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Abstract: 

Covariance and variogram functions have been extensively studied in Euclidean space. In this 
article, we investigate the validity of commonly used covariance and variogram functions on the 
sphere. In particular, we show that the spherical and exponential models, as well as power 
variograms with 0<α≤1, are valid on the sphere. However, two Radon transforms of the 
exponential model, Cauchy model, the hole-effect model and power variograms with 1<α≤2 are 
not valid on the sphere. A table that summarizes the validity of commonly used covariance and 
variogram functions on the sphere is provided. 
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Article: 

1 Introduction 

Global-scale processes and phenomena are of utmost importance in the geosciences. Data from 
global networks of in situ and satellite sensors are used to monitor a wide array of geophysical 
processes. Most methods and models in spatial statistics, however, are developed in Euclidean 
spaces n and these methods have not been investigated as intensively in spherical coordinate 
systems (Robeson 1997). Among the most commonly used covariance and variogram functions 
in the geosciences are the exponential, Gaussian, spherical, hole-effect, and power models 
(Kitandis 1997; Isaaks and Srivastava 1989; Webster and Oliver 2001). Haylock et al. (2008), for 
instance, compared these five models when developing a high-resolution data set of daily 
precipitation over Europe. Other geoscientists have used the exponential variogram model on the 
sphere to develop quantitative estimates of atmospheric carbon dioxide concentrations, global 
fire distributions, and oceanic mixed layer depths (Alkhaled et al. 2008; Carmona-Moreno et al. 
2005; de Boyer Montégut et al. 2004). The Gaussian model on the sphere has been used to 
reconstruct paleoceanographic temperature (Schäfer-Neth et al. 2005) while Janis and Robeson 
(2004) used a power model with spherical distances to analyze errors in minimum temperature 
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data. Clearly, a wide range of geostatistical models are being used with databases that are coded 
in spherical coordinates. Before adapting Euclidean covariance and variogram models to the 
sphere, one must first evaluate their properties to ensure their validity. 

A random process is stationary on the sphere if its covariance function depends solely on the 
spherical angle. To be valid, the covariance function must be positive definite on the sphere 
(Schoenberg 1942; Yaglom 1987). In practice, many applications also focus on intrinsically 
stationary processes and their variograms. While such processes have been well studied in 
Euclidean space (Cressie 1993; Chilès and Delfiner 1999), the extension to the sphere needs 
more investigation. In Sect. 2, we study the variogram of the intrinsically stationary process on 
the sphere, as well as the covariance function of the stationary process. Brownian motion on the 
sphere is presented as an example to demonstrate that an intrinsically stationary process may not 
be stationary. This answers some questions raised in Reguzzoni et al. (2005). In Sect. 3, several 
commonly used covariance and variogram models are checked for their validity on the sphere. In 
particular, we show that the spherical and exponential covariance models and power variograms 
with 0 < α ≤ 1 are valid on the sphere. However, the Gaussian model, two Radon transforms of 
exponential model, Cauchy model, the hole-effect model and power variograms with 1 <α ≤ 2 
are not valid on the sphere. A summary of our results can be found in Table 1. A discussion of 
strictly positive (conditional negative) definiteness of the covariance (variogram) functions is 
presented in Sect. 4. 

2 Covariance and Variogram Functions on the Sphere 

Consider a random process X(p), p ∈ S2, where S2 is a unit sphere in R3, and the location p = 
(φ, λ) with latitude φ and longitude λ, 0 ≤ φ ≤ π, 0 ≤ λ < 2π. The process is stationary if the 
covariance function cov(X(p1),X(p2)) depends solely on the spherical angle θ(p1,p2) ∈ [0,π], 
where 

cos(θ(p1,p2)) = sinφ1 sinφ2 +cosφ1 cosφ2 cos(λ1 −λ2). 

