equivalence, all 24 neighbors

are equivalent to either x1 or x2. Thus Σ = {σ(x1), σ(x2)} for positive definite binary

quadratic forms over Q(
√

2).
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CHAPTER IV

FINITENESS OF EQUIVALENCE CLASSES

To show that there are finitely many equivalence classes per discriminant of a

positive definite integral binary form over a real quadratic field, we will utilize a

theorem of Eisenstein and Hermite. This theorem says that there are finitely many

isomorphism classes of positive definite bilinear spaces over Z of given discriminant

and dimension. We provide a map from Sym2(F) → Sym4(Q) and invoke Theorem

IV.5. But as equivalent forms have the same determinant up to a square of an element

in Sym2(OF), Theorem I.8, we must resolve an issue of discriminants of the form in

Sym4(Q) . But we show in Theorem IV.3 that the determinant of a form in Sym4(Q)

mapped from Sym2(F) has determinant equal to the norm of the determinant of the

form in Sym2(F) times the square of an element in Sym2(OF).

Definition IV.1. [SO85] A bilinear space over Z is a pair (N, b) where N is a finitely

generated free Z-module and b : N ×N → R a Z-bilinear symmetric mapping.

Definition IV.2. Two bilinear spaces (N, b) and (N ′, b′) are isomorphic if there is a

Z-linear isomorphism α : N → N ′ with

b′(αx, αy) = b(x, y) for all x, y ∈ N.

Let A ∈ Sym2(F) =

a+ a′ω b+b′ω
2

b+b′ω
2

c+ c′ω

 and define a map ϕ : Sym2(F)→ Sym4(Q)
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by

ϕ(A) =

 T (A) T (ωA)

T (ωA) T (ω2A)

 , (IV.1)

where T (C) =

Tr(c1,1) Tr(c1,2)

Tr(c2,1) Tr(c2,2)

.
For example, if A ∈ Sym2(Q(

√
2)) =

1 + 2ω 4+6ω
2

4+6ω
2

2 + 1ω

, then

ϕ(A) =

 T (A) T (ωA)

T (ωA) T (ω2A)

 (IV.2)

=



Tr(1 + 2ω) Tr(4+6ω
2

) Tr(1ω + 4) Tr(2ω + 6)

Tr(4+6ω
2

) Tr(2 + 1ω) Tr(2ω + 6) Tr(2ω + 2)

Tr(1ω + 4) Tr(2ω + 6) Tr(2 + 4ω) Tr(4 + 6ω)

Tr(2ω + 6) Tr(2ω + 2) Tr(4 + 6ω) Tr(4 + 2ω)



=



2 4 8 12

4 4 12 4

8 12 4 8

12 4 8 8


. (IV.3)

Theorem IV.3. For ϕ(A),

det(ϕ(A)) =


(4d)2N(det(A)) for ω =

√
d

d2N(det(A)) for ω = 1+
√
d

2

.
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Proof. Assume A and ϕ(A) as in equation IV.1.

If ω =
√
d, the determinant of ϕ(A) is

det(ϕ(A)) =16a2c2d2 − 16a2c′2d3 − 8ab2cd2 + 16abb′c′d3

− 8ab′2cd3 − 16a′2c2d3 + 16a′2c′2d4 − 8a′b2c′d3

+ 16a′bb′cd3 − 8a′b′2c′d4 + b4d2 − 2b2b′2d3 + b′4d4 (IV.4)

and the norm of det(A), N(det(A)), is

N(A) =a2c2 − a2c′2d− 1

2
ab2c+ abb′cd

− 1

2
ab′2cd− a′2c2d+ a′2c′2d2 − 1

2
a′b2cd

+ a′bb′cd− 1

2
a′b′2c′d2 +

1

16
b4 − 1

8
b2b′2d+

1

16
b′4d2. (IV.5)
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If ω = 1+
√
d

