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HALL, SEYMOUR GERALD. The Adsorption of Disperse Dyes on Powdered 
Activated Carbon. (1975). Directed by: Dr. Victor S. Salvin. 
Pp. 113. 

The experiments undertaken in order to understand the variables 

which affect the adsorption characteristics of the dye-carbon system 

represented the major experimental part of the investigation. The 

disperse dyes and activated carbon were studied with and without the 

auxiliary chemicals normally present in a dye effluent such as surfac

tants, alkaline salts, acids, and bases. To gain some understanding 

of the dye-carbon adsorption system, six experimental areas were 

investigated. These were: The effects of concentration, the effects 

of pH, the effects of nonionic surfactants, the effects of anionic 

surfactants, the effects of alkaline salts, and the effects of an 

alkaline salt in the presence of a nonionic surfactant. 

Three different classes of disperse dye were chosen for these 

experiments: Disperse Yellow 54, a quinonapthalone type used for batch 

dyeing polyester and polyester blends, Disperse Red 73, a monazo type 

commonly used in thermosol dyeing of polyester fabrics, and Disperse 

Blue 7, an anthraquinone type widely accepted by the carpet industry 

for dyeing nylon carpets. The powdered activated carbon used in this 

study was Hydrodarco C, a lignite type developed specifically for water 

treatment by ICI Incorporated, Wilmington, Delaware. 

Linear Langmuir adsorption isotherms were obtained for Disperse 

Blue 7, Disperse Red 73 and Disperse Yellow 54 at concentration levels 

of 200 ppm, 100 ppm and 50 ppm. Hydrodarco C additions of 0 ppm, 100 

ppm, 300 ppm, 500 ppm, 1,000 ppm and 5,000 ppm were made at each dye 



concentration level. The dye-carbon mixtures were stirred for 24 hours 

at 22°C - 2°C to assure equilibrium and filtered through a Gelman Type 

A glass fiber filter. The samples were then scanned from 700 mu to 

400 mu on a Coleman-Hitachi Model 124 Spectrophotometer to determine 

the maximum absorbance values. The adsorption isotherms were calculated 

from the absorbance data. 

The adsorption characteristics of the dye-carbon system were 

sensitive to changes in pH. As the pH of the system was increased a 

greater amount of dyestuff was removed from solution. This was contrary 

to what normally happened in adsorption reactions and was due to the 

tendency of the dyestuffs to agglomerate as the pH of the system 

increased. 

The addition of Triton X-100, a nonionic surfactant greatly 

reduced the adsorptive capacity of the activated carbon. The surfac

tant solubilized the dyestuff and altered the equilibrium of the dye-

carbon system by competing with the disperse dyestuff for the available 

surface sites on the activated carbon. Low concentrations of Tergitol 

Anionic 4, an anionic surfactant had little or no effect on the capacity 

of the activated carbon to remove disperse dyestuffs from solution. 

The effects of an alkaline salt such as tetrasodium pyrophos

phate (TSPP) on the dye-carbon system was explained by the fact that 

the disperse dyestuffs tended to agglomerate with increasing pH and 

were more easily removed by filtration. The data from the TSPP experi

ments were similar to the data concerning the effects of increased pH 

on the dye-carbon system. However, the combined effects of TSPP and 

Tergitol Anionic 4 produced entirely different results and very little 

dye was adsorbed from solution. 
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Chapter I 

INTRODUCTION 

The textile industry discharges hundreds of millions of gal

lons of water each year and a sizeable portion of this water has been 

termed "ecologically unacceptable" largely due to the coloring matter 

in the discharged effluent. During the past few decades the textile 

industry has attempted to combat its water pollution problems by 

directing its efforts toward developing highly sophisticated biologi

cal waste treatment plants. Little, if any, attention has been given 

to the non or partially biodegradable refractory compounds which pass 

through a biological treatment system relatively unchanged. 

The advent of manmade fibers such as the polyolfins, polya-

mides, polyesters, cellulose acetate, and acrylics created a need for 

a new class of dyestuffs. Besides being hydrophobic these synthetic 

fibers, except for some polyamides and acrylics, were practically 

void of chemical reaction sites. Therefore, the previously known 

dyestuffs which were used for natural fibers were of little practical 

value and a new class of dyestuffs had to be developed. This led to 

the introduction of disperse dyestuffs which brought forth a range of 

colors which could satisfactorily dye the synthetics and opened up a 

new era in textile manufacturing. Although the disperse dyes had 

satisfactory fastness properties they were only slightly soluble in 

water and non-responsive to biological waste treatment processes. 
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The problem is compounded by the fact that the amount of disperse 

dyestuff is increasing rapidly. This is largely due to the consumer 

acceptance of polyester fabrics. In a recent report from the U. S. 

Tariff Commission the amount of disperse dyestuff produced domes

tically in 1973 was over 50 million pounds, which represented a 25.4% 

increase over the 1972 production (1). 

One potential method for treating textile wastes which contain 

large amounts of disperse dyes is with powdered activated carbon. The 

decolorization properties of activated carbon are well known and have 

been utilized for years by many industries to remove colored organic 

compounds from solution. The physical characteristics of the carbon 

such as its large surface area and broad range of physical and chemi

cal properties make it an excellent absorbent for colored organic com

pounds and, theoretically, capable of removing disperse dyes from 

solution. The literature contains numerous examples of activated 

carbon being utilized by the textile industry for color removal. 

However, the majority of uses are concerned with the removal of water 

soluble dyes, such as the direct colors. The few references dealing 

with the removal of disperse dyes have been negative. As recently as 

1974 in a technical article dealing with the decolorization of textile 

mill waste, Woldrnan stated, "Personal communication with suppliers of 

activated carbon indicated, based on their experience, that disperse 

dyes cannot be removed by activated carbon" (2). 

The fact that the literature reports disperse dyes cannot be 

removed by activated carbon is a point of serious concern. It cannot 
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be explained based on what is already known about the chemical/ 

physical characteristics of the dyestuff or what has been reported 

concerning the chemical/physical properties of activated carbon. A 

dye/carbon adsorption system is extraordinarily complex involving a 

multitude of interactions affected by such things as: pH, concen

tration, temperature, time, nature of solute, nature of solvent, 

activation conditions of the carbon and other variables. In order to 

gain some understanding as to why dispersed dyes are or are not 

removed from solution by activated carbon the dye/carbon system 

requires analysis and study, component by component. Research of 

this nature has the capability of providing valuable information to 

the textile manufacturer, dyestuff producer, environmental technolo

gist, and carbon producer. The objectives of the study were: 

1. To determine the adsorption characteristics of disperse 

dyes on powdered activated carbon 

2. To determine the effects of auxiliary substances which 

are normally present in a dye effluent such as surfactants, alkaline 

salt and pH on the adsorption equilibrium of the dye/carbon system 

3. To determine the effects of dye concentration on the 

adsorption equilibrium of the dye/carbon system 

4. To compare the principles of disperse dye sorption on 

hydrophobic fibers with the adsorption of the dye on powdered acti

vated carbon 

The following hypotheses appeared logical and were investi

gated in this study: 
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1. The adsorption of disperse dyes on powdered activated 

carbon follows physical adsorption laws and can be characterized by 

adsorption isotherms. 

2. Deviations from the physical adsorption laws occur as the 

dye/carbon system becomes more complex by the addition of surfactants, 

alkaline salt, acids, and bases. 

3. Disperse dyes exist in equilibrium with the powdered 

activated carbon. 

4. The presence of surfactants change the equilibrium char

acteristics of the dye/carbon system in relation to the solubilization 

effect of the surfactant with the dye. 

5. The structural characteristics of the dye influence the 

adsorption equilibrium of the dye on the carbon. 
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Chapter II 

LITERATURE SURVEY 

Pollution Legislation 

Although pollution laws were in existence prior to 1900, it 

was not until 1972 when the Water Quality Act was passed that Congress 

began giving some serious attention to the increasing evidence of 

water pollution. The Water Quality Act of 1972 is the most compre

hensive and restrictive federal legislation that has been passed on 

water pollution control. As stated in Declaration of Goals and 

Policy, "the objective of this Act is to restore and maintain the 

chemical, physical and biological integrity of the Nation's waters." 

Three major policies which directly affect industrial discharges are 

set forth in Title I of the Act: 

1. It is the national goal to eliminate the discharge of 
pollutants into navigable waters by 1985. 

2. It is the national goal to achieve interim water quality 
goals by July 1, 1983, to protect and promulgate fish, shellfish 
and wildlife. 

3. It is the national policy to prohibit the discharge of 
toxic pollutants in toxic amounts. 

It is mandatory that industry comply with the intent of these policies 

and implement them in accordance with the best technology which is 

currently available. Lund and Koski constantly underscore this point 

(3, 4). 
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Textile Industry Profile 

There are approximately 800 textile mills in the United States 

and nearly 80% are operated by small, independent, and frequently, 

family controlled companies. The industry can be divided into three 

broad categories which typify the products produced. These are Cotton 

Goods, Wool Goods, and Synthetics (5). 

Textile manufacturing utilizes approximately 1% of all water 

consumed for manufacturing in the United States. This represents 12 

trillion gallons of water per year. Although this is not a large 

amount of water when compared with other industries, it is significant 

for the following reasons: 

1. The industry remains concentrated in the Southeastern 

United States dependent on inland water supplies which are variable 

due to climatic and seasonal changes. 

2. The industry is located predominantly in small cities and 

towns and represents a major source of industrial pollution to these 

areas. 

3. The industry is characterized as consisting of numerous 

dyeing and finishing operations handling a diverse range of textile 

products. 

Color Contamination 

The significant advances made toward improving the fastness 

properties of textile dyestuffs has not been without some limitations. 

Many of the physical and chemical properties of the dyes which made 

the dyes resistant to fading and wash-down also made the dyes resistant 
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to common waste treatment systems. The technology which created a 

better dye, created a dye which was difficult to remove from a textile 

waste stream. 

As pointed out by Nemerow (6), the removal of dyestuff from 

textile waste streams is important because the dye contamination is 

visible. Although the coloration of a water supply may not be harmful 

it is objectionable to anyone using the water or to viewers of a 

stream receiving textile dye effluent. The approximate quantity of 

dye waste produced per year may be estimated based on the fact that 

approximately two-thirds of the dyes consumed annually in the United 

States are used by the textile industry to dye fibers, yarns and 

fabrics. In 1973 the total domestic production of dyes amounted to 

284 million pounds, an increase of 21 million pounds from 1972 (7), 

therefore, the textile industry utilized approximately 190 million 

pounds of dye in 1973. Since approximately 10% of the dye ends up 

ultimately in the waste stream, 19 million pounds of dye must be 

treated prior to being discharged. This estimate clearly indicates 

that dye removal is an industry-wide problem. 

In the textile industry the most widely used method for treat

ing dye waste is in most instances biological (8, 9). Whether or not 

this method is the most effective for color removal is debatable and 

the basis for much needed research. The most optimistic color removal 

efficiencies to date range from 20 to 80% for carefully controlled 

biological treatment systems. Alspaugh (10) has stated that the more 

sophisticated the biological treatment system, the more color removed. 
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However, it has recently been pointed out by Flege (11) that although 

biological treatment methods can degrade selected dyestuffs the degra

dation products may be more toxic than the dye themselves. Other 

physical and chemical methods reported in the literature for color 

removal include such processes as: wet air oxidation (12), foam 

fractionation (13), chemical coagulation (14, 15, 16, 17, 18), high 

energy irradiation (19), activated carbon columns (20, 21, 22, 23, 

24), activated silica (25), and the use of hyperfiltration (26). 

Uses of Carbon for Color Removal 

Activated carbons are currently used in the chemical and 

pharmaceutical industries as a purification procedure. Carbons are 

also utilized to clean contaminated liquids so that the reuse of 

electroplating solutions, dry cleaning solvents and cooking oils has 

been made possible. The ability of activated carbon to remove odor 

and taste from potable water has created new markets for carbon by 

many water treatment plants throughout the United States. Undoubtedly 

there are hundreds of uses for activated carbon, many of which are 

propriatary steps in a manufacturing process and are difficult to 

ascertain. It is known that uses for activated carbon extend all the 

way from the selective adsorption of penicillin in the pharmaceuticals 

industry to the purification of distilled liquors in the beverage 

industry (27). 

