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Abstract: 

Spatial processes having covariance functions that depend solely on the distance between 
locations are known as homogeneous. Many random processes on the sphere are not 
homogeneous, especially in the latitudinal dimension. As a result, we study a class of statistical 
processes that exhibit axial symmetry, whereby their covariance function depends on differences 
in longitude alone. We develop a new and simplified representation for a valid axially symmetric 
process, reducing computational complexity considerably. In addition, we explore longitudinally 
reversible processes and the construction of parametric models for axially symmetric processes. 

Keywords: Associated Legendre polynomials | Longitudinally reversible process | Mercer’s 
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Article: 

1. Introduction 

While random processes in Euclidean space are widely studied in the literature, global-scale 
processes are receiving increased attention, especially in the environmental and geophysical 
sciences. In order to study the spatial dependency in such processes, one needs to ensure that the 
covariance functions are valid on the sphere. Huang et al. (2011) examine the validity of the 
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most popularly used covariance and variogram functions, demonstrating that valid covariance 
functions in Euclidean space are not necessarily positive definite on the sphere. 

In the study of random processes on the sphere, homogeneity is often assumed (Yadrenko, 
1983 and Yaglom, 1987). However, this assumption may not always be satisfied in practice 
(Cressie and Johannesson, 2008, Stein, 2007, Stein, 2008, Jun and Stein, 2007, Jun and Stein, 
2008 and Bolin and Lindgren, 2011). For instance, because energy and moisture gradients are 
strongest from equator to pole, geophysical processes are most likely to exhibit symmetry on 
longitude rather than latitude. To overcome these problems, Jones (1963) introduces the concept 
of axial symmetry where the covariance function depends on the longitudes only through their 
difference. Stein, 2007 and Stein, 2008 has applied this approach to model total column ozone on 
a global scale, while Jun and Stein, 2007 and Jun and Stein, 2008 consider the axially symmetric 
process by applying the differential operators to an isotropic process. In this note, we obtain a 
simplified representation of a valid axially symmetric covariance function on the sphere. 

2. Axial symmetry 

We consider a complex-valued random process X(P) on a unit sphere S2, where P=(λ,ϕ)∈S2 with 
longitude λ∈[0,2π) and latitude ϕ∈[0,π]. Assume the process is continuous in quadratic mean 
with respect to the location P, and has finite second moment, then X(P) can be represented by 
spherical harmonics, with convergence of the series in quadratic mean, (Li and North, 1997) 

 

where  is a normalized associated Legendre polynomial so that its squared integral 
on [−1,1] is 1, and Zν,m are the coefficients satisfying 

 

Without loss of generality, the process is assumed to have mean zero, i.e., E(X(P))=0, which 
impliesE(Zν,m)=0. Then, the covariance function of the process at two 
locations P=(λP,ϕP) and Q=(λQ,ϕQ) is given by, 

 

where  denotes the complex conjugate of Z. Note that the continuity of X(P) on every 
point P implies that R(P,Q) is continuous on all pairs (P,Q) (Cramér and Leadbetter, 1967, p. 83). 
If the covariance function depends solely on the spherical distance between these two locations, 
the process is homogeneous. That is, (Obukhov, 1947 and Yaglom, 1961) 

 



where the spherical distance θ(P,Q)=cos−1(sinϕPsinϕQ+cosϕPcosϕQcos(λP−λQ)),Pν(⋅) is the 
Legendre polynomial of order ν,fν≥0, and . Here, the random 
variable Zν,msatisfies 

 

where δa,b=1 if a=b, and 0 otherwise. 

Under the assumption of axial symmetry (Jones, 1963), where the covariance function depends 
on the longitudes only through their difference, one has 

 

Hence, the covariance function is of the form 

equation(1) 

 

Further conditions on fν,μ,m are imposed in order to have the covariance function valid. In 
particular,  and for each fixed integer m, the 
matrix Fm(N)={fν,μ,m}ν,μ=|m|,|m|+1,…,N must be positive definite for all N≥|m|. A detailed discussion 
of parallel conditions on fν,μ,m under the real-valued case is given in Jones (1963). 

In Eq. (1), for each m=0,±1,…, we let 

equation(2) 

 

It is obvious that Cm(ϕP,ϕQ) is Hermitian and positive definite on [0,π]×[0,π] based on the 
properties of fν,μ,m and Fm(N). In addition, note that λP−λQ∈[−2π,2π] and 2π is the period of the 
complex exponential function, we adapt the angular distance definition in Wood (1995): 

 

Hence, we have the following proposition. 

