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Abstract: 

Necessary and sufficient conditions for the existence of maximum likelihood estimators of 
unknown parameters in linear models with equi-correlated random errors are presented. The 
basic technique we use is that these models are, first, orthogonally transformed into linear 
models with two variances, and then the maximum likelihood estimation problem is solved in the 
environment of transformed models. Our results generalize a result of Arnold, S. F. (1981)[The 
theory of linear models and multivariate analysis. Wiley, New York]. In addition, we give 
necessary and sufficient conditions for the existence of restricted maximum likelihood estimators 
of the parameters. The results of Birkes, D. & Wulff, S. (2003)[Existence of maximum 
likelihood estimates in normal variance-components models. J Statist Plann. Inference.113, 35–
47] are compared with our results and differences are pointed out. 
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Article: 

1. Introduction 

The linear model Y=Xβ+ɛ is ubiquitous in many areas of statistics. The entity Y is a n× 1 random 
vector, X is a n×m known design matrix, β is an unknown parameter vector in , and ɛ is the 
error vector normally distributed with mean vector 0 and dispersion matrix σ2In, where σ2 > 0 is 
unknown. If m < n and rank (X) =m, then maximum likelihood (ML) estimators of β and σ2 do 
exist and have an explicit form. If m < n and rank(X) < m, ML estimators of β and σ2 exist but 
the ML estimator of β is not unique. If m≥n and rank (X) =n, ML estimators of β and σ2 do not 
exist, and finally, if m≥n but rank (X) < n, ML estimators of β and σ2 exist but the ML estimator 
of β is not unique. 

http://libres.uncg.edu/ir/uncg/clist.aspx?id=8162
http://dx.doi.org/10.1111/j.1467-842X.2006.00427.x
http://dx.doi.org/10.1111/j.1467-842X.2006.00427.x


The moment we relax the assumption of independence of the components of the error vector ɛ, 
the ML estimation problem radically changes. In this note, we consider a linear model more 
general than the one postulated above: 

 (1) 

where Y is a n× 1 random vector, μ is an unknown vector belonging to a subspace V of  , 
and ɛ is normally distributed with mean vector 0 and equi-correlated errors, i.e., its dispersion 
matrix is of the form σ2A(ρ) =σ2 ((1 −ρ) In+ρJn) for some unknown σ2 > 0, and −1/(n− 1) < ρ < 
1, where In is the n×n identity matrix and Jn=1n1⊤n for 1n= (1, 1, …, 1)⊤, the n× 1 column 
vector with each entry equal to unity. 

A motivation for the emergence of this problem arose when, some years ago, a statistician 
associated with the Milwaukee project presented the following query. A mother with low 
intelligence (IQ ≤ 60) was being monitored over a long period of time. As an example, assume 
she had 5 children, two males and three females. The mother was being given intensive 
schooling in problem-solving skills over time. The IQs of her children were measured from time 
to time. At a given instant of time when the IQ of the children were measured, the 
measurements Y1, Y2,Y3, Y4, and Y5 were modelled as having a 5-variate normal distribution with 
mean vector μ⊤= (μ1, μ2, μ3, μ4, μ5) and dispersion matrixσ2A(ρ), where Y1, Y2 are the 
measurements on the male siblings and Y3, Y4, Y5 are on female siblings. The model stipulated 
that μ1=μ2 andμ3=μ4=μ5. The question raised was whether or not ML estimates of μ, σ2 and ρ 
exist. We will take up this problem in Section 2. 

Arnold (1981, Section 14.9) (see also Arnold 1979) showed that if 1n∈V, ML estimators of μ, σ2, 
and ρ do not exist. In this note, we generalize his result by characterizing precisely when ML 
estimators of μ, σ2, and ρ exist (see Theorem 1 in Section 2). The main technique we employ is 
as follows. We transform the model Y=μ+ɛ into a linear model Z=ν+ɛ* with the dispersion 
matrix of ɛ* given by Disp(ɛ*) = diag(σ2

1, σ2
2In−1). Necessary and sufficient conditions are then 

provided for the existence of ML estimators of ν, σ2
1, and σ2

2, and hence those of μ, σ2, and ρ 
(see Theorem 2 in Section 2). 