An exceptional characteristic of activated carbon is its 

ability to decolorize solutions containing colored organic compounds. 

For this reason the textile industry has been experimenting with 



activated carbon for dye removal. One of the first industrial instal

lations for removing color from textile dye waste with activated 

carbon was at Hollytex Mills, a carpet producer in Southhampton, 

Pennsylvania (28). At the 1974 American Association of Textile 

Chemists and Colorists Technical Conference in New Orleans, the Hanes 

Corporation announced plans for the installation of a carbon adsorp

tion system for removing textile waste at their Winston-Salem plant 

(29). Recently, J. M. MacCrum (30) and E. L. Shunney (31) have con

sidered the use of activated carbon for textile dye waste. However, 

some published work has indicated possible limitations with activated 

carbon. Alspaugh (32) reported erratic removal rates with activated 

carbon blaming colloidal solids as a possible cause. Rodman (33) 

could only remove 10% or less of disperse dye with activated carbon 

while high removal efficiencies were obtained for such water soluble 

dyes as Reactive Red 3, Direct Blue 106 and Acid Black 26A. In a 

recent article, Woldman (34) further substantiated the belief that 

disperse dyestuffs cannot be removed by activated carbon. Woldman 

arrived at this conclusion not through analytical experimentation but 

through personal contacts with several carbon producers. 

Carbon Characterization 

Activated carbons are characterized as having a large surface 

area which may be as large as 2,500 m2/g (35). The large surface area 

is the result of thermal oxidation in an atmosphere of air, carbon 

dioxide, or steam at temperatures approaching 1,000°C. As combustion 

proceeds, a preferential oxidation occurs causing a highly irregular 
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surface which is responsible for the unusually large surface area of 

the carbon. This irregular surface can be classified into two 

systems, depending upon the size of the resulting irregularity (pore). 

The large pores are termed macropores and completely permeate each 

particle acting as large access ways for diffusion. Although the 

existence of these macropores is a well known characteristic of acti

vated carbon, the macropores contribute very little to the adsorptive 

properties of the carbon. It is the macropores which have diameters 

in the order of 10-100 angstrom units that are extremely important for 

color removal (36). In an article on the steriochemistry of disperse 

dyes, Merian (37) stated that a typical disperse dye of molecular 

weight 300 is similar in size to a disk with a 12 angstrom average 

diameter which is within the range necessary for adsorption on acti

vated carbon to take place. The type of adsorption which takes place 

due to the relative size of the adsorbed molecules and the pore size 

of the activated carbon is termed physical adsorption and usually 

results in the formation of relatively weak dispersion forces or of 

van der Waals forces between the carbon and the adsorbed molecules. 

However, according to Snoeyink and Weber (38), any interpretation of 

the adsorptive behavior of activated carbon based solely on the pore 

characteristics and distribution obviously is incomplete. This is 

substantiated by Wolf (39) who has shown the existence of inorganic 

salts on the activated carbon surface and has indicated that inter

actions could result between the inorganic salt and the molecules 

being adsorbed. Possible interactions between the inorganic salts on 
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the activated carbon and the dye or other solution constituents 

include complex formation, ion-pair formation, precipitation reactions 

and oxidation-reduction reactions. 

Oxygen constitutes 2 to 25% by weight of the activated carbon 

depending upon the temperature and method of activation. Studies by 

Harker (40) showed that the oxygen interacts with unpaired electrons 

to form oxygen complexes on the surface of the activated carbon. An 

interpretation of this phenomenon was proposed by Barrer (41), who 

found that the oxygen complexes alter the adsorption characteristics 

of the carbon which tends to increase the polarity of the surface. It 

is therefore reasonable to assume that compounds which have a natural 

tendency to form free energy bonds with oxygen, such as disperse dyes, 

probably adsorb more easily on oxygenated surfaces than on non-

oxygenated surfaces. The surface of activated carbon is extremely 

complex and difficult to characterize, and both physical and chemical 

forces are responsible for the adsorption of organic molecules on the 

activated carbon surface. 

Similarities Between Activated 
Carbon and Synthetic Fibers' 

It should be noted that there are certain morphological simi

larities between the structure of activated carbon and synthetic 

fibers. Carbon has the ability to remove color molecules from solu

tion in much the same way as a fiber removes dye molecules from 

solution during the dyeing process. The adsorption of dyes onto 

fibers has been studied by Turner and Chanin (42) and can be explained 
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by using adsorption isotherms and studying reaction rates. Hassler 

(43) has shown that the adsorption characteristics of activated car

bon with organic dye molecules can also be explained in terms of 

adsorption isotherms and rates of reaction. 

The porosity or pore structure of activated carbon is a unique 

property of this material. As mentioned previously, at least two 

systems of pores of distinctly different sizes exist in every acti

vated carbon particle. Textile fibers can also be considered to have 

a porous type of surface somewhat dependent upon the crystalline and 

non-crystalline regions of the fiber. Since the micropores of acti

vated carbon are similar in size to some of the molecules which are 

responsible for color in various materials, the pore dimensions assume 

considerable importance. A carbon with very fine pores will adsorb 

small molecules while leaving the larger ones behind in solution. Or, 

on the other hand, a carbon with large pores will preferentially 

remove large molecules while the smaller ones are displaced by the 

more adsorbable larger species (44). This phenomenon has also been 

observed in textile fibers. Permeability measurements by Morton (45) 

indicated that dry viscose is impermeable to molecules of ethanol, 

benzene, and picric acid, although these substances readily passed 

through wet viscose. The pores in the dry state must, therefore, be 

less than five angstroms while in the water-swollen state the average 

diameter was calculated to be approximately 20 to 30 angstroms. 

Much of the adsorptive action of activated carbon can be 

explained in terms of attractive forces exerted by the enormous sur

face area within each particle (46). These forces are similar to the 
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short range dispersion forces found in textile fibers known as van der 

Waals forces. Van der Waals forces, although relatively weak when 

compared to chemical bond energies, are responsible for many proper

ties of textile fibers and activated carbon. In textile fibers and 

activated carbon both chemical and physical adsorption can occur 

simultaneously. Furthermore, a classification of physical or chemical 

may be arbitrary depending upon which properties are measured. Active 

carbons and textile fibers are not pure substances and contain meas

urable quantities of chemically bound oxygen, hydrogen and other 

elements. The presence of chemical groups such as carboxyl, carbonyl, 

methyl, methoxy or hydroxyl attached to the surface accounts for the 

small amount of ion exchange effect and hydrogen bonding which has 

been observed in activated carbon and is greatly responsible for the 

dyeability of textile fibers. No simple description can explain all 

the observed experimental data for either the adsorption of organic 

molecules on activated carbon or the dyeing of a textile fiber — both 

are complex systems with a multitude of possible interactions (47, 48). 

Dyeing Theory 

The theory of dyeing synthetic fibers with disperse dyes can 

be considered as a reaction occurring between a hydrated dye molecule 

in solution and a fiber substrate. The dye molecules are attracted to 

the fiber by polar forces and become attached to the fiber surface 

through water molecules which link dipoles in the dye to dipoles in 

the fiber. Wegmann (49) proposed that once the dye molecule reached 

the fiber surface the hydrophobic non-polar part of the dye molecule 

can interact further with the polar surface of the fiber. 
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The mechanism of dyeing involves the adsorption of the dye 

from its water solution. Disperse dyes are characterized by their 

limited water solubility. According to Salvin (50) the water solu

bility of disperse dyes vary from 5-100 mg/1 and are largely present 

in the dyebath as a water dispersion with a particle size of 1-2 

microns. The relationship between aqueous solubility and dyeing 

properties was studied by Bird (51), who postulated that very low 

aqueous solubility resulted in slow dyeing, but a low rate of dyeing 

did not necessarily indicate low aqueous solubility. Koshti (52) 

explained the earlier work by Bird. He determined that the build-up 

of dye within the fiber was dependent upon the solubility of the dye 

and the rate of diffusion of the dye into the fiber. Dyes with very 

low solubilities had only a small portion of dye available for adsorp

tion while dyes with very high aqueous solubilities tended to remain 

in the dyebath. Both extremes altered the partition coefficient of 

the dye/fiber system and greatly reduced the percentage of dye 

exhausted on the fiber. 

The theory and mechanism of dyeing synthetic fibers with dis

perse dyes cannot be complete without some discussion of surfactants. 

A disperse dyebath always contains dispersing agents which are sur

factants or closely related compounds. These substances according to 

Bird (53) have a solubilizing effect on the disperse dyes. The dis

perse dye can be considered to dissolve in the surfactant, hence a 

competition develops between the detergent and the fiber for the dye. 

This competition increases the amount of dye in solution which 
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decreases the partition coefficient and the percentage of dyebath 

exhaustion. Usually the surfactant exerts a retarding action on the 

dyeing system but the surfactant can also increase the rate of dyeing 

for dyes which do not readily dissolve in water by facilitating dis

solution of the solid dye particles. 

Adsorption Isotherms 

The adsorption of a dye from solution onto activated carbon 

can be considered to be a distribution of dyestuff between a liquid 

(water) phase and a solid (carbon) phase. The ratio of the distri

bution between these two phases then becomes a measure of the position 

of equilibrium during adsorption and is affected by such variables as 

time, temperature, concentration, pH, etc. The preferred means for 

depicting this distribution is the adsorption isotherm (54). 

Langmuir (55, 56) considered the surface of activated carbon 

to be composed of simple spaces each capable of adsorbing one dye 

molecule. He further postulated that all the spaces were equal in 

their affinity for a dye molecule, that one space did not affect the 

forces of the surrounding spaces, and at equilibrium the rate of 

adsorption was equal to the rate of desorption. The Langmuir theory 

requires three basic assumptions: 

1. That maximum adsorption corresponds to a saturated mono

layer of adsorbed molecules on the surface of the carbon 

2. The energy of adsorption is constant for any given system 
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3. Tnere is no movement froia one site to another site on the 

surface of the carbon • y tne adsorbed molecules. The Langsauir adsorp

tion isotherm is derived from tne equation: 

X = kXiaC 
T+RT 

X = grams of aye on caroon oer kilogram of carbon 

k = constant related to the energy of adsorption 

C = concentration of oye in solution in grams per liter 

XCT = grans of dye on carbon per kilogram of carbon in forming 

a cosnplete monolayer on tne caroon surface 

Inverting the equation it can oe expressed linearly as: 

_L = __L + _L 
X kXrnC XM 

An equation wnicn is sometimes rrwre useful than the Langmuir 

equation from an empirical standpoint is tne Freundlich (57) or van 

Sesmelen equation mica, because of its simplicity, nas been utilized 

for many years to define tne adsorption parameters of activated car

oon. The equation is: 

x = kCn 

ra 

x = the amount of dye adsorbed on the carbon 

in = mass in grams of caroon 

C = concentration of dye in solution in grams per liter 

k 6 n = constants whicn can be determined by extrapolation 

when plotting a log-log graph of the data 
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A linear log-log relationship can be expressed by the equation: 

1°9 x = log k + n log C 
m 

so that n is the slope of the line and k is the antilogarithm of the 

intercept. According to Freundlich, the amount of dye adsorbed 

increases indefinitely with increasing concentration. 