Proposition 1. 

Continuous axially symmetric processes on the sphere have the covariance function   

equation(3) 



 

where  Δλ∈[−π,π], and  Cm(ϕP,ϕQ)is Hermitian and positive definite 
with  . On the other hand, if for any integer  m=0,±1,±2,…,Cm(ϕP,ϕQ)is 
Hermitian and positive definite,  ,  R(P,Q)given by  (3) is a valid 
covariance function of an axially symmetric process on the sphere. 

We proceed to obtain a new presentation of the covariance structure. Since  Cm(ϕP,ϕQ)is 
continuous and both Hermitian and positive definite, by Mercer’s theorem (   Riesz and Sz-
Nagy, 1990, p. 245), there exists an orthonormal basis  {ψm,ν(⋅),ν=0,1,…}in  L2([0,π]), a 
complex-valued functional Hilbert space on  [0,π], such that   

 

where  ηm,ν≥0 are the eigenvalues,   

 

 for each  m, and the series expansion converges uniformly and absolutely. This 
leads to the following proposition. 

Proposition 2. 

For each  m=0,±1,…,there exists an orthonormal basis  {ψm,ν(⋅)}∈L2([0,π])such that the 
continuous axially symmetric covariance functions on the sphere can be expanded by   

 

where  . 

Remark 2.1. 

In both Jones (1963) and Stein (2007), the covariance function of the axially symmetric process 
on the sphere is represented in Eq. (1). That is, a triple summation is formulated in terms of 
associated Legendre polynomials with conditions on fν,μ,m to ensure the validity of the covariance 
function. It is clear from Proposition 1 and Proposition 2 that if the eigenfunction 
basis {ψm,ν(⋅)} is used, this representation can be reduced to a double summation. This greatly 
simplifies the representation of the covariance structure. In addition, Stein, 2007 and Stein, 
2008 uses the truncated triple summation in estimating the covariance function, 
where O(N3) parameters need to be estimated with N being the number of truncated terms 
from(1), placing considerable limits on the choice of N. In light of Proposition 2, the number of 



parameters in our representation is reduced to O(N2), which reduces computational complexity 
greatly. In addition, the condition on fν,μ,m in Stein’s approach, where the matrix Fm has to be 
positive definite, further complicates the computation. However, from Proposition 2, 
only ηm,ν≥0 are needed under this representation. 

Remark 2.2. 

The orthonormal basis {ψm,ν(⋅)} in Proposition 2 depends on Cm(ϕP,ϕQ), where 

equation(4) 

 

For example, if the associated Legendre polynomials happen to be the basis, the covariance 
function 

 

That is, the fν,μ,m in Eq. (1) is reduced to δν,μηm,ν. In practice, the choice of such a basis can be 
challenging, and demands further research. 

Remark 2.3. 

In the estimation procedure of Stein, 2007 and Stein, 2008, the associated Legendre polynomials 
play an essential role. Solutions involving such polynomials complicate the procedure. In light 
of Proposition 1, one may replace such polynomials by another complete basis, for example, 
the {cos(νϕ),ν=0,1,…}, which leads to 

 

where fν,μ,m satisfies the same condition to ensure the validity. This can eliminate the 
computational complexities of associated Legendre polynomials. 

Remark 2.4. 

If the process is real-valued, so is the covariance function R(P,Q). 
Therefore, , which leads to 

  

where Cm(ϕP,ϕQ)=Cm,R(ϕP,ϕQ)+iCm,I(ϕP,ϕQ). In Proposition 2, 
denotingψm,ν(ϕ)=ψm,ν,R(ϕ)+iψm,ν,I(ϕ), with  and , we obtain 



  

We arrive at a simpler expansion parallel to the Eq. (12) in Jones (1963) but with just a double 
summation representation. 

Remark 2.5. 

Given the conditions in Proposition 1 and Proposition 2, a continuous axially symmetric 
process X(P) can be represented 

equation(5) 

  

with the convergence of the series in quadratic mean. In this representation, 

  

with  . When the process is real and Gaussian, Wm,ν are independent 
normal random variables. In addition, this process can be viewed as a homogeneous random 
process on the circle with angular distance given by Δλ. That is, for each ϕ, one can 
expand X(P) in a Fourier series that is convergent in quadratic mean (Roy, 1972): 

   

where 

   

with . 

