INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

University Microfilms International

77-13,399

HALL, Donald Madison, 1950CONGRUITY AND ELABORATION IN CHILDREN'S AND ADULTS' FREE AND CUED RECALL.
 The University of North Carolina at Greensboro, Ph.D., 1976
 Psychology, general

CONGRUITY AND ELABORATION IN CHILDREN'S

 AND ADULTS' FREE AND CUED RECALLby

Donald Madison Hall

A Dissertation Submitted to the Faculty of the Graduate School at The University of North Carolina at Greensboro in Partial Fulfillment
of the Requirements for the Degree Doctor of Philosophy

Greensboro

 1976Approved by

APPROVAL PAGE

This dissertation has been approved by the following committee of the Faculty of the Graduate School at the University of North Carolina at Greensboro.

Dissertation Adviser P hay Helle Ceded

$\frac{\text { Queues } 30,1926}{\text { Date } 19 \mathrm{Acceptance} \text { by Committee }}$

HALI, DONALD MADISON. Congruity and Elaboration in Children's and Adults' Free and Cued Recall. (1976) Directed by: Dr. Mary Fulcher Geis. Pp. 115

Experiments with adult subjects have shown that congruity among the elements of an encoded event provides a better basis for free and cued recall of the elements than does incongruity (Craik \& Mulving, 1975; Schulman, 1974). In addition, the degree of elaboration, or complexity, of the encoded event has been found to be directly related to free and cued recali, provided the elements of the event form a congruous relationship (Craik \& Tulving, 1975). The present experiments were conducted to assess the effects of congruity and complexity on the memory performance of first- and fifth-grade children and of college students.

Subjects were shown cards containing sentence frames (i.e., sentences with one word missing) and were shown, on separate cards, target words that either did or did not make sense when inserted into the sentence frames. Subjects were required to judge whether or not the target words were congruous with the sentence frames. The sentence frames varied from short, simple sentences to long, complex sentences. Half of the sentence frames in Experiment 2 described a complementary relationship with
the target word (e.g., "Empty the garbage") and half of the sentence frames described a similarity relationship with the target (e.g., "Trash is like garbage"). The sentence frames in Experiments 1 and 3 were identical and did not bear any specific type of relationship with the targeta. First and fifth graders were subjects in Experiments 1 and 2; college students were subjects in Experiment 3 .

Immediately after the sentence-frame orienting task, a previously unannounced free recall test for target words was given. Following free recall, the sentence frames were presented for cued recall of the target words.

Although older subjects recalled more targets than younger subjects in free and cued recall, the pattern of results was similar across age groups and across experiments. In general, free recall was equal for targets that were congruous and targets that were incongruous with their sentence frames. There were no consistent effects of complexity in free recall. Cued recall was better when sentence-frame cues were congruous with their targets than when they were incongruous, and cued recall increased with greater sentence frame complexity whether targets and frames were congruous or incongruous. The complementary-similarity manipulation in Experiment 2 failed to reveal any interesting developmental trends.

A two-stage retrieval process was posited to explain these results. Stage 1 consists of retrieval of the context of an event, while Stage 2 represents the redintegration of an element of the context when the context has been retrieved. Stage 1 may be easier for bizarre or humorous incongruous contexts than for congruous contexts, while Stage 2 may be easier for a congruous element-context relationship. The Stage 1 advantage for incongruity could balance the Stage 2 advantage for congruity and produce equal levels of free recall for congruously encoded and incongruously encoded elements. In cued recall, Stage 1 is bypassed when the experimenter provides context cues, and the advantage at Stage 2 for congruity results in higher levels of cued recall for targets that are congruous with their contexts.

ACKNOWLEDGEMENTS

I am deeply indebted to Dr. Mary Fulcher Geis for patience, encouragement, and expert guidance during the last two years of my graduate career. This dissertation was made possible by her cheerful willingness to share the long, tedious hours of work required for the preparation of materials. I am also grateful to Drs. Kendon Smith, David Soderquist, Don Wildemann, and Robert Muir, members of the dissertation advisory committee, for their support and helpful suggestions.

I convey special thanks to Susan Corriher, Mary K. Reed, and John Reed for their unselfish assistance and bravery as experimenters. The friendly cooperation of Grady Stone and Logan Burke, Principals, is acknowledged.

Most of all, I would like to thank my family, especially my parents, for their unwavering support and enthusiasm throughout my long career as a student.

TABLE OF CONTENTS
Page
APPROVAL PAGE ii
ACKNOWLEDGEMENTS iii
LIST OF TABLES vi
IIST OF FIGURES vii
CHAPTER
I. IN'TRODUCTION 1
II. EXPERIMLNT 1 10
Method 10
Subjects 10
Materials 10
Design 11
Procedure 14
Results 16
Free recall 16
Guessing 18
Cued recall 19
Serial position 24
III. EXPERIMENT 2 27
Method 29
Subjects 29
Materials 29
Design 31
Procedure 31
Results 31
Free recall 31 Guessing . Cued recall 38 Serial position 43
Discussion of Experiments 1 and 2 43
IV. EXPERIMENT 3 50
Method 50
Subjects 50
Materials 50
Design 50
Procedure 51
Results 51
Pree recall 51
Guessing 53
Cued recali 54
Serial position 55
V. DISCUSSION 57
VI. SUMMARY 66
BIBLIOGRAPHY 69
APPENDICES 71
Appendix A 71
Appendix B 88
Appendix C 90

LIST OF TABLES

Page

TABLE 1 Means and Standard Deviations of Numbers
of Words in Sentence Frames of
Experiment 1. 12
TABLE 2 Means and Standard Deviations of Numbers of Words in Sentence Frames of Experiment 230
Page
FIGURE 1 Design of Experiment 1 13
FIGURE 2 Free Recall for lixperiment 1 as a Function of Grade, Congruity, and Complexity 17
FIGURE 3 Guessing for Congruous Sentence Frames in Experiment 1 as a Function of Grade and Complexity 20
FIGURE 4 Cued (Adjusted for Guessing) Recall for Experiment 1 as a Function of Grade, Congruity, and Complexity 22
FIGURE 5 Cued (Adjusted for Guessing) and Free Recall for Experiment 1 as a Function of Grade and Congruity 23
FIGURE 6 Cued (Not Adjusted for Guessing) and Free Recall in Experiment 1 as a Function of Grade and Serial Position 26
FIGURE 7 Design of Experiment 2 32
FIGURE 8 Free Recall for the Complementary Task in Experiment 2 as a Function of Grade, Congruity, and Complexity 34
FIGURE 9 Free Recall for the Similarity Task inExperiment 2 as a Function of Grade,Congruity, and Complexity 35
FIGURE 10 Guessing for Congruous Sentence Frames in Experiment 2 as a Function of Grade, Complexity, and Task 37
FIGURE 11 Cued (Adjusted for Guessing) Recall for the Complementary Task in Experiment 2 as a Punction of Grade, Congruity, and Complexity39

FIGURE 12 Cued (Adjusted for Guessing) Recall for the Similarity Task in Experiment 2 as a Function of Grade, Congruity, and Complexity 40

FIGURE 13 Cued (Adjusted for Guessing) and Free Recall for Experiment 2 as a Function of Task, Grade, and Congruity42

FIGURE 14 Iree Recall for Experiment 2 as a Function of Task, Grade, and Serial Position . . . 44

FIGURE 15 Cued (Not Adjusted for Guessing) Recall for Experiment 2 as a Function of Task, Grade, and Serial Position 45

FIGURE 16 Cued (Adjusted for Guessing) and Free Recall in Experiment 3 as a Function of Congruity and Complexity52

FIGURE 17 Cued (Not Adjusted for Guessing) and Free Recall in Experiment 3 as a Function of 56 Serial Position56

CHAPTER I

INTRODUCTION

Current theories of memory for verbal material are concerned with the effects of various types of processing (encoding) on memory performance (Craik \& Lockhart, 1972; Craik \& Tulving, 1975; Schulman, 1975). In several memory experiments with adult subjects, orienting tasks have been used in incidental memory paradigms to control the type of processing that occurred (Craik \& Tulving, 1975; Hyde \& Jenkins, 1969, 1973; Johnston \& Jenkins, 1971; Till \& Jenkins, 1973; Walsh \& Jenkins, 1973). The rationale behind this approach is twofold. First, the performance of a given type of orienting task is assumed to constrain subjects to encode the material in a manner qualitatively consistent with the nominal requirements of the orienting task. Second, because subjects are unaware that their memory for the material will be tested, they should be unlikely to engage in idiosyncratic, strategy-based types of encoding that could alter or obscure the effects of the orienting task. 'Thus, nominally semantic orienting tasks, such as requiring the subject to rate words on a pleasantness scale, to generate synonyms of the words,
or to determine whether the words fit logically into sentence frames, are considered to produce mnemonic consequences dependent upon semantic encoding operations. Likewise, nominally nonsemantic tasks, such as requiring the subject to determine whether the words contain a given letter, to count the number of letters, or to generate rhymes, are assumed to produce mnemonic consequences dependent upon sensory encoding operations.

Studies employing the orienting-task/incidentalmemory paradigm have demonstrated that encoding a word's meaning (semantic encoding) yields better subsequent recall than does encoding the word's sensory (e.g., acoustic, orthographic) features (Hall \& Geis, 1975; Hyde \& Jenkins, 1969, 1973; Till \& Jenkins, 1973; Walsh \& Jenkins, 1973). Similar results have been ootained for free and cued recall with first-, third-, and fifthgrade children (Geis \& Hall, 1976b; Hall \& Geis, 1976). As these experiments have provided sufficient evidence that semantic processing is usually superior to sensoryperceptual processing, additional demonstration experiments are not likely to be highly enlightening. As Schulman states,

Mnemonically, it is ordinarily better to find meaning in an experience than merely to note its surface features. Only if such were not the case would it be news, and yet the literature pointing out the advantages of semantic to structural processing continues to grow (1975, p. 50).

A more promising direction for memory research may be a determination of the mnemonic values of various types of semantic encoding. Does the encoding of synonyms or superordinates of a target word provide a better basis for recall than the encoding of words that share a complementary (functional) relationship? Is the encoding of a word's denotation mnemonically superior to the encoding of its connotation? Although some evidence concerning these questions has emerged (e.g., Geis \& Greenberg, 1975; Schulman, 1975), much remains to be discovered about the relationship between the type of semantic encoding and subsequent memory performance.

An additional consideration for memory research involves the effects of the degree of stimulus elaboration on memorability. Craik and Tulving (1975) contended that the degree to which perceivers elaboratively encode an event is directly related to their memory for that event. Elaboration of an event can take many forms, but, in general, the term refers to any type of stimulus enrichment. Elaboration can be minimal, such as encoding a synonym of a word, or extensive, such as creating an entire story or sequence of events around a word. Thus, stimulus elaboration occurs when something is added to the stimulus event, and elaboration can vary from simple, minimal elaboration to complex, extensive elaboration.

According to Craik and Tulving (1975), the greater the stimulus elaboration, the greater the durability and/or retrievability of the memory trace.

The degrees-of-elaboration approach can also be described in terms of elaboration of the context of an event and subsequent memory for aspects of the context. Memory for any part of an event sometimes depends on memory for other parts of the event. The aspect of the event that the person is trying to remember can be referred to as the target, with all other aspects of the event constituting context for the target. Remembering any part of the context of an event can serve to redintegrate the target'(Horowitz \& Prytulak, 1969). The degrees-of-elaboration approach maintains that an elaborate context provides a better basis for memory of the target than does a simple context. The reasoning may be that, if any element of the context has a tencency to redintegrate the target, then many context elements supply more chances for redintegration than do few elements. Craik and Tulving (1975, Experiment 7) tested their assumptions concerning the relationship between elaboration and memory by experimentally inducing various degrees of elaboration prior to free and cued recall. College subjects were shown sentence frames, i.e., sentences with a word missing, and then were asked whether
target words fitted the sentences. To vary the degree of elaboration, the sentence frames were short, of moderate length, or long. Examples of simple, moderate, and complex sentence frames, respectively, are: "She cooked the ___ "_ "The ___ frightened the children," and "The great bird swooped down and carried off the struggling __." Craik and Tulving found that free and cued recall (cues being the sentence frames) increased with increasing frame complexity only when the target word fitted, or was congruous with, the sentence frame. When the target word did not fit the sentence frame, neither free nor cued recall varied with changes in the degree of complexity of the sentence frame. Craik and Tulving (1975, Experiment 7) argued that when
a presented word does not fit the sentence frame, the subject cannot form a unified image or percept of the complete sentence, the memory trace will not represent an integrated meaningful pattern, and the word will not be well recalled. In the case of positive responses, such coherent patterns can be formed and their degree of cognitive elaboration will increase with sentence complexity (p. 284).

Schulman (1974) had previously observed that a congruous encoding context provided a better basis for memory than an incongruous context. His college subjects were asked questions of superordination or attribution about target words. The target words were printed in upper-case letters in the otherwise lower-case sentences.

Half of.the questions were congruous, e.g., "Is a CORKSCREW an opener?" and half were incongruous, e.g., "Is SPINACH ecstatic?" Congruity yielded superior free recall, cued recall, and recognition of target words than did incongruity.

Thus, memorability is a function of at least three factors that should be the subject of future memory research: (a) various types of semantic encoding, (b) differing degrees of stimulus elaboration, and (c) congruity between a target word and its encoding context. It is not yet known whether the memory performance of children is affected by these factors to the same extent, as is the memory performance of adults; furthermore, there is the possibility that these factors control memory performance differently for children of different ages (i.e., a factor X age interaction). Neither the effects of various types of induced semantic encoding nor the effects of the degree of induced elaboration have been extensively examined developmentally, and the role of congruity in children's memory has been investigated in only one study.

Hall and Geis (1976) found that congruity provided a better basis than incongruity for the free recall of third and fifth graders, but not for first graders. The task required children to answer a question about each
of several target words. When the correct answer to the question was yes, such as "Is it part of a house?" for the target word roof, the target and question were considered to form a congruous, integrated unit. When the correct answer to the question was no, such as "Is it something you sing?" for the target word roof, there was an incongruous relationship between the target and the question. A possible explanation of the superiority of congruous over incongruous encoding (i.e., the congruity effect) involves the subject's use of an indirect retrieval strategy. While a direct retrieval strategy would be just an attempt to recall the target words, an indirect strategy could involve attempts to remember the questions that had been asked about the words. Memory for the questions might facilitate memory for the targets about which the questions had been asked. A subject who uses an indirect retrieval strategy is essentially generating his own retrieval cues.