Other theories have been developed to explain the more com

plete adsorption process that leads to multilayer formation. The most 

important of these theories was presented by Brunauer, Emmett, and 

Teller, known as the BET theory (58). Both the Langmuir and the BET 

theory make the assumption of uniform energies of adsorption on the 

surface. For adsorption from solution the BET theory makes an addi

tional assumption that layers of sorbate beyond the first have equal 

energies of adsorption. The BET equation is expressed as: 

X = AC 
1m (Cs-C) 1+(A-1) C 

cs 

X = grams of dye on carbon per kilogram of carbon 

Cs = saturation content of the dye 

C = measured concentration of dye in solution at equilibrium 

Xm = grams of dye on carbon per kilogram of carbon in forming 

a complete monolayer on the carbon surface 

A = constant expressive of the energy of interaction with the 

surface 
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Chapter III 

EXPERIMENTAL PROCEDURE 

Carbon Selection 

Different grades of powdered activated carbons are capable of 

producing pronounced variations in their removal properties. There

fore, it was necessary to screen out the least effective carbons in 

order to determine which was most suitable for further experimenta

tion. The powdered activated carbons evaluated in this study were 

Hydrodarco 3000, Hydrodarco 4000, Hydrodarco H and Hydrodarco C 

which were obtained from I CI America Incorporated, Wilmington, 

Delaware. The carbons were developed specifically for water treat

ment and were produced in the United States from virgin lignite, a 

variety of coal similar to peat and bituminous. 

A five gallon composite sample of effluent was obtained from 

a textile dye waste disposal plant located in Greensboro, North 

Carolina. This particular plant treats approximately three million 

gallons of waste water per day from a commission dyeing and finishing 

plant, a denim manufacturing plant and from a vertical flannel mill. 

The effluent was considered to be typical of biologically treated 

textile waste and likely contained a mixture of dyes including 

indigoids, vats, disperse, sulfurs, pigments and directs. Addition

ally durable press resins, salts, dispersing agents, scouring agents 

and organophosphorus materials were also present. The effluent was 

used for this entire series of experiments. 
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Three concentration levels of powdered carbon were evaluated: 

1,000 ppm, 3,000 ppm, and 5,000 ppm. The four adsorption parameters 

which were investigated included nitrogen removal, phosphorus removal, 

color removal and chemical oxygen demand removal. Although the major 

thrust of the experiment was concerned with dye adsorption or color 

removal, it was decided in this preliminary study to investigate these 

other parameters in order to obtain a clearer picture of the adsorp

tion process. Furthermore, it was hoped that this additional experi

mental data might stimulate future researchers in this area. 

A weighed amount of carbon was slowly transferred to a 300 ml 

beaker containing 250 ml of waste water. The solution was constantly 

stirred during carbon addition to assure that the carbon was com

pletely wetted out and homogeneously dispersed. The beakers were then 

placed on a gang stirrer at a low speed setting for 24, 48 and 72 

hours at a temperature of 22°C - 2°C. The long stirring times were 

chosen in order to obtain equilibrium conditions and to determine the 

maximum adsorption efficiencies of the carbons. The contents of the 

beakers were filtered through a 47 mm Gelman Type A glass fiber filter 

and analyzed according to the following test procedures. 

1. Nitrogen. The classical Kjeldhal method determines 

organically bound nitrogen in the trinegative state (59). Two hundred 

milliter samples were poured into 500 ml Kjeldhal flasks containing 

10 ml of concentrated sulfuric acid, 6.7 gm of potassium sulfate, 

1.5 ml of mercuric oxide and three or four boiling beads to prevent 

excessive bumping during digestion. The samples were carefully mixed, 



placed under an exhaust hood and heated until the solutions cleared. 

Digestion was allowed to proceed for an additional 30 minutes before 

removing and cooling in an ice bath. The samples were then diluted 

to 300 ml with distilled water to which 0.5 ml of phenolphthalein 

indicator and 50 ml of a previously prepared solution of sodium 

hydroxide-sodium thiosulfate were added. The samples were distilled 

into boric acid indicating solution and titrated with 0.02 N sulfuric 

acid to a pale lavender color. 

2. Phosphorus. The analysis for phosphorus involved two 

separate procedures: Conversion of the organic phosphorus compound 

to the soluble orthophosphate form, and a colorimetric determination. 

Fifty milliliter samples were pipetted into digestion flasks contain

ing 1 ml of concentrated sulfuric acid and 5 ml of concentrated nitric 

acid. The samples were placed under an exhaust hood and allowed to 

digest until colorless and fumes of sulfur dioxide were evolved. 

After digestion the samples were cooled and the pH was adjusted to a 

range of 4-10 with 50% sodium hydroxide. Thirty-five milliliter sam

ples were pipetted into 50 ml volumetric flasks and 10 ml of a pre

viously prepared vandate-molybate reagent was added. The samples were 

brought to the 50 ml mark on the flask with the addition of distilled 

water and allowed to set for approximately 10 minutes to assure proper 

color development. After color development the samples were analyzed 

on a Coleman-Hitachi Model 124 Spectrophotometer at a wavelength set

ting of 440 mu. 



3. Color. Since the samples contained a mixture of textile 

dyes and chemicals it was decided to obtain complete spectra curves 

for each sample and add the absorbances at 450 mu, 550 mu, and 650 mu 

as an indication of the total color in the samples. A Coleman-Hitachi 

Model 124 Spectrophotometer was used to scan the samples from 700 mu 

to 400 mu at a slit width of 0.5 inu. Absorbance was read directly 

from the spectra curves. 

4. Chemical oxygen demand. The chemical oxygen demand (COD) 

is a measure of the oxygen equivalent of that portion of the organic 

matter in a sample which can be oxidized by a strong chemical oxidant 

(60). Five milliliter samples were pipetted into 250 ml flasks con

taining 25 ml of dichromate oxidizing solution (potassium dichromate, 

concentrated sulfuric acid, concentrated phosphoric acid). A small 

amount of silver sulfate and mercurous sulfate was added to each 

sample. The samples were then placed on a hot plate and slowly heated 

to 165°C. After cooling, the samples were titrated with a previously 

prepared ferrous solution of 0.05 N ammonium sulfate in the presence 

of ferrion indicator. 

Carbon Characterization 

A common practice of activated carbon suppliers is to provide 

some chemical and physical data to differentiate between various types 

and grades of carbon. The data is extremely helpful as it allows the 

researcher to narrow down the carbon selections to the few which appear 



promising instead of randomly choosing carbons and wasting much time 

and effort. In this study the data led to the selection of Hydrodarco 

3000, Hydrodarco 4000, Hydrodarco C and Hydrodarco H for the initial 

screening experiments. However, after the best carbon had been 

selected experimentally it was necessary to further characterize the 

carbon with the following tests: 

1. Apparent density. The apparent density is defined as the 

weight of carbon per unit volume expressed in grams per liter or 

pounds per cubic foot. Ten grams of carbon were carefully poured into 

a dry 100 ml graduated cylinder. The bottom of the cylinder was gently 

tapped until the carbon stopped settling and this was recorded in 

milliliters of packed carbon volume (61). The density was calculated 

from: 

Apparent density (pounds per cubic foot) = 624 
packed volume 

or 

Apparent density (grams per liter) = 10 x 100 
packed volume 

2. £H_. The pH of the carbon is defined as the pH of a sus

pension of a carbon in distilled water. A 2 gm sample of carbon was 

stirred at low speed for 24 hours in 50 ml of distilled water. After 

allowing sufficient time for the carbon to settle, the pH was deter

mined with a Model 701 Orion pH meter. 

3. Iodine number. The iodine number of activated carbon is 

defined as the amount of iodine adsorbed by 1 gm of carbon at an 

equilibrium filtrate concentration of 0.02 N iodine. The iodine 
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number provides some insight into the surface characteristics of the 

carbon. The principle of the method is that iodine in aqueous solu

tion is adsorbed by activated carbon (62). After filtration the 

iodine remaining in the filtrate is back titrated with standard sodium 

thiosulfate. The reaction is: 

1 2 + 2  N a 2 S 2 0 3  ^  2  N a l  +  N a 2 S 4 C > 6  

A 0.4 gm sample of oven dried carbon was placed in a 150 ml 

beaker. The carbon was completely wetted with 10 ml of 5% hydrochloric 

acid. One hundred and fifty milliliters of previously prepared stock 

iodine solution (2.70-2.75 gm of iodine and 4.05 gm of potassium iodide 

per liter of distilled water) was added to the beaker and the solution 

was homogeneously mixed. The solution was then filtered and titrated 

with 0.01 N solution thiosulfate. 

4. Specific surface area. A quantity of nitrogen from a 

known mixture of nitrogen and an inert nonabsorbable carrier gas was 

adsorbed on the surface of the activated carbon. The thermal conduc

tivity of the gas mixture was measured to indicate the adsorption and 

desorption process. The adsorption of nitrogen was carried out at low 

temperature and the desorption of nitrogen was carried out at high 

temperature. Different mixtures of the nitrogen and inert carrier 

were used in order to develop adsorption isotherms of the adsorption 

and desorption process. This test was carried out by the carbon 

producer. 



5. Phenol number. This test was originally developed to 

evaluate carbons for the removal of tastes and odors from drinking 

water supplies (63). The amount of carbon required to reduce the 

phenol concentration in 1,000 ml of water from 0.10 to 0.01 ppm is 

known as the phenol number. This test was carried out by the carbon 

producer. 

6. Molasses number. This test measured the removal of color 

from a standard solution of molasses. The test provided some infor

mation concerning the properties of powdered activated carbon for 

removing high molecular weight organic molecules from solution. This 

test was carried out by the carbon producer. 

7. Moisture and ash content. The amount of moisture in the 

activated carbon and the ash content after combustion was determined 

by Thermal Gravimetric Analysis. By utilizing this technique, the 

changes in the weight of the carbon as a function of both time and 

temperature can be continuously recorded. With the aid of an auto

matic programmer, the temperature was controlled to increase at a rate 

of 80°C per minute from room temperature to 800°C. Prior to testing 

the carbon sample, a temperature deviation curve was determined with 

magnetic standards to calibrate the instrument for the temperature 

range of the activated carbon. The instrument used for this series of 

experiments was a TGS-1 manufactured by the Perkin-Elmer Cornoration. 
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8. Average particle diameter. This is a weighed average 

diameter of a carbon particle and was determined by screen analysis. 

To obtain a value, the average particle diameter was calculated by 

multiplying the weight of each fraction by its average diameter, 

adding the products and dividing by the total weight of the sample. 

The average diameter of each fraction is the size midway between the 

sieve opening through which the fraction had passed and the sieve 

opening on which the fraction was retained (64). 

9. Carbon, hydrogen, nitrogen analysis. To further charac

terize the chemical properties of the activated carbon the amount of 

carbon, hydrogen and nitrogen was determined. A Hewlett Packard Model 

185 CHN Analyzer was used for this work. The principle of operation 

involved the conversion of the activated carbon to nitrogen, carbon 

dioxide and water in the presence of an oxidation catalyst at elevated 

temperatures. The nitrogen and carbon dioxide peaks were used to 

determine the amount of nitrogen and carbon in the sample. The water 

peak was used to calculate the amount of hydrogen. By limiting the 

size of the carbon sample and carefully controlling the burning time, 

temperature and carrier at gas flow rates, the peak height was directly 

proportional to the amount of reaction product and could, therefore, 

be used to calculate the composition of the activated carbon (65). A 

cyclohexand-2,4-dinitrophenylhydrazone standard containing 51.79% 

carbon, 5.07% hydrogen and 20.14% nitrogen was used to calibrate the 

instrument. The calibration constants were computed thusly: 
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Carbon Kc = 51.79 
Measured C Peak Height - Measured C Peak Height 
from Standard from Blank 

Hydrogen = 5.07 
Measured H Peak Height - Measured H Peak Height 
from Standard from Blank 

Nitrogen Kfj = 20.14 
Measured N Peak Height - Measured N Peak Height 
from Standard from Blank 

These constants were used to calculate the oercentage of 

carbon, hydrogen and nitrogen in the activated carbon: 

% N = peak height of activated carbon x Kfj 

Dye Characterization 

Three different classes of disperse dyes were chosen for these 

experiments: Disperse Yellow 54, a quinonapthalone type used for batch 

dyeing polyester and polyester blends, Disperse Red 73, a monoazo type 

commonly used in thermosol dyeing of polyester fabrics, and Disperse 

Blue 7, an anthraauinone type widely accepted by the caroet industry 

for dyeing nylon carpets. According to Muller (66), disperse dyes 

with quinonapthalone, monoazo and anthraquinone structures accounted for 

approximately 78% of all disperse dyes used commercially. In 1968 

approximately 679,000 pounds of Disperse Yellow 54 and apnroximately 

360,000 pounds of Disperse Blue 7 were produced for dyeing synthetic 

fibers. No production figures were available for Disperse Red 73. 

