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Abstract: 

A new estimator in linear models with equi-correlated random errors is postulated. Consistency 
properties of the proposed estimator and the ordinary least squares estimator are studied. It is 
shown that the new estimator has smaller variance than the usual least squares estimator under 
some mild conditions. In addition, it is observed that the new estimator tends to be weakly 
consistent in many cases where the usual least squares estimator is not. 
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Article: 

1 INTRODUCTION 

Let Y i , i ≥ 1 be a sequence of random variables satisfying 

 

Here x ij s are known constants, β = (β1, β2, …, β p )T ∈ R p is the unknown parameter vector (T 
denoting matrix transpose), wherep is a fixed positive integer, ϵ i , i ≥ 1 is a sequence of random 
variables with mean zero. Assume that Y n s are square-integrable. For each n ≥ 1, let ϵ(n) = (ϵ1, ϵ2, 
…, ϵ n )T, and Q (n) = dispersion matrix of ϵ(n). We further denote Y (n) = (Y 1, Y 2, 
…, Y n )T, X (n) = (x ij ) n×p . Suppose for some n ≥ p, rank(X (n)) = p. The main focus of this paper is 
to examine the issue of weak consistency when the random errors ϵ i s are equi-correlated. 

One prime candidate for examining the issue of consistency is the least squares estimator (LSE) 
βˆ(n) = (X (n) T X (n))−1 X (n) T Y(n) of β based on the first n random variables Y (n), where Y (n) is 
given by 
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The least squares estimator has been considered as the standard estimator of the regression 
parameter for the linear model. It is simple and more importantly, it is always computable. 
Moreover, it is well-known that in the case of equi-correlated random errors, the LSE is actually 
the best linear unbiased estimator for the linear model (2) with intercept, i.e. x i1 = 1 for all i ≥ 1, 
(McElroy, 1967). 

The weak consistency of βˆ(n), i.e. the convergence of βˆ(n) to β in probability, has been 
extensively discussed in the literature. Eicker (1963) was probably the first researcher to study 
the weak consistency of the LSE for the linear model. Drygas (1976) showed that, in the general 
case of correlated random errors, if 

 

then βˆ(n) converges to β in probability if and only if the minimum eigenvalue of (X (n) T X (n)) 
tends to infinity, or equivalently (X(n) T X (n))−1 converges to the zero matrix. The result of 
Drygas (1976) is more general than the one quoted above. The general result is concerned with 
the weak consistency of estimable linear functions. Kaffes and Rao (1982) examined the issue of 
weak consistency under the minimal condition that Y n s are integrable. 

Now, let us consider the case of equi-correlated random errors, i.e. Eϵ i 
2 = σ2 > 0 for every i ≥ 1, 

and Eϵ i ϵ j  = ρσ2 for every i ≠ jand for some 0 ≤ ρ < 1. Note that in this case, the dispersion 
matrix Q (n) = D n (ϵ(n)) = σ2(1 − ρ)I n  + σ2 ρJ n , where I n is the n × n identity matrix 
and J n  = 1 (n) 1 (n) T for 1 (n) = (1, 1, …, 1)T, the column vector of order n × 1 with each entry 
equal to unity. The maximum eigenvalue of Q (n) = σ2(1 + (n − 1)ρ). If ρ > 0, sup n {maximum 
eigenvalue of Q (n)} is equal to infinity, i.e.condition (3) will never be satisfied. In such a case, 
Kaffes and Rao (1982) imposed the following sufficient condition, 

 

to guarantee the weak consistency of βˆ(n). Although (4) is a stronger condition, there are 
examples in which (4) fails to hold. For instance, if x i1 = 1, i ≥ 1 in Eq. (2), i.e. the linear model 
with intercept, then the (1, 1)th element of n(X (n) T X (n))−1 has lower bound 1. Therefore, it is 
worthwhile to seek some other conditions under which the LSE is weakly consistent and/or some 
other estimators which are better than the LSE in the case of equi-correlated random errors. 

In this paper we propose a new estimator βˆ(n) * given by Eq. (8), and then consider the weak 
consistency of the estimator βˆ(n)

* and LSE βˆ(n) in the case of equi-correlated random errors. It 
turns out that the estimator βˆ(n) * is better than the LSE βˆ(n) in the sense of smaller dispersion 
matrix (Theorem 1 in Sec. 2), and it is weakly consistent under some mild conditions on the 
design matrix (Theorems 2 and 3 in Section 2). 