If such indirect retrieval is employed, the congruity effect should appear, because recall of the target word should be facilitated to a greater extent when the question that is remembered formed a congruous unit with the target word at encoding (Hall \& Geis, 1976). That is, when the question and the target form a conerent, integrated unit, remembering the question should be more
likely to redintegrate or reinstate the target word than when the target and question form a non-integrated, incongruous unit. In the Hall and Geis (1976) experiment, there seemed to have been an increase with age in the spontaneous use of indirect retrieval strategies, because the congruity effect occurred in the free recall of third and fifth graders but not in the free recall of first graders. When the experimenter provided the key word from a question as a retrieval cue, the congruity effect occurred for first as well as for third and fifth graders. Even young children apparently can use part of a congruous unit to help them remember the other part of the unit, but only older children spontaneously adopt the indirect retrieval strategy of generating their own retrieval cues.

The present experiments were concerned with the effects of the three factors that have been discussed; i.e., the type of senantic encoding, the degree of elaboration, and congruity, on children's memory performance. In Experiment 1, the latter two factors were manipulated; in Experiment 2, all three factors were involved. In both experiments, sentence frames, similar to those used by Craik and Tulving (1975), varied in length to effect different degrees of complexity and, hence, elaboration. Congruity and incongruity refer to the relationship between the target word and the sentence
frame given for that word, i.e., whether the word did or did not make sense in the sentence frame. In Experiment 2, the two types of induced semantic encoding entailed complementary and similarity relationships between target words and sentence frames. The complementary-similarity shift will be described in the introduction to Experiment 2.

Subjects for Experiments 1 and 2 were first and fifth graders. The selection of children at these ages was based, in part, on the evidence that optional, strategy-based memory techniques often emerge between the first and fifth grades (Geis \& Hall, 1976a). If the congruity effec \ddagger in free recall, for example, is dependent on retrieval strategies, the effect should occur for fifth graders but not for first graders. In addition, the complementary-similarity shift that is involved in Experiment 2 occurs during this age range. Experiment 3 was a replication of Experiment 1, but with college students as subjects.

CHAPTER II

EXPERIMENT 1

In Experiment 1, the free and cued recall of first and fifth graders was tested following orienting tasks for a list of words. The purpose of Experiment 1 was to assess the mnemonic consequences of the congruity of encoding and the elaboration of encoding. Method

Subjects. Subjects were 24 first and 24 fifth graders, with equal numbers of males and females at each grade. The generally middle-class children attended public schools in Winston-Salem, North Carolina.

Materials. Two lists of 24 common one- and twosyllable words were printed in black letters on 3-in. X 5-in. white cards, one word per card. These words were the target words for which recall was tested. The sentence frames were typed on separate 3-in. X 5-in. white cards, one sentence frame per card. The sentence frames did not bear any specific type of relationship to the target words (as did the sentence frames in Experiment 2). The targets and sentence frames for Experiment 1 are shown in Appendix A. A white, 4-in. X 6-in. card containing a random array of numbers was used for the
filler task that followed free recall. The experimenter recorded the children's answers to questions and their oral recall on pre-coded data sheets. The number of words in the sentence frames defined the differences in complexity for simple, moderate, and complex frames. For each level of complexity, the mean number of words per sentence frame was calculated. The means and standard deviations of the number of words per sentence frame for the three levels of complexity are shown in Table 1.

Design. The design was a 2 X 2 X $2 . X 3$ X 2 factorial, with the between-subject factors of grade (first and fifth), list (list 1 and list 2), and sex (male and female), and the within-subject factors of complexity (simple, moderate, and complex) and congruity (congruous and incongruous). The design is depicted in Figure 1.

For subjects of each sex within each grade, each of the six types of sentence frame, i.e., the six combinations of the three levels of complexity and two levels of congruity, appeared equally often at each serial position. Within each block of six target words, each of the six types of sentence frame appeared exactly once, and the order of sentence frames within each of the blocks was determined randomly. Six random orders of target words were used for each of the two lists, with the restriction that words were assigned to serial positions in such a way

Table 1

Means and Standard Deviations of Numbers of Words in Sentence Frames of Experiment 1

Congruity	Complexity		
	Simple	Moderate	Complex
	List 1		
Congruous			
Mean	3.21	6.25	13.3
Std. Dev.	. 93	1.20	1.0
Incongruous			
Mean	3.42	6.46	13.5
Std. Dev.	1.10	1.25	1.4
		t 2	
Congruous 3.08 (
Mean	3.08	6.29	14.6
Std. Dev.	.72	1.16	1.3
Incongruous			
Mean	3.08	6.21	14.3
Std. Dev.	.97	1.18	1.6

Sentence Frames

	Congruous			Incongruous		
	Simple	Moderate	Complex	Simple	Moderate	Complex
, Male						
Female						
Male						
Female						
Male						
Female						
Male						
Female						

Figure 1. Design of Experiment 1.
that all'six of the sentence frames that were to accompany each of the target words were used equally often during the experiment.

Procedure. In general, the procedure was to present a sentence frame to the child and then to show the child one of the target words. The experimenter held one of the sentence-frame cards in front of the child and read it out loud, saying "blank" for the blank in the frame. While still holding up the sentence-frame card, the experimenter held up the appropriate target word for that frame and said the target word aloud. Then, the experimenter read the sentence frame with the target word substituted for "blank."

The child's task was to decide whether the word on the card "made sense" in the sentence frame. The sentenceframe task was subject-paced, in that the rate of presentation depended on each child's response latency in answering the questions about the targets and frames. Children were tested individually. After the 24 words and sentence frames had been seen and responded to by the child, a previously unannounced free recall test for the target words was given. Following the two-minute free-recall task, children were shown a card containing numbers and were asked to point to all the $7^{\prime \prime} s, 4^{\prime} s, 3^{\prime} s, ~ e t c ., ~ f o r ~ 30$ seconds. Then the instructions for cued recall were given, and the sentence frames were shown and read, one at a time,
for cued recall of the target words. The sentence-frame cues were given in the same order as they had been given during the orienting task prior to free recall. Twenty seconds were allowed for the child to respond to each cue.

It is possible that children who had not ever seen the target words could, nevertheless, guess the correct target word under the condition of cued recall. In other words, children may not have been remembering part of a previously seen context in cued recall; they may have been guessing words that fitted the sentence frames given as cues. To assess guessing in cued recall, children who had finished performing the memory tasks with List 1 were shown the sentence frames that corresponded to List 2 target words, and children who had previously seen List 2 words and sentence frames were given the sentence frames that corresponded to List 1 target words. A yoking procedure was used in which a child who saw and recalled list 1, for example, received the same List 2 sentence frames, in the same order, as a child who saw and recalled List 2. AII children received pretraining on the orienting task. The pretraining materials are shown in Appendix A with the other sentence frames used in Experiment 1. If the child correctly answered all four questions about each of the first two pretraining words, pretraining was concluded and the experiment was begun. If any errors were
made on the eight questions, four additional questions were asked about the third pretraining word. In the experiment proper, only one sentence frame was presented for each target word. One male and one female graduate student were experimenters. The complete instructions for all phases of Experiment 1 are shown in Appendix B. Results

The children had little difficulty answering the orienting questions correctly. Almost all of the children performed perfectly on the first two pretraining trials. First graders correctly answered 95% and fifth graders correctly answered 98% of the orienting questions. No child missed more than 3 of the 24 questions.

Free recall. An analysis of variance was performed on the free recall data, with grade, list, and sex as between-subject factors, and congruity and complexity as within-subject factors. Fifth graders performed significantly better than first graders on the recall task, $\underset{(1,32)}{ }=13.80$, MSe $=.60 .^{1}$ More List 1 words than List 2 words were recalled, $E(1,32)=4.83$, $M S e=.60$, but the list factor did not interact with any other factor. Neither the main effect of congruity nor the main effect of complexity was significant (rigure 2).

[^0]

Fiçure 2. Free recall for Experiment 1 as a function of srade, congruity, and complexity.

The Grade X Sex X Complexity interaction was significant, $F(2,64)=3.27$, MSe $=.51$. Newman-Keuls analyses indicated that there were no consistent effects of grade and complexity for either male or female subjects. Additional analyses were possible, but only those analyses considered theoretically interesting were performed.

Guessing. An analysis of variance was performed on the number of words correctly guessed in the procedure that followed cued recall. A correct guess occurred when the child supplied a word for the blank in the sentence frame that was the same as the target word that the child's yoked subject saw with that sentence frame prior to free recall. The factors involved in the preceding free recall analysis of variance were included in the present analysis.

Children guessed words that were congruous with the sentence frames more often than words that were incongruous with the sentence frames, $E(1,32)=353.69$, $M S e=.27$. The children did not guess any words that were incongruous with the sentence frames; to do so would have been to violate their instructions to make up a word that fit the sentence frame they were given. Guessing was better for more complex sentence frames, $E(2,64)=8.92, \mathrm{MSe}=.63$. A Newman-Keuls test showed that guessing for complex frames was better than guessing
for moderate frames, guessing for moderate frames was better than that for simple frames, and guessing for complex frames was better than that for simple frames (see Figure 3).

A significant Complexity X Congruity interaction indicated that the effect of complexity was present only for congruous sentence frames, since no words were guessed for incongruous frames, $F(2,64)=8.92, \mathrm{MSe}=.63$. First graders guessed as well as fifth graders, $E(1,32)=.01, M S e=.27$. No other outcomes were significant.

Cued recal. In light of the significant improvement in guessing with increasing sentence frame complexity, an improvement in unadjusted cued recall scores with an increase in sentence frame complexity would have been uninterpretable, as cued recall and guessing would have been confounded. Each child's cued recall data sheet was identical to the guessing data sheet of the yoked partner. Words that were guessed by one child were taken out of consideration in calculating the sued recall of the other child. The resulting scores were the proportion correct for each of the six combinations of the three levels of complexity and two levels of congruity. For example, if Child A recalled 3 of 4 possible simple-congruous words and Child B guessed one

Figure 3. Guessing for congruous sentence frames in Experiment 1 as a function of grade and complexity.
of the words that Child A had recalled, then the proportion correct for Child A for simple-congruous would have been 2 of 3 or .67. Prior to the analysis of variance on the adjusted cued recall scores, an arcsin transformation was performed tom dtabilize the variance of the proportions (Winer, 1971). The analysis of variance included the same factors as the preceding analyses of variance.

In cued recall, fifth graders again recalled more words than first graders, $F(1,32)=14.85$, MSe $=.91$; congruous frames yielded higher recall than incongruous frames, $E(1,32)=52.54, \mathrm{MSe}=.70$; and recall improved with increasing sentence frame complexity, $F(2,64)=$ 17.78, $\mathrm{MSe}=.61$ (see Figure 4). A Newman-Keuls analysis found that the significant main effect of complexity was due to the significantly greater recall associated with moderate and complex sentence frames than for simple frames; moderate and complex frames led to equal recall. The List X Congruity interaction was significant, $E(1,32)=4.79 . \mathrm{MSe}=.70$. For each list, however, congruity yielded better recall than incongruity, as indicated by a Newman-Keuls test. No analysis of variance was performed to compare free and cued recall directly, but Figure 5 has been included to show the relative levels of free and cued recall and the different effects of congruity in the two situations.

Figure 4. Cued (Adjusted for Guessing) recall in Fxporiment 1 as a function of crade, congruity, and complexity.

Figure 5. Cued (Adjusted for Guessinc) and free recall for Experiment 1 as a function of grade and congruity.

A word that was recalled in free recall should have been more likely than a non-recalled word to be recalled in cued recall. Probabilities were calculated for the two relevant situations: (a) the probability of cued recall of a word, given that the word was recalled in free recall, $p(C R \mid F R)$; and (b) the probability of cued recall of a word, given that the word was not recalled in free recall, $p(C R / \overline{F R})$. For first graders, these probabilities were . 74 and .59 respectively, and, for fifth graders, the probabilities were . 84 and .69 respectively.

Serial position. Two separate analyses of variance were performed to test for serial position effects in free and cued recall. The serial positions used in the analyses represented combined positions, with serial positions 1, 2, 3, and 4 corresponding to words 1-6, 7-12, 13-18, and 19-24, respectively. Although the combining procedure was not an absolute necessity, all of the six types of sentence frame having appeared equally often at each actual serial position (across subjects), the procedure simplified the analysis and interpretation of the serial position effects. Furthermore, primacy and recency, the two characteristics usually discussed in serial position analyses, refer to memory for the first several and the last several serial positions in the list;
the present analyses merely combined serial positions prior to a statistical test rather than afterwards.

In free recall, the serial position main effect was significant, $E(3,138)=28.29, \mathrm{MSe}=.17$. As can be seen in Figure 6, the effect was due to a pronounced recency effect. Because the adjusted cued recall scores did not equally represent all serial positions, the unadjusted cued recall scores were used in the serial position analysis for cued recall. The main effect of serial position was significant, $E(3,138)=4.44$, $\mathrm{MSe}=.16$ (see Figure 6). As in free recall, recency effects were responsible for this significant serial position effect.

Figure 6. Cued (Not Adjusted for Guessing) and free recall in Experiment 1 as a function of grade and serial position.

CHAPTER III

EXPERIMLNT 2

There is evidence from word association and classification studies that children's encoding tendencies shift from complementary to similarity relationships between the first and fifth grades (Denney, 1974). A complementary relationship between two words indicates a functional relationship between the words, as in apple-eat. Children who respond to a word with a complementary association or who group together items that share a complementary relationship, may be indicating that their phenomenological world is one of direct interaction with their environment, i.e., an object is defined by what the child, can do with it or what it can do to the child. A similarity relationship may involve synonyms or superordinates of a stimulus word; it is a relationship such as knife-dagger or knife-weapon. Similarity may also refer to conceptual relatedness, such as apple-orange. Although complementary responding may result from direct experience with the world, similarity responding may develop only with increasing social transmission of knowledge through reading and conversation. In the latter case, there seems to be a need or pressure for children to develop knowledge of synonyms and superordinates so they can become adept at both receiving
and transmitting information. The increase with age in similarity encoding may be due to the increase with age in the extent to which the child gains knowledge through social transmission.