Typical disperse dyes are sold as 30-35% pure dye with 65-70% additives 

such as lignin sulfonate, salts, and related compounds. The aqueous 

% C = peak height of activated carbon x Kc 

% H = peak height of activated carbon x Kh 
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solubility of disperse dyes is less than 100 mg/1 and the dyes tend to 

agglomerate under certain conditions of time, temperature, pH and dye-

bath makeup. The criteria used for the selection of the disperse dyes 

in this study included chemical and physical structure, production 

volume and area of interest. The following parameters were investi

gated in order to characterize the dyes: 

1. Equilibrium time. The time required for a dye-carbon 

system to reach equilibrium had to be determined before any experi

mental work on adsorption could begin. This was necessary because 

all theories of adsorption and dyeing were predicated upon the fact 

that an equilibrium exists between the dye molecule and the substrate. 

The equilibrium time was determined by preparing 100 ppm solutions of 

Disperse Blue 7, Disperse Red 73, and Disperse Yellow 54 and stirring 

with 300 ppm Hydrodarco C at a temperature of 22°C i 2°C. Samples of 

dye were weighed to 0.15 gm and dispersed in 1,500 ml of distilled 

water. Using a graduated cylinder, 250 ml portions of dye were poured 

into six 300 ml beakers to which 300 ppm of Hydrodarco C was added. 

The beakers were placed on a six position stirrer at low speed for the 

required amount of time. Samples were taken for analysis at time 

intervals of 30 minutes, 1 hour, 4 hours, 8 hours, 16 hours, and 24 

hours. The samples were filtered through a Gelman Type A glass fiber 

filter and scanned on a Coleman-Hitachi Model 124 UV-Visible Spectro

photometer from 700 mu to 400 mu. The maximum absorbance values were 

measured and recorded. 
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2. Dye concentration curves. Dye concentration curves were 

determined in order to show the linear relationship between the 

absorbance value obtained spectrophotometrically and the amount of 

dyestuff in solution. Curves were determined for dyestuff concen

trations of 200 ppm, 100 ppm and 50 ppm. Standard solutions of Dis

perse Blue 7, Disperse Red 73, and Disperse Yellow 54 were prepared 

by dispersing 0,20 gm, 0.10 gm, and 0.05 gm of each dye in 1.0 1 of 

distilled water. The dyes were scanned from 700 mu to 400 mu on a 

Coleman-Hitachi Model 124 Spectrophotometer. The maximum absorbance 

values were then plotted against the known concentrations of the dye 

standards. 

3. Dye solubility. The dyeing characteristics of disperse 

dyes are strongly influenced by their solubilities in water (67). 

Since no study concerning disperse dyes would be complete without 

solubility data tne aqueous solubilities of Disperse Yellow 54t Dis

perse Red 73 and Disperse Blue 7 were determined. Solutions of each 

dye were prepared by dispersing 0.05 gm of dye in 500 ml of distilled 

water and stirring to homogeneously mix the solutions. The dyes were 

transferred to 500 ml glass stoppered flasks and placed in a darkened 

area at 22°C - 2°C for b0 days. The flasks were isolated to prevent 

jarring so that the insoluble portion of the dye would settle to the 

bottom of the flask. After 60 days a glass oipette was used to care

fully remove a 5 ml sample of each dye solution. The amount of dye in 

solution was determined spectrophotometrically by converting the 

absorbance values to ppm dye. 



4. Filtration effect. Filtration was necessary to physically 

separate the solid carbon particles from the remaining solution prior 

to spectrophotometric determination. Therefore, the amount of dye 

which was physically removed along with the carbon had to be deter

mined. Standard solutions of 100 ppm Disperse Blue 7, Disperse Red 

73, and Disperse Yellow 54 were made by dispersing 0.10 gm of each 

dyestuff into 1.0 1 of distilled water. Triplicate samples of each 

dye were prepared for analysis by transferring three 250 ml portions 

of each dye to 300 ml beakers and stirring for 24 hours. The dyes 

were then scanned from 700 mu to 400 mu on a Coleman-Hitachi UV-

Visible Spectrophotometer both before and after filtration through 

a Gelman Type A glass fiber filter. The maximum absorbance values 

were converted to ppm dye. 

Adsorption Experiments 

The experiments undertaken in order to understand the adsorp

tion characteristics of the dye-carbon system represented the major 

experimental part of the investigation. The disperse dyes and acti

vated carbon were studied with and without the auxiliary chemicals 

normally present in a dye effluent such as surfactants, alkaline salts, 

acids, and bases. To gain some understanding of the dye-carbon adsorp

tion system, six experimental areas were investigated. These were: 

The effects of concentration, the effects of pH, the effects of non-

ionic surfactants, the effects of anionic surfactants, the effects of 

alkaline salts, and the effects of an alkaline salt in the presence of 

a nonionic surfactant. 
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1. Concentration effects. Concentration levels of 200 ppm, 

100 ppm and 50 ppm were chosen for Disperse Blue 7, Disperse Red 73, 

and Disperse Yellow 54. Hydrodarco C additions of 0 ppm, 100 ppm, 

300 ppm, 500 ppm, 1,000 ppm and 5,000 ppm were made at each dye con

centration level. The dye-carbon mixtures were stirred for 24 hours 

at 22°C - 2°C to assure equilibrium and filtered through a Gelman 

Type A glass fiber filter. The samples were then scanned from 700 mu 

to 400 mu on a Coleman-Hitachi Model 124 Spectrophotometer to deter

mine the maximum absorbance values. The adsorption isotherms were 

calculated from the absorbance data. 

2. pH effects. A concentration level of 100 ppm dyestuff 

and 300 ppm Hydrodarco C was chosen. Standard solutions of Disperse 

Blue 7, Disperse Red 73, and Disperse Yellow 54 were prepared by dis

persing 0.1 gm of dye in 1.0 1 of distilled water. A graduated 

cylinder was used to split each dye into 250 ml portions which were 

transferred to 300 ml beakers to which 0.075 gm of Hydrodarco C was 

added. The pH was varied by small additions of 50% sodium hydroxide 

and 1 N hydrochloric acid. The pH was determined on a Model 701 pH 

meter manufactured by Orion Research. Two standard buffer solutions 

were used to calibrate the instrument prior to analyzing the dye 

samples. The pH of the solution was checked before and after stirring 

for 24 hours at 22°C * 2°C. In order to correlate color removal with 

pH effects the samples were filtered through a Gelman Type A glass 

fiber filter and scanned from 700 mu to 400 mu on a Coleman-Hitachi 

Model 124 Spectrophotometer. The maximum absorbance values were 

converted to ppm dye. 
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3. Nonionic surfactant effects. A concentration of 100 ppm 

dyestuff and 300 ppm Hydrodarco C was chosen. Standard solutions of 

Disperse Blue 7, Disperse Red 73 and Disperse Yellow 54 were prepared 

by dispersing 0.150 gm of dye in 1,500 ml of distilled water. The 

nonionic surfactant used in these experiments was Triton S-100, a 100% 

active product manufactured by the Rohm and Haas Company. The sur

factant is an alkylaryl polyether with the following general formula 

( 6 8 ) :  

R-R-j -(0CH2CH2)x0H X = 8-10 (0CH2CH2) 

A graduated cylinder was used to measure each dye into 250 ml 

portions which were transferred to 300 ml beakers to which 0.075 gm of 

Hydrodarco C was added. To each beaker either 0 ppm, 50 ppm, 100 ppm, 

500 ppm or 1,000 ppm of Triton X-100 was added. The mixtures were 

stirred for 24 hours at 22°C - 2°C to assure equilibrium and filtered 

through a Gelman Type A glass fiber filter. The samples were then 

scanned from 700 mu to 400 mu on a Coleman-Hitachi Model 124 Spectro

photometer. The maximum absorbance values were converted to ppm dye. 

4. Anionic surfactant effects. A concentration of 100 ppm 

dyestuff and 300 ppm Hydrodarco C was chosen. Standard solutions of 

Disperse Blue 7, Disperse Red 73, and Disperse Yellow 54 were prepared 

by dispersing 0.150 gm of dye in 1,500 ml of distilled water. The 

anionic surfactant was Tergitol Anionic 4, a 28% active product manu

factured by the Union Carbide Corporation. The compound is a sodium 

sulfate derivative of 7-ethyl-2-methyl, 4-undecanol (69). A graduated 

cylinder was used to measure each dye into 250 ml portions which were 
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transferred to 300 ml beakers to which 0.075 gm of Hydrodarco C was 

added. To each beaker either 0 ppm, 50 ppm, 100 ppm, 500 ppm or 

1,000 ppm of Tergitol Anionic 4 was added. The mixtures were stirred 

for 24 hours at 22°C ± 2°C to assure equilibrium and filtered through 

a Gelman Type A glass fiber filter. The samples were then scanned from 

700 mu to 400 mu on a Coleman-Hitachi Model 124 Spectrophotometer. The 

maximum absorbance values were converted to ppm dye. 

5. Alkaline salt effects. A concentration of 100 ppm dyestuff 

and 300 ppm Hydrodarco C was chosen. Standard solutions of Disperse 

Blue 7, Disperse Red 73 and Disperse Yellow 54 were prepared by dis

persing 0.150 gm of dye in 1,500 ml of distilled water. The alkaline 

salt used in these experiments was TSPP, a 100% product of tetrasodium 

pyrophosphate commonly used as a buffer in dyeing and finishing pro

cesses. A graduated cylinder was used to measure each dye into 250 ml 

portions which were transferred to 300 ml beakers to which 0.075 gm of 

Hydrodarco C was added. To each beaker either 0 ppm, 50 ppm, 100 ppm, 

500 ppm or 1,000 ppm TSPP was added. The mixtures were stirred for 24 

hours at 22°C - 2°C to assure equilibrium and filtered through a Gelman 

Type A glass fiber filter. The samples were then scanned from 700 mu 

to 400 mu on a Coleman-Hitachi Model 124 Spectrophotometer. The maxi

mum absorbance values were converted to ppm dye. 

6. Alkaline salt/anionic surfactant combined effects. The 

combination of alkaline salt, anionic surfactant and disperse dyestuff 

closely approximates a "real" dyehouse effluent. A concentration of 
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100 ppm dyestuff and 300 ppm Hydrodarco C was chosen. Standard solu

tions of Disperse Blue 7, Disperse Red 73, and Disperse Yellow 54 were 

prepared by mixing 0.150 gm of dye in 1,500 ml of distilled water. A 

graduated cylinder was used to measure each dye into 250 nl portions 

which were transferred to 300 ml beakers to which 0.075 gm of Hydro

darco C was added. To each beaker either 0 ppm, 50 ppm, 100 ppm or 

500 pom of Tergitol Anionic 4 and tetrasodium pyrophosphate was added. 

The mixtures were stirred for 24 hours at 22°C - 2°C to assure equili

brium and filtered through a Gelman Type A glass fiber filter. The 

samples were then scanned from 700 mu to 400 mu on a Colernan-Hitachi 

Model 124 Spectrophotometer. The maximum absorbance values were con

verted to ppm dye. 