2
. The determinant of ϕ(A) is

det(ϕ(A)) =a2c2d2 + a2cc′d2 − 1

4
a2c′2d3 +

1

4
a2c′2d2

+ aa′c2d2 + aa′cc′d2 − 1

4
aa′c′2d3 +

1

4
aa′c′2d2

− 1

2
ab2cd2 − 1

4
ab2c′d2 − 1

2
abb′cd2 +

1

4
abb′c′d3

− 1

4
abb′c′d2 − 1

8
ab′2cd3 − 1

8
ab′2cd2 +

1

16
ab′2c′d3

− 1

16
ab′2c′d2 − 1

4
a′2c2d3 +

1

4
a′2c2d2 − 1

4
a′2cc′d3

+
1

4
a′2cc′d2 +

1

16
a′2c′2d4 − 1

8
a′2c′2d3 +

1

16
a′2c′2d2

− 1

4
a′b2cd2 − 1

8
a′b2c′d3 − 1

8
a′b2c′d2 +

1

4
a′bb′cd3

− 1

4
a′bb′cd2 +

1

8
a′bb′c′d3 − 1

8
a′bb′c′d2 +

1

16
a′b′2cd3

− 1

16
a′b′2cd2 − 1

32
a′b′2c′d4 +

1

16
a′b′2c′d3 − 1

32
a′b′2c′d2

+
1

16
b4d2 +

1

8
b3b′d2 − 1

32
b2b′2d3 +

3

32
b2b′2d2

− 1

32
bb′3d3 +

1

32
bb′3d2 +

1

256
b′4d4 − 1

128
b′4d3

+
1

256
b′4d2 (IV.6)
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and N(det(A)) is

N(A) =a2c2 + a2cc′ − 1

4
a2c′2d+

1

4
a2c′2

+ aa′c2 + aa′cc′ − 1

4
aa′c′2d+

1

4
aa′c′2

− 1

2
ab2c− 1

4
ab2c′ − 1

2
abb′c+

1

4
abb′c′d

− 1

4
abb′c′ − 1

8
ab′2cd− 1

8
ab′2c+

1

16
ab′2c′d

− 1

16
ab′2c′ − 1

4
a′2c2d+

1

4
a′2c2 − 1

4
a′2cc′d

+
1

4
a′2cc′ +

1

16
a′2c′2d2− 1

8
a′2c′2d+

1

16
a′2c′2

− 1

4
a′b2c− 1

8
a′b2c′d− 1

8
a′b2c′ +

1

4
a′bb′cd

− 1

4
a′bb′c+

1

8
a′bb′c′d− 1

8
a′bb′c′ +

1

16
a′b′2cd

− 1

16
a′b′2c− 1

32
a′b′2c′d2 +

1

16
a′b′2c′d− 1

32
a′b′2c′

+
1

16
b4 +

1

8
b3b′ − 1

32
b2b′2d+

3

32
b2b′2 − 1

32
bb′3d

+
1

32
bb′3 +

1

256
b′4d2 − 1

128
b′4d+

1

256
b′4. (IV.7)

So, for ϕ(A) where ω =
√
d, we have det(ϕ(A)) = (4d)2N(det(A)). Similarly for

ω = 1+
√
d

2
, we have det(ϕ(A)) = d2N(det(A)).

Since {1, ω} is a Z-basis for OF, we have B̂ = {[1, 0]t, [0, 1]t, [ω, 0]t, [0, ω]t} is a Z-

basis for O2
F. Then

x1 + x2ω

x3 + x4ω

 is



x1

x3

x2

x4


in basis B̂, denoted xB̂. A straight-forward

computation yields the following result.
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Theorem IV.4. Given Af in Sym2(OF) and x ∈ O2
F,

TrF(xtAfx) = xt
B̂
ϕ(A)xB̂.

Theorem IV.5 ([SO85, Eisenstein, Hermite]). There are only finitely many isomor-

phism classes of positive definite bilinear spaces over Z of given dimension n and

given determinant D.

Theorem IV.6. If ϕ(A), ϕ(B) ∈ Sym4(Q) are GL4(Z) equivalent, then A,B ∈

Sym2(F) are GL2(OF) equivalent.