To motivate the introduction of the new estimator βˆ(n) *, we consider the following example 
with p = 1 in Eq. (2). 

Example 1 Let Y i  = x i β + ϵ i , i ≥ 1. The LSE is given by 

 

with variance 

 

where x¯ (n) = (1/n) ∑ i=1 n x i . Now, we consider the “centered” estimator for β 

 

with variance 

 

Note that βˆ(n) * and βˆ(n) are both weighted averages of Y i s but with different weights. 
Therefore, from the difference of the variances 

 

one can see that var(βˆ(n)) ≥ var(βˆ(n) *) for ρ > 0 if n x¯ (n) 2/(∑ i=1 n x i 2) tends to a constant that is 
less than 1, as n goes to ∞. Consequently, the weak consistency of βˆ(n) implies the weak 
consistency of βˆ(n) *, but the converse is not necessarily true. We would like to point out that in 
this example, there is no minimum variance linear unbiased estimator of β. 

In the general case of p regressors, we derive the new estimator βˆ(n) * of β in the same manner as 
shown above. More explicitly, for n ≥ 2, let P (n) be the matrix of order (n − 1) × n such that the 
matrix with order of n × n 

 



is orthogonal, i.e. C (n) T C (n) = C (n) C (n) T = I n . Here 1 (n) = (1, 1, …, 1)T and I n is the identity 
matrix of order n × n. Obviously,P (n), n ≥ 2 satisfies the following properties: 

 P (n) P (n) T = I n−1; 

 P (n) Q (n) P (n) T = σ2 (1 − ρ)I n−1; 

 P (n) T P (n) = I n  − (1/n) J n . 

One example of P (n) is the Helmert matrix [e.g. see Press (1982), pages 13 and 14], which can be 
constructed as follows. The ith row of P (n) is given by 

 

where the entry 

 

occurs at the (i + 1)th position, i.e. 

 

Introducing a column vector of random variables by 



 

one can notice that 

 

say, and the dispersion matrix of Z (n) is given by 

 

Note that the components of Z (n) are pairwise uncorrelated with common variance σ2 (1 − ρ). 
Therefore, the best linear unbiased estimator (BLUE) of β based on Z (n) is 

 

Here we assume rank (U (n−1)) = p. A comment is in order on the rank of U (n−1). If 1 (n) belongs to 
the vector space spanned by the columns of X (n), rank (U (n−1)) < p. From now on, we will assume 
that U (n−1) T U (n−1) is invertible for every n ≥ N for some integer N. In Section 4, we will 
comment on the case when one of the columns of X (n) is 1 (n). Now 

 

and 

 

where X¯ (n) T = (1/n)1 (n) T X (n). Therefore, the “centered” estimator can be rewritten as 

 

The referee suggested that we could look at the transformed model 



 

Note that Disp(W (n)) = σ2(1 − ρ)(I n  − (1/n)J n ), and the LSE of β based on W (n) is precisely the 
estimator βˆ(n) *. In this case, the dispersion matrix of W (n) is known except for the factor 
σ2(1 − ρ). The matrix (I n  − (1/n)J n ) has rank of n − 1, which means that the support of the 
distribution of W (n) is some (n − 1) dimensional subspace of R n . We make an additional 
transformation ofW (n) so that the transformed vector has a non-singular dispersion matrix. One 
choice of the transformation is P (n) in Eq. (5). LetT (n) = P (n) W (n). It turns out that T (n) = Z (n), 
which reduces to the model (6). 

Our paper is organized into four sections. In Section 2, the weak consistency of βˆ(n) * and βˆ(n) is 
discussed. In Section 3, we examine the consistency properties under the normality assumption 
of random errors. Some concluding remarks are mentioned in Section 4. 

2 WEAK CONSISTENCY OF THE ESTIMATORS 

In this section, we consider the weak consistency of βˆ(n) * and βˆ(n). First, it is easily seen that the 
dispersion matrices of βˆ(n)and βˆ(n) * are given by 

 

where D p [·] represents a p × p dispersion matrix. The last equality holds due to the standard 
result, which can be found in Rao (1973, page 33) or Rao and Rao (1998, page 281). 
Since X (n) T X (n) and X (n) T X (n) − n X¯ (n) X¯ (n) T are 
invertible, n − n 2X¯ (n) T (X (n) T X (n))−1 X¯ (n) is positive. By comparing (10) and (11), we have 
the following theorem. 