Effect of Surfactant on Dyeing Polyester Fabric 

The experiment was undertaken to relate the effects of a non-

ionic and anionic surfactant on the adsorption properties of activated 

carbon, with the dyeing behavior of polyester fabric, A Gaston County 

Model 101 high temperature pressurized beaker bath machine was used to 

dye the fabric. All dyeings were carried out with a 2.0 gm sample of 

100% polyester fabric and 1.0% (owb) Disperse Yellow 54. The experi

mental variables were 0.1% Triton X-100, 0.5% Triton X-100, 1.0% 

Triton X-100, 0.1% Tergitol Anionic 4, 0.5% Tergitol Anionic 4, and 

1.0% Tergitol Anionic 4. The fabric was dyed at 250°F for two hours, 

cooled, rinsed and dried at 220°F. A Bauch and Lomb Model 505 Spectro

photometer with a reflectance attachment was used to evaluate the 

samples. Reflectance curves were obtained for each sample from 400 mu 

to 700 mu. 
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Chapter IV 

RESULTS AND DISCUSSION 

Carbon Selection 

The removal properties of Hydrodarco 3000, Hydrodarco 4000, 

Hydrodarco C and Hydrodarco H are presented in Table 1. The color was 

determined spectrophotometrically from the maximum absorbance value of 

the solution at 450 mu, 550 mu and 650 mu. The high color value of the 

control was due to the composition of the sample which contained such 

a diverse range of dyestuffs as indigoids, vats, disperse, sulfurs, 

pigments and direct colors. All carbons except Hydrodarco 3000, 

appeared to reach equilibrium during the first 24 hours of stirring. 

This is based on the fact that most of the pollutant was removed in 

the first 24 hours and very little was removed from 24 hours to 72 

hours. Hydrodarco 3000 and Hydrodarco 4000 removed far less color 

from solution than Hydrodarco C or Hydrodarco H which reduced the total 

color value of the solution by 86.21% and 75.86% respectively after 24 

hours of stirring. Visually, the Hydrodarco C and Hydrodarco H changed 

the color of the solution from a dark blue to a very pale blue which 

would probably be suitable for discharging to a receiving stream with

out causing aesthetic problems. 

The phosphorus content of the control was largely from the 

flame retardant finishing of cotton and polyester fabrics. These were 

nonbiodegradable organic compounds, some of which were halogenated. 
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Table 1 

The Removal Properties of Various Types 
of Powdered Activated Carbons 

Type of Carbon % Color % Phosphorus % Nitrogen % COD 
Removed Removed Removed Removed 

Stirred 24 Hours 

Hydrodarco 3000 27.59 42.19 23.08 36.36 
Hydrodarco 4000 51.24 43.75 28.85 63.64 
Hydrodarco H 75.86 70.30 59.62 78.79 
Hydrodarco C 86.21 84.38 62.91 84.85 
Control 0 0 0 0 

Stirred 48 Hours 

Hydrodarco 3000 58.62 62.50 0 63.64 
Hydrodarco 4000 37.93 48.44 0 50.76 
Hydrodarco H 72.41 73.44 51.51 84.85 
Hydrodarco C 82.76 79.69 63.46 84.85 
Control 6.90 20.31 0 33.33 

Stirred 72 Hours 

Hydrodarco 3000 58.62 54.69 25.00 66.67 
Hydrodarco 4000 31.03 31.25 3.85 60.61 
Hydrodarco H 79.31 81.25 38.46 69.70 
Hydrodarco C 79.31 85.94 63.46 72.73 
Control 24.14 31.25 0 48.49 
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Other phosphorus compounds making up the control included phosphated 

alcohols, phosphoric acid and various phosphorus containing alkaline 

salts. Since the phosphorus content of the samples were determined 

after chemical digestion it represented both the organic and inorganic 

phosphorus compounds which were present in the textile waste. Hydro-

darco 3000 and Hydrodarco 4000 removed limited amounts of phosphorus 

while Hydrodarco C and Hydrodarco H reduced the levels of phosphorus 

in the waste water by 84.38% and 70.31% respectively after 24 hours of 

sti rring. 

The Kjeldahl nitrogen content of the control was derived 

largely from textile resins such as melamines and glyoxals and other 

organic nitrogen compounds from preparation, dyeing and finishing 

operations. Although all four grades of activated carbon reduced the 

nitrogen content of the samples to some degree, the best was Hydro

darco C, which removed 62.91% after 24 hours of stirring. 

The removal values for the chemical oxygen demand (COD) fol

lowed wnat would be expected from the previous data. Since COD is the 

amount of oxygen needed to chemically oxidize the organic compounds it 

followed that any material which removed organic substances such as 

color, phosphorus and Kjeldahl nitrogen would also reduce the COD of 

the sample. After 24 hours of stirring, Hydrodarco C removed 84.85% 

of the COD. 

This initial series of experiments indicated that Hydrodarco C 

had superior removal properties. From Figures 1-4 it can be seen that 

not only did Hydrodarco C remove more color, phosphorus, nitrogen and 
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COD than did the other carbons, but Hydrodarco C appeared to attain 

equilibrium more rapidly as evidenced by its small change in slope 

after 24 hours of stirring. For these reasons, Hydrodarco C was 

chosen as the adsorption medium for the remainder of the experimental 

work. 

To further demonstrate the versatility of Hydrodarco C at 

lower carbon concentrations, the experiment was repeated with 3,000 

ppm Hydrodarco C and with 1,000 ppm Hydrodarco C. The results for 

3,000 ppm Hydrodarco C stirred for 24, 48 and 72 hours are tabulated 

in Table 2. Again it showed that after 24 hours of stirring Hydro

darco C effectively removed 83.56% of the color, 83.52% of the phos

phorus, 50.59% of the Kjeldahl nitrogen and 82.14% of the COD. The 

results for 1,000 ppm Hydrodarco C stirred for 24, 48 and 72 hours are 

tabulated in Table 3. Except for the amount of color removed from 

solution there was a sharp decrease in the removal efficiency of the 

Hydrodarco C at the 1,000 ppm level. Although 85.14% of the color was 

removed from solution after 24 hours only 18.18% of the phosphorus, 

48.15% of the Kjeldahl nitrogen and 34.62% of the COD was removed. 

This indicates that the organic color molecules tend to be more readily 

adsorbed than some other organic substances and that a competitive or 

preferential adsorption reaction could result when treating a combined 

textile waste with low doses of activated carbon. 

Carbon Characterization 

The chemical and physical properties of the Hydrodarco C used 

in this study are tabulated in Table 4. 
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Table 2 

The Removal Properties of 
3,000 ppm Hydrodarco C 

Sample % Color % Phosphorus 
Removed Removed 

% Nitrogen 
Removed 

% COD 
Removed 

Stirred 24 Hours 

Hydrodarco C 83.56 83.52 50.59 82.14 
Control 0 0 0 0 

Stirred 48 Hours 

Hydrodarco C 84.93 83.52 50.59 81.43 
Control 27.40 27.84 25.88 20.00 

Stirred 72 Hours 

Hydrodarco C 36.30 82.39 56.47 72.86 
Control 24.65 39.40 38.24 50.00 
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Table 3 

The Removal Properties of 
1,000 ppm Hydrodarco C 

Sample % Color % Phosphorus 
Removed Removed 

% Nitrogen 
Removed 

% COD 
Removed 

Stirred 24 Hours 

Hydrodarco C 35.14 18.18 48.15 34.62 
Control 0 0 0 0 

Stirred 48 Hours 

Hydrodarco C 83.78 18.18 50.00 65.69 
Control 0 11.69 12.35 25.00 

Stirred 72 Hours 

Hydrodarco C 33.78 7.79 24.07 76.92 
Control 0 0 0 1.92 
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Table 4 

The Physical and Chemical Properties of 
Hydrodarco C 

Analysis Result 

Tamped Density, grams/milliliter 0.50 - 0.70 

Surface Area, meter2/gram 523 - 550 

pH 10.0 - 10.5 

Molasses RE, dry basis 95 

Water Solubles, percentage 5.5 

Moisture, percentage 5.62 

Phenol Value, dry basis 49 

Ash, percentage 28.4 

Iodine Number, average 583 

Average Particle Size, microns 30 

Particle Count billion/gram 125 

Screen Analysis, percentage 
+ 100 mesh 0.3 

100 x 200 mesh 9.7 
200 x 325 mesh 23.0 

- 325 mesh 67.0 

Carbon, percentage 68.98 

Nitrogen, percentage 0.83 

Hydrogen, percentage 0.96 
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The moisture and ash content of the Hydrodarco C was deter

mined by Thermal Gravimetric Analysis as shown in Figure 5. The y-axis 

represents the weight in milligrams of Hydrodarco C lost during com

bustion and the x-axis represents the increase in temperature from 

ambient to 700°C. The first break in the curve which occurred at 

approximately 100°C was the moisture content of the Hydrodarco C and 

the second break beginning around 550°C indicated the amount of vola

tile organic compounds being evolved during combustion. The remainder 

of the sample represented the ash content which consisted mostly of 

inorganic metallic compounds. 

Determination of Equilibrium Time 

The data in Table 5 indicates that an 3-16 hour stirring time 

was satisfactory for attaining equilibrium. To assure that equilibrium 

conditions were reached, all adsorption experiments were stirred for 

24 hours. It was observed that although the three disperse dyes were 

subjected to the same identical experimental conditions and although 

equilibrium times were approximately the same, the amount of color 

removed from solution was quite different for each dye. The Disperse 

Yellow 54 was reduced 0.004 gm, the Disperse Red 73 was reduced 0.010 

gm and the Disperse Blue 7 was reduced 0.013 gm after 24 hours of 

stirring. This observation will be discussed in detail during the 

interpretation of the adsorption isotherms for the dyes. 
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Table 5 

Equilibrium Data - Grams of Disperse Dye 
Removed from Solution 

Hours Stirred Disperse 
Yellow 54 

Disperse 
Red 73 

Disperse 
Blue 7 

0 0.025 0.025 0.025 

0.5 0.024 0.022 0.020 

1.0 0.023 0.020 0.019 

4.0 0.023 0.016 0.015 

8.0 0.022 0.015 0.013 

16.0 0.021 0.016 0.012 

24.0 0.021 0.015 0.012 
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Determination of Concentration Curves 

The adsorption of the dye onto powdered activated carbon was 

determined by spectrophotometrically measuring the amount of dye 

remaining in solution before and after adsorption had occurred. The 

loss in color was directly proportional to a corresponding amount of 

dye which was adsorbed on the activated carbon. For this assumption 

to be valid there had to be a direct relationship between the concen

tration of dye in solution and the intensity of that solution when 

measured spectrophotometrically. The relationship between the amount 

of light absorbed and the concentration of a dye in solution is given 

by the Lambert-Beer Equation, which can be stated in its simplest form 

as: 

As = asbc 

As = the absorbance of the solution derived from: 

As = log 10 JL 
T 

T = transmittance 

as = constant, dependent upon the wave length 

b = path length 

c = concentration of the solution 

From the data in Table 6 and from the linearity between the 

concentration of the dyestuff and the absorbance values determined 

spectrophotometrically as shown in Figure 6, it followed that Beers 

Law was obeyed over the dyestuff concentration range of 50-200 ppm." 

The adherence to Beers Law indicated that Disperse Yellow 54, Disperse 

Red 73 and Disperse Blue 7 were probably present in molecular solution. 
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Table 6 

The Relationship Between the Concentration of Dye 
in Solution and the Absorbance of Dye 

in Solution 

Concentration (gm/1) Absorbance Value 

Disperse Blue 7 

0.2 1.35 
0.1 0.69 
0.05 0.35 

Disperse Red 73 

0.2 0.68 
0.1 0.35 
0.05 0.18 

Disperse Yellow 54 

0.2 1.05 
0.1 0.55 
0.05 0.26 
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Determination of Dye Solubility 

The aqueous solubilities of Disperse Blue 7, Disperse Red 73 

and Disperse Yellow 54 were in agreement with previously published 

data by Bird (70) for similar disperse dyes. The solubilities were 

23.1 mg/1 for Disperse Blue 7, 11.5 mg/1 for Disperse Red 73 and 

17.8 mg/1 for Disperse Yellow 54. 

Determination of the Filtration Effect 

Since all dye samples were filtered prior to analysis on the 

UV-Visible Spectrophotometer it was necessary to determine how much of 

the aye was physically removed by this procedure. The amount of dye 

removed by filtration was related to the aqueous solubility of the dye, 

molecular size and configuration of the dye molecules, the dispersing 

characteristics of the dye in aqueous media, and the adsorption Drop-

erties of the dye on the glass fiber filter. The average molecular 

size of the dyestuff tended to increase with time when dispersed in 

aqueous media. This was due to molecular aggregation, a common char

acteristic of disperse dyestuffs. From Table 7 it can be seen that 

tnere was a relatively large amount of color physically removed by 

filtration through a Gelman Type A glass fiber filter. The data 

indicates that filtration is one means by which disperse dyestuffs 

can be partially removed from solution. 