Proof. Let ϕ(A), ϕ(B) ∈ Sym4(Q) be GL4(Z) equivalent and in the range of ϕ. Then

there exists M̂ ∈ GL4(Z) such that M̂ tϕ(A)M̂ = ϕ(B). As ϕ(A) and ϕ(B) are in

the image of ϕ then they are respectively of the form

 Tr(Aij) Tr(ωAij)

Tr(ωAij) Tr(ω2Aij)

 and

 Tr(Bij) Tr(ωBij)

Tr(ωBij) Tr(ω2Bij)

 for some A,B ∈ Sym2(F). As ϕ(A) and ϕ(B) are GL4(Z)

equivalent, then M̂ tϕAM̂ must be

 Tr(Bij) Tr(ωBij)

Tr(ωBij) Tr(ω2Bij)

. Let

M̂ =



m n m′d n′d

o p o′d p′d

m′ n′ m n

o′ p′ o p


.
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Then

M̂ tϕ(A)M̂ =

 Tr(M tAMij) Tr(ωM tAMij)

Tr(ωM tAMij) Tr(ω2M tAMij)

 =

 Tr(Bij) Tr(ωBij)

Tr(ωBij) Tr(ω2Bij)



where M =

m+m′ω n+ n′ω

o+ o′ω p+ p′ω

 ∈ Sym2(F). And so A ∼ B.

Then by Theorems IV.5 and IV.6 we can conclude the following result.

Theorem IV.7. There are finitely many positive definite forms per discriminant over

real quadratic fields.
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CHAPTER V

ENUMERATING FORMS

In the last chapter, we showed that there are finitely many equivalence classes per

discriminant of positive definite integral binary forms over real quadratic fields. Then

that means that if we fix a discriminant D and a totally real quadratic field F, then

there is an upper bound on the total number of positive definite integral binary forms

over F. We don’t know how to calculate this bound, but we know it exist. Therefore

we can compile data, looping over positive definite forms in a systematic way, and

count nonequivalent forms per discriminant.

To begin, we need the Koecher fan, Σ, for positive definite forms over F. To

determine if a form belongs to the Koecher Fan, we also need the neighboring forms

{n1, n2, . . . , nk} of each perfect pyramid, σ(x) ∈ Σ. We can find these using the

Generalized Voronoï Algorithm III.3. Recall that we are using the inner product II.9.

Then for any positive definite binary forms, f , f ∈ σ(x) if and only if

〈σ(x), f〉 ≤ 〈ni, f〉 for i ∈ {1, . . . , k}. (V.1)

To find our positive definite forms, recall that a form f = ax2
1 + bx1x2 + cx2

2 is

positive definite only if a and c are totally positive. For a ∈ OF where F is a quadratic

field, then it is of the form a = a1+a2ω, a1, a2 ∈ Z. Then a has two embedding into R,

namely a1 +a2ω and it’s conjugate a1−a2ω. For a to be totally positive, a1 +a2ω > 0

and a1 − a2ω > 0. Solving the system of linear inequalities, we find that a1 must

be positive. Then we see that a1 ± a2ω > 0 sets bounds of ±ba1
ω
c for a2. Similarly,
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c1 > 0 with |b c1
ω
c| > c2. Now note that D = b2− 4ac and that if f is positive definite,

then D < 0. If we systematically loop over a to find our positive definite forms, we

can substitute a for c and look at a maximum D = b2 − 4a2 per a. As b2 is always

positive, then 4a2 > b2 if D < 0. As b = b1 + b2ω in OF, if we assume that b2 = 0, we

can find limits on b1. Recall that |ba1ω c| > a2, thus

4(2a1)2 > 4(a1 + a2ω) > b2
1.

So b1 < |4a1|. And finally, c is a function of a, b and D.

With all of these relations, if we begin with a1 a positive integer, then we can

create a list of possible a2. Then for each combination of a1, a2, we allow c1 to range

over {1, 2, . . . , a1} and find a list of each c2 acceptable for each c1. Then to pair with

each of these combinations, we find a list for b1 ∈ {−4a1, . . . , 4a}, and for each b1,

the corresponding list of b2 ∈ {−b4a1−b1
ω
c . . . b4a1−b1

ω
c}. This system will find forms

that are not positive definite, but once we check them against the system described

in V.1, non-positive definite forms will be excluded anyway. For example, if we are

working over Q(
√

2) and we want to systematically work through positive definite

binary quadratic forms, we begin with a1 = 1. Then we have

a2 ∈ {−
∣∣∣∣⌊ 1√

2

⌋∣∣∣∣ , . . .− ∣∣∣∣⌊ 1√
2

⌋∣∣∣∣} = {0},

c1 ∈ {1} and c2 ∈ {0}.