Theorerm 1 

Suppose that lim n→∞ n X¯ (n) T (X (n) T X (n))−1 X¯ (n) = c < 1. Then, for sufficiently large n, we 
have 



 

Now we consider the weak consistency of βˆ(n) * and βˆ(n). We denote the eigenvalues 
of X (n) T X (n) in the following increasing order: 

 

First, we have the following lemmas. 

Lemma 1 

 

where Tr(A) denotes the trace of a square matrix A. 

Proof It is trivial from Theorem 3.1 in Kaffes and Rao (1982). ▪ 

Lemma 2 

For every integer 1 ≤ k < ∞, we have 

 

where ‖·‖ is the usual Euclidean norm in R p . 

Proof It is a trivial consequence of 

 

for any square matrix A of order p × p. ▪ 

Lemma 3 

The following statements are true: 

 

 



 If, furthermore, for some 1 ≤ j ≤ p, x ij  = c, a non-zero constant, for every i ≥ N and N ≤ n 
fixed, then 

 

Proof Let X¯ (n) = (x¯ n1, x¯ n2, …, x¯ np ). Notice that 

 

Hence, 

 

which is part 1. 

Now look at part 2. The average of the jth column of X (n) is x¯ nj  = (1/n) ∑ i=1 N x ij  + (n − N)c/n. 
Thus 

 

Therefore, part 2 is trivial from above and Eq. (12). ▪ 

Now we present the main theorems for our paper. 

Theorem 2 

For the estimator βˆ(n) *, we have the following. 

 βˆ(n) * is a sequence of weakly consistent estimators for β if and only if 

 

Here λmax[A] denotes the maximum eigenvalue of the matrix A. 



 A necessary condition for the consistency of βˆ(n) * is that 

 

where 0 stands for the zero matrix. 

 If n‖X¯ (n)‖2 ≤ M for some positive constant M, then βˆ(n) * is a sequence of weakly 
consistent estimators if and only if 

 

Proof Part 1 is trivial from Theorem 3.1 (c) of Drygas (1976) by observing Eq. (7). From the 
inequality 

 

it follows that 

 

i.e. 

 

Thus part 2 follows. For part 3, it suffices to prove the sufficiency. Let 
lim n→∞ (X (n) T X (n))−1 = 0. Suppose now that n‖X¯ (n)‖2 ≤ M for all sufficiently large n. Then from 
Lemma 2, 

 

Therefore, Tr(D p [βˆ(n) *]) tends to zero, which gives the weak consistency of βˆ(n) *. ▪ 

The next theorem gives conditions for the consistency of both the usual LSE and the “centered” 
estimator βˆ(n) *. 

Theorem 3 

Suppose that lim n→∞ (X (n) T X (n))−1 = 0. The following are valid. 

 If n‖X¯ (n)‖ = o(λ1 (n)), then βˆ(n) is weakly consistent for β. 



 If n‖X¯ (n)‖2 = o(λ1 (n)), then βˆ(n) * is weakly consistent for β. 

Proof From Lemma 2, noting that 

 

part 1 is trivial from our assumption. For part 2, one has lim n→∞ n‖X¯ (n)‖2/λ1 (n) = 0. Using 
Lemma 2, we then have 

 

It follows from Lemma 1 that Tr(D p [βˆ(n) *]) tends to zero, which is sufficient for βˆ(n) * to 
converge to β in probability as n → ∞. ▪ 

Remark From Theorem 3, one can see that if n 2‖X¯ (n)‖2 = o(λ1 (n)), then 
lim n→∞ (X (n) T X (n))−1 = 0 is the sufficient condition for the weak consistency of both βˆ(n) and 
βˆ(n) *. 

The following example indicates that in many situations, βˆ(n) * is weakly consistent but βˆ(n) is 
not. It should also be noted that condition (4) imposed by Kaffes and Rao (1982) is not satisfied 
here. 

Example 2 Let 

 

for i = 1, 2, …. ϵ i s are equi-corrleated with variance σ2 and positive correlation coefficient ρ. 
First suppose n is an even number. Simple calculation gives 

 



and 

 

One can see that n(X (n) T X (n))−1 does not tend to zero matrix. The mean vector is X¯ (n) = (1/2, 
(n + 1)/2)T. Simple calculation leads to 

 

where P 4(n) is a polynomial of n with a degree of 4. Obviously, the above does not tend to zero 
matrix as n goes to infinity. Therefore, if ϵ i s are further normally distributed, the usual LSE 
βˆ(n) is not consistent. 