A real continuous function C(・) is said to be a valid covariance function on the sphere if it is 
positive definite, namely, 

 

for any finite number of spatial locations {pi, i = 1, . . . , m} on S2 and real numbers {ai, i = 1, . . 
. , m}. The following theorem by Schoenberg (1942) provides the characterization of a valid 
covariance function on the sphere. 

Theorem 1 A real continuous function C(θ) is a valid covariance function on the sphere if and 
only if it is of the form 



 

where , are the Legendre polynomials. 

By orthogonality of the Legendre polynomials (7.112.1 in Gradshteyn and Ryzhik 1994), the 
coefficients can be obtained by 

 

Therefore, we can investigate the positive definiteness of a function C(・) by checking whether 
bn is non-negative, and Σn bn <∞. In Sect. 3, the validity of commonly used covariance 
functions are studied. 

Parallel to the intrinsically stationary process on Rn (Cressie 1993), we have the following. 

Definition 1 Suppose {X(p) : p ∈ S2} satisfies E(X(p)) = μ, for all p ∈ S2, and var(X(p1) − 
X(p2)) = 2γ (θ(p1,p2)), for all p1,p2 ∈ S2; then X(・) is said to be intrinsically stationary. The 
quantity 2γ (・) is called the variogram, and γ (・) is the semivariogram. 

Proposition 1 The variogram 2γ (・) is conditionally negative definite, namely 

 

for any finite number of spatial locations {pi, i = 1, . . . , m} on S2 and real numbers 

{ai, i = 1, . . . , m} satisfying . 

To investigate whether a function is conditionally negative definite on the sphere, we have the 
following theorem. 

Theorem 2 A continuous function 2γ (・) satisfying γ (0) = 0 is conditionally negative definite if 
and only if 2γ (・) is of the form 

 

and Pn(・) are the Legendre polynomials. 



Remark 1 A general result can be found in Bochner (1941), Schoenberg (1942, note 12), 
Karpushev (1985) and Sasvari (1994). The proof of this theorem can be obtained by directly 
applying Theorem 3 of Bochner (1941). 

Remark 2 Given a valid covariance function C(θ), one can always find a valid semivariogram γ 
(θ) = C(0)−C(θ). The converse is not true in Euclidean space Rn. For example, the power 
variograms do not have counterpart covariance functions (Cressie 1993). However, when the 
space is the sphere S2, it is noted by Yaglom (1961) that the space of valid variograms coincides 
with the space of valid covariances. That is, for each valid variogram 2γ (θ), θ ∈ [0,π], one can 

construct a covariance function C(θ) = c0 −γ (θ), for some c0 ≥  γ (θ) sinθ dθ. 

Remark 3 If a function C0(h) is a valid covariance function in R3, then the function C(θ) = 
C0(2sin(θ/2)) is a valid covariance function on the unit sphere S2. In general, any function of the 

form , where Φ(・) is a bounded non-decreasing function, is 
valid on a unit sphere S2 (see Yadrenko 1983, p. 76; or Yaglom 1987, p. 389). Therefore, one 
can obtain a rich family of valid covariance functions on the sphere, see also Jun and Stein 
(2007) and Banerjee (2005). 

Remark 4 When C1(θ) and C2(θ) are both valid on the sphere, so are C1(θ)C2(θ) and a1C1(θ) + 
a2C2(θ), a1, a2 ≥ 0. For example, since both exponential and power models (see Table 1) are 
valid, their product e−θ (π −θ) is also valid. 

Remark 5 In practice, one may use weighted least squares to estimate the parameters (Cressie 
1985) for valid covariance and variogram models on the sphere. 

It is clear that the stationary process is intrinsically stationary. However, the converse is not true 
even though the spaces of valid covariance functions and valid variogram functions coincide. For 
example, consider Brownian motion X(p) on S2 (Gangolli 1967) such that 

 

where p0 is a fixed arbitrary point (for example, north pole). It is clear that this process is not 
stationary; however, the variance of X(p1)−X(p2), 

 

depends solely on θ(p1,p2). That is, the process X(p) is intrinsically stationary, but not stationary. 
Note that this process has the power variogram 2γ (θ) = θα with α = 1, which is shown to be valid 
on the sphere in Sect. 3. 