Then we have that b1 ∈ {−4, . . . , 4}. Then we have to choose acceptable b2 for each

b1. See Table "Example Loop for Positive Definite Forms over Q
√

2". If the form is
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Positive Definite, then we can determine if the form is in our Koecher Fan.

Table 3. Example Loop for Positive Definite Forms over Q(
√

2).

a1 a2 c1 c2 b1 b2 Positive Definite? In Σ?
1 0 1 0 -4 {-5,. . . ,5} no no
1 0 1 0 -3 {-4,. . . ,4} no no
1 0 1 0 -2 {-3,. . . ,3} no no
1 0 1 0 -1 {-3,. . . ,-1} no no
1 0 1 0 -1 0 yes yes
1 0 1 0 -1 {1,. . . ,3} no no
1 0 1 0 0 -2 no no
1 0 1 0 0 -1 yes no
1 0 1 0 0 0 yes yes
1 0 1 0 0 1 yes no
1 0 1 0 0 2 no no
1 0 1 0 1 {-2,. . . ,-1} no no
1 0 1 0 1 0 yes no
1 0 1 0 1 {1,. . . ,2} no no
1 0 1 0 2 {-1,. . . ,1} no no
1 0 1 0 3 0 no no
1 0 1 0 4 0 no no
1 0 1 0 5 0 no no

Once we have determined if a positive definite form belongs to Σ and then to which

cone, σ(x), the form belongs, we can use the stabilizer of the cone and the stabilizers

of the faces of the cone to find nonequivalent forms of the same discriminant. We

need the stabilizer of the faces, because the stabilizer of the cone will not permute

the form to equivalent forms on the faces.

Algorithm V.1 (Finding Nonequivalent Forms of the Same Discriminant).

Input: List of Distinct Forms with same Discriminant, List of Stabilizer

Groups for σ(x) and the faces of σ(x)

Output: List of Nonequivalent Forms with Same Discriminant
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For f in List of Forms:

For γ in List of Stabilizer Groups

If γtfγ 6= f :

If ±γtfγ ∈ List of Forms:

Remove γtfγ from List of Forms.

Return List of Forms.

Repeat for each σ(x) ∈ Σ.
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CHAPTER VI

CLASS NUMBERS

In Chapter IV, we showed there were finitely many classes of positive definite

quadratic forms per discriminant over a totally real field, or more briefly, the class

number is finite. As an application, we can show a correspondence between the

classes of quadratic forms over a totally real field F and the ideal classes of a relative

quadratic extension K of F generated by the field discriminant.

6.1 Correspondence of Forms and Ideals over Q

Let E = Q(
√
D) where D < 0 is the discriminant of E (see definition VI.3). Let

α represent the conjugate of α ∈ E. Equivalence classes of binary quadratic forms

with determinant D have a finite abelian group structure. We show that there is a

bijection between equivalence classes of quadratic forms and equivalence classes of

ideals of quadratic fields.

Definition VI.1. An integral ideal, I, is a set of elements of OE such that

(1) if α, β ∈ I, then α + β ∈ I, and

(2) αI ⊂ I for all α ∈ OE.

Theorem VI.2. Suppose I ⊂ OE is an ideal. Then there exists α, β ∈ OE such that

I = {x1α + x2β | x1, x2 ∈ Z}.
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An integral basis for OE is not unique. Any other integral basis of I is of the form

α′
β′

 = A

α
β


where A is a 2× 2 matrix with entries in Z such that det(A) = 1.

Definition VI.3. The field discriminant, DE, is the determinant of the matrix, M =α β

α β

 where [α, β] is an integral basis for OE.

Definition VI.4. A basis [α, β] for an ideal I is correctly ordered if

αβ − βα√
DOE

> 0

where α is the conjugate of α, similarly for β.

Theorem VI.5. Any two correctly ordered bases of an ideal I are equivalent by an

element in SL2(Z), and conversely.