Although the complementary-similarity shift seems to be a reliable developmental phenomenon, at least in semantic memory tasks such as word association and classification, little is known about the relative mnemonic values of complementary and similarity encoding in episodic memory tasks. It is possible that one type of encoding is better than the other, regardless of the age of the child; perhaps complementary encoding requires more stimulus elaboration than does similarity encoding, and, therefore, complementary encoding would be mnemonically superior. Alternatively, it may be that complementary encoding would be mnemonically superior for young children, whose predominant form of encoding is on a complementary basis, while similarity encoding would be better for older children, whose predominant mode of encoding is on a similarity basis. Thus, the mnemonically optimal type of constrained encoding for children at a given age may depend on the typical, or preferred, type of encodiner of children at that age. Experiment 2 examined these possibilities with first and fifth graders being used as subjects. The
factors of complexity and congruity that were manipulated in Experiment 1 were also included in the design of Experiment 2. Method

Subjects. Subjects were 32 first and 32 fifth graders, with equal numbers of males and females at each grade. The children attended the same schools as the children in Experiment 1; no child was in both studies.

Haterials. The two lists of words used in Experiment 1 were also used in the present experiment. For half of the children at each grade, the 24 sentence frames had a complementary relationship with the target words; the remainine children were given sentence frames that had a similarity relationship with the target words. For each child in each of these groups, half. of the sentence frames were simple and half were complex. Half of the simple and half of the complex sentence frames formed a congruous relationship with the target words, while the remaining sentence frames formed an inconsruous relationship with the targets. The use of two, instead of three, levels of complexity allowed more observations for each level of complexity. The tarifets and sentence frames used in Experiment 2 are shown in Appendix C, and the means and standard deviations of the number of words in the sentence frames are shown in Table 2.

Table 2

Means and Standard Deviations of Numbers of Words in Sentence Frames of Experiment 2

Congruity	List 1 Frames		List 2 Frames	
	Simole	Complex	Simple	Complex
	Complementary			
Congruous				
Miean	3.96	10.2	3.25	10.0
Std. Dev.	1.19	1.9	1.15	2.6
Incongruous				
Mean	3.79	8.8	3.08	8.6
Std. Dev.	1.18	1.5	1.02	1.5
	Similarity			
Mean	5.08	9.42	4.96	9.38
Std. Dev.	1.32	1.77	. 95	1.17
Incongruous 5.13 (
Mean	5.13	9.54	4.79	9.25
Std. Dev.	1.08	1.32	. 72	1.15

Design. There were two differences between the present experiment and Experiment 1. First, there were two, instead of three, levels of sentence frame-complexity in Experiment 2. Second, sentence frames in Experiment 2 had either a specifically complementary or similarity relationship with the target words, instead of the general, nonspecific type of relationship that characterized the frames in Experiment 1. Thus, the design is a $2 \times 2 \times 2$ x $2 \times 2 \times 2$ factorial, with the between-subject factors of grade (first and fifth), list (list 1 and list 2), task (complementary and similarity), and sex (male and female), and the within-subject factors of complexity (simple and complex) and congruity (congruous and incongruous). The design is depicted in Figure 7.

Procedure. The procedure in Experiment' 2 was identical to the procedure in Experiment 1 . Results

Children had no difficulty answering the orientingtask questions. Pretraining rarely exceeded two trials. First graders correctly answered 96% of the orientingtask questions in the complementary condition and 94% of the questions in the similarity condition. Fifth graders correctly answered 99% and 95% of the complementary and similarity questions, respectively.

Free recall. The free recall scores were subjected

Figure 7. Design of Experiment 2.
to an analysis of variance. Between-subject factors were task (complementary and similarity), grade (first and fifth), list (list 1 and list 2), and sex (male and female); within-subject factors were congruity (congruous and incongruous) and complexity (simple and complex). The significant main effect of task indicated that recall was greater for complementary than for similarity encoding, $F(1,48)=7.52$, MSe $=.83$; fifth graders recalled more words than first graders, $E(1,48)=19.26$, $\mathrm{MSe}=.83$; and congruous encoding resulted in greater recall than incongruous encoding, $E(1,48)=4.18, \mathrm{MSe}=$.84. The main effect of complexity was not significant. Limitations on the generality of the three significant main effects were suggested by the significant Task x Grade x Congruity interaction, $E(1,48)=8.19$, $\mathrm{MSe}=.84$. Newman-Keuls analyses yielded the following results: (a) recall in the complementary condition was significantly greater than recall in the similarity condition only for fifth graders when the encoding was incongruous, (b) congruity produced significantly greater recall than incongruity only for fifth graders in the similarity condition, and (c) the recall of fifth graders was significantly greater than the recall of first graders only in the complementary condition for incongruous encodings (see Figures 8 and 9).

Figure 8. Free recall for the complementary task in Experiment 2 as a function of srade, concruity, and complexity.

Figure 9. Free recall for the similarity task in Experiment 2 as a function of grade, congruity, and complexity.

Guessing. An analysis of variance was conducted on the suessing performance in Experiment 2. The factors in the analysis were the same as those in the free recall analysis. Fifth graders correctly guessed
 more correct guesses were made for List 2 than List 1 , $P(1,48)=6.88$, $\mathrm{MSe}=.66$; and more words were guessed correctly for congruous than for inconcruous frames, $E(1,48)=776.82, \mathrm{MSe}=.72$. Only one word was guessed correctly for the incongruous sentence frames; thus, the congruity factor interacted with the other significant factors; main effects of these other factors were due to the uessing for congruous sentence frames and not for the incongruous frames. The significant Ilask x Iist x Sex interaction, $\mathrm{F}(1,48)=4.67$, $\mathrm{MSe}=.66$, was not analyzed further because this result did not sucgest anything of theoretical importance. The significant Task x Complexity interaction, $F(1,48)=6.24$, ISe $=.64$, indicated that complex frames led to better guessing than did simple frames in the complementary condition, but that simple frames led to better guessing than complex frames in the similarity condition (see Ficrure 10). Guessing did not vary across tasks, $E(1,48)=1.52$, $\mathrm{MSe}=.66$, nor across levels of complexity, $\mathrm{F}(1,48)=.39$, $\mathrm{MSe}=.64$.

Figure 10. Guessing for congruous sentence frames in Experiment 2 as a function of grade, complexity, and task.

Cued recall. An analysis of variance that included the same factors as the previous two analyses was performed for cued recall. As in Experiment 1, the scores were adjusted for guessing and subjected to an arcsin transformation prior to the analysis of variance. Several main effects were significant, but significant interactions restricted the interpretation of some of these main effects. Significant main effects included task, with complementary yielding higher cued recall than similarity, $F(1,48)=10.58$, MSe $=.93$; grade, with fifth graders superior to first graders, $\mathrm{F}(1,48)=6.64$, MSe $=.93$; congruity, with congruous frames resulting in more recall than incongruous frames, $\mathrm{F}(1,48)=89.48$, MSe $=.85$; and complexity, with complex frames causing higher recall than simple franes, $F(1,48)=4.27, \mathrm{MSe}=.37$ (see Figures $11 \& 12$) .

A Task x Congruity interaction indicated that cued recall increased with increasing complexity in the complementary condition but decreased with increasing complexity in the similarity condition, $\mathbb{F}(1,48)=5.33$, MSe $=.85$. The two significant fifth-order interactions that limited the intcrpretation of the main effects were a Task x Concruity x Complexity x Grade x Sex interaction, $E(1,48)=4.84, \mathrm{MSe}=.43$ and a Task x Congruity x Complexity x List x Sex interaction, $E(1,48)=4.36$,

Fifure 11. Cued (Adjusted for Guessing) recall for the complementary task in Experiment 2 as a function of grade, congruity, and complexity.

Figure 12. Cued (Adjusted for Guessinc) recall for the similarity task in Experiment 2 as a function of grade, congruity, and complexity.

MSe $=.43$. Newman-Keuls post hoc tests were made for each theoretically important factor (i.e., task, congruity, complexity, and grade) at each level of all other factors involved in the interaction. The generality of the effect of any particular factor was assumed to be indicated by the proportion of the specific comparisons that were significant. Following this procedure, it was determined that the congruity effect (i.e., congruous greater than incongruous) was the only result that could be interpreted with confidence as a general main effect. For example, in analyzing the first of the two interactions, congruity yielded significantly greater recall than incongruity in 13 of 16 post hoc comparisons. The highest such proportion for any other factor was 3 of 16 . The significant main effects that had to be considered as limited in generality resulted from the consistency in the direction of the results. In other words, even when the individual post hoc comparisons failed to reach significance, the means were in the same direction.

Although no analysis was performed to compare free and adjusted cued recall, Figuce 13 is included to show the differences in the patterns of results in free and cued recall. The graph is a compilation of several of the previous graphs, but the complexity variable has been omitted to show the congruity effects more clearly.

Figure 13. Cued (Adjusted for Guessing) and free recall for Experiment 2 as a function of task, grade, and congruity.

There appeared to be a facilitative effect of prior free recall on subsequent cued recall. The probabilities that indicated this effect were the probability of cued recall given free recall, or $p(C R I F R)$, which was . 84 ; and the probability of cued recall given that the word was not free recalled, $p(C R I \overline{F R})$, which was . 68 .

Serial position. Serial position effects were analyzed separately for free and cued recall. Recency effects produced a significant main effect of serial position in free recall, $F(5,300)=45.19$, MSe $=.12$ (see Figure 14). Unlike the results in Experiment 1, there wore no significant effects of serial position in unadjusted cued recall scores in Experiment 2, $E(5,300)=1.33$, MSe $=.11$ (see Figure 15). Discussion of Experiments 1 and 2

The results of Experiments 1 and 2 were generally consistent in that the congruity and complexity variables produced significant effects in cued recall but failed to yield significant effects in free recall. Cued recall was better when sentence frames and their targets formed a congruous relationship than when the relationship was incongruous, but free recall was approximately the same in the congruous and incongruous conditions. Cued recall was better for targets with long sentence frames, whether or not the sentence frames were congruous with their targets. Free recall of targets did not vary with

Figure 14. Free recall for Experiment 2 as a function of task, grade, and serial position.

Figure 15. Cued (Not Adjusted for Guessing) recall for Experiment 2 as a function of task, crade, and serial position.
the complexity of sentence frames.
The complementary and similarity sentence frames in Experiment 2 yielded equal levels of free and cued recall when targets and sentence frames were congruous. When targets and sentence frames were incongruous, free and cued recall were usually better in the complementary condition than in the similarity condition. The superiority of incongruous-complementary encoding may have been due to differences in the type of incongruity in the complementary and similarity conditions. Although incongruous complementary sentence frames were incongruous with their targets, the sentence frames were internally congruous (e.g., "The AXP played music when he turned it on"). In the similarity condition, a sentence frame was sometimes incongruous with itself, or internally incongruous (e.g., "A stale, rotten AXE is like a long, exciting book"). Although the problem of inconsistency could have been alleviated if the same adjectives had been used at the beginning and end of the sentence frame, as was done for the congruous frames in the similarity condition, children may have had difficulty in overlooking the repetition in the frame and realizing that the target was really incongruous with the frame. For example, if "A long, exciting AXE is like a long, exciting book" had been used, a child
could have erroneously reasoned that the word made sense in the blank because both the book and the axe were long and exciting. Whenever possible, sentence frames that minimized the internal incongruity were constructed, but it proved impossible to avoid including several internally incongruous sentence frames in the similarity condition. The extra incongruity resulted in poorer free and cued recall than was the case in the incongruouscomplementary condition. The sentence-frame problems made comparisons of the mnemonic value of complementary and similarity encoding inappropriatembut an even worse problem was avoided: If the same adjectives had been repeated in the incongruous frames, children may have encoded the incongruous situations as being congruous and comparisons of congruity and incongruity would have been inappropriate.

Some of the results described by Craik and Tulving (1975, Experiment 7) differed from the present findings. Craik and Tulving observed that a congruous relationship between sentence frames and targets resulted in greater free recall than did an incongruous relationship between sentence frames and targets. Congruity and incongruity led to equal levels of free recall in the present experiments. In addition, Craik and Tulving found increases in both free and cued recall to be associated with increases in sentence frame complexity when the
sentence frames and targets were congruous but not when they were incongruous. In the present experiments, free recall did not vary with sentence frame complexity for either congruous or incongruous relationships, and cued recall increased with increasing sentence-frame complexity in the congruous and incongruous conditions. There were several methodological differences between the present experiments and Craik and Tulving's experiment (1975, Experiment 7) that may have been partially responsible for the differences in results. The methodological differences were as follows: (a) the word lists in the present experiments contained 24 words, but the lists used by Craik and Tulving contained 60 words, (b) 2 minutes were given for free recall in the present experiments, while 8 minutes were allowed in the Craik and Tulving experiment, (c) the orienting task was subject-paced in the present experiments, but in the Craik and I'ulving experiment a target word was shown for 1 second and subjects were instructed to respond as quickly as possible. Lists of 24 words were used in the present experiments because children may not have been able to pay close attention to the task throughout presentation of a 60 -word list like the ones used by Craik and Tulving. Two minutes proved to be a sufficient interval for free recall; most
words that were remembered were recalled during the first minute, and very few words were recalled even curing the second minute. The procedural difference that is likely to have resulted in different results concerned the pacing of the orienting task. In the present experiments, the orienting task was subject-paced; children were not instructed to answer quickly. This procedure was followed to prevent children from answering too rapidly to be accurate and to ensure that the targets and sentence frames were not processed too superficially. In the Craik and Tulving experiment, the 1 -second target presentation time and the stress on rapid responding may have caused subjects to encode targets and sentence frames differently than they would have if they had been able to respond at their own pace.

It is also possible that the results of the present experiments differed from those of Craik and Tulving because first- and fifth-grade children were subjects in the former experiments, whereas college students were subjects in the latter experiment. To test this possibility, Experiment 1 was repeated, but college students were subjects instead of first and fifth graders. Thus, Experiment 3 was performed to determine whether the differences in results between the present experiments and Experiment 7 of Craik and Tulving were due to methodological or to population differences.

CHAPTER IV

EXPERIMENT 3

The results of Experiments 1 and 2 indicated that there were effects of congruity and complexity in cued recall, but not in free recall. The failure to find congruity and complexity effects in free recall may have been due to the use of children as subjects; Craik and Tulving (1975, Experiment 7) obtained significant effects for these variables in free recall with college subjects. Experiment 3 was conducted to determine whether or not:college subjects would yield significant effects for congruity and complexity within the paradigm of Experiment 1.

Method
Subjects. Subjects were 12 male and 6 female college students enrolled in summer term introductory psychology classes at the University of North Carolina at Greensboro. The subjects fulfilled a course requirement by participating.

Materials. The materials used in Rxperiment 1 were also used in kxperiment 3.

Design. The design was simpler than the design of Experiment 1, due to the exclusion of several of the
between-subject factors. The design of the present experiment was a 2×3 X 2 factorial, with the betweensubject factor of list (list 1 and list 2) and the withinsubject factors of complexity (simple, moderate, and complex) and congruity (congruous and incongruous).