This model comes under the realm of the heteroscedastic variances model, which is a special 
case of variance components model as presented in Rao & Kleffe (1988). The literature up to 
1997 has been covered to a large extent in Rao (1997). Although ML estimation of variance 
components is extensively discussed in the literature, the existence of the estimates in a general 
framework is difficult to establish. However, in our case, we are able to identify precisely the 
circumstances under which the estimates exist. 

It should be pointed out that there is considerable literature on estimating heteroscedastic 
variances by different techniques. Following the work of Hartley, Rao & Kiefer (1969), Hartley 
& Jayatillake (1973) considered ML estimation in the linear model Y=Xβ*+ɛ, where ɛ has a 
multivariate normal distribution with mean vector 0 and dispersion matrix Disp(ɛ) = diag(σ2

1, 



σ2
2, …, σ2n) with the proviso that 0 < δ2i≤σ2i, i= 1, 2, …, n, where the δ2is are known in advance. 

This model involves n observations and n variances. (If no restriction is imposed on the 
variances in this model, there would be no ML estimates.) They described a procedure for 
obtaining ML estimates of the model. They also looked at another case in which for each 
variance in the model more than one observation is available. In this case, there is no need to 
impose any restriction on variances in order to obtain ML estimates. In our case, we have only 
two variances σ2

1 and σ2
2, with one observation available for the variance σ2

1 and (n− 
1) observations for σ2

2. Unlike Hartley & Jayatillake (1973), we do not impose any conditions on 
the variances. 

There is also some related literature. Neyman & Scott (1948) discuss ML estimation in a number 
of problems involving heteroscedastic variances. Other researchers, for example, Putter 
(1967), Rao (1970, 1972), Horn, Horn & Duncan (2005), Horn & Horn (1975), and Hartley & 
Rao (1967), have looked at various facets of heteroscedastic variance estimation. For a detailed 
discussion of the issues involved, see Wiorkowski (1975), Chaubey (1980), Rao & Kleffe 
(1988), and Rao & Rao (1998). 

One could suggest that the original model (1) can be written as a variance components model as 
presented by Demidenko & Massam (1999). This will not work out. We can 
write (1) as  with  normally distributed as  and  normally distributed 
as  where  and . However, in our model,  may be negative. In 
the model considered by Demidenko & Massam (1999),  has to be non-negative. This crucial 
difference is reflected in the conclusions of Theorem 1 of this paper and Theorem 3.1 
of Demidenko & Massam (1999). In Section 4, we present an example illustrating the differences 
in the results. 

Following a recommendation of the referee, we also explore the connection between our 
model (1) and the variance components model considered by Birkes & Wulff (2003). For the ML 
estimation problem over the entire parameter space, the results we present for our model (1) 
cover all possible scenarios whereas the results of Birkes & Wulff (2003) when applied to 
model (1) cover only a subset. These differences are spelled out in Section 4. 

This paper is organized as follows. In Section 2, we present the main results of the paper, which 
provide necessary and sufficient conditions for the existence of ML estimators. In Section 3, we 
take up the problem of existence of restricted ML estimators. A comparison of our results with 
the results of two related papers (Demidenko & Massam (1999) and Birkes & Wulff (2003)) is 
made in Section 4. 

2. Main Results 

Now we state our main result. Let V be a subspace of , with dimension dim(V), and let μ be a 
vector in V. 



Theorem 1Consider the problem of ML estimation in model (1). 

1 . No ML estimators ofμ, σ2, and ρ exist in each of the following cases. 

(a)  1n∈V. 

(b)  1n∈V⊥and dim(V)=n− 1. 

(c)  Neither1n∈Vnor1n∈V⊥and dim(V) < n− 1. 