Proof. Let [α, β] = [δ, γ], both correctly ordered bases for an ideal I. Because δ, γ are

a different basis for I , there are a, b, c, d ∈ Z such that

α
β

 =

a b

c d


δ
γ

 = M

δ
γ

 ,
with det(M) = ±1. Since a, b, c, d ∈ Z and Z is fixed by conjugation, we have

α α

β β

 =

a b

c d


δ δ

γ γ

 .
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Taking determinants, we have αβ−βα = det(M)(δγ− γδ). Since [α, β] and [δ, γ] are

correctly oriented, then det(M) = 1 and M ∈ SL2(Z). Conversely, if M ∈ SL2(Z)

and [δ, γ] is correctly oriented then

a b

c d


δ δ

γ γ

 =

α α

β β


and by taking discriminants again, we see that [α, β] is correctly oriented.

Definition VI.6. Two ideals I, J ⊂ OE are equivalent, denoted I ∼ J , if there exists

α, β ∈ OE such that

αI = βJ and N(αβ) > 0.

The set of equivalence classes generated by this definition of equivalence will be de-

noted Cl(OE).

Definition VI.7. Let I, J be ideals in OE. Then the product of I with J , denoted

IJ , is the set of all finite sums of elements of the form αβ with α ∈ I and β ∈ J .

Definition VI.8. Let I be an nonzero ideal of OE. Let [α, β] be an ordered basis for

I. The norm of I, N(I) = αβ−βα√
DE

.

Theorem VI.9. Multiplication of ideals gives Cl(OE) an abelian group structure in

which the ideal class of OE = (1) is the identity element.

Proof. If I, J are ideals inOE, then their product is also an ideal inOE. Multiplication

of ideals is associative and commutative as multiplication of elements in OE is commu-

tative and associative. Multiplication of ideals induces a well-defined multiplication

of ideal classes. Let I1 ∼ J1 and I2 ∼ J2. Then there exists α1, β1, α2, β2 such that
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αiIi = βiJi for i = 1, 2. Multiplying these two equalities, we get α1α2I1I2 = β1β2J1J2,

thus I1I2 ∼ J1J2. Finally, we need to show that every element of Cl(OE) has an in-

verse. Let I = [α, β] be an ideal of OE. Then the ideal I generated by the conjugates

of I is [α, β]. The product II is the principal ideal generated by the positive integer

N(I). Thus II ∼ (1), so I has an inverse.

Theorem VI.10. Let I be an ideal in OE and let [α, β] be a correctly ordered basis

for I. Then the quadratic form

f(x1, x2) =
N(α)x2

1 + Tr(αβ)x1x2 +N(β)x2
2

N(I)
= ax2

1 + bx1x2 + cx2
2

has integral coefficients and is a primitive form of discriminant D.

Proof. The numerators of a, b, c ∈ Z as they are norms and traces. Likewise, the

denominator N(I) ∈ Z. The numerators are also elements in (N(I)). So there exists

elements, j, k, l ∈ OE such that

a =
αα

N(I)
=
j(N(I))

N(I)
= j,

b =
αβ + βα

N(I)
=
k(N(I)

N(I)
= k, and

c =
ββ

N(I)
=
l(N(I))

N(I)
= l.

Since a and N(I) are both in Z and j ∈ OE, then j ∈ Z. Similarly, k, l ∈ Z. Now,
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[α, β] is positively oriented, thus αβ − αβ =
√
DN(I). The discriminant of F is

b2 − 4ac =
(αβ + αβ)2

N(I)2
− 4

ααββ

N(I)2

=
(αβ − αβ)

N(I)2

=
DN(I)2

N(I)2

= D.

Now, we just need to show that (a, b, c) = 1. If m is a positive divisor of (a, b, c),

then m2|(b2 − 4ac). If D ≡ 1 (mod 4) then D is squarefree, and m = 1. If d ≡ 0

(mod 4), then D′ = D
n4
, where n ∈ Z is squarefree and D′ 6≡ 1 (mod 4), so m = 1 or

m = 2. If m = 2, write a = 2a′, b = 2b′, c = 2c′ for integers a′, b′, c′ and b′ odd. Then

b2 − 4ac = 4b′2 − 16a′c′ = 4d′. But this implies that

4b′2 ≡ 4d′ (mod 16) implies b′2 ≡ d′ (mod 4).