Procedure. The procedure was identical to the procedure followed in Experiments 1 and 2, with the exception that only one pretraining trial (four questions about one target word) was given in Experiment 3. Results

All of the subjects answered the pretraining questions correctly. The college students performed as proficiently as the children had in the previous studies by answering 98% of the orienting questions correctly.

Free recall. An analysis of variance was performed on the free recall scores, with congruity, complexity, and list as factors in the analysis. The main effect of complexity was significant, $\underset{(2,32)}{ }=4.02$, $\mathrm{MSe}=$.18, as was the interaction between complexity and congruity, $\underset{(2,32)}{ }=3.51, \mathrm{MSe}=.15$. Inspection of Figure 16, however, reveals that the interaction is not the same type of interaction found by Craik and Tulving (1975, Fxperiment 7). In the Craik and Iulving study, recall increased with increasing complexity for congruous, but not for incongruous, sentence frames. The interaction

Figure 16. Cued (Adjusted for Guessing) and free recall in Experiment 3 as a function of congruity and complexity.
observed in the present study does show a lack of change in recall for incongruity at various levels of complexity; the recall of congruously encoded targets is lowest for moderately complex frames, intermediate for simple frames, and highest for complex frames. Newman-Keuls analyses determined that the only significant individual comparison was the superiority of complex-congruous over moderate-congruous. Although this significant comparison seems similar to the effect found by Craik and Tulving, the result is caused as much by the low level of moderate-congruous recall as by the high level of complex-congruous recall. Furthermore, none of the congruous vs. incongruous differences was significant at any level of complexity.

Guessing. An analysis of variance including complexity, congruity, and list as factors was performed on the guessing scores. No correct guesses were made for incongruous frames, resulting in a large statistical difference for the congruity variable, $F(1,16)=277.06$, $M S e=.14 . \quad$ The list main effect was significant, $E(1,16)$ $=7.93$, MSe $=.14$, as was the main effect of complexity, $\underline{F}(2,32)=24.54, \mathrm{MSe}=.28$. The proportions guessed correctly in the congruous sentence frame condition for simple, moderate, and complex sentence frames were . 07 , .33, and .50, respectively. The List X Complexity and
the List X Complexity X Congruity interactions were significant, $\mathbb{F}(2,32)=8.27$, MSe $=.28$ in both cases. Newman-Keuls analyses indicated that guessing for congruous frames in List 1 was greater for complex than for simple frames; for List 2, congruous-frame guessing was significantly lowest for simple frames, but guessing for moderate and complex frames did not differ.

Cued recall. The analysis of variance on adjusted cued recall scores, which were proportions that were subjected to an arcsin transformation, yielded a significant main effect of congruity, with congruous frames leading to higher target recall than incongruous frames, $\mathrm{F}(1,16)=91.04, \mathrm{MSe}=.29$. There was also a significant main effect of complexity, $\mathrm{F}(2,32)=24.17$, MSe $=$.29. Newman-Keuls analyses showed that moderate and complex frames led to equal levels of cued recall, but both moderate and complex frames led to better recall than simple frames. The interaction between congruity and complexity was not significant; recall increased with increased complexity for both congruous and incongruous sentence frames (see Figure 16).

Recalling a target word in free recall seemed to increase the likelihood of cued recall of that word. The probability of cued recall given free recall, $\mathrm{p}(\mathrm{CR} \mathrm{IFR})$, was . 85 ; and the probability of cued recall
given that the word was not recalled in free recall, $\mathrm{p}(\mathrm{CR}+\overline{\mathrm{FR}})$, was . 65. The facilitating effect of prior free recall on subsequent cued recall has thus been observed in all three of the present experiments.

Serial position. Serial position was a significant factor in free recall, $E(3,48)=33.68, M S E=.16$, but not in unadjusted cued recall, $F(3,48)=1.40$, MSe $=.17$ (see Figure 17). As is shown in Figure 17, the significant main effect of serial position in free recall was due to strong recency.

Figrure 17. Cued (Not Adjusted for Guessing) and free recall in Experiment 3 as a function of serial position.

CHAPTER V

DISCUSSION

The results of Experiments 1 and 2 differed from the results of a related experiment by Craik and Tulving (1975, Experiment 7). First, Craik and Tulving found that free recall was greater for targets that were congruous with their sentence frames than for targets that were incongruous, whereas in the present studies, free recall was equal for congruously and incongruously encoded targets. Second, Craik and Iulving observed that more complex sentence frames resulted in greater free and cued recall than did less complex sentence frames for congruously encoded, but not incongruously encoded, targets. In the present experiments, complexity did not exert consistent effects in free recall, and increasing complexity facilitated cued recall whether targets were congruous or incongruous with their sentence frames.

Experiment 3 was performed to determine whether the differing results were due to the use of children as subjects in lixperiments 1 and 2, instead of the college students used by Craik and Tulving. The performance of college students in Experiment 3 indicated that differences in subject populations were not responsible for differences in results. The results obtained in Experiment 3 were
consistent with the results of Experiments 1 and 2. Methodological differences probably were responsible for the differing results of the present studies and the experiment by Craik and Tulving.

The methodological differences that may have been responsible for the observed differences in results concerned the pace of the orienting task. In the present experiments, subjects were allowed 20 seconds to decide whether a target word did or did not make sense when inserted into a sentence frame. Although subjects usually responded within 2 or 3 seconds, they were not hurried even when they required the entire 20 seconds to respond. The target word and its sentence frame were shown to subjects until they responded. In the Craik and Tulving experiment, target words were presented for only 1 second, and subjects were instructed to respond as quickly as possible. These methodological differences may have led to differences in the type of encoding that occurred for the targets and sentence frames, especially when the target and its sentence frame were incongruous. The ease of retrieval of targets in free and cued recall may depend on the type of encoding that takes place when the targets and sentence frames are presented. Before discussing how the methodological differences between the present experiments and the experiment of Craik and Tulving
may have yielded the observed differences in results, a two-stage retrieval process will be described to provide a basis for the explanation of the different results.

The notion of redintegrative memory suggests that retrieving part of the context of an event facilitates retrieval of the entire event (Horowitz \& Prytulak, 1969). The redintegrative retrieval process needs to be described more specifically, however, if the effects of congruity and incongruity on retrieval are to be explained. Thus, it may be helpful to characterize redintegrative memory as a two-stage process, with Stage 1 consisting of retrieval ${ }^{\text {. }}$ of context and Stage 2 consisting of retrieval of a target element once the context has been retrieved. Lie context for the target consists of the aspects of an event that were encoded along with the target. The target is actually one of many elements of the context that could be redintegrated by context retrieval; it is referred to as the target only because it is the element of the event that the subject is asked to remember.

Stage 2 retrieval of a target element is probably easier when the target and its context share a congruous relationship than when the context is not related to the target. In cued recall, Stage 1 retrieval is largely bypassed by the experimenter's provision of context cues (i.e., the sentence frames that accompanied targets),
and a Stage 2 advantage for congruity should result in better cued recall for targets that are congruous with their context cues than for targets that are incongruous with their contexts. In the present experiments and in the experiment by Craik and Tulving, cued recall was better in the congruous than in the incongruous condition. In free recall, both stages of retrieval occur when the subject uses a redintegrative retrieval strategy, such as trying to remember sentence frames to facilitate memory for targets. There is evidence from the present experiments that Stage 1 retrieval may have been easier for incongruously encoded than for congruously encoded targets.

Subjects were asked whether the words that made sense in the sentence frames (i.e., were congruous) were easier or harder to recall in free recall than the words that did not make sense in the sentence frames. The responses of the children were not particularly enlightening, but the college students provided some useful information. In describing which types of words were easier to remember, 10 of the 18 college subjects indicated that incongruously encoded words were easier to remember than congruously encoded words. They described the incongruity as "funny," "ridiculous," "odd," "nonsense," and "out of place." Of the remaining 8 subjects, 2 had no
opinion, 3 indicated that the congruous words were easier, and 3 suggested that the "familiar" congruous combinations (e.g., "the grass is green") and the extremely ridiculous combinations (e.g., "The spider drove a train") were easiest to recall, but that the relatively uncommon congruous situations and the non-humorous incongruous situations were hardest to recall. For cued recall, responses were distributed equally among the categories mentioned above, and most subjects remarked that they found cued recall to be quite easy regardless of the type of sentence frame given as a cue.

The remarks of the college students suggest that a very incongruous context, is often humorous and, consequently, easy to retrieve. An extremely incongruous context, in the words of one college subject, "Stands out in memory." It is as if some aspect of the incongruity effects a type of von Restorff effect for the incongruous context, highlighting this context against the dull backdrop of less bizarre, more commonplace contexts.

The free recall data in the present experiments showed that congruity and incongruity led to equal levels of recall. A retrieval was probably more likely to contain the target if the target and context were congruous than if they were incongruous. If the retrieved context did not already contain the target, Stage 2 ,
retrieval of the target, was more likely if the target was congruous wjeth the context than if it was incongruous. It is plausible, however, that more incongruous than congruous contexts were retrieved in free recall, as should have been the case if Stage 1 of retrieval was easier for incongruous contexts. Thus, inconoruity may be superior to congruity in facilitating Stage 1 of the retrieval process, but congruity may be superior to incongruity in facilitating Stage 2 of retrieval and in making it likely that the retrieved context will contain the target. One possible result of such a balance of advantages could be equal levels of free recall for congruously and incongruously encoded targets.

It is also possible that subjects in the present experiments were not engaging in redintegrative retrieval strategies, i.e., were not trying to remember sentence frames to facilitate free recall of targets. Although it is quite possible that first graders did not use such indirect retrieval, the comments of several fifth graders and the majority of the college students indicated that these subjects were trying to remember the sentence frames to aid their recall of targets.

The results of the present experiments may have differed from the results of the Craik and Tulving experiment because the emphasis on fast responding in
the lattier experiment prevented subjects from forming images of the incongruous situations. Since the humorous aspect of incongruity may depend, to some extent, on the formation of an incongruous image, subjects who are required to respond quickly may not encode the incongruous situations as ridiculous or funny. In the present experiments, subjects often laughed aloud when targets were incongruous with sentence frames. In the Craik and Tulving experiment, incongruity may have provided a poor basis for free and cued recall because subjects were not given time to form images of the incongruous situations. Subjects in the present experiments were given time to form images and to appreciate the humor in the incongruous situations, and the incongruity provided a good basis for Stage 1 of retrieval.

The findings of the present experiments also differed from those of Craik and Tulving with regard to the effects of the complexity variable. Whereas Craik and Tulving found that free recall increased with increasing sentenceframe complexity for congruously encoded, but not incongruously encoded, targets, no change in free recall as a function of changes in the level of complexity was observed in the present experiments. Although the greater recall for greater complexity was statistically significant in the Craik and Tulving experiment, the
actual differences in the levels of recall were small; the complexity effect in free recall may prove difficult to replicate.

In the present experiments, cued recall increased with increased sentence-frame complexity whether the targets and sentence frames were congruous or incongruous. In the Craik and Tulving experiment, cued recall increased with increased complexity only when targets and sentence frames were congruous. If pressure to respond quickly during the orienting task prevented subjects from forming images of the incongruous situations, it is possible that Stage 2 retrieval was hindered. An image of an incongruous situation could;serve as a link between a target and its context that would facilitate redintegration of the target upon retrieval of the context. An active image, in which the target is pictured as interacting with its context (e.g., "cereal can fight"), provides a strong link between the target and its context. If subjects in the Craik and Tulving experiment had been allowed enough time to form such images, cued recall might have increased with increasing complexity for incongruous, as well as for congruous, situations. In the present experiments, cued recall did increase with increasing complexity whether targets and frames formed an incongruous relationship or a congruous one.,

Additional experiments are needed to clarify the effects of congruity and complexity on the memory performance of children and adults. The effects of time parameters and the concreteness of materials on the encoding of incongruity should be investigated in an attempt to explain the role of imagery in redintegrative memory for incongruity. Induced congruity and complexity may not be entirely equivalent to subjectgenerated congruity and complexity. The effects of elaboration on memory may be stronger if the subject is doing the elaborating instead of having the experimenter provide the elaboration. Requiring subjects to provide words that fit or do not fit into sentence frames may result in different types of memory performance than requiring subjects to respond to words that someone else has generated. Whether congruity and complexity are experimenter-generated or subject-generated, these variables appear to be important determinants of memory performance and, thus, should be the focus of future research.

CHAPTER VI

SUMMARY

Experiments with adult subjects have shown that congruity among the elements of an encoded event provides a better basis for free and cued recall of the elements than does incongruity (Craik \& Tulving, 1975; Schulman, 1974). In addition, the degree of elaboration, or complexity, of the encoded event has been found to be directly related to free and cued recall, provided the elements of the event form a congruous relationship (Craik \& Tulvins, 1975). The present experiments were conducted to assess the effects of congruity and complexity on the memory performance of first- and fifthgrade children and college students.

Subjects were shown cards containing sentence frames (i.e., sentences with one word missing) and were shown, on separate cards, target words that either did or did not make sense when inserted into the sentence frames. Subjects were required to judge whether the target words were congruous with the sentence frames. The sentence frames varied from short, simple sentences to long, complex sentences. Half of the sentence frames in Experiment 2 described a complementary relationship with
the target word (e.g., "Empty the garbage") and half of the sentence frames described a similarity relationship with the target (e.g., "Trash is like garbage"). The sentence frames in Experiments 1 and 3 were identical and did not bear any specific type of relationship with the the targets. First and fifth graders were subjects in Experiments 1 and 2, while college students were subjects in Experiment 3.

Immediately after the sentence-frame orienting task, a previously unannounced free recall test for target words was given. Following free recall; the sentence frames were presented for cued recall of the target words.

Although older subjects recalled more targets than younger subjects in free and cued recall, the pattern of results was similar across age groups and across experiments. In general, free recall was equal for targets that were congruous and targets that were incongruous with their sentence frames. There were no consistent effects of complexity in free recall. Cued recall was better when sentence frame cues were congruous with their targets than when they were incongruous, and cued recall increased with greater sentence frame complexity whether targets and frames were congruous or incongruous. The complementarysimilarity manipulation in Experiment 2 failed to reveal any interesting developmental trends.

A two-stage retrieval process was postulated to explain these results. Stage 1 of the process would consist of retrieval of the context of an event, and Stage 2 would represent the redintegration of an element of the context when the context has been retrieved. Stage 1 may be easier for bizarre or humorous incongruous contexts than for congruous element-context relationship. The advantage for incongruity at Stage 1 could balance the advantage for congruity at Stage 2 and produce equal levels of free recall for congruously encoded and incongruously encoded elements. In cued recall, Stage 1 is bypassed when the experimenter provides context cues, and the advantage for congruity at Stage 2 results in higher levels of cued recall for targets that are congruous with their contexts.