Adsorption Experiments 

The adsorption isotherm data for Disperse Yellow 54 at concen

tration levels of 200 ppm, 100 ppr.i and 50 ppm are tabulated in Table 8. 
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Table 7 

The Amount of Dye Physically Removed 
by Filtration 

Absorbance Before 
Filtration 

Absorbance After 
Filtration 

% Dye Removed by 
Filtration 

Disperse Blue 7 

0.80 0.58 27.5 
0.80 0.57 28.8 
0.80 0.57 28.8 

Disperse Red 73 

0.43 0.35 18.6 
0.43 0.36 16.3 
0.43 0.35 18.6 

Disperse Yellow 54 

0.73 0.57 21.9 
0.73 0.55 24.7 
0.73 0.58 20.6 
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Table 8 

Adsorption Isotherm Data - Disperse Yellow 54 

Carbon 
Concentration 

(gm/1) 

Dye 
Concentration 
Remaining in 

Solution (gm/1) 
C 

Dye Adsorbed 
on Carbon 

(gm/1) 
Xm 

Amount of Color 
Removed (%>) 

0.1 
0.3 
0.5 
1.0  
5.0 

200 pprn Initial Dye Concentration 

0.185 
0.172 
0.164 
0.145 
0.102 

150.0 
92.0 
72.0 
55.0 
19.6 

7.5 
14.0 
18.0 
27.5 
49.0 

100 ppm Initial Dye Concentration 

0.1 
0.3 
0.5 
1 .0  
5.0 

0.0903 
0.0835 
0.0741 
0.0645 
0.0360 

97.0 
55.0 
51.8 
35.5 
12.8 

9.7 
16.5 
25.9 
35.5 
64.0 

50 ppm Initial Dye Concentration 

0.1 
0.3 
0.5 
1 . 0  
5.0 

0.0416 
0.0333 
0.0287 
0.0222 
0.0000 

84.0 
55.7 
42.6 
27.8 
10.0 

16.8 
33.4 
42.6 
55.6 

100.0 
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The isotherm data were determined by stirring the Disperse Yellow 54 

with a range of Hydrodarco C additions for 24 hours at a temperature 

of 22°C - 2°C. The concentration of the Disperse Yellow 54 in solu

tion was determined by spectroscopy as previously discussed. The 

experimental data were interpreted according to the Langmuir Adsorption 

Theory and were suDjectea to mathematical treatment by substituting the 

experimental data into the Langmuir Equation. 

1 _L 1 
t~ = mc + 

From Figures 7, 8 ana 9 it is evident that a plot of the recip

rocal of the dye concentration remaining in solution (—1—) versus the 
C 

reciprocal of the dye adsorbed on the carbon (—) indicates a linear 
A 

relationship between these two factors. This relationship proved that 

the physical adsorption of Disperse Yellow 54 on Hydrodarco C, at dye-

stuff concentration levels of up to 200 ppm, was consistent with the 

Langmuir Theory. The fact that Langmuir adsorption was followed indi

cated that maximum adsorption corresponds to a monolayer of dye mole

cules on the carbon surface, the energy of adsorption was constant for 

each experiment, and there was no transmigratory activity of the dye 

on the surface of the activated carbon. 

Adsorption isotherms have been determined for various synthetic 

fibers which have been dyed with disperse dyestuffs. From experimental 

adsorption-desorption data it has been snown that Langmuir adsorption 

was also valid for interpreting a disperse dye/synthetic fiber system 

in much the same way as tne disperse dye-carbon system has been inter

preted (71). The linear adsorption isotherm for disperse dyes in 
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synthetic fibers indicated that the partition coefficient of the system 

did not change with a change in the concentration of the disperse dye. 

This means that over the concentration range being studied, as long as 

a linear adsorption isotherm was obtained then the concentration of the 

dye on the fiber was proportional to the concentration of the dyebath. 

This follows normal solution theory and is expressed by: 

Dye on fiber _ K (Partition Coefficient 
Dye in dyebath 

This same fact holds true for the adsorption of disperse dye 

on powdered carbon. A constant must be obtained for the amount of dye 

on the carbon-amount of dye in dyebath since there was a linear adsorp

tion isotherm for the disperse dye on the carbon over the concentration 

ranges studied. 

There are four stages in the mechanism of dyeing synthetic 

fibers with disperse dyestuffs: Only a snail portion of the disperse 

dye is in the water soluble state, the dissolved dye is adsorbed on 

the fiber surface unirnolecularly in accordance with the Langmuir Theory 

of Adsorption, and the soluble dyestuff migrates from the surface of 

the fiber into the amorphous regions of fiber and the exhausted dye is 

replaced in solution by more disperse dyestuff. The mechanism of 

adsorbing disperse dyes on activated carbon consists of three stages: 

A large portion of the available dye is in the water soluble state due 

to the fact that carbon treatment occurs after dyeing and the water 

soluble dye which is easily removed from the fiber is available to the 

carbon for adsorption, the water soluble dye is adsorbed unirnolecularly 

on the surface of the activated carbon in accordance with the Langmuir 
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Adsorption Theory, and the dye which is removed by adsorption on acti

vated carbon is replaced from the dye reservoir. The fact that dis

perse dyes are of low water solubility accounts for their being present 

in solution in the dispersed state with a particle size of 1-2 microns 

(72). Therefore, it can be stated in general terms that the dyeing of 

synthetic fibers with disperse dyes and the adsorption of disperse dyes 

on activated carbon involves a mechanism of adsorption of the disperse 

dye from its water solution to the solid substrate. The substrate 

being a fiber in the case of a dyeing procedure or activated carbon in 

the case of color removal experiments. The solubility of the dye is 

to a large extent a controlling factor for adsorption equilibria and 

the dyeing of synthetic fibers. In general, it has been observed that 

a direct relationship exists between the extent of adsorption of a 

disperse dye on activated carbon and the solubility of the dye in 

aqueous media. 

From Table 8 it can be seen that the percentage of Disperse 

Yellow 54 which could be removed from solution by Hydrodarco C 

increased with decreasing dye concentration and increased with 

increasing carbon additions. The same phenomenon has been observed 

during the dyeing of synthetic fibers with disperse dyestuffs, for the 

percentage of dye exhausted onto the fiber increased with decreasing 

amounts of dye in solution or with increasing amounts of fiber avail

able for dyeing. At a dye concentration level of 50 ppm, all color 

could be removed from solution with 5,000 ppm Hydrodarco C while at a 

dye concentration level of 200 ppm only 49% of the color could be 

removed with 5,000 ppm carbon. 
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The structure of Disperse Yellow 54 indicates that there are 

some points for hydrogen bonding to take place: 

The hydrogen bonds form in water and must be broken in order 

to reform and be adsorbed on the surface of the activated carbon. The 

production process of powdered activated carbon creates such groups as 

carbonyl and carboxyl on the carbon surface. These groups are some

what unstable and tend to revert to the more stable lactone tautomer 

structure but are still available for hydrogen bonding with the Dis

perse Yellow 54. The reversion toward the lactone tautomer structure 

can be shown as follows: 
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The Disperse Yellow 54 can react with the activated carbon in 

the following manner: 

The adsorption isotherm data for Disperse Red 73 at concen

tration levels of 200 ppm, 100 ppm and 50 ppm are tabulated in Table 9. 

The isotherm data was determined by stirring the Disperse Red 73 with 

a range of Hydrodarco C additions for 24 hours at a temperature of 

22°C - 2°C. The concentration of the Disperse Red 73 in solution was 

determined by spectroscopy as previously discussed. The experimental 

data were interpreted according to the Langmuir Adsorption Theory. 

The data were subjected to mathematical treatment by substituting the 

experimental data into the Langmuir Equation. From Figures 10, 11 and 

12 it is evident that a plot of the reciprocal of the dye concentration 

remaining in solution (—L_) versus the reciprocal of the dye adsorbed 
0 

on the carbon (—i—) indicates a linear relationship between these two 
A 

factors. This dyestuff behaved similar to Disperse Yellow 54 and 

therefore, the previous discussion on Disperse Yellow 54 holds true 
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Table 9 

Adsorption Isotherm Data - Disperse Red 73 

Carbon Dye Dye Adsorbed Amount of Color 
Concentration Concentration on Carbon Removed (%) 

(gm/1) Remaining in (gm/1) 
Solution (gm/1) Xm 

C 

200 ppm Initial Dye Concentration 

0.1 0.1938 62.0 3.1 
0.3 0.1850 50.0 7.5 
0.5 0.1760 48.0 12.0 
1.0 0.1610 39.0 19.5 
5.0 0.1134 17.3 43.3 

100 ppm Initial Dye Concentration 

0.1 0.0875 125.0 12.5 
0.3 0.0764 78.7 23.6 
0.5 0.0631 73.8 36.9 
1.0 0.0590 41.0 41.0 
5.0 0.0307 13.9 69.3 

50 ppm Initial Dye Concentration 

0.1 0.0377 123.0 24.6 
0.3 0.0300 66.7 40.0 
0.5 0.0260 48.0 48.0 
1.0 0.0200 30.0 60.0 
5.0 0.0000 10.0 100.0 
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for Disperse Red 73. The structure cf Disperse Red 73 shows some 

capability for forming hydrogen bonds as shown by: 

The dye can, therefore, combine with the active sites on the carbon 

and be removed from solution in much the same way that Disperse Yellow 

54 was removed. 

Additionally, Disperse Red 73 also has the ability to combine 

with carbon because of dipole-dipole interaction. This is due to the 

unequal attraction for the electrons of different atoms which cause 

some parts of the Disperse Red 73 molecule to be positively charged 

and others negatively charged. When these two charges are separated 

the molecule is said to be a dipole. Snoeyink (73) reported that the 

surface of activated carbon is slightly electronegative and should, 

therefore, be susceptible to dipole interaction with disperse dye 

molecules. The dipole behavior of Disperse Red 73 is shown as follows: 

(-) 

0 
\ 

b 
(->' 

( - )  
( + )^ 0 

ch2-oc ^ 
/ ^ CH-
\ 

ch2-ch2cn 
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The adsorption isotherm data for Disperse Blue 7 at concentration 

levels of 200 ppmt 100 ppm and 50 ppm are tabulated in Table 10. The 

isotherm data were determined by stirring the Disperse Blue 7 with a 

range of Hydrodarco additions for 24 hours at a temperature of 22°C * 

2°C. The concentration of the Disperse Blue 7 was determined by spec

troscopy as previously discussed. The experimental data was inter

preted according to the Langmuir Adsorption Theory. The data were 

subjected to mathematical treatment by substituting the experimental 

data into the Langmuir Equation. From Figures 13, 14 and 15 it is 

evident that a plot of the reciprocal of the dye concentration remain

ing in solution (-i—) versus the reciprocal of the dye adsorbed by the 
V 

carbon (-1—) indicates a linear relationship between these two factors. 
X 

Therefore, the previous discussion on the Langmuir Adsorption Theory 

for Disperse Yellow 54 is also valid for the Disperse Blue 7/Hydrodarco 

C adsorption system. 

The adsorption data showed that Disperse Blue 7 had a greater 

affinity for Hydrodarco C than either Disperse Yellow 54 or Disperse 

Red 73. At most levels of Hydrodarco C and at all dye concentrations 

the amount of Disperse Blue 7 removed from solution was approximately 

double the amount of the other dyestuffs. This phenomenon can be 

related to two main characteristics in the structure of the dyestuff. 