With b′ odd, b′2 ≡ 1 (mod 4), which contradicts that d′ 6≡ 1 (mod 4). Therefore,

m = 1 in all cases, and f is primitive.

Theorem VI.11. Let f(x1, x2) = Ax2
1 + Bx1x2 + Cx2

2 be a quadratic form of dis-

criminant D. Write f(x1, x2) = t(ax2
1 + bx1x2 + cx2

2) where (a, b, c) = 1, a > 0.

Let

I = [α, β] =

[
a,
b−
√
DE

2
.

]
Then I is an ideal of OE and [α, β] is a correctly ordered basis for I.

Proof. As a ∈ Z and Z ⊂ OE, then a ∈ OE.
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Case 1 Assume DE ≡ 0 (mod 4). Then b is even and we have β = 2b′−2
√
DE

2
∈ OE.

Case 2 Assume DE ≡ 1 (mod 4). Then b is odd and we have β = b+
√
DE

2
= b−1

2
+

1+
√
DE

2
∈ OE.

Theorem VI.12 ([Bue89]Theorem 6.20). Theorems VI.10 and VI.11 create an iso-

morphism between the group of classes of binary quadratic forms of discriminant D

and the narrow class group of OE.

6.2 Correspondence of Forms and Ideals over Q(
√
d)

For this section, we will follow [Mas00] closely. Let F be a real quadratic field and

denote the conjugation of α ∈ F as α∗.

Definition VI.13. Let α ∈ F, then α is totally negative if both the embeddings of α

and α∗ into R are less than 0.

Let K = F(γ) be a relative quadratic field extension of F. We want K to be a

totally complex number field (i.e. all embeddings of K into C are nonreal) and this

may be achieved by choosing γ ∈ F such that γ ∈ OF and γ is totally negative. There

are two embeddings of K into the complex numbers that fix F. Denote the complex

conjugation by α for α ∈ K. For a given α ∈ K, define the relative trace, TrK/F(α),

as α + α. The relative norm, NK/F, is defined as αα. From now on, we simply write

Tr(α) and N(α) in place of TrK/F(α) and NK/F, respectively. We can also define the

norm of ideals in K. Note that the norm of an ideal in K is an ideal in OF. Let

[1,Ω] = {α + βΩ | α, β ∈ OF} be a relative integral basis for OK.
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The relative field discriminant is

DK/F = det

1 Ω

1 Ω


2

.

Theorem VI.14. Any ideal IK has a relative integral basis IK = [α, β]. Any two

correctly ordered bases of an ideal IK are equivalent by an element in SL2(OF) with

determinant greater than 0.

Theorem VI.15. Let α, β be elements in K such that [α, β] is correctly ordered. If

α β

α β

 =

1 Ω

1 Ω

M
then for IK = [α, β], N(IK) divides (det(M)), and N(IK) = (det(M)) if and only if

IK ∈ OF.

Let f(x1, x2)OF = ax2
1+bx1x2+cx2

2 be a quadratic form with coefficients in OF, and

f(x1, x2)OF be the conjugate form of f(x1, x2)OF . If the discriminant of f(x1, x2)OF =

DF, then the discriminant of f(x1, x2)OF = DF. Let ε0 be the fundamental unit of

F. Let ε+ = ε0 if N(ε0) = 1, and ε+ = ε20 if N(ε0) = −1. f(x1, x2)OF is positive

definite if a > 0. But f(x1, x2)OF may be either positive definite or negative definite

depending on the value of a. If N(ε0) = −1, we can consider only forms were a and

a are positive.

Definition VI.16. Two quadratic forms f(x1, x2)OF and g(x1, x2)OF are equivalent if

Af = (ε+)nM tAgM
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for some matrix M ∈ GL2(OF)++, and n ∈ Z, where

GL2(OF)++ =


a b

c d

 | a, b, c, d ∈ OF, with ad− bc a totally positive unit

 .

Let IK = [α, β] = [1,Ω]M be an ideal of K. Then the quadratic form

fIK(x1, x2)OF =
N(α)x2

1 + Tr(αβ)x1x2 +N(β)x2
2

N(IK)

=
N(α)x2

1 + Tr(αβ)x1x2 +N(β)x2
2

detM

= ax2
1 + bx1x2 + cx2

2 (VI.1)

is a relative quadratic form with coefficients inOF. Equation VI.10 can also be written

fIK(x1, x2)OF =
1

N(IK)
N(αx1 + βx2) =

1

N(IK)
N

[x2 x1

]β
α


 .