Craik, F. I. M., \& Iockhart, R. S. Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 1972, 11, 671-684.

Craik, F. I. M., \& Tulving, E. Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 1975, 104, 268-293.

Denney, N. W. Evidence for developmental changes in categorization criteria for children and adults. Human Development, 1974, 17, 41-53.

Geis, M. F., \& Greenberg, M. K. Complementary and similarity encoding in children's and adults ${ }^{\prime}$ memory. Unpublished manuscript, University of North Carolina at Greensboro, 1975.

Geis, M. F., \& Hall, D. M. A framework for children's memory development. Unpublished manuscript, University of North Carolina at Greensboro, 1976. (a)

Geis, M. F., \& Hall, D. M. Encoding and incidental memory in children. Journal of Experimental Child Psychology, 1976, in press. (b)

Hall, D. M., \& Geis, M. F. Semantic and nonsemantic orienting tasks in immediate and delayed recall: A levels of processing analysis of recency effects. Paper presented at the meeting of the Southeastern Psychological Association, Atlanta, March, 1975.

Hall, D. M., \& Geis, M. F. Congruity of encoding in children's redintegrative memory. Paper presented at the meeting of the Southeastern Conference on Human Development, Nashville, April, 1976.

Horowitz, I. M., \& Prytulak, I. S. Redintegrative nemory. I'sychological Review, 1969, 76, 519-531.

Hyde, T. S., \& Jenkins, J. J. Differential effects of incidental tasks on the organization of recall of a list of highly associated words. Journal of Experimental Psychology, 1969, 82. 472-481.

Hyde, T. S., \& Jenkins, J. J. Recall for words as a function of semantic, graphic, and syntactic orienting tasks. Journal of Verbal Learning and Verbal Behavior, 1973, 12, 471-480.

Johnston, C. D., \& Jenkins, J. J. Two more incidental tasks that differentially affect clustering in recall. Journal of Experimental Psychology, 1971, 89, 92-95.

Schulman, A. I. Memory for words recently classified. Memory and Cognition, 1974, 2, 47-52.

Schulman, A. I. Encoding processes and the memorability of events. In A. Kennedy and A. Wilkes (Eds.), Studies in long term memory. New York: John Wiley \& Sons, Inc., 1975.

Till, R. E., \& Jenkins, J. J. The effects of cued orienting tasks on the free recall of words. Journal of Verbal Learning and Verbal Behavior, 1973, 12, 489-498.

Walsh, D. A., \& Jenkins, J. J. Effects of orienting tasks on free recall in incidental learning: Difficulty, Effort, and Process explanations. Journal of Verbal Learning and Verbal Behavior, 1973, 12, 481-488.

Winer, B. J. Statistical principles in experimental design. New York: McGraw-Hill Book Co., 1971.

APPENDIX A
TARGETS AND SENTENCE FRAMES
USED IN EXPERIMENT 1

Pretraining
CLOCK (target)
LOOK AT THE \qquad -

CHEW THE \qquad .

IOOK AT THE ON THE WALI IN THE CLASSROOM.
CHEW THE TASTY _ BEFORE YOU SWALIOW IT.

BABY

THE WAS LITTPLE. .
THE WAS BENT.
THE CUTE WAS VERY IITTLE AND HAD NO HAIR ON HIS HEAD.
THE WAS BENT, PUT IN AN ENVELOPE, AND MAILED.

KING
THE _IS FRIENDLY.
THE _HAS FOUR LEGS.
THE IS FRIENDLY TO ALL OF THE PEOPLE THAT LIVE IN HIS LAND.

THE \qquad HAS FOUR LEGS, A LONG TAII, AND A LOT OF FUR.
Orienting Task--Iist 1
DRESS
Simple-Congruous (SC): THE

\qquad
IS PREITY.
Moderate-Congruous (MC): THE FRILIY WHITE IS PRETTY.
Complex-Congruous (CC): THE FRILIY WHITE WITH THE BIG BUTTONS ON THE SILEEVES IS PRETTY.
Simple-Incongruous (SI): THE

\qquad IS TIRED.
Moderate-Incongruous (MI): THE YAWNING

\qquad
IS TIRED AND SLEEPY.
Complex-Incongruous (CI): THE YAWNING IS SO TIRED AND SLEEPY IT WILL TAKE A NAP ON THE SOFA.

CAR

SC: HE DROVE THE \qquad -
MC: HE DROVE THE SMALL \qquad TOO FAS'T.
CC: HE DROVE THE SMAL工_TOO FAST AROUND THE SHARP CURVE.
SI: HE ATE THE \qquad
MI: HE ATE THE CHEWY

\qquad
FOR SUPPER.
CI: HE ATE THE CHEWY SUPPER AT OUR HOUSE.
DOG
SC: THE LEARNED A TRICK.
MC: THE

\qquad
LEARNED TO ROL工 OVER AS A TRICK.
CC: THE FRIENDLY LEARNED TO BEG, SHAKE HANDS, ANDROLL OVER AS TRICKS.
SI: THE

\qquad
READ A BOOK.MI: THE _ READ A LONG, EXCITING BOOK.CI: THE READ A LONG, EXCITING BOOK ABOUT A BANKROBBERY AND A TRATN WRECK.

GIFI

SC: SHE GOT A \qquad -

MC: SHE GOT A NICE ___ ON HER BIRTHDAY.
CC: SHE GOT A NICE FROM HER HUSBAND AND HER THREE CHILDREN ON HER BIRTHDAY.

SI: SHE SANG A \qquad -

MI: SHE SANG A SAD \qquad TO THE PEOPLE.

CI: SHE SANG A SADTO THE PEOPLE AT THE EVENING CONCERT IN THE PARK.

STOVE
SC: SHE PUT IT INTO THE \qquad -

MC: SHE PUT THE APPLE PIE INTO THE HOT \qquad .

CC: SHE PUT the delicious apple and Cherry pies into THE HOT \quad FOR AN HOUR.

SI: THE WAS DANCING.
MI: THE _ WAS DANCING AROUND THE ROOM.
CI: THE EXCITED WAS DANCING AND HOPPING WITH HIS PARTNER ALL $\overline{\text { AROUND THE ROOM. }}$

DRAW
SC: I CAN _ A PERSON.
MC: I CAN _ A PERSON WITH ARMS AND LĖGS.
CC: I RASILY CAN A TALL, FAT PERSON WITH A HEAD, BODY, ARMS, AND LEES.

SI: I MADE A \qquad
MI: I MADE A _ WITH SCISSORS.
CI: I MADE A BIG \qquad WITH MY SHINY NEW PAIR OF SCISSORS AND RULER.

GUN

SC: HE PICKED UP THE \qquad
MC: HE PICKED UP THE LONG, HEAVY \qquad -

CC: HE QUICKLY PICKED UP AND AIMED THE LONG, HEAVY, BLACK \qquad AT I'HE TARGET.

SI: HE PUT THE \qquad IN HIS BOWL.

MI: he put the ___ IN his bowl of vanillia ice cream.
CI: HE PUT THE LEFTOVER IN HIS BOWL OF VANILLA ICE CREAM ALONG WITH THE PINEAPPLE.

FLOWER

SC: PUT THE ___ IN THE VASE.
MC: PUT THE RED _IN THE TALI VASE.
CC: PUT the pretty red ___ In the tail white vase with THE OTHERS.

SI: THE __ SWEPT THE FLOOR.
MI: THE ___ SWEPT THE FIOOR AND DUSTED THE FURNITURE。
CI: THE BUSY SWEPT THE KITCHEN AND DINING ROOM FLOORS AND DUSTED THE FURNITURE.

PILLOW

SC: THE __ WAS SOFT.
MC: THE SOFT __ WAS MADE OF FEATHERS.
CC: THE SOFT WAS MADE OF FEATHERS AND WAS ON THE BED NEXT TO THE CHILD.

SI: THE ___ DRANK A COKE.
MI: THE ___ DRANK A COKE AND ATE CRACKERS.
CI: THE BIG THIRSTY SLOWLY DRANK A COKE AND ATE SOME CHEESE CRACKERS.
RAG
SC: I USED A
\qquad
MC: I USED A

\qquad
TO WIPE UP THE WATIER.
CC: I USED AN OLD, DIRTY TO WIPE UP THE SPILLED WATER ON THE DESK.
SI: THE WAS NOISY.
MI: THE CARDBOARD

\qquad
WAS VERY NOISY.
CI: THE CARDBOARD WAS VERY NOISY AND KEPT ME FROM THINKING ABOUT BASEBALI.
GARBAGE
SC: TAKE THE

\qquad
OUTDOORS.
MC: PIEASE TAKE THE CAN OF__ OUTDOORS.
CC: PLEASE TAKE THE CAN FULI OF SMELIY

\qquad
OUTDOORS TO THE END OF THE STREET.
SI: PRACTICE THE
\qquad -
MI: PLEASE PRACTICE THE \qquad FOR TWO HOURS.
CI: PLEASE PRACTICE THE HARD ON THE PIANO FOR TWOHOURS IMMEDIATELY AFTER SCHOOL.
AXE
SC: THE IS SHARP.
MC: THE NEW

\qquad
IS VERY SHARP.CC: THE SHINY NEW
\qquad IS VERY SHARP AND CAN CUT DOWN A LARGE PINE TREE.
SI: THE PIAYED MUSIC.
MI: THE

\qquad
PLAYED MUSIC WHEN HE TURNED IT ON.
CI: THE TRANSISTOR PLAYED LOUD ROCK MUSIC WHEN HETURNED IT ON AT $\overline{N I G H T}$.

GLUE

SC: I USED SOME ___
MC: I USED SOME _ON THE PIECES OF PAPER.
CC: I USED SOME STICKY ON THE THREE PIECES OF PAPER TO MAKE THEM STAY TOGEITER.

SI: IT RAINED \qquad
MI: IT RAINED _ LAST SATURDAY.
CI: IT RAINED AJI DAY LONG IAST SATURDAY AT THE FAMIIY PICNIC.

WRITE
SC: SHE CAN
MC: SHE CAN _ VERY WELI.
CC: SHE CAN THE ALPHABET AND ADD NUMBERS VERY WELI FOR HER AGE. ,

SI:
_ A RUG.
MI: SHE CAN _ A RUG ON THE FLOOR.
CI: SHE CAN A RUG ON THE FIOOR WITH HER HAND OVER

MONEY
SC: I HAVE SOME \qquad
MC: I HAVE SOME _IN THE BANK.
CC: I HAVE A LOT OF PAPER _IN THE BIG BANK IN THE CITY.

SI: THE _ TOOK A SHOWER.
MI: THE DIRIY _TOOK A LONG SHOWER.
CI: THE DIRTY TOOK A LONG SHOWER AFTER WORKING IN THE YARD ALL AFTERNOON.
SHOVEL
SC: THE WAS ON THE GROUND.
MC: THE OTD RUSTY WAS ON THE GROUND.
CC: THE OLD RUSTY WAS LYING ON THE WET GROUND IN THE BACK YARD.
SI: THE WALKED TO SCHOOL.
MI: THE WALKED TO SCHOOL EVERY MORNING.
CI: THE WAJKED A MIIE TO SCHOOL EVERY MORNING TO GET SOME EXERCISE.
THROAT
SC: HE HAS A SORE
\qquad
MC: HE HAS A SORE

\qquad
THAT HURTS.
CC: HE HAS A BAD SORE

\qquad
THAT HURTS SO MUCH HE COULD NOT PLAY QUTSIDE.SI: HE WALKED ON THE
\qquad
MI: HE WALKED ON THE

\qquad
TWICE YESTERDAY.'
CI: HE WALKED ACROSS TOWN ON THE

\qquad
TWICE YESTERDAY
TO VISIT HIS FRIEND.
SPIDER
SC: THE

\qquad
WAS CREEPY.
MC: THE BLACK AND YELLOW

\qquad
WAS CREEPY.
CC: THE BIG BLACK AND YELLOW \qquad WAS SO CREEPY I RAN AWAY SCREAMING.
SI: THE DROVE A TRAIN.
MI: THE DROVE A TRAIN FOR A IIVING.
CI: THE 40 YEAR OLD DROVE A POWERFUL TRAIN FOR Λ LIVING EVERY DAY OF THE WEEK.
WIND
SC: THE IS STRONG.
MC: THE CHILLY IS VERY STRONG.
CC: THE CHILIY SPRING

\qquad
IS SO VERY STRONG IT KNOCKED MY HAT OFF.
SI: HOID THE

\qquad
IN THE JAR.
MI: HOLD THE ORANGE
\qquad IN THE GLASS JAR.
CI: HOLD THE ORANGE PLASTIC IN THE GLASS JAR AND THEN PUT THE LID ON.
CUP
SC: FILI THE

\qquad
.
MC: FILI THE WITH WATER.
CC: FILL THE TO THE TOP WITH ICE COLD WATER BECAUSEI REALLY NEEDIT.
SI: THE WAS FISHING.
MI: THE WAS FISHING IN THE OCEAN.
CI: THE WAS FISHING FOK SHARKS IN THE OCEAN AND CAUGHT A LARGE ONE.
LION
SC: THE JUMPED.
MC: THE

\qquad
JUMPED WHEN HE HEARD ME.
CC: THE SHAGGY OLD \qquad JUMPED WHEN HE HEARD ME COMING NEAR THE CAGE.
SI: IHE \qquad TALKED ON THE PHONE.MI: THE TALKED TO MY SISTER ON THE PHONE.CI: THE ANGRYTALKED FOR AN HOUR TO MY OLDER SISTERON THE PHONE.
GOSC: O_ OVER THERE.MC: OVER THERE TO GET SOME WATER.
CC: OVER THERE TO THE WATER FOUNTAIN TO GETYOURSELF A DRINK OF WATER.
SI: THE LIGHT.
MI: THE LIGHT ON YOUR FACE.
CI: THE BRIGHT FLASHLIGHT ON YOUR FACE SO I CANSEE WHO YOU ARE.
COMB
SC: THAT IS MY
\qquad -
MC: THAT IS MY THAT I ALWAYS USE.
CC: THA' IS MY THAT I ALWAYS USE TO STRAIGHTEN MYCURLY BLONDE HATR.
SI: I ROLLED UP THE

\qquad
.
MI: I ROLLED UP THE IHICK LEATHER
\qquad -
CI: I ROLLED UP THE THICK LEATHER AND PUT IT AWAY WHERE NOBODY ELSE COULD FIND IT.
STOOL
\qquad -
MC: MOVE THE

\qquad
TO THE TABLE.CC: MOVE THE TO THE TABLE AND YOU CAN USE IT WHILEWE EAT OUR MEAL.ST: SALT TIE
\qquad .
MI: SALT THE

\qquad
SO IT WILL BE GOOD.
CI: SALT THE JUST THE RIGHT AMOUNT SO IT WILL TASTE GOOD TO EV̄ERYŌNE WHO IS EATING IT.