One can easily verify that 

 

tends to c = 4/5 < 1. The consistency of βˆ(n) * cannot be concluded from Theorem 1. However, it 
can be found that 

 

as n goes to infinity. The case of odd number for n gives the same result. Theorem 2 shows that 
βˆ(n) * is a sequence of weakly consistent estimators for β. 

3 WEAK CONSISTENCY FOR NORMAL RANDOM ERRORS 

Substantial discussions on estimates and significance tests on the parameter, under the additional 
assumption that ϵ i s are multivariate-normally distributed, can be found in Halperin (1951) and 
Arnold (1981). In this section, we consider the weak consistency of estimators βˆ(n) * and 
βˆ(n) under this assumption. From Theorem 1, one has the following immediate corollary. 

Corollary 1 



Suppose that 

 

then the weak consistency of βˆ(n) implies the weak consistency of βˆ(n) *. ▪ 

It should be noted that in the case of equi-correlated multivariate-normally distributed random 
errors with ρ > 0, the condition that lim n→∞ (X (n) T X (n))−1 = 0 is not enough to guarantee the 
weak consistency of both βˆ(n) and βˆ(n) *. As an example, we consider the following linear 
model. 

Example 3 Suppose the linear model 

 

where k > 1 is fixed. Obviously, (X (n) T X (n))−1 = 1/(k 2 + n − 1) → 0. The estimators βˆ(n) and 
βˆ(n) *, however, are not weakly consistent if the correlated coefficient ρ > 0, since 
var(βˆ(n) *) → σ2(1 − ρ)/(k − 1)2, and var(βˆ(n)) → σ2ρ. 

The following corollary from Theorem 3 provides the answer. 

Corollary 2 

Assume that n‖X¯ n ‖ is uniformly bounded for sufficiently large n, then a sufficient condition for 
the weak consistency of βˆ(n) andβˆ(n) * is lim n→∞(X (n) T X (n))−1 = 0. In addition, it is also the 
necessary condition for the weak consistency of βˆ(n). 

Proof The sufficiency follows from the remark right after Theorem 3. Now if βˆ(n) is consistent, 
it is necessary that Tr(D p[βˆ(n)]) = ∑ j=1 p var(βˆ j(n)) tends to zero, where βˆ j(n) is the usual LSE of 
the jth parameter β j in the linear model (2). From Eq. (10), we know that Tr((X (n) T X (n))−1) → 0, 
which implies that (X (n) T X (n))−1 tends to the zero matrix as n tends to infinity.  

It is natural to consider the weighted LSE of β based on the following two-stage estimation. 

 

with 

 

where σˆ2 and ρˆ are some estimators for σ2 and ρ, respectively. One could choose maximum 
likelihood estimators for σ2 and ρ. However, it appears impossible to have closed form 
expressions for maximum likelihood estimators of σ2 and ρ in the case of normally distributed 



random errors. This conclusion was also mentioned by Halperin (1951). Furthermore, as pointed 
out by Arnold (1979, 1981), there are no maximum likelihood estimators for the linear 
model (2) with intercept. In such a case, one could also transform the given model into a 
variance components model and then pursue the MINUQE procedure. [For MINUQE procedure, 
see Rao and Rao (1998).] We will not pursue these ideas in this paper. 

4 CONCLUDING REMARKS 

This paper is devoted to the weak consistency of both LSE βˆ(n) and the “centered” estimator 
βˆ(n) * in the case of equi-correlated random errors. It turns out that under some mild conditions, 
the “centered” estimator is weakly consistent. In addition, the weak consistency under the 
assumption of multivariate normality is also discussed. 

It should be pointed out that in the usual linear regression model (2) with intercept and equi-
correlated random errors, the LSE for the parameter β is never consistent if ρ > 0. It is easy to 
verify that 

 

Therefore, 

 

Obviously, if ρ > 0, βˆ(n) is not consistent. However, one can observe that the inconsistency is 
actually due to the inconsistency of βˆ1(n), the LSE for the intercept parameter β1. If 
lim n→∞ (X (n) T X (n))−1 = 0, (βˆ2(n), βˆ3(n), …, βˆ p(n)) is a weakly consistent estimator of (β2, β3, …, 
β p ). In addition, the proposed estimator βˆ(n) * does not exist 
because U (n−1) T U (n−1) = X (n) T X (n) − n X¯ (n) X¯ (n) T is now a singular matrix. 
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