3. Longitudinally reversible process 

If one further assumes that the covariance function R(P,Q) given by (1) satisfies 

equation(6) 

R(ϕP,ϕQ,Δλ)=R(ϕP,ϕQ,−Δλ), 

this is termed as longitudinal reversibility (Stein, 2007). The 
reversibility (6) yields C−m(ϕP,ϕQ)=Cm(ϕP,ϕQ), which leads to the following representation 



 

where the last Cm has been relabeled to absorb a constant 2 for m≥1. Therefore, we have the 
following proposition. 

Proposition 3. 

The covariance function of a continuous axially symmetry process that is longitudinally 
reversible can be written as   

 

for  ΔλL=|Δλ|∈[0,π], where   

 

is Hermitian and positive definite,  . In addition, for each  m, there exists 
an orthonormal basis  {ψm,ν(⋅)}∈L2([0,π]),   

 

where  ηm,ν≥0,∑m∑νηm,ν<∞. 

Remark 3.1. 

In Proposition 1 and Proposition 2, Δλ is in the interval [−π,π]. Under the assumption of 
longitudinal reversibility, we can simplify the angular distance definition to be ΔλL=|Δλ|∈[0,π], 
since the cosine function is even and one has cos(mΔλ)=cos(mΔλL). In light of Remark 2.5, a 
longitudinally reversible process X(λ,ϕ), for each ϕ∈[0,π), can be viewed as a homogeneous 
random process on the circle with the angular distance given by ΔλL. The process adapts the 
spectral representation (5), with the further conditions η−m,ν=ηm,ν and ψ−m,ν(⋅)=ψm,ν(⋅). 

Remark 3.2. 

If Cm(ϕP,ϕQ) is further assumed to have the associated Legendre polynomials as basis with the 
corresponding eigenvalues ην,m=fν≥0 for all m, then 

 

by the addition theorem of Legendre polynomials. Hence, R(P,Q) is the covariance function of 
the homogeneous process on the sphere. 



4. Further discussion 

We have explored the structure of the axially symmetric covariance function introduced by Jones 
(1963). The orthonormal basis representation can help us understand the axially symmetric 
process and greatly improve the estimation procedure in Stein (2007). While the nonparametric 
estimation procedure offers flexibility, Stein (2007) indicates that such procedure needs further 
investigation. The alternative would be to use parametric modeling techniques. In this section, 
we construct several parametric models. 

The simplest model is the separable model, in which we assume Cm(ϕP,ϕQ)=bmC(ϕP,ϕQ). 
Herebm≥0,∑mbm<∞, and C(ϕP,ϕQ) is Hermitian and positive definite. Then, 

 

where  . Valid covariance functions for  and C(ϕP,ϕQ) can be 
candidates to construct parametric models. For example, when both covariance functions are 
exponential (Huang et al., 2011), we have 

R(P,Q)=c0e−a|Δλ|e−b|ϕ
P
−ϕ

Q
|, 

where a and b can be viewed as the decay parameters in longitude and latitude, respectively. 

For a general covariance function that is non-separable, in view of Remark 2.4, we consider a 
real-valued process with 

 

It is clear that Cm(ϕP,ϕQ) is Hermitian and positive definite (Yaglom, 1987). Then, 

 

If one takes am=a,ωm=mu, we have 

 

where θ(P,Q,u)=Δλ+u(ϕP−ϕQ)−2kπ, and k is chosen such that θ(P,Q,u)∈[0,2π]. This covariance 
function is longitudinally irreversible. Various choices of cm lead to different parametric models. 
For example, by formulas (1.447.2),(1.441,2),(1.443,3),(1.443.6) and (1.448.2)of Gradshteyn and 
Ryzhik (2007), one would have the following parametric models, respectively. 

1. If cm=Cpm, 

 



2. If , 

 

3. If , 

 

4. If , 

 

5. If cm=Cpm/m,c0=0, 

 

When the parameter u=0,R(P,Q) is separable in latitude and longitude. Therefore, u can be 
viewed as separability indicator. Among above models 1, 2 and 5, the parameter value u=0 yields 
that the process is longitudinally reversible. Hence, in these three models, the parameter u can be 
viewed as reversibility indicator as well. 
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