In this section, we check the validity of some commonly used covariance and variogram 
functions. A summary of all results is presented in Table 1. 

Table 1 Validity (positive definiteness) of covariance functions on the sphere, a >0, θ ∈ [0,π] 

Model  Covariance function  Validity 
Spherical   

 
Yes 

Stable   
 

Yes for α ∈ (0, 1] No for α ∈ 
(1, 2] 

Exponential 
  

Yes 

Gaussian   No 
Powera  c0 − (θ/a)α  Yes for α ∈ (0, 1] No for α ∈ 

(1, 2] 
Radon transform of order 2  e−θ/a(1+ θ/a)  No 
Radon transform of order 4  e−θ/a(1+ θ/a +θ2/3a2)  No 
Cauchy  (1+ θ2/a2)−1  No 
Hole-effect  sin aθ/θ  No 
aWhen α ∈ (0, 1], power model is valid on the sphere for some  (θ/a)α sinθ dθ 

3.1 Spherical Model 

A spherical covariance function has the form 

 

where a > 0 is a scale parameter. This model is valid in [eqnR]1, [eqnR]2 and [eqnR]3 (Cressie 
1993). To check whether it is valid on the sphere, we compute the coefficients bn in (2) through 
the following sine expansion of the Legendre polynomials (Hobson 1931, p. 20; also 8.826.1 in 
Gradshteyn and Ryzhik 1994): 

 

More compactly, , where 

 

Then, 



 

Where, for integer (g(n + 2k) −g(n 

+2k + 2)). Here, we define, for . To show that bn ≥ 0 for 
all n ≥ 0, it is sufficient to show that bnk ≥ 0. Evaluating the integral for g(x) and then taking its 

first derivative leads to . This indicates that g(x), x > 0, 
is non-increasing, implying that . 

Next we show that Σn bn <∞. We first apply the mean value theorem to obtain  for 
k ≥ 0, where C1 > 0 is a constant independent of n and k (for notational simplicity, the same C1 
will be used throughout this section, even if each instance of C1 may not be the same). In 
addition, observing that 

 

and applying the Sterling’s approximation to factorials for sufficiently large n, we have 

 

Hence, for n large, , implying Σnbn <∞. Therefore, 
the spherical covariance function is valid on the sphere. 

3.2 Stable Model and Power Model 

In this subsection, we consider the stable covariance function (Chilès and Delfiner 1999) 

 

and the power variogram function (Cressie 1993) 

 

Both functions are invalid when α > 2 but valid when α ∈ (0, 2] in n (Yaglom 1987). The 
exponential and Gaussian models are special cases of the stable model (5), corresponding to α = 



1 and α = 2, respectively. Note that the function γ (・) is conditionally negative definite if and 
only if e−λγ (・) is positive definite for any λ > 0 (Schoenberg 1938). Therefore, it is equivalent to 
check the validity of the stable covariance function and the power variogram function. In 
addition, by Remark 2 in Sect. 2, it is also equivalent to check the power variogram function and 
the function 

 

for some . We termC(θ) in (7) the power covariance function. In summary, 
it is equivalent to check the validity among these three covariance and variogram functions. 

We focus our discussion on validity of these functions when α ∈ (0, 2]. Wood (1995) and 
Gneiting (1998) show that the stable covariance function is not valid on the circle when α ∈ (1, 
2]. Therefore, the stable covariance function is not valid on the sphere, since a valid covariance 
function on the sphere will always be valid on the circle (Schoenberg 1942). When α ∈ (0, 1], in 
Appendix we show that the power covariance function (7) is valid on the sphere. 