2 . ML estimators exist in all other cases, i.e., 

(d)  1n∈V⊥ and dim(V) < n− 1; 

(e)  Neither1n∈Vnor1n∈V⊥and dim(V) =n− 1. 

In the specific example from the Milwaukee project, in view of Theorem 1, no ML estimates 
exist. 

Some comments are in order on Theorem 1 and the rest of this section. Non-existence of ML 
estimates means that there is a set of data scenarios Y with positive probability for which no ML 
estimates exist, while existence of ML estimates means that ML estimates exist almost surely. 
The case 1(a) needs a special mention, as ML estimates do not exist for any data scenario Y. 

To prove Theorem 1, we require the following lemmas. Proofs of these lemmas are trivial and 
therefore are omitted. 

Lemma 1 LetU1be a random variable with a continuous distribution function and support equal 
to(−∞, +∞), andU2be a random vector with a continuous distribution function and support equal 
to . In addition, we assumeU1andU2are independent. Let U be a random variable given by 

 

for non-zero real vectorsd1andd2each of orderm× 1. Then Pr(U < 0) > 0. 

Lemma 2 If Y∼N(τ, σ2), where−∞ < τ < ∞ and σ2 > 0are both unknown, ML estimators of τ 
andσ2based on a single observation of Y do not exist. 

Lemma 3 Let Y= (Y1, Y2, …, Yn)⊤be a multivariate normal random vector with unknown mean 
vector μ and dispersion matrixσ2In, where μ∈V, a subspace of   unknown. Then the 
ML estimators of μ and σ2exist if and only if dim(V) ≤n− 1. 

Now we transform the given linear model (1): Y=μ+ɛ, with μ∈V and dim(V) =m, into a linear 
model with two variances. First, for n≥ 2, let Pnbe a (n− 1) ×n matrix such that the n×n matrix 



 (2) 

 is orthogonal, that is C⊤nCn=CnC⊤n=In. Obviously, Pn has the following properties. 

1 PnP⊤n=In−1; 

2 PnA(ρ) P⊤n= (1 −ρ) In−1; 

3 P⊤nPn=In− (1/n) Jn. 

One example of Pn is the well-known Helmert matrix (e.g. see Press (1982, pp. 13–14)). Now 
we define a column vector of random variablesZ≡ (Z1, Z2, …, Zn)⊤ by Z=CnY. The mean vector 
of Z, denoted by ν≡ (ν1, ν(2))⊤≡ (ν1, ν2, …, νn)⊤, is given by , 
where, obviously,  and ν(2)=Pnμ. In addition, we denote the parameter space 
for ν by W≡{ν=Cnμ: μ∈V}. Then dim(W) = dim(V) =m. The dispersion matrix of Z is given by 

 (3) 

Therefore, Z1, Z2, …, Zn are independent, Z1∼N(ν1, σ2(1 + (n− 1)ρ)), and Zi∼N(νi, σ2(1 −ρ)), i= 2, 
3, …, n. Note that finding ML estimators ofν, σ2

1≡σ2(1 + (n− 1)ρ) > 0, and σ2
2≡σ2(1 −ρ) > 0 is 

equivalent to finding ML estimators of μ, σ2 and ρ. The transformed model 

 (4) 

with ν∈W and ɛ* having a multivariate normal distribution with mean vector zero and dispersion 
matrix Disp(ɛ*) = diag(σ2

1, σ2
2In−1), has two variances σ2

1 and σ2
2. 

If m < n, the subspace W of dimension m can be viewed as the intersection of 
some (n−m) linearly independent hyperplanes of the form 

 

Linear independence means that the (n−m) ×n matrix A≡ (aij) is of rank n−m. 

The subspace W of dimension m can also be the intersection of another set of (n−m) linearly 
independent hyperplanes of the form 



 

where the (n−m) ×n matrix B≡ (bij) is of rank n−m. In fact, B can be obtained from A by a series 
of elementary row transformations. Whatever may be the intersection of these hyperplanes, it can 
be noted, for example, that ai1= 0 for all 1 ≤i≤n−m if and only if bi1= 0 for all 1 ≤i≤n−m. 