List 2.

PITCH

```
SC: SOME MORE.
MC: SOME MORE SO I CAN CATCH.
CC: TO ME SOME MORE SO I CAN LEARN TO CATCH WITH
    MY GHOVE BETTER.
SI: THE HOUSE.
MI: THE BRICK HOUSE TO ME.
CI: THE RED BRICK HOUSE TO ME SOME MORE SO I WILL
    KNOW WHAT IT LOOKS LIKE.
```


MOUNTAIN

SC: HE CAN SEE THE \qquad .

MC: HE CAN SEE THE HIGH BEAUTIFUL \qquad
CC: HE CAN SEE THE HIGH BEAUTIFUI ___ IN THE DISTANCE EVEN THOUGH IT IS FOGGY.

SI: I MADE THE \qquad -

MI: I MADE THE WITH MX TEETH.
CI: I MADE THE DEEP IN MY LEFT HAND WITH MY TWO FRONT TEETH.

JUMP
SC: A GRASSHOPPER CAN \qquad -
MC: A GREEN GRASSHOPPER CAN HIGH AND IPAR.
CC: A GREEN GRASSHOPPER CAN HIGH AND FAR ALIL THEWAY ACROSS THE SIDEWALK.
SI: CABBAGE CAN
\qquad .
MI: CRISP CABBAGE CAN

\qquad
VERY QUICKLY.CI: CRISP CABBAGE CAN VERY QUICKLY ALI THE WAYACROSS THE BRICK S $\overline{\mathrm{IDEWA}} \mathrm{IK}$.
BELL
SC: THE WAS RINGING.
MC: THE LOUD CLANGING WAS RINGING.
CC: THE LOUD CLANGING WAS RINGING DOWN THE HALLWAY WHEN WE WENT TO CLASS.
SI: THE

\qquad
HAD A BRANCH.
MI: THE

\qquad
HAD A IONG CROOKED BRANCH.
CI: THE HAD A LONG CROOKED BRANCH GROWING FROM IITHAT TOUCHED THE GROUND.
FIGHT
SC: I WANT TO

\qquad
.
MC: I WANT TO THE MEAN BOY.CC: I WANT TO THE MEAN BOY DOWN THE STREET SO HEWIII SIOP CALLING ME NAMES.

SI: CEREAI CAN
\qquad
MI: CEREAL CAN _ IF SOMEONE LEAVES IT OPEN.
CI: CEREAI CAN IF SOMEONE FORGETS AND LEAVES IT OPEN IN THE PANTRY ALI SUMMER IONG.

NEEDLE

SC: THE \qquad IS SHARP.
MC: THE SEWING _ IS LONG AND SHARP.
CC: THE SHINY SEWING IS LONG AND SHARP ENOUGH TO HURT IF YOU S'IEP ON IT.
SI: I DRANK THE \qquad -
MI: I DRANK THE _ FOR BREAKFAST.
CI: I DRANK THE DELICIOUS INSTANT FOR BREAKFAST AND LUNCH EVERY DAY ILAST WEEK.

BAG

SC: THE _ WAS RIPPED.
MC: THE GROCERY

\qquad
WAS RIPPED IN HALF.
CC: THE BROWN GROCERY WAS RIPPED IN HALF ON THE BOTTOM AND EVERYTHING WAS SPILLING OUT.
SI: I SPANKED THE

\qquad
-
MI: I SPANKED THE

\qquad
WITH A PADDLE.
CI: I SPANKED THE NAUGHTY REALLY HARD WITH A LONG WOODEN PADDLE AND MADE HIM CRY.
APFIE
SC: THE WAS RED.
MC: THE BIG SHINY WAS RED.
CC: THE BIG SHINY WAS RED AND LOOKED SO TASTY I JUST COULDN'T WAIT,ANY LONGER.
SI: THE

\qquad SANG.
MI: THE

\qquad
SANG A SONG FOR US.
CI: THE TALENTEDSANG A PRETYY SONG FOR US AT OURIAST PARTY AT MY HOUSE.
FIRE
SC: I IIT THE

\qquad
MC: I LIT THE

\qquad
WITH SOME MATCHES.
CC: I LIT THE WITH SOME MATCHES I FOUND ON THEGROUND NEXT TO THE STREET.
SI: I PAINTED WTIH
\qquad
MI: I PAINTED WITH

\qquad
ON MY BRUSH.
CI: I PAINTED A SILLY PICTURE WITH BLUE ON MY BRUSH AND ON MY FACE.

MUSIC

SC: I PLAYED SOME \qquad .

MC: I PLAYED SOME _ON MY FLUTE.
CC: I PLAYED SOME ROCK _ ON MY BLACK PLASTIC FLUTE FOR MY CIASS.

SI: THE _WAS DROWNING.
MI: THE WAS DROWNING IN THE SWIMMING POOL.
CI: THE WAS DROWNING TN THE SHALLOW END OF THE SWIMMTNG POOL AND NOBODY WAS HELPING.

GRASS
SC: THE _ IS GREEN.
MC: THE IN THE FRONT YARD IS GREEN.
$\begin{array}{ll}\text { CC: } & \text { THE GREEN } \\ \text { SMELIS VERY GOOD. }\end{array}$
SI: THE _ WENT FOR 1 WAIK.
MI: THE WENT FOR A WAIK ACROSS TOWN. .
CI: THE WENT FOR A WALK ACROSS TOWN AND DID NOT COME BACK FOR FIVE DAYS.

CURTAIN
SC: THE IS PRETYY.
MC: THE _ IN FRONT OF IHE WINDOW IS PRETTY.
CC: THE PURPLE IN FRONT OF THE WINDOW IS THE PRETTIEST ONE ITVE EVER SEEN.

SI: THE _ ATE A HAMBURGER.
MI: THE _ATE A HAMBURGER WITH IETTUCE.
CI: THE HUNGRY ATE A HAMBURGER WITH IETTUCE AND TOMATO AND A PICKLE ON THE TOP.

SC：I WRECKED MY＿．
MC：I WRECKED MY＿＿＿WHEN I HIT A POLE．
CC：I WRECKED MY \quad YESTERDAY WHEN I RAN OFF THE ROAD
SI：THE＿READ A POEM．
MI：THE＿READ A POEM ABOUT SPRINGTIME。
CI：THE READ A SHORT POEM ABOUT SPRINGTIME AND SUNSHINE TO THE SMALI GROUP．

IAKE
SC：THE WAS ROUGH．
MC：IHE HIGH WAVES MADE THE ROUGH．
CC：THE HIGH WAVES MADE THE SO ROUGH THAT WE COULDN＇T GO SAILING IN OUR BOAT．

SI：THE＿SPELIED THE WORDS．
MI：THE＿SPELLED THE EASY WORDS WRONG．
CI：THE STUPID
SPELLED ALL TWEITY OF THE EASY WORDS WRONG ON THE LAS＇T IEST．

DISH
SC：THE＿WAS ON THE SHELF．
MIC：THE WAS ON A HIGH KITCHEN SHELT．
CC：THE CLEAN WAS ON A HIGH KIICHEN SHELF NEXT TO THE GLASSES AND IHE BONLS．

SI：THE RAN．

MI：THE＿RAN UP THE STAIRS．
CI：THE RAN UP AL工 THE STAIRS OF THE TAL工 BUILDING AND WAS TOO TIRED TO MOVE．

EAGLE

SC: THE WAS IN THE TREE.

MC: THE

\qquad
WAS AT THE TOP OF THE OAK TREE.
CC: THE BROWN AND WHITE WAS AT THE HOP OF THE OLD OAK TREE IN THE FORESTI.
SI: THE WENT TO A RESTAURANT.
MI: THE

\qquad
WENT TO A FANCY RESTAURANT FOR LUNCH.
CI: THE RICH WENT UPTOWN TO A FANCY RESTAURANTFOR HIS IUNCH WITH HIS FRIENDS.
ICE
SC: GIVE ME SOME

\qquad
-
MC: GIVE ME SOME FOR MY DRINK.
CC: PLEASE GIVE ME SOME MORE TO HELP MAKE MY SOFT DRINK COLDER THAN IT IS NOW.
SI: IHE HAS KNOTS.
MI: THE HAS TIGHT KNOTS IN IT.
CI: THE HAS SOME TIGHT KNOIS IN IT THAT WILL NOT COME UNTIED WITHOU'T.FATHER'S HELP.
COAT
SC: I HAVE A
\qquadMC: I HAVE A NEW WINTER
\qquad -
CC: I HAVE A NEW WINIER THAT HAS FUR ON THE INSIDE AND THE COLLLAR.
SI: THE WAS THINKING.
MI: THE

\qquad
WAS THINKING ABOUT A PROBLEM.
CI: THE WAS THINKING ABOUT HOW TO SOLVE A HARDARITHMEIIC PROBLEM.

HOG
$\mathrm{SC}: \mathrm{THE} \ldots$ IS FAT.
MC: THE _ IS TOO FAT TO RUN.
CC: THE IS TOO FAT TO RUN AND CAN BARELY STAND UP IN HIS PEN.

SI: I MADE MY \qquad .

MI: I MADE UP MY \qquad SO IT WOULD BE NEAT.

CI: I CAREFULJY MADE UY MY
AFTER BREAKFAST SO IT WOULD BE NEAT WHEN I LETHT FOR SCHOOL.

LAUGH
SC: MAKE ME \qquad -

MC: MAKE ME ___ OUT LOUD.
CC: MAKE NE OUT LOUD SO I WILL FEEL HAPPY AND WILL WANTTTO SMILE.

SI: THE MUD.
MI: THE MUD FROM YOUR SHOES.
CI: THE MUD FROM YOUR SHOES BEFORE YOU COME INTO THE HOUSE AND MAKE A MESS.

HAMMER
SC: PUT THE ___ AWAY.
MC: PUT THE \qquad AWAY IN THE WORKBENCH.

CC: PUT THE AWAY IN THE WOODEN WORKBENCH BEFORE YOU HIT YOURSELF WITH IT.

SI: THE ___ FOLDED THE DIAPER.
MI: THE __ FOLDED THE DIAPER AND PUT IT AWAY.
CI: THE FOIDED THE DIAPER AND PUT IT AWAY IN THE DRAWER WITH THE POWDER, PINS, AND SOAP.

TOWEI -

SC: HAND ME THE \qquad
MC: HAND ME THE SOFT RED \qquad
CC: HAND NE THE SOFT RED AND I WILL PUT IT IN THE BATHROOM NEXT TO THE TUB.

SI: MIIK THE \qquad
MI: MIIK THE FOUR-LEGGED \qquad -

CI: MILK THE BLACK AND WHITE, FOUR-IEGGED \qquad BEFORE YOU FEED THE CHICKENS.

FALI
SC: HE WILI \qquad
MC: HE WILL_ IF HE IS NOT CAREFUI.
CC: HE WILL AND SKIN BOIH OF HIS BIBOWS AND KNEES IF HE IS NOT CAREFUL ON IHE SLIDE.

SI: EARS CAN \qquad -

MI: EARS CAIT \qquad WHEN THEY WANT TO.

CI: EARS CAN A IOT BETPER WHEN THEY TO FIND OUT A SPECIAL SECREI.

CLOSE
SC: I WILJ \qquad II.

MC: I USED IT LAST SO I WILL \qquad IT.

CC: I USED THE PRERZER LAST OF AJL SO I WILI MAKE SURE THAT I IT.

SI: I WILL THE GRAVY.
MI: I WIII _THE GRAVY WHEN I AM READY.
CI: I WILL THE RICH BUBBLY GRAVY WHEN I AM READY IO SERVE IT TO YOU.

APPENDIX B

INSTRUCTIONS TO SUBJECTS

Orienting Task

I'm going to see how well you can answer some questions about some words and sentences. First, I'll show you and read to you a sentence that has a blank in it-mike this onem and then I will show you and read to you a word on a different card, like this one. I want you to tell me if the big word on the card makes sense if I put it in the blank in the sentence. Let's try this one (pretraining trial 1, question 1). Okay, let's try another one (etc., remainder of pretraining).

Okay, those were just for practice. Now I want you to do the same thing for a lot of words and sentences. Do you think you know what you are supposed to do? Then let's start.

Free Recall
Now I want you to tell me all the big words that you can remember that were on these (point) cards that I showed you. Go ahead, start right now. Filler Task

All right. Now will you point to all of the $3^{\prime} \mathrm{s}$ on this card? All the 4's? 6's? 7's? 2's? 5's?

Cued Recall

Now I'm going to show you the sentences that I showed you before to help you remember some more of the words. I want you to tell me what the word on the card was that went with the sentences that I showed you. Now, what word did I show you when you saw this sentence?

Guessing

Now I'm going to show you some sentences that you haven't seen before and I want you to tell me a word that makes sense in the blank. What word could go in the blank of this sentence?
APPENDIX Ctargets and sentence frames
USED IN EXPERTMENT 2
Pretraining for Complementary
CLOCK
YOU RELL TIME WITH A

\qquad
-
YOU CAN CHEW THE
\qquad -
YOU CAN TELL WHAT TIME IT IS IF YOU CAN SEE THE ON THE WALI.
YOU SHOULD CHEW THE TASTY

\qquad
BEFORE YOU SWALIOW IT.
BABY
YOU MADE THE

\qquad
CRY.
I BENT AND FOLDED THE
\qquad -
YOU MADE THE TINY CRY WHEN YOU PICKED HIM UP.
I BENT AND FOLDED THE SO HE WOULD FIT INTO MY POCKET.
KING
IHE IS IN THE CASTLE.
THE IS IN THE PEACH.
THE FRIENDLY

\qquad
LIVES IN THE HUGE STONE CASTLE.
THE SMALI ROUGH IS INSIDE THE SOFT FUZZY PEACH.
Complementary Orienting Task--List 1
DRESS
Simple-Congruous (SC): GIRLS CAN WEAR A

\qquad
-
Complex-Congruous (CC): GIRLS CAN WEAR A _ WHEN THEYGO TO A PARTY.
Simple-Incongruous (SI): HE WAS A TIRED

\qquad
Complex-Incongruous (CI): AFTER WORKING ALI DAY, HE WAS A VERY TIRED

\qquad
-
CAR
SC: I CAN RIDE IN THE
\qquad .
CC: I CAN RIDE IN THE FRONT SEAT OF THE

\qquad
WHEN WE GO ON TRIPS.
SI: I CAN SWIM IN THE \qquad -
CI: I CNN SWIM IN THE _ UivTII I GET IOO TIRED.
DOG
SC: I HEARD A BARK.
CC: $\begin{aligned} & \text { I HBARD A } \quad \text { BART } \quad \text { IAST NTGHT WHEN I WAS OUT IN THE } \\ & \text { YARD. }\end{aligned}$

SI: I SAW A
 \qquad FRYING.