Our findings are summarized in Table 1. The stable covariance function and power variogram 
are valid when α ∈ (0, 1], but not valid when α ∈ (1, 2]. In particular, the exponential 
covariance function exp{−θ/a} is valid, and equivalently the power variogram 2γ (θ) = θ/a is also 
valid. However, the Gaussian covariance function exp{−(θ/a)2} is not valid (see also Gneiting 
1999). Note that power models with α >1 are not uncommon in practice. Janis and Robeson 
(2004) estimated over 300 period-of-record variograms using the power model, with 
approximately 26% having α >1. 

3.3 Other Models 

In this subsection, we check the validity of the following covariance functions: Radon transforms 
of exponential model (orders 2 and 4), Cauchy model, and hole-effect model. The computations 
are carried out by directly checking some of the coefficients bn in (2). 

3.3.1 Radon Transforms of Exponential Model 

The following two Radon transforms of exponential model (orders 2 and 4) can be found in 
Chilès and Delfiner (1999, p. 85) and Gneiting (1999) 

 

By direct computation, we found that b6 < 0 for C1(θ), and b2 < 0 for C2(θ), when a = 1. 
Therefore, neither is a valid covariance function on the sphere. 



3.3.2 Cauchy Model 

The Cauchy model has the form (Chilès and Delfiner 1999, p. 86) 

C(θ) = (1 +θ2/a2)−1. 

It is also termed “rational quadratic model” in Cressie (1993). It is valid on Rn (Yaglom 1987, p. 
365). A direct computation yields b14 < 0, when a = 0.5. Therefore, the Cauchy model is not 
valid on the sphere. 

3.3.3 Hole-Effect Model 

The hole-effect model has the form 

 

for some c0 > 0 and scale parameter a >0. A direct computation shows that b3 < 0 with a = 2. 
Therefore, it is not a valid covariance function on the sphere. 

The Matérn class model has the form (Sect. 22 in Yaglom 1987): 

C(θ) = c0(aθ)νKν(aθ), 

where c0 > 0, a>0, and Kν (・), ν ≥ 0 is the modified Bessel function of the second kind of order 
ν. It appears that the validity of the Matérn class on the sphere depends on the smoothing 
parameter ν. For example, the case ν = 12 corresponds to the exponential model, a valid model 
on the sphere. When ν = 32, 52 and ∞, the corresponding models are the Radon transforms of 
exponential family with order 2, order 4, and the Gaussian model, respectively, all being shown 
to be invalid on the sphere. Direct computation shows that the Matérn models are not valid when 
ν = 2, 3, . . . , 10. In view of the connection between the stable and the Matérn models (Stein 
1999, p. 50), it is likely that the Matérn models are not valid when ν > 1/2, which needs further 
investigation. 

Discussion of Strictly Positive Definiteness 

In this section, we discuss the strictly positive (conditional negative) definiteness of covariance 
(variogram) functions in Sect. 3. A real continuous function C(・) is said to be strictly positive 
definite on S2 if 

 



for any finite number of distinct spatial locations {pi, i = 1, . . . , m} on S2 and real numbers {ai, i 
= 1, . . . , m}. A parallel definition for strictly conditional negative definiteness can be given as 
well. 

There is a rich discussion in the literature about the strictly positive (conditional negative) 
definiteness of a continuous function on the sphere (e.g. the sufficient conditions in Xu and 
Cheney 1992 and Schreiner 1997, and the necessary conditions in Chen et al. 2003). Here, we 
summarize our findings as the following. 

The sufficient condition for strictly positive definite functions on a sphere is that bn in the 
expansion (1) should be positive with a finite number of them being zero (e.g. Xu and Cheney 
1992; Schreiner 1997). By inspecting the coefficients bn for the power model in Appendix, one 
can conclude that all the coefficients bn are positive when 0 < α < 1, which leads to the strictly 
positive definiteness. In parallel, the spherical covariance function is also strictly positive 
definite on the sphere. 