We now clearly spell out when ML estimators of ν, σ2
1, and σ2

2 in the transformed 
model (4) exist almost surely and when they do not. 

Theorem 2LetZ= (Z1, Z2, …, Zn)⊤be a multivariate normal random vector with mean vectorν= 

(ν1, ν2, …, νn)⊤and dispersion matrixΣ= diag(σ2
1, σ2

2In−1), whereν∈W, a subspace of
, andσ2

1, σ2
2 > 0are unknown. Then a characterization of when ML estimators exist is given in  

Table 1 . Cases showing whether ML estimators exist. 

Case MLEs 
exist? 

1. dim(W) =m=n No 
2. dim(W) =m < n   
A. ai1= 0 for all 1 ≤i≤n−m No 
B. ai1≠ 0 for some 1 ≤i≤n−m   
B1. dim(W) =n− 1   
B11.  No 
B12. W={ ν1=a2ν2+a3ν3+⋯+arνr for some 2 ≤r≤n and 
constants ai≠ 0, i= 2, 3, …, r 

Yes 

B2. dim(W) <n− 1   
B21. One of the hyperplanes defining W is  Yes 
B22. All other cases No 
 

Proof Cases 1 and 2A follow from Lemma 2. Cases B11 and B21 follow from Lemma 3. 
Therefore, it is sufficient to prove Cases B12 and B22. First, we look at the case B12. Let dim(W) 
=m=n− 1 and ν1 be a non-trivial linear combination of some νi's. Without loss of generality, we 
assume ν1=a2ν2+a3ν3+⋯+arνr for some 2 ≤r≤n and constants ai≠ 0, i= 2, 3, …, r. The log-
likelihood of the data, up to a constant not depending on the unknown parameters, is then given 
by 



 

The likelihood equations simplify to 

 (5) 

 (6) 

 (7) 

 (8) 

which lead to (Z2−ν2)/a2= (Z3−ν3)/a3=⋯= (Zr−νr)/ar≡C, say, a constant depending only on the 
data. Substituting the expressions for νi above in terms of C back to (8) with i= 2, one can get 

 (9) 

Therefore, ML estimators of (ν2, ν3, …, νn)⊤, σ2
1 and σ2

2 exist and are given 
by (9) and (7), (5) and (6), respectively. 

Next we consider Case B22. We prove non-existence of ML estimators for the case m=n− 2. For 
arbitrary m < n− 2, the arguments used form=n− 2 can be adapted to establish the non-existence. 
For the case m=n− 2, note that W is the intersection of two hyperplanes. In one hyperplane, we 

will have  for some 2 ≤l≤n and a2, a3, …, al≠ 0. For the other hyperplane, there exists 
some νj, r+ 1 ≤j≤n, which is a linear combination of some of ν2, ν3, …, νn. Without loss of 
generality, we let νj=νr+1, r > l. Relabel the components ν2, ν3, …, νn, if necessary. We identify 
four cases. 

Case I:  (The case of no common component in the linear combinations) 

 

Case II:  (The case of one common component in the linear combinations) 



 

Case III:  

 

Case IV:  (The case of more than one common component in the linear combinations). 

It is sufficient to consider Cases I and II since for Case III, we have  and νr+1= 
0 with r≥l and ai≠ 0 for all i's. This case can be viewed as a special case of Case I but with bi= 
0 for all i's. Case IV can be easily transformed to Case II above. As an example, if there are two 
common variables νl−1 and νl in the linear combinations for ν1 and νr+1 , that is , 
and  with ai≠ 0, bi≠ 0for all i's, then we may introduce a new 
parameter θ=al−1νl−1+alνl, implying that  
and , which is Case II. 