Theorem VI.17. The form

fIK(x1, x2)OF =
N(α)x2

1 + Tr(αβ)x1x2 +N(β)x2
2

N(IK)

associated with the ideal IK has discriminant DK/F.
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Proof. From equation 6.2, we get that

b2 − 4ac =
(αβ + αβ)2 − 4ααββ

N(IK)2

=
(αβ − αβ)2

N(IK)2

=

det

1 Ω

1 Ω


2

det(M)2

det(M)2

= DK/F. (VI.2)

Theorem VI.18. The equivalence class of fIK(x1, x2)OF is independent of choice of

integral basis for IK.

Proof. Let [α, β] = [1,Ω]M and [δ, γ] = [1,Ω]P be two integral bases for IK. Then

we have

fIK(y1, y2)OF =
1

detP
N

[y2 y1

]γ
δ


 .

Then by Theorem VI.4, γ
δ

 = A

β
α


where det(A) = ε. Thus

fIK(y1, y2)OF =
1

detA detM
N

[y2 y1

]
A

β
α


 .
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By making the determinant ε, change of variables, we have

[
x2 x1

]
=

[
y2 y1

]
A

giving us

fIK(y1, y2)OF =
1

detA detM
N

[x2 x1

]β
α




=
1

ε
fIK(x1, x2)OF . (VI.3)

Since equivalent forms allow for multiplication by a totally positive unit,

fIK(y1, y2)OF ∼ fIK(x1, x2)OF .

Theorem VI.19. Let IK and JK be two ideals in the same ideal class. Then

fIK(x1, x2)OF ∼ fJK(x1, x2)OF .

Proof. If JK ∼ IK then JK = (γ)IK for some γ; so if IK = [α, β], then JK = [γα, γβ]
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and

fJK(x1, x2)OF =
1

N(JK)
N(γαx1 + γβx2)

=
1

N((γ)IK)
N(γ)N(αx1 + βx2)

=
1

N(IK)
N(αx1 + βx2)

= fIK(x1, x2)OF . (VI.4)

Let f(x1, x2) = ax2
1 + bx1x2 + cx2

2 be a quadratic form of discriminant D. Define

θf = b+
√
D

2a
. Then the ideal of K associated with this form is given by

f(x1, x2) = [a, aθf ] .

Consider the polynomial x2 + bx + b2−D
4

. Then b+
√
D

a
is integral and satisfies this

monic polynomial. Thus b+
√
D

a
∈ OK.

Theorem VI.20. Let f(x1, x2) = ax2
1 +bx1x2 +cx2

2 and g(x1, x2) = dx2
1 +ex1x2 +fx2

2

be equivalent forms with corresponding ideals IK = [a, aθf ] and JK = [d, dθg]. Then

IK and JK are in the same ideal class.

Proof. Let M =

r s

t u

 be the matrix that takes g to f . Define ψ as

ψf =
−b+

√
D

2a
.
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Then

[
ψf 1

]
Af

ψf
1

 =

[
ψf 1

]
M tAgM

ψf
1


=

[
rψf + s tψf + u

]
Ag

rψf + s

tψf + u


=

[
rψf+s

tψf+u
1

]
Ag

 rψf+s

tψf+u

1

 = 0.

Since ψf 6∈ R, then tψf + u 6= 0, and we can divide by this number. As ψg is the root

of g(x1, 1), then ψg = Mψf . Also,

θg = −ψg =
−(rψf + s)

tψf + u
=
r(−ψf )− s
−t(ψf ) + u

=
r
(
b+
√
D

2a

)
− s

−t
(
b+
√
D

2a

)
+ u

.

So we see that IK = [a, aθf ] and JK = [d, dθg] are in the same ideal class, because

 r −s

−t u


a b+

√
D

2a

a

 = C

d e+
√
D

2d

d

 , where C =
a(−t b+

√
D+u

2a
)

d
.

so that [a, aθ] = C[d, dθ] are the same ideal.