CI: I SAW A FRYING THE POTATOES FOR SUPPER.

GIIT

SC: PJEASE GIVE HER A

\qquad
CC: PLiAASE GIVE HER A

\qquad
, SINCE IT IS HER BIRTHDAY.
SI: I SPANKED THE
\qquad -
CI: I SPANKED THE
\qquad FOR MAKING IOO MUCH TROUBLE.

S'IOVE

SC: MOTHER LIKES TO COOK ON THE \qquad
CC: MOTher likes to cook fancy menls for the family on THE \qquad
SI: he likes to run in the \qquad -
CI: he likes to run several miles a day in the

\qquad
-
DRAN
SC: SHE WILL
A PICTURE.
CC: SHE WILL
A PICIURE OF A BOWL OF FRUIT.
SI: SHE WILL A TRUST.
CI: SHE WILL

\qquad
A TRUST IN ALIL OF HER FRIENDS.
GUN
SC: DON'T SHOOT THE

\qquad
CC: DON'T SHOOT THE INSIDE THE HOUSE.
SI: IT RAINED A

\qquad
-
CI: IT RAINED A

\qquad
ALI OVER THE CITY.
FLOWER
SC: YOU CAN SMELL THE

\qquad
.
CC: You can smell the

\qquad
fROM ALL THE WAY ACROSS THE
ROOM.

SI: YOU CAN RING THE \qquad .

CI: YOU CAN RING THB \qquad AND I WILL ANSWKR I'I.
PILLOW
SC: I COULD NOT SLEEP ON THE

\qquad
.
CC: I COULD NOT SLEEP ON TPHE

\qquad
BECAUSE IT WAS TOO IUMPY.
\qquad -CI: I DRANK THE
\qquad BECAUSE I WAS VERY THIRSTY.
RAG
SC: USE THAT TO CIEAN IT.
CC: USE THAT

\qquad
TO CLEAN THE FURNITURE IN THE LIVING
ROOM.
SI: THE WENT TO A RESTAURANT.
CI: THP HUNGRY

\qquad
WENT DOWNTOWN IO A RESTAURANT FOR
IUNCH.
GARBAGE
SC: EMPTY THE

\qquad
-
CC: EMPTY THE

\qquad
INTO THE LARGE CAN OUTSIDE.
SI: PLAY BASEBALI WITH THE
\qquad -
CI: LET'S PLAY BASEBALL WITH THE UNTIL IT GETS TOO DARK.
AXE
SC: USE THE TO CHOP.
CC: USE THE

\qquad
TO CHOP SOME WOOD FOR THE FIRE.SI: THE
\qquad WAS THINKING.
CI: THE
\qquad WAS THINKING ABOUT AN ARITHMEIIC PROBLEM.

GLUE

SC: STICK IT TOGETHER WITH THE \qquad
CC: STICK THE TWO PIECES OF PAPER TOGETHER WITH THE \qquad。

SI: READ THE POEM WITH \qquad -

CI: READ THE LONG POEM ABOUT SPRINGTIME WITH A LOT OF -

WRITE

SC: I WILI _ A IETMER.
CC: I WILL _ A LETITER TO YOU WHEN I GO ON VACATION.
SI: CABBAGE CAN _ـ___.
CI: CABBAGE CAN ___ IN THE DIRT.

MONEY
SC: DON'T SPEND THE
CC: DON'T SPEND ALI OF THE \qquad
SI: GO WAIK THE _ـ_
CI: GO WAIK THE_ SO I CAN IEAVE FOR WORK.

SHOVET

SC: HE USED THE _TO DIG.
CC: HE USED THE TO DIG A DEEP HOLE IN THE GROUND.
SI: HE USED THE _TO FISH.
CI: HE USED THE TO TISH FOR CATFISH IN THE MUDDY RIVER.
THROAT -
SC: IT HURTS MY WHEN I SWALLOW.
CC: IT HURTS MY

\qquad
WHEN I SWALIOW BECAUSE I HAVE A BAD
COLD.
\qquad -
SI: I WALKED ON THE
CI: I WALKED ON THE ___ WITH MY BARE FEET.

SPIDER

SC: THE ___ CAN CRAWI.
CC: THE CAN CRAWL UP MY ARM AND I WIUL NOT YELL.
SI: THE _ SWEPT THE FIOOR.
CI: THE _ SWEPT THE FLOOR AND DUSTED THE FURNITURE.
WIND
SC: THE _ WIL工 BLOW.
CC: THE WILL BIOW VERY HARD WHEN THE STORM GETS HERE.
SI: THE GREEN _ IS IN A JAR.
CI: THB GREEN \qquad IS IN A SMALL GLASS JAR IN THE CABINET.
CUP
SC: DON'T DRINK FROM THAT \qquad .
CC: ION'T DRINK FROM THAT ___ IT HAS NOT BEEN WASHED YET.
SI: DON'T PUT KNOIS IN THAT \qquad -
CI: DON'T PUT KNOTS IN THAT \qquad BECAUSE THEY WILI NOT COME UNTIED.
LION
SC: THE ___ GAVE A ROAR.
CC: THE Gave out a loud roar to Scare away the ELEPHANT.SPELLED THE WORDS.
CI: THE STUPID

\qquad
SPELLED ALL THE WORDS WRONG.
GO
SC: PLEASE AWAY.
CC: PLEASE

\qquad
AWAY BECAUSE YOU ARE BOTHERING ME.
SI: THE MOON.
CI: the moon and the stars and you will enjoy them.
COMB
SC: YOUR HAIR.
CC: YOU WILL LOOK A LOT BETTER IF YOU WILL YOURHAIR.
SI: ___ THE ROCK.
CI: THE ROCK SO YOU WILI NOT BUMP INTO IT.
STOOL
SC: SIT ON THE

\qquad
-CC: WHEN WE HAVE SUPPER, YOU WILI SIT ON TLHE
\qquad -
SI: SALT THE \qquad -
CI: SAL'T THE __ SO IT WILL TASTE GOOD TO EVERYONE.
Complementary Orienting Task－－List 2
PITCH
SC：THE BAI工．CC：THE BAL工 TO ME SO I CAN LEARN TO CATCH IT．
SI：THE HOUSE．
CI：

\qquad
THE HOUSE TO ME SO I CAN LEARN TO CATCH IT．
MOUNTAIN
SC：HE WIL工 CLIMB THE
\qquad －
CC：HE WILL CLIMB THE

\qquad
TO THE TOP EVEN IN THE SNOW．
SI：I BOILED THE
\qquad －
CI：I BOILED THE

\qquad
FOR TWO HOURS BEFORE I ATE IT．
JUMP
SC：I CAN ROPE．
CC：I CAN ROPE LONGER THAN ANY OF MX FRIENDS．
SI：PICKLES WILL

\qquad
－
CI：PICKLES WILL

\qquad
BEITER WITH MUSTARD ON THEM．
BELI
SC：THE MAY RING．
CC：THE

\qquad
MAY RING SO SOFTLY THAT YOU WILL NOT HEAR IT． SI：BUTTER THE \qquad －
CI：WHY DON＇T YOU BUTTER THE

\qquad
BEFORE YOU EAT IT．
FIGHT
SC: THEY WIL工
THE WAR.
CC: THE ARMY WILI THE WAR UNTII THEY WIN.
SI: THE HOUSE.
CI: THEY WILI THE HOUSE TOMORROW MORNING.
NEEDIE
SC: SEW WITH THAT

\qquad
-
CC: SEW A SHIRT FOR YOURSELF WITH THAT

\qquad
.
SI: GO TO SCHOOL ON THE
\qquad -
CI: GO TO SCHOOL NEXT TUESDAY ON THE BIG, OLD

\qquad
-
BAG
SC: CARRY THE

\qquad

- ,
CC: CARRY THE BROWN PAPER TO SCHOOL WITH YOU.
SI: PRACTICE THE

\qquad
CI: PRACTICE THE

\qquad
UNTIL YOU CAN DO IT PERFECTLY.
APPLE
SC: PEEL THE
\qquad
CC: MOTHER WILI PEEL THE

\qquad
BEFORE YOU EAT IT.
SI: TALK TO THE

\qquad
-
CI: I WIL工 TALK TO THE

\qquad
UNTIL I HAVE TO LEAVE.
FIRE
SC: THE

\qquad
WILL BURN.
CC: THE IN THE WOODS WILL BURN ALL DAY BEFORE THEY CAN PUT IT OUT.
SI: THE
SANG A SONG.
CI: THE

\qquad
SANG A NEW SONG FOR EVERYONE IN THE GROUP.
MUSIC
SC: LISTEN TO THE -
CC: COME CLOSER TO THE RADIO AND LISTEN TO THE WIIH ME.
SI: SLICE IT WITH THE

\qquadCI: SLICE THE SANDWICHES WITH The Sharp
\qquad -
GRASS
SC: MOW THE
\qquad -
CC: FATHER WILL MOW THE

\qquad
ON SATURDAY.
SI: DRIVE THE
\qquad
CI: DRIVE THE

\qquad
FOR ME WHILE I LOOK AT THE SCENERY.
CURTAIN
SC: THE

\qquad
COVERED THE WINDOW.
CC: THE RED

\qquad
COVERED THE LIVING ROOM WINDOW.
SI: THE \qquad WASHED HIS HAIR.
CI: THE \qquad WASHED HIS HAIR WITH A HEW KIND OF SHAMFOU.

BIKE .

SC: PEDDIE YOUR _ـ_
CC: IF YOU PEDDLE YOUR ___ HARDER YOU WILL GO FASTER.
SI: DON'T MARRY THE \qquad
CI: DON'T MARRY THE \qquad UNLESS YOU KNOW HER WELI.

IAKE
SC: WE SWIM IN THE \qquad
CC: WE IIKE TO SWIM IN THE \qquad WHEN THE SUN IS OUT AND I'T IS WARM.

SI: SCRATCH THE \qquad -

CI: IT ITCHES, SO SCRATCH THE PAINFUL \qquad -

DISH
SC: SHE WILL WASH THE \qquad
CC: SHE WILI WASH THE \qquad AFTER SHE HAS FINISHED EATING.

SI: SHE PAINTED WITH THE \qquad -

CI: SHE PAINTED BEAUTIFULIY WITH THE LONG THIN \qquad -

EAGLE
SC: THE _ CAN FLY.
CC: $\frac{\operatorname{THE}}{\text { GROUND. }}$ CAN FLY AROUND GRACEFULLY WAY ABOVE THE
SI: THE _ USED THE CAMERA.
CI: THE USED THE CAMERA TO TAKE A PHOTOGRAPH.

ICE

SC: WILL MELT.
CC: WILL MELT IF IT STAYS OUTSIDE THE REFRIGERATOR TOO IONG.

SI: THE RAN AWAY.

CI: THE _ RAN AWAY AND WILI NOT COME BACK HOME.

COAT
SC: HIS K_ KEPT HIM WARM.
CC: HIS FUR-LINED_KEPT HIM WARM IN THE WINTER.
SI: THE _ WORKED HARD.
CI: THE WORKED HARD AT THE OFFICE EVERY DAY OF THE WEEK.

HOG

SC: THE GAVE AN OINK.
CC: THE G_ GAVE AN OINK WHEN HE SLID INTO THE MUD.
SI: THE _ PLAYED IHE FIUTE.
CI: THE _ PLAYED THE FLUTE IN THE BIG PARADE。

IAUGH
SC: SHE TICKIED ME AND MADE ME \qquad -

CC: SHE TICKLED MY RIBS AND IT MADE ME ___ SO HARD I COULD NOT STOP。

SI: I CUT OUT A \qquad
CI: I CUT OUY A \qquad WITH MY NEW SCISSORS.

HAMMER
SC: HIT THE NAIL WITH THE \qquad -

CC: hit the nail with the ___ UNTIL IT IS ALI THE WAY INTO THE PIECE OF WOOD.

SI: I SALTED THE \qquad
CI: I SALTED THE _ TO MAKE IT TASTE BETTER.

TOWEL
SC: DRY YOUR HANDS ON IHE \qquad -

CC: WASH YOUR DIRTY hands and then dRy them On the \qquad .

SI: BRUSH YOUR TEETH WITH THE \qquad
CI: bRUSH YOUR teeit and your hair with the pink \qquad -

FALL
SC: DON'T

CC: DON'T TRY TO RUN TOO FAST BECAUSE YOU MIGHT DOWT.

SI: YOUR EAR.
CI: __ YOUR EAR AND IT WILL. WORK A LOT BETTER.

CLOSE
SC: IT TIGHT.
CC: _IT TIGHT SO WE WILL NOT GET COLD.
SI: THE GRAVY.
CI: THE BROWN BUBBLY GRAVY WHEN YOU ARE READY.
Pretraining for Similarity
CLOCK

A WATCH IS LIKE A
\qquad
A SHOE IS LIKE A \qquad .
A WATCH THAT GOES ON YOUR ARM IS SORT OF IIKE A THAT GOES ON THE WAL工.
A NEW, WHITE TENNIS SHOE IS JIKE A SMALI, ANGRY \qquad -
BABY
A _ IS IIKE A CHIID.
A IS IIKE A FROG.
A CUTE LITTLE _IS LIKE A CUTE LITMLE CHILD.
A BIG SLIMY _ IS LIK\& ΛN UGLY GREEN FROG.
KING
A _IS SORT OF LIKE A QUEEN.
A IS IIKE A PEACH.
A FRIENDLY, POWERFUL__ IS LIKE A FRIENDLY, POWERFUL
A DRY, DUSTY IS LIKE A SOFT, FUZZY PEACH.