The case of α = 1 in the power model yields the coefficients ((8) in Appendix) to be zero for all 
even terms and positive for all odd terms, which does not satisfy the necessary condition in Chen 
et al. (2003). Therefore, it is not strictly positive definite on the sphere, even though it is positive 
definite. Consequently, the power variogram γ (θ) = θ is not strictly conditionally negative 
definite. As an example, we consider such an intrinsic stationary process X(p), p ∈ S2, at four 
locations: north pole (pN), south pole (pS ) and two points on the equator, pE and pW, such that 
θ(pE,pW) = π. It is clear that var(X(pN)+ X(pS)− X(pE)− X(pW)) = 0. 

The stable model exp(−(θ/a)α), 0<α <1, a>0, is strictly positive definite on the sphere. The case 
of α = 1, corresponding to the exponential covariance function C(θ) = exp(−θ/a), a > 0, is also 
strictly positive definite, since the coefficients  for all n, where bnk 
can be shown to be 
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Appendix: Validity of Power Covariance Functions 



In this Appendix, we show that the power covariance function C(θ) is valid when α ∈ (0, 1], 
where 

 

for some . We explore (2) to show that bn ≥ 0 for all n ≥ 0. First, we 
present the following result. Lemma 1 Let k ≥ 1 be an integer. If g(θ) is a non-negative and non-

increasing function on [0, kπ], then . 

The proof of Lemma 1 is trivial, but the result will be extensively used in the calculation below. 
Note that this lemma was also used in Gneiting (1998). First, notice that P0(・) = 1. 

 

Next, if n ≥ 1, by the orthogonality of Pn(cos θ) and sin θ , 

 

It is clear that the selection of a scale parameter a does not affect the sign of bn, and consequently 
the validity of C(θ). Without loss of generality, we assume a = 1 throughout the rest of the 
Appendix. 

When α = 1, by 7.249.1 in Gradshteyn and Ryzhik (1994), we have 

 

Therefore, bn ≥ 0, n = 0, 1, . . . . To show that Σn
b
n < ∞, we first note that n = 2m+1: 

 

Applying Stirling’s approximation to factorials, we have 



 

for some constant C1 > 0 independent of m (each appearance of C1 above may not be the same). 
Hence,Σn

b
n <∞, implying that C(θ) = c0 − θ is a valid covariance function for some 

=π. Consequently, the exponential covariance function exp{−θ} is valid, 
so is the power variogram 2γ (θ) = θ. 

When 0<α <1, based on the sine expansion (3) of Pn(cos θ), we can write 

 

where Dnk > 0 is given by (4), and 

 

First, the proof of Σn
b

n <∞can be followed along the same lines with those for the spherical 

covariance function with , for large n and k. Therefore, to prove the validity of 
C(θ), it is sufficient to show that bn ≥ 0, or in turn, that bnk ≤ 0 for all k ≥ 0. 

Now for any n ≥ 1, k ≥ 0, by the trigonometry identity and integration by parts, 

 

 

From Lemma 1, the first term in (9) is non-positive for any n ≥ 1, k ≥ 0. To prove that the second 
term is non-positive, we explore the cases of n + 2k being odd or even. 



When n + 2k is odd, by substitution u = θ − (n + 2k)π, the integral of second term in (9) becomes 

 

implying that bnk < 0 by Lemma 1. 

When n+2k = 2m is an even number for some m ≥ 1, substituting n+2k +2 = 2m+2 and n+2k = 
2m into (9), we have 

 

where 

 

From Lemma 1, to prove bnk < 0 and hence conclude the whole proof, it is now sufficient to 
show that g(θ) is non-negative and non-increasing. 

To show that g(θ) ≥ 0, we recall that for 0<α <1, θα−1 is a decreasing function 



 

To show that g(θ) is non-increasing, we take the first derivative of g(θ) with respect to θ , and 
note that α −1 < 0 

 

Therefore, g(θ) is non-increasing, concluding the proof. 
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