Theorem VI.21. Let f(x1, x2) = ax2
1 + bx1x2 + cx2

2 = (x1 + θx2)(x1 + θx2) and let

IK = [a, aθ]. Then f(x1, x2) = fIK(x1, x2). Thus,

IK = [α, β]→ 1

N(IK)
N(αx1 + βx2) (VI.5)
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and

ax2
1 + bx1x2 + cx2

2 →
[
a,
b+
√
b2 − 4ac

2

]
(VI.6)

are inverses.

Proof. From equation 6.2 we have

fIK(x1, x2) =
1

N(IK)
N(ax1 + aθx2)

=
1

a
(a2x2

1 + abx1x2 + acx2
2)

= f(x1, x2). (VI.7)

Theorem VI.22. Let F be a real quadratic field, and let K be a totally complex

quadratic extension of F. Let DK/F be a generator of K/F. There exists a one to

one correspondence between ideal classes in K and the equivalence classes of positive

definite quadratic forms with coefficients in OF and discriminant ε2DK/F, where ε is a

totally positive unit, and equivalence of quadratic forms is given in Definition VI.16.

The correspondence is given by equations VI.5 and VI.6.

47



REFERENCES

[Bue89] Duncan A. Buell, Binary quadratic forms, Springer-Verlag, New York, 1989,
Classical theory and modern computations. MR 1012948 (92b:11021)

[FP85] U. Fincke and M. Pohst, Improved methods for calculating vectors of short
length in a lattice, including a complexity analysis, Math. Comp. 44 (1985),
no. 170, 463–471. MR 777278 (86e:11050)

[GY12] Paul E. Gunnells and Dan Yasaki, Modular forms and elliptic curves over
the complex cubic field of discriminant −23, Int. J. Number Theory (2012),
accepted.

[Koe60] Max Koecher, Beiträge zu einer Reduktionstheorie in Positivitätsbereichen.
I, Math. Ann. 141 (1960), 384–432. MR 0124527 (23 #A1839)

[Lei05] Alar Leibak, The complete enumeration of binary perfect forms over the
algebraic number field Q(

√
6), Proc. Estonian Acad. Sci. Phys. Math. 54

(2005), no. 4, 212–234. MR 2190028 (2006i:11044)

[Mas00] Michael William Mastropietro, Quadratic forms and relative quadratic ex-
tensions, ProQuest LLC, Ann Arbor, MI, 2000, Thesis (Ph.D.)–University
of California, San Diego. MR 2700674

[Ong77] Heidrun E. Ong, Perfect quadratic forms over real quadratic number fields,
Math. Ann. 225 (1977), no. 1, 69–76. MR MR0427490 (55 #522)

[Sch09] Achill Schürmann, Enumerating perfect forms, Quadratic forms—algebra,
arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc.,
Providence, RI, 2009, pp. 359–377. MR 2537111 (2010g:11110)

[SO85] Winfried Scharlau and Hans Opolka, From Fermat to Minkowski, Under-
graduate Texts in Mathematics, Springer-Verlag, New York, 1985, Lectures
on the theory of numbers and its historical development, Translated from
the German by Walter K. Bühler and Gary Cornell. MR 770936 (85m:11003)

[Vor08] G. Voronoi, Sur quelques proprietes des formes quadratiques positives par-
faites., J. Reine Agnew. Math., 133 (1908), no. 1, 97–178. MR MR0427490
(55 #522)

48



[Wei07] André Weil, Number theory, Modern Birkhäuser Classics, Birkhäuser Boston
Inc., Boston, MA, 2007, An approach through history from Hammurapi to
Legendre, Reprint of the 1984 edition. MR 2303999 (2007k:01003)

49


	List of Tables
	I Introduction
	1.1 Basics of Number Fields and Quadratic Forms
	1.2 Reduction Theory of Binary Quadratic Forms over Q

	II Koecher Theory
	III Voronoï Algorithm
	3.1 Over Q
	3.2 Over A Totally Real Number Field

	IV Finiteness of Equivalence Classes
	V Enumerating Forms
	VI Class Numbers
	6.1 Correspondence of Forms and Ideals over Q
	6.2 Correspondence of Forms and Ideals over Q(d)

	References