Now consider Case I. We have  , with ai≠ 0, bi≠ 0 for all i's. Note 
that the log-likelihood of the data, up to a constant not depending on unknown parameters, can 
be written as 

 

Again, ML estimation of (ν2, ν3, …, νr, νr+2, …, νn)⊤, σ2
1, and σ2

2 involve the following 
estimating equations 

 

and 



 (10) 

 (11) 

We show that these equations have no solution. Note that (10) is equivalent to 

 (12) 

for some common ratio C depending on the data. Therefore, we have 

 (13) 

In addition, (11) can be written as N· (νl+1, νl+2, …, νr)⊤= (Zl+1+bl+1Zr+1, …, Zr+brZr+1)⊤, where 

 

with Ir−l being the (r−l) × (r−l) identity matrix. Obviously, N is a positive definite matrix 
with . Hence, we 
have . Therefore, 

 (14) 

Substituting (14) and (13) into the second equality of (12), we have 

 (15) 

The discriminant of the quadratic equation in C in (15) is given by 



 

Let U1=Z1, U2= (Z2, Z3, …, Zr+1)⊤ in Lemma 1. This means that on a set of positive 
probability, (15) has no real solution. Consequently, no ML estimators of σ2

1, σ2
2, and the νis 

exist. 

For Case II, we have , and  with ai≠ 0, bi≠ 0 for all is. Then the log-
likelihood of the data, up to a constant not depending on unknown parameters, can be written as 

 

Again, ML estimation of (ν2, ν3, …, νr, νr+2, …, νn)⊤, σ2
1, and σ2

2 involve the following 
estimating equations 

 

and 

 

Following the same idea used in Case I and after some tedious but straightforward calculations, 
one can easily get, for some common ratio Cdepending on the data, 



 

and a quadratic equation in C 

 

The discriminant is given by 

 

Again, using Lemma 1 with U1=Z1 and U2= (Z2, Z3, …, Zr+1)⊤, we conclude that ML estimators 
do not exist. 

Example We present an example to illustrate the idea used in the proof. Let Z= (Z1, Z2, Z3)⊤ be a 
multivariate normal random vector with mean vector ν= (ν1, ν1, ν1)⊤ and dispersion matrix Σ = 
diag(σ2

1, σ2
2, σ2

2), where  , and σ2
1, σ2

2 > 0 are all unknown. This is Case II discussed in 
the proof of Theorem 2. The log-likelihood of the data, up to a constant not depending on 
unknown parameters, is then given by 

 

Obviously, ML estimation of ν1, σ2
1, and σ2

2 involves the following equations; σ2
1= (Z1−ν1)2, 

σ2
2= ((Z2−ν1)2+ (Z3−ν1)2)/2, (Z1−ν1)/σ2

1+ ((Z2−ν1) + (Z3−ν1))/σ2
2= 0. Note that the last equation is 

equivalent to (Z2−ν1) + (Z3−ν1) =−σ2
2/σ1=C, for some constant C depending only on the data. A 



simple calculation gives the following quadratic equation in C, 3C2+ 2C(2Z1−Z2−Z3) + (Z2−Z3)2= 
0. The discriminant is then given by Δ= 4(2Z1−Z2−Z3)2− 12(Z2−Z3)2. Therefore, no ML estimate 
of ν1 exists since there is a positive probability that Δ < 0. 

Now we are in a position to prove Theorem 1. 

Proof of Theorem 1 If dim(V) = 0, then it is obvious that ML estimates exist. We 
assume dim(V) =m > 0. If m < n, then there exists a n× (n−m) matrix M≡ (α1, α2, …, αn−m), such 
that 

 (16) 

where αi= (αi1, αi2, …, αin)⊤∈V⊥, i= 1, 2, …, n−m and the αis are linearly independent. Note 
that ν=Cnμ, then . Substituting this into (16), one has 

 (17) 

with ν(2)= (ν2, ν3, …, νn)⊤. Finally, note that 1n can be uniquely decomposed as 

 (18) 

where a∈V and b∈V⊥. 