Similarity Orienting Task-List 1

DRESS

SC: A SKIRT IS SORT OF LIKE A \qquad
CC: A PRETTY RED SKIRT IS SORT OF LIKE Λ PREITY RED \qquad -
SI: A BALIOON IS SORT OF IIKE A \qquad -
CI: A IARGE RED BALLOON IS SORT OF LIKE A DARK RUGGED
\qquad

CAR

SC: A IS SORT OF IIKE Λ IRRUCK.
CC: A BIG HEAVY_ IS SORT OF IIKE A BIG HEAVY TRUCK. SI: A IS SORT OF LIKE A BATHTUB.

CI: A BIG HEAVY_ IS SORT OF LIKE A COLD WHITE BATHTUB.

DOG
SC: A _ CAN SOMETIMES BE A PET.
CC: A LITTLE FURRY_CAN SOMETIMES BE A IITTLE FURRY PET.

SI: A CAN SOMEITMES BE A BANANA.
CI: A MEAN LITTUE ___ CAN SOMETIMES BE A TASTY YELIOW BANANA.

GIFI
SC: A PRESENT IS LIKE A \qquad .

CC: A SURPRISE BIRTHDAY PRESENY IS LTKE A SURPRISE BIRTHDAY \qquad
SI: A WHALE IS IIKE A \qquad
CI: A HUGE BLUE WHALE IS LIKE A BRIGHT METAL \qquad

STOVE

SC: A IS LIKE AN OVRN.

CC: A SQUARE, HOT ___ IS LIKE A SQUARE, HOT OVEN.
SI: A ___ IS LIKE AN UMBRELLA.
CI: A BOUNCY RUBBER __ IS LIKE A SHINY PLASTIC

DRAW
SC: TO _IS LIKE TO PAINT.
CC: LEARNTNG HOW TO _IS LIKE LEARNING HOW TO PAINT.
SI: TO IS LIKE TO SPANK.
CI: LEARNING HOW TO ___ IS LIKE LEARNING HOW TO SPANK.
GUN
SC: A RIFLE IS A \qquad .

CC: A LONG, BLACK RIFLE IS A LONG, BLACK ___.
SI: A SPOON IS LIKE A \qquad .

CI: A POLISHED SILVER SPOON IS LIKE A SICK ACHING \qquad -

FLOWER
SC: A IS A PLANT.
CC: A PRETTY PURPLE ___ IS A PRETTY PURPLIE PLANT.
SI: A _IS A ROPE.
CI: A WI_ WITH WATER ON IT IS LIKE A ROPE WITH KNOTS IN

PILLOW -
SC: A CUSHION TS LIKE A \qquad
CC: A SOFT, FIUFFY CUSHION IS LIKE A SOFT, FLUFFY \qquad -

SI: A POTATO IS LIKE A \qquad -

CI: A BROWN DIRTY POTATO IS IIKE AN OLD BROKIN \qquad -

RAG
SC: A CLOTH IS IIKE A \qquad
CC: A DIRTY OLD CLOTH IS LIKE A DIRTY OLD \qquad。

SI: A LEMON IS LIKE A \qquad
CI: A SMAII SOUR IEMON IS ITKE A JUICY TENDER \qquad -

GARBAGE
SC: TRASH IS LIKE \qquad
CC: A BAGFUL OF MESSY TRASH IS LIKE A BAGFUL OF MESSY - ${ }^{-}$

SI: A JET IS LIKE \qquad -

CI: A BIG, PAST JET IS IIKE A LOOSE, RATTLING \qquad

AXE
SC: AN _IS LIKE A HATCHEP.
CC: A SHARP SILVER _IS IIKE A SHARP SILVER HATCHET.
SI: AN_IS LIKE A BOOK.
CI: A SMALE, ROTTEN \qquad IS LIKE A LONG, EXCITING BOOK.

GLUE

SC: PASTE IS IIKE \qquad -

CC: STICKY WHITE PASTE IS LIKE STICKY WHITE \qquad .

SI: EYES ARE LIKE \qquad -

CI: BIG BROWN EYES ARE IIKE NICE FRIENDLY \qquad -

WRITE
SC: TO PRINT IS SORT OF LIKE TO \qquad .

CC: TO PRINT YOUR NAME IS SORT OF LIKE TO YOUR NAME.

SI: TO BOII IS LIKE TO .
CI: TO BOTI SOME WATER IS LIKE TO ___ SOME WATER.

MONEY
SC: PENNIES ARE \qquad
CC: BROWN COPPER PENNIES ARE \qquad -

SI: DUCKS ARE LIKE \qquad -

CI: QUACKING WHITE DUCKS ARE LIKE IIRED WORN OUT \qquad .

SHOVEL

SC: A IS SORT OF LIKE A RAKE.
CC: A LONG HEAVY_ IS SORT OF LIKE A LONG HEAVY RAKE.
SI: A IS SORT OF LIKE A WAGON.
CI: A HAPPY, EXCITED__ IS SORT OF LIKE A SHINY RED WAGON.

THROAT.

SC: YOUR ___ IS LIKE YOUR NECK.
CC: HAVING A SORE ___ IS LIKE HAVING A SORE NECK.
SI: YOUR __ IS LIKE YOUR ARM.
CI: YOUR LITTILE SQUARE ___ IS LIKE YOUR BIG STRONG ARM.
SPIDER
SC: A IS LIKE A BUG.
CC: A BLACK SCARY
IS LIKE A BLACK SCARY BUG.
SI: A _IS LIKE A CIGARETTE.
CI: A SKINNY, NERVOUS ___ IS LIKE A SMOKY WHITE CIGARETTE.

WIND
SC: A BREEZE IS LIKE A \qquad
CC: A SLOW WARM BRIEEZE IS LIKE A SLOW WARM \qquad .

SI: A CHURCH IS LIKE A \qquad -

CI: A BIG BRICK CHURCH IS LIKE A WEI, SLICK \qquad

CUP
SC: A IS LIKE A GLASS.
CC: A ROUND, SMOOTH ___ IS LIKE A ROUND, SMOOTH GLASS.
SI: A _IS LIKE A FENCE.
CI: A BRAVE, handsome ___ IS LIKE A white wooden fence.
LION
SC: A TIGER IS LIKE A
\qquad .
CC: A MEAN, FURRY TIGER IS IIKE A MEAN, FURRY

\qquad
.
A
\qquad -
CI: A LARGE FRONT YARD IS LTKE A DARK MUDDY \qquad -

GO

SC: TO IS LIKE TO LEAVE.
CC: TO FOR A LONG TIME IS IIKE TO LEAVE FOR A LONG
SI: TO _ IS LIKE TO MIEND.
CI: TO_A SOIID ROCK IS LIKE TO MEND A PAIR OF PANTS.
COMB
SC: A IS SORT OF LIIKE A BRUSH.
$C C: \begin{aligned} & \text { A BLACK PLASIIC } \\ & \text { BRUSH. }\end{aligned}$
SI: A IS SORT OF LIKE A LIGHT.
CI: A RAGGED UGLY_ IS SORT OF LIKE A BRIGHT GLARING
STOOI
SC: Λ IS LIKE A CHATR.
CC: A TALL WOODEN \qquad IS SORT OF LIKE A TAII WOODEN CHAIR.
SI: A IS LIKE A MAP.
CI: A CRISP LEAFY _I IS LIKE A COLORFUL PAPER MAP.
Similarity Orienting Task--Iist 2
PITCH
SC: TO IS TO THROW.
CC: ILEARNING HOW TO IS IIKE LEARNING HOW TO THROW.
SI: TO IS TO LOOK.
CI: LEARNING HOW TO IS LIKE TURNING AROUND TO LOOK.
MOUNTAIN
SC: A HILL IS LIKE A

\qquad
.
CC: A TALI, STEEP HILI IS LIKE A TALI, STEEP

\qquad
-
SI: A BONE IS IIKE A
\qquad
CI: A DRY WHITE BONE IS LIKE A GRAY HAIRY
\qquad -
JUMP
SC: TO HOP IS LIKE TO

\qquad
-
CC: BEING ABLE TO HOP IS LIKE BEING ABLE TO

\qquad
-
SI: TO FOLD IS LIKE TO
\qquad
CI: TO FOLD THE PAPER IS IIKE TO

\qquad
THE PAPER.
BELL
SC: A

\qquad
IS SORT OF LIKE A BUZZER.
CC: A LOUD, NOISY IS IIKE A LOUD, NOISY BUZZER.
SI: A IS LIKE A LOG.
CI: A SAD, UNHAPPY

\qquad
IS IIKE A HEAVY WOODEN LOG.

FIGHT

SC: TO WRESTIE IS IIKE TO \qquad -
CC: TO WRESTIE WITH ANOTHER PERSON IS IIKE TO WITH ANOTHER PERSON.
SI: TO SHINE IS LIKE TO
\qquad -
CI: TO SHINE SOMETHING SMOOTH IS LIKE TO

\qquad
SOMETHING
PURPIE.

NEEDITE
SC: A PIN IS LIKE A \qquad -
CC: A THIN, POINTED PIN IS LIKE A THIN, POINTED

\qquad
SI: A TELEPHONE IS LIKE A
\qquadCI: A SMALI BLACK TELEPHONE IS LIKE A SLOW, LAZY
\qquad
BAG
SC: A IS IIKE A SACK.
CC: A BROWN PAPER IS LIKE A BROWN PAPER SACK.
SI: A IS IIKE A PENCIL.
CI: A LEAFY RED

\qquad
IS IIKE A THIN YELLOW PENCIL.
APPIE
SC: AN

\qquad
IS A FRUIT.
CC: A DELICIOUS RED

\qquad
IS A DELICIOUS RED FRUIT.
SI: AN IS A BRIDGE.
CI: A BUSY WORRIED

\qquad
IS LIKE A SHAKY STEEL BRIDGE.

FIRE

SC: A FLANE IS LIKE A \qquad
CC: A BRIGHT YELLOW FILAME IS LIKE A BRIGHT YELIOW

\qquad
-
SI: A MACHINE IS LIKE A
\qquad
CI: A CLANKY, SHINY MACHINE IS IIIKE A BRIGHT METAL \qquad
MUSIC
SC: A SONG IS IIKE

\qquad
CC: A SLOW, SAD SONG IS IIKE SIOW, SAD

\qquad
-

SI: A SOLDIER IS IIKE \qquad -
CI: A PLASTIC TOY SOIDIER IS IIKE DIRTY, GREASY

\qquad
GRASS
SC: WEEDS ARE IIKE
\qquad
CC: TAII, GREEN WEEDS ARE IIKE TALL, GREEN

\qquad
-
SI: BUTTER IS LIKE
\qquad -
CI: SMOOTH CREAMY BUTTER IS LIKE A BIG SCARY

\qquad
CURTAIN
SC: A IS A SHADE.
CC: A YELIOW AND GREEN IS IIKE A YELIOW AND GREENSHADE.
SI: A SUMMER IS LIKE A
\qquad
CI: A LONG HOT SUMMER IS IIKE A THICK FUDGY
\qquad -
BIKE
SC: A TRICYCIE IS SORT OF IIKE A

\qquad
CC: A FAST RED TRICYCLE IS SORT OF LIKE A FAST RED \qquad
SI: A HAMBURGER IS LIKE A

\qquad
CI: A HAMBURGER WITH IETTUCE AND TOMATO IS LIKE A WITH ARMS AND JEGS.
IAKE
SC: A

\qquad
IS LIKE A POND.CC: A MUDDY, BROWN
\qquad IS IIKE A MUDDY, BROWN POND.
SI: A FOOTBALL IS LIKE A \qquad
CI: A BROWN LEATHER FOOTBALI IS LIKE A IOUD, NOISY \qquad DISH
SC: A

\qquad
IS LIKE A PLATE.
CC: A BLUE AND WHITE

\qquad
IS LIKE A BLUE AND WHITE PLATE.
SI: A IS LIKE A FACE.
CI: A LONG WINDING

\qquad
IS IIKE A HAPPY, SMIJING FACE.
EAGLE
SC: AN IS A BIRD.
CC: A FEATHERED BROWN \ldots IS A FEATHERED BROWN BIRD.
SI: AN IS A FTOOR.
CI: A ROUND, ORANGE

\qquad
IS A CLEAN, WAXED FIOOR.
ICESC: IS SORT OF LIKE SNOW.
CC: COLD, WET

\qquad
IS SORT OF LIKE COID, WET SNOW.
SI: IS SORT OF IIKE HAIR.
CI: MEAN, NASTY

\qquad
IS SORT OF LIKE LONG BROWN HAIR.
COAT
SC: A IS IIKE A JACKET.
CC: A FUR-LINED IS LIKE A FUR-IINED JACKET.
SI: A IS LIKE MACARONI.
CI: A STRONG, HEALTHY

\qquad
IS IIIKE HOT, CHEESY MACARONI.
HOG
SC: A PIG IS LIKE A
\qquad -
CC: A FAT, UGLY PIG IS IIKE A FAT, UGLY

\qquad
-
SI: A FLAG IS IIKE A
\qquad
CI: A RED, WHITE AND BLUE FLAG IS LIKE A BLAACK RUBBER

\qquad
IAUGH
SC: TO GIGGJE IS LIKE TO \qquad -
CC: TO GIGGLE AT SOMETHING FUNNY IS LIKE TO $A T$ SOMETHING FUNNY.
SI: TO FORGET IS LIKE TO \qquad
CI: TO FORGET SOMEBODY'S NAME IS LIKE TO \qquad A BROOM。

HAMMER
SC: A IS SORT OF IIKE A SCREWDRIVER.
CC: A BIG HEAVY _IS SORT OF LIKE A BIG HEAVY
SI: A IS SORT OF LIKE A TEACHER.
CI: A LIGHT, FRILLY_ IS SORT OF LIKE A NICE FRIENDIY TEACHER.

TOWEI
SC: A IS LIKE A FACECLOTH.
CC: A SOFT FUZZY IS IIKE A SOFT FUZZY FACECIOTH.
SI: A IS IIKE A BEE.
CI: AN ANGRY, UPSET _IS LIKE A BUSY IITTIE BEE.

FAII
SC: TO TRIP IS LIKE TO .
CC: TO TRIP DOWN THE STAIRS IS ITKE TO _ DOWN THE STAIRS.

SI: TO GROW IS LIKE TO \qquad
CI: TO GROW A LOT TALLER IS LIKE TO \qquad IN A DITCH. CLOSE

SC: TO _ IS LIKE TO SHUT.
CC: TO A WINDOW IS LIKE TO SHUT A WINDOW.
SI: TO IS LIKE TO SPELI.
CI: TO A GRAVY IS LIKE TO SPELL A WORD.

[^0]: ${ }^{1}$ The rejection region is that of $\mathrm{p}<.05$ for all tests. IWS refers to the mean square error term used for an E.