First the dye has a high tendency to form hydrogen bonds through the 

large number of hydroxyl groups present in the molecule. Secondly, 

the anthraquinone structure of the dye tends to present a planar 

configuration to the activated carbon which allows the dye molecule 
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Table 10 

Adsorption Isotherm Data - Disperse Blue 7 

Carbon Dye Dye Adsorbed Amount of Color 
Concentration Concentration on Carbon Removed (%) 

(gm/1) Remaining in (gm/1) 
Solution (gm/1) XM 

C 

200 ppm Initial Dye Concentration 

0.1 0.1664 336.00 16.8 
0.3 0.1144 285.30 42.8 
0.5 0.0882 223.60 55.9 
1.0 0.0622 137.80 68.9 
5.0 0.0178 36.44 91.1 

100 ppm Initial Dye Concentration 

0.1 0.0785 215.00 21.5 
0.3 0.0490 170.00 51.0 
0.5 0.0242 151.60 75.8 
1.0 0.0191 80.90 80.9 
5.0 0.0027 19.46 97.3 

50 ppm Initial Dye Concentration 

0.1 0.0247 253.00 50.6 
0.3 0.0120 126.00 76.0 
0.5 0.0076 84.80 84.8 
1.0 0.0042 45.80 91.6 
5.0 0.0000 10.00 100.0 
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to come into close proximity with the surface of the activated carbon. 

This type of configuration allows for van der Waals forces of attrac

tion to take place. The anthraquinone structure and the ability for 

Disperse Blue 7 to form hydrogen bonds can be seen by the following: 

N-CH2CH2UH" 

Effect of pH on Adsorption 

The adsorption of color can be influenced by changes in the pH 

of the solution. Hassler (74) stated that a pH above neutral was sel

dom favorable for color removal and in many applications it was found 

to be detrimental. In contrast, an acidic pH frequently aided decolori 

zation, the optimum pH being dependent upon the particular system being 

studied. It is not unusual in decolorization processes to alter the 

amount of color removed by 10-20% depending upon the pH of the system. 

A low or acid pH usually promotes the adsorption of organic acids; 

whereas an alkaline pH is most often favorable for the removal of 
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organic bases. The pH of most commercial carbons is due to the 

inorganic constituents of the initial source material or some added 

ingredient during manufacture. After tne activation process most 

commercial carbons are alkaline but the pH can be altered by washing 

and reacting the carbon with various acids such as sulfuric or phos

phoric. 

Table 11 shows the effect of changes in pH on the amount of 

Disperse Yellow 54, Disperse Red 73 and Disperse Blue 7 removed from 

solution by stirring with Hydrodarco C for 24 hours. The pH of the 

dyestuff-Hydrodarco C solutions were adjusted by additions of sodium 

hydroxide and hydrochloric acid to simulate a pH range of approximately 

4-10 which was characteristic of a dyehouse effluent. There was some 

degree of reactivity with each of the dyes at both acid and alkaline 

pH levels as evidenced by the shift to a pH of seven after stirring 

for 24 hours. This can be interpreted as an acid-base equilibrium and 

results when an acidic substance comes in contact with a substance 

possessing basic properties. In any equilibrium system there will be 

two pairs of conjugate acids and bases and the position of equilibrium 

will be dependent upon the electron affinity of the bases (75). In the 

experimental work with Disperse Yellow 54, Disperse Red 73 and Disperse 

Blue 7, it was found that the solutions were proceeding toward neutral

ization. Since the disperse dye molecules contain one or more acid or 

basic groups, or both, several equilibria are possible depending upon 

the pH, temperature, and concentration of the dyestuff in aqueous 

media. 
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Table 11 

The Effect of pH on the Removal 
Properties of Hydrodarco C 

pH - Original pH - After Aeration % Color Removed 

Disperse Yellow 54 

3.71 6.34 5.12 
4.15 7.21 17.83 
5.29 7.44' 20.81 
9.QQ 7.58 28.32 
9.96 8.88 33.74 

Disperse Red 73 

3.91 7.01 6.65 
5.14 7.36 23.12 

10.21 9.23 40.16 

Disperse Blue 7 

4.42 7.40 47.60 
5.92 7.45 51.60 

10.12 9.19 56.30 
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At very low pH and at very high pH it was found that Disperse 

Yellow 54 precipitated from solution. Approximately 70-80% of the dye 

was precipitated from solution at a pH of 2.85 and 11,06, respectively. 

Figure 16 shows the effects of extreme pH on the dye spectra. The 

altered spectra and the fact that the dye precipitates from solution 

indicates that the dye tends to agglomerate at extreme oH levels. At 

a pH range of approximately 4-10 the three disperse dyes remained in 

solution. However, it was found that as the pH increased toward 10 a 

greater amount of color was removed from solution than at lower pH 

levels. This was contrary to what normally happens in color removal 

systems with activated carbon and was probably due to the tendency of 

the dyestuffs to begin to agglomerate as the pH of the solution was 

increased. As agglomeration proceeded the molecular weight and size 

of the molecules increased which probably caused the dyestuffs to be 

removed physically by filtration which was carried out prior to deter

mining the amount of color in solution. 

Both Disperse Red 73 and Disperse Blue 7 flocked at low pH 

levels with changes in spectra as shown in Figures 17 and 13. How

ever, both dyestuffs were able to withstand a pH of approximately 11.0 

without precipitating from solution. Although agglomeration was taking 

place with an increase in pH, some balance of time, temperature and 

concentration was preventing these dyes from precipitating from 

solution. 
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Figure 16 
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Figure 17 

Normal and Altered Spectra 
of Disperse Red 73 
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Figure 18 

Normal and Altered Spectra 
of Disperse Blue 7 
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Effect of Nonionic Surfactant on Adsorption 

In order to determine what effect, if any, a nonionic surfac

tant had on the color removal properties of powdered activated carbon 

the following work was carried out. Solutions of Disperse Yellow 54, 

Disperse Red 73, and Disperse Blue 7 were stirred for 24 hours with 

300 ppm of Hydrodarco C to which varying concentrations from 0 ppm to 

1,000 ppm of Triton X-100, an octylphenoxynonylethoxyethanol obtained 

as a 99% minimum active ingredient solution, was added. After stir

ring, the solutions were filtered and the color was determined spec-

trophotometrically as discussed previously. 

The data in Table 12 shows that the addition of octylphenoxy

nonylethoxyethanol greatly reduced the color removal properties of the 

Hydrodarco C. With high concentrations of nonionic surfactant no 

Disperse Yellow 54 color was removed and lesser amounts of Disperse 

Red 73 and Disperse Blue 7 color were removed. Only 15.33% of Dis

perse Red 73 and 17.71% of Disperse Blue 7 were removed from solution 

when 1,000 ppm Triton X-100 was added. 

Based on the theory of dyeing synthetic fibers with disperse 

dyestuffs, it is known that dispersing agents such as nonionic surfac

tants can act on the dyestuff (76). Since the solubility of disperse 

dyes are extremely low, the surfactant tends to prevent aggregation or 

crystallization which would naturally occur. The surfactant tends to 

solubilize the dyestuff by forming micelles which can be considered to 

be tiny drops of hydrocarbons in which disperse dyes can dissolve. The 

dispersing agent competes with the dyestuff for the fiber just as it 
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Table 12 

The Effect of Nonionic Surfactant 
on the Removal Properties of 

Hydrodarco C 

Amount of Triton X-100 (ppn) % Color Removed 

Disperse Yellov/ 54 

0 18.37 
50 15.08 

100 15.08 
500 0 

1 ,000 0 

Disperse Red 73 

0 23.98 
50 23.43 

100 20.44 
500 16.35 

1,000 15.33 

Disperse Blue 7 

0 49.83 
50 29.67 

100 26.39 
500 24.92 

1,000 17.71 
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likewise competes with the disperse dyes for the surface of the 

activated carbon. By competing for the carbon it therefore increases 

the amount of dye remaining in solution which in dyeing of fibers 

reduces the partition coefficient and lowers the percentage exhaustion 

of the dyebath. Similarly with activated carbon, it greatly reduces 

the percentage of dye which can be adsorbed on the activated carbon. 

In a recent study by Weber (77), he experimentally determined that 

Triton X-100 attained an equilibrium position of greater adsorption 

than did any of the other surfactants which were tested with activated 

carbon. He found that 15 to 25% by weight of these materials could be 

adsorbed on activated carbon. It is reasonable to conclude, based upon 

the experimental data presented in Table 12 and from the work done by 

Weber, that the Triton X-100 reduced the adsorptive capacity of the 

Hydrodarco C by solubilization of the dyestuff and competitive adsorp

tion for the surface of the activated carbon. 

Effect of Anionic Surfactant on Adsorption 

The results obtained from stirring varying amounts of Tergitol 

Anionic 4 with 100 ppm of Disperse Yellow 54, Disperse Red 73 and Dis

perse Blue 7 in the presence of 300 ppm Hydrodarco C for 24 hours is 

shown in Table 13. The data indicates that at low concentrations the 

Tergitol Anionic 4 had little or no effect on the color removal prop

erties of the Hydrodarco C. However, a small increase in the color 

removal properties of the Hydrodarco C appears at 500-1,000 ppm 

Tergitol Anionic 4. The increase is most pronounced for Disperse 

Yellow 54 and relatively insignificant for Disperse Blue 7. 
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Table 13 

The Effect of Anionic Surfactant 
on the Removal Properties of 

Hydrodarco C 

Amount of Tergitol Anionic 4 (ppm) % Color Removed 

Disperse Yellow 54 

0 16.96 
50 17.13 

100 19.06 
500 25.20 

1,000 26.93 

Disperse Red 73 

0 18.98 
50 18,82 

100 19.95 
500 25,00 

1,000 25.00 

Disperse Blue 7 

0 54.52 
50 49.53 

100 40.15 
500 56.57 

1,000 60.53 
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Tergitol Anionic 4 is a sodium sulfate derivative of 7-ethyl-

2-methyl, 4-undecanol, a fatty alcohol sulfate with the following 

formula: 

c4h9chc2h4chch2ch(CH3)2 

C2Hs S04Na 

This particular material acts as a wetting agent and when placed in 

solution tends to dissociate into a negatively charged fatty alcohol 

sulfate and a positively charged sodium ion. The surface of the acti

vated carbon is negatively charged (78), therefore, the Tergitol 

Anionic 4 has a tendency to be repelled from the surface of the carbon 

and to remain in solution. The competition for surface active sites 

on the carbon between the surfactant and the disperse dyestuff is 

negligible and one would expect little or no change in the adsorption 

characteristics of the Hydrodarco C for disperse dyestuffs in the 

presence of this anionic surfactant. However, the experimental evi

dence indicated that at very high anionic surfactant concentrations 

the color removal properties of the Hydrodarco C slightly increases. 

This could be due to a shift in the equilibrium of the system, whereby 

the increased amount of anionic surfactant in solution tends to 

increase the accessibility of the disperse dyestuff for the carbon 

surface, hence better color removal. An equilibrium shift of this 

nature is not uncommon and will be affected by changes in pH, tempera

ture and solution concentrations. 
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Effect of Alkaline Salt on Adsorption 

To determine what effect the addition of an alkaline salt has 

on the equilibrium of a disperse dye/activated carbon system, the 

following experiments were conducted. Varying concentrations of 

tetrasodium pyrophosphate (Na4P20y) were stirred for 24 hours with 

100 ppm of Disperse Yellow 54, Disperse Red 73 and Disperse Blue 7 in 

the presence of 300 ppm Hydrodarco C. From Table 14 it can be seen 

that additions of tetrasodium pyrophosphate increase the color removal 

properties of the Hydrodarco C for all of the disperse dyestuffs. 

The effects of pH on the adsorption characteristics of Hydrodarco C, 

as previously discussed in conjunction with Table 11, is of primary 

consideration in trying to explain the effects of tetrasodium pyro

phosphate on the dye-carbon system. 