1 If 1n∈V then b=0. We only consider the case when m < n since it is obvious that ML 
estimators of ν, σ2 and ρ do not exist whenm=n. Note that M⊤1n=0 in (17). This is obviously 
Case 2A in Theorem 2, and hence the result follows. The proof here is similar to the one 
given by Arnold (1981, Section 14.9). 

2 If 1n∈V⊥, then . Obviously, the ML estimator of σ2
1 is given by 

, and from Cases B11 and B21 in Theorem 2, ML estimators of ν(2), σ2
2 based on Z2, Z3, 

…, Zn exist if and only if m < n− 1. 

3 Suppose neither 1n∈V nor 1n∈V⊥. Then dim(V) =m < n, and a≠0, b≠0 from (17). First, we 
assume m=n− 1. Then M∈V⊥ is a n× 1column vector. Therefore, M⊤·1n=M⊤·b≠ 
0 and M⊤·P⊤n≠0, that is, from (17), ν1 is a non-trivial linear combination of some ν2, ν3, …, 
νn. Obviously, this is Case B12 in Theorem 2, and therefore, ML estimates exist from 
Theorem 2. Now if m < n− 1, one can easily deduce that, for each 1 ≤i≤n−m, α⊤i·P⊤n≠0 and 
for at least one 1 ≤i≤n−m, α⊤i·1(n)=α⊤i·b≠ 0 from assumptions. Obviously, this case comes 
under Case B22 in Theorem 2. Hence from Theorem 2 ML estimates do not exist. 

Now we apply Theorem 1 to the linear model Y=Xβ+ɛ, where ɛ∼Nn(0, σ2A(ρ)), X is 
a n×m design matrix with full rank m≤n, and  an unknown parameter. 
Denote . We have the following result. 



Corollary 1 

1 . No ML estimators ofβ, σ2, and ρ exist in each of the following cases. 

(a)  1n∈V. 

(b)  Every column vector of X is orthogonal to1nandm=n− 1. 

(c)  Neither1n∈Vnor1n∈V⊥andm < n− 1. 

2 . ML estimators exist in all other cases. 

Proof 1(b) is trivial since 1n∈V⊥ if and only if 1⊤nXβ= 0 for all  if and only if 1⊤nX=0. 
Therefore, the result follows from Theorem 1. 

Theorem 1 can be generalized. Let the dispersion matrix of Y in model (1) be given by σ2((1 
−ρ) In+ρξξ⊤), where ξ is a given n× 1 column vector with ξ⊤ξ > 1 and σ2 > 0. If ξ=1n, the 
dispersion matrix will be σ2A(ρ). It can be shown that the dispersion matrix σ2((1 −ρ) In+ρξξ⊤) is 
positive definite if and only if −1/(ξ⊤ξ− 1) < ρ < 1 and σ2 > 0. In what follows, we assume 
that ξ⊤ξ > 1 and −1/(ξ⊤ξ− 1) < ρ < 1. 

Theorem 1 can be rephrased to encompass this general framework of the dispersion matrix. 

Theorem 3Consider the problem of ML estimation in Model (1) with dispersion matrix ofYgiven 
by . 

1 No ML estimators ofμ, σ2, and ρ exist in each of the following cases. 

(a)  ξ∈V. 

(b)  ξ∈V⊥and dim(V) =n− 1. 

(c)  Neitherξ∈Vnorξ∈V⊥and dim(V) < n− 1. 

2 . ML estimators exist in all other cases, i.e., 

(d)  ξ∈V⊥and dim(V) < n− 1; 

(e)  Neitherξ∈Vnorξ∈V⊥and dim(V) =n− 1. 

A proof of Theorem 3 can be fashioned along the lines of the proof given for Theorem 1. The 
transformation (2) needs to be modified as 

 (19) 



Here, for  is a (n− 1) ×n matrix such that the n×n matrix  is orthogonal. Obviously 
,  has the same properties as those of Pn,i.e., 

1  

Therefore, Model (1) with dispersion matrix given by σ2((1 −ρ) In+ρξξ⊤) can now be 
transformed into Model (4) with σ2

1=σ2 (1 + (ξ⊤ξ− 1)ρ) > 0 and σ2
2=σ2 (1 −ρ) > 0. 