Tetrasodium pyrophosphate is an alkaline salt that at 25°C 

produces a pH of 9.5 for a 100 ppm solution and increases to a pH of 

11.31 for a 1,000 ppm solution. The amount of color removal obtained 

with Hydrodarco C in the presence of tetrasodium pyrophosphate is 

similar to the color removal obtained in the presence of sodium 

hydroxide. A comparison of the data in Table 11 with the data in 

Table 14 shows a great similarity for equal pH levels. Disperse 

Yellow 54 was reduced 30.98% with 100 ppm tetrasodium pyrophosphate 

(pH = 9.5), Disperse Red 73 was reduced 3G.73% with 100 ppm tetra

sodium pyrophosphate and Disperse Blue 7 was reduced 70.99% with 100 

ppm tetrasodium pyrophosphate. The tendencies of the dyes toward 

agglomeration with increasing pH is responsible for the high color 

removal properties of the Hydrodarco C in the presence of increasing 
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Table 14 

The Effect of Alkaline Salt on 
the Removal Properties of 

Hydrodarco C 

Amount of TSPP (ppm) % Color Removed 

Disperse Yellow 54 

0 15.31 
50 24.44 

100 30.98 
500 51.11 

1,000 49.39 

Disperse Red 73 

0 20.92 
50 32.40 

100 36.73 
500 40.05 

1,000 42.86 

Disperse Blue 7 

0 53.02 
50 68.63 

100 70.99 
500 74.96 

1,000 76.19 
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amounts of the alkaline salt. Rutkowski and Martin (79) reported on 

the ability of tetrasodium pyrophosphate to function as a detergent 

builder and as a sequestering agent for magnesium and calcium salts 

in water. However, neither of these factors could be responsible for 

the color removal properties of the Hydrodarco C since distilled water 

was used to disperse the dyes and calcium and magnesium ions would not 

be expected to be present. Furthermore, although the building action 

of tetrasodium pyrophosphate tends to keep the dye molecules in 

solution, the fact that the dyes agglomerate with increasing pH tends 

to nullify the building action of the alkaline salt. 

Combined Effects of Anionic Surfactant and 
Alkaline Salt on Adsorption" 

The results obtained from stirring varying amounts of Tergitol 

Anionic 4 and tetrasodium pyrophosphate with 100 ppm of Disperse Yellow 

54, Disperse Red 73 and Disperse Blue 7 in the presence of 300 ppm 

Hydrodarco C for 24 hours are shown in Table 15. Even with the addi

tion of 50-100 ppm tetrasodium pyrophosphate the data followed very 

closely the results reported in Table 13 for Tergitol Anionic 4 by 

itself. 

The effect of increased pH on the dye-carbon system was negli

gible in the presence of the anionic surfactant. From previous data 

it has been shown that increasing pH significantly improved the color 

removal properties of the system. This was probably due to the fact 

that the disperse dyestuffs have a tendency to agglomerate at extreme 

pH levels. From the data in Table 15, it can be seen that there is no 
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Table 15 

The Combined Effects of Anionic Surfactant and 
Alkaline Salt on the Removal Properties of 

Hydrodarco C 

Amount each of 
Tergitol Anionic 4 

and TSPP (ppm) 

% Color Removed 

Disperse Yellow 54 

0 16.43 
50 18.88 

100 17.13 
500 23.25 

Disperse Red 73 

0 22.00 
50 23.00 

100 28.00 
500 30.25 

Disperse Blue 7 

0 51.24 
50 56.08 

100 56.08 
500 56.08 
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sharp decrease in the color content of the system with increasing 

additions of tetrasodium pyrophosphate in the presence of Tergitol 

Anionic 4. The Tergitol Anionic 4 is keeping the dyestuff in solu

tion and preventing agglomeration which would normally occur due to 

the increased pH from the addition of the tetrasodium pyrophosphate. 

As long as agglomeration is prevent there will be no color removals 

as high as was reported either in the previous pH experiment or the 

experiments with the tetrasodium pyrophosphate alone. This is the 

same effect which takes place during the dyeing of synthetic fibers 

with disperse dyestuff, whereby a surfactant is added to the dyebath 

to prevent agglomeration of the dyestuff and to produce a more level 

dyeing effect. 

Effect of Nonionic and Anionic Surfactants on the 
Dyeing Properties of 100% Polyester Fabric 

The results shown in Figure 19 for the dyeing of 100% poly

ester fabric with Disperse Yellow 54 in the presence of varying 

amounts of Triton X-100 and Tergitol Anionic 4 are in agreement with 

the previously reported data for Hydrodarco C. The percentage reflec

tance increases with increasing amounts of Triton X-100. Therefore, 

the Triton X-100 is decreasing the amount of dye adsorbed on the 

fabric just as it decreased the amount of dye adsorbed on Hydrodarco C. 

The Triton X-100 solubilizes the disperse dye and competes for the 

surface of the pchyester causing a higher concentration of dye to 

remain in solution. This reduces the partition coefficient and the 

amount of dye which is exhausted onto the fabric. 
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Figure 19 

Reflectance Curves for 100% 
Polyester Fabric Dyed with 

Disperse Yellow 54 
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The reflectance data for dyeing 100% polyester fabric in the 

presence of varying amounts of Tergitol Anionic 4 closely follows 

similar data obtained with Hydrodarco C. In both cases there was a 

slight increase in the adsorption of Disperse Yellow 54 v/hich was 

probably due to a shift in the equilibrium of the dye system. 
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Chapter 5 

SUMMARY AND CONCLUSIONS 

The adsorption characteristics of Disperse Yellow 54, Disperse 

Red 73 ana Disperse Blue 7 in water were determined by stirring with 

hydrodarco C at 22°C - 2°C to reacn equilibrium followed by filtration 

and spectroonotoirietric analysis. The following variables were investi

gated as to tneir effect upon the removal of dispersa dyes uy powaerea 

activatec caroon: Concentration, sH, surfactants, and alkaline salt. 

The experimental data lad to tne conclusion that by controllinq the 

aoove variaoles a hign degree of aasorntion was possible for Disoerse 

Yellow 54, Disperse Rec 73 ana Disperse Blue 7 on hyarodarco C. 

In a creliminary evaluation of a series of powdered activated 

carbons, Hycrocarco C a lignite type was founc to be suitable for 

furtner experimental work. This was basea on the adsorption pronerties 

of riydroaarco C as evidenced oy its affect on reducing tne color, pnos-

pnorus, nitrogen ana chemical oxygen demand of textile dyeing and 

finishing waste water. 

Three typical disperse dyes were cnosen for the experimental 

portion of tnis stuay: Disperse Yellow 54 a quinonapthalone type, 

Disperse Red 73 a monazo type and Disperse Blue 7 an antiiraquinone type 

of disperse dyestuff. All tnree dyes attained equilioriun at 3-15 hours 

of stirring with Hydrodarco C and obeyed Beers Law at dyestuff concen

trations of 5Q-2GG pprn. The solubilities of these dyes we i found to 
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be 17.8 mg/1 for Disperse Yellow 54, 11.5 mg/1 for Disperse Red 73, 

and 23.1 mg/1 for Disperse Blue 7. When these dyes were filtered 

through a Gelman Type A glass fiber filter approximately 20-30% of the 

color was reduced indicating that a portion of the disperse dyestuff 

could be physically removed by filtration procedures. 

Linear Langmuir adsorption isotherms were obtained for Disperse 

Yellow 54, Disperse Red 73 and Disperse Blue 7 at concentrations of 50, • 

100 and 200 ppm dyestuff after stirring for 24 hours in the presence of 

varying amounts of Hydrodarco C. The fact that the dye-carbon system 

was explained in accordance with the Langmuir Theory of Adsorption 

suggested that maximum adsorption corresponded to a monolayer of dis

perse dye molecules on the carbon surface and that the energy of 

adsorption was constant. The adsorption isotherms obtained for dis

perse dyes on activated carbon were similar to those obtained for 

disperse dyes on synthetic fibers. It therefore followed that the 

adsorption of disperse dyes on activated carbon took place in three 

stages: The water soluble dyestuff migrated to the carbon and was 

available for adsorption, the dye was adsorbed unimolecularly on the 

surface of the activated carbon in accordance with the Langmuir Theory 

of Adsorption and the dye which was removed by adsorption was replaced 

from the dye reservoir to establish an equilibrium within the dye-

carbon adsorption system. 

Hydrodarco C was able to successfully reduce Disperse Yellow 54, 

Disperse Red 73 and Disperse Blue 7 from solution by adsorption in much 

the same way as fibers exhaust disperse dyes from solution during the 
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dyeing process. The percentage of Disperse Yellow 54, Disperse Red 72 

and Disperse Blue 7 which was removed from solution by Hydrodarco C 

increased with decreasing dye concentration and increased with increas

ing carbon additions. However, the adsorption data indicated that Dis

perse Blue 7 was more readily removed from solution than were the other 

dyes. At most levels of Hydrodarco C and at all dye concentrations the 

amount of Disperse Blue 7 removed from solution was approximately double 

the amount of the other dyestuffs. This was explained in terms of the 

large number of hydroxy! groups nresent in the dye molecule which were 

available for hydrogen bonding and the planar configuration of the 

anthraquinone structure which allowed the dye to come into close proxi

mity with the surface of the activated carbon so that dispersion forces 

became important. 

At a pH range of approximately 4-10, Disperse Yellow 54, Disperse 

Red 73, and Disperse Blue 7 tended to remain in solution. However, as 

the pH increased a greater amount of the dyestuff was removed from solu

tion. This was contrary to what normally happened in color removal 

systems with activated carbon and was probably due to the tendency of 

the dyestuffs to agglomerate as the pH of the solution increased. Since 

the weight and size of the dye particles increased as agglomeration 

proceeded the dyes were physically removed by filtration, which at 

extreme pH levels had a much greater effect on color removal than did 

adsorption on activated carbon. 

The presence of Triton X-100 greatly reduced the color removal 

properties of Hydrodarco C. The surfactant tended to solubilize the 
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dyestuff and altered the equilibrium of the dye-carbon system by com

peting with the disperse dye for the available surface sites on the 

activated carbon. 

Low concentrations of Tergitol Anionic 4 had little or no 

effect on the capacity for Hydrodarco C to remove disperse dyes from 

solution. However, there appeared to be a sliqht increase in the color 

removal properties of Hydrodarco C when high concentrations of Tergitol 

Anionic 4 were added to the system. This was explained by considering 

an equilibrium shift, whereby the increased amount of Tergitol Anionic 4 

was increasing the accessibility of the disperse dyestuff for the carbon 

surface thus increasing the amount of color removed. 

The surfactant effects were confirmed by dyeing a 100% poly

ester fabric with Disperse Yellow 54 in the presence of Triton X-100 

and Tergitol Anionic 4. The dyeing results were in agreement with the 

adsorption data obtained with Hydrodarco C. 

The effects of an alkaline salt such as TSPP on the dye-carbon 

system were explained due to the fact that the disperse dyes tended to 

agglomerate with increasing pH. The data from the TSPP experiments were 

extremely similar to previous data dealing with the effects of increased 

pH on the dye-carbon system. However, when Tergitol Anionic 4 was added 

to the dye-carbon system along with TSPP a sharp decrease in color 

removal was noted. This was probably due to the Tergitol Anionic 4 pre

venting agglomeration of the dyes with increasing pH. 

From the data obtained in this study the following hypotheses 

were supported: 
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1. The adsorption of disperse dyes on powdered activated carbon 

follow physical adsorption laws and can be characterized by adsorption 

isotherms. 

2. Deviations from the physical adsorption laws occur as the 

dye-carbon system becomes more complex by the addition of surfactants, 

alkaline salt, acids and bases. 

3. Disperse dyes exist in equilibrium with the powdered acti

vated carbon. 

4. The presence of surfactants change the equilibrium char

acteristics of the dye-carbon system in relation to the solubilization 

effect of the surfactant with the dye. 

5. The structural characteristics of the dye influence the 

adsorption equilibrium of the dye on the carbon. 

It is recommended that future researchers investigate the 

following: 

1. The effects of temperature on the ability of powdered 

activated carbon to remove the disperse dyes from solution 

2. The possibility of desorbing and reusing the disperse dye 

3. The effects of carbon mixtures, whereby carbons with 

different physical and chemical properties would be used to treat 

textile mill effluent 

4. The economics of using powdered activated carbon for removal 

of disperse dyes from solution versus other known treatment methods 

5. The feasibility of developing a specific type of powdered 

activated carbon which would selectively remove disperse dyestuffs. 
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