3. Restricted Maximum Likelihood Estimates 

It might be preferable to use the method of restricted maximum likelihood (REML) estimation, 
which is based on a linear transformation of the data. Assume that dim(V) =m≥ 1, then there 
exists a n×m matrix X such that rank (X) =m and V is spanned by the column vectors of X. We 
denote this by V=〈X〉. Consider a n× (n−m) matrix Q whose columns form an orthonormal 
basis for V⊥. Note that Q satisfies Q⊤Q=In−mand QQ⊤=In−X(X⊤X)−1X⊤. Also Q⊤Y follows 
a N(n−m)(0, σ2Q⊤((1 −ρ) In+ρJn) Q) distribution. First notice that if 1n∈V, then Q⊤JnQ=0, and 
soQ⊤Y follows a N(n−m)(0, σ2 (1 −ρ) In−m) distribution. Obviously, σ2 and ρ are non-identifiable, 
that is, no REML estimates for σ2 and ρ exist. 

Now if , we can write 1n=a+b where a∈V and b∈V⊥. Therefore, Q⊤((1 −ρ) In+ρJn) Q= (1 
−ρ) In−m+ρQ⊤bb⊤Q. Hence, Q⊤Y follows aN(n−m)(0, σ2 ((1 −ρ) In−m+ρQ⊤bb⊤Q)) distribution. 
Let   , and then apply the same type of transformation  as (19) above but with 
order of (n−m) × (n−m). After the transformation, the transformed data  would 
follow N(n−m)(0, Σ) with the dispersion matrix Σ given by Σ=σ2 diag (1 + (ξ⊤ξ− 1)ρ, (1 
−ρ) In−m−1). First note that ξ⊤ξ=b⊤QQ⊤b=b⊤b−b⊤X(X⊤X)−1X⊤b=b⊤b≤1⊤n1n=n. Under the 
condition of −1/(n− 1) < ρ < 1, it follows that 1 + (ξ⊤ξ− 1)ρ > 0. Hence if n≤m+ 1 (or more 
accurately, n=m+ 1 since n > m), no REML estimates exist for  and 

 . On the other hand, if n > m+ 1, REML estimates exist for  and , or 
equivalently, for σ2 and ρ, exist. In summary, we have the following theorem for REML 
estimates. 

Theorem 4 Consider the problem of REML estimation in model (1). 

1. No REML estimators ofσ2and ρ exist in each of the following cases. 

(a)  1n∈V. 

(b)  and dim(V) =n− 1. 

2 . REML estimators exist in all other cases, i.e., 

(c)   and dim(V) < n− 1. 



In the framework of Theorem 3, we have the following result. 

Theorem 5Consider the problem of REML estimation in Model (1) with the dispersion matrix 
ofYgiven byσ2((1 −ρ) In+ρξξ⊤). 

1. No REML estimators ofσ2and ρ exist in each of the following cases. 

(a)  ξ∈V. 

(b)  and dim(V) =n− 1. 

2. REML estimators exist in all other cases, i.e., 

(c)  and dim(V) < n− 1. 

Note that the existence of REML estimates in Theorems 4 and 5 is in the almost sure sense. 
However, REML estimates in cases (a) and (b) do not exist for every data set. 

4. A Comparison 

We will now present an example for which ML estimates do not exist in the framework of 
model (1), but ML estimates do exist if model (1) is modified to conform to the model 
of Demidenko & Massam (1999, pp. 431). 

Consider model (1) with n= 3 and μ an unknown vector belonging to the subspace V=〈(1, 1, 1)⊤

〉 of  , spanned by the vector 13= (1, 1, 1)⊤. Write  Obviously, there are three 
parameters , and σ2 > 0 to be estimated in this example. Note that 13∈V. 
Therefore, no matter what data are available, ML estimates of the parameters do not exist. The 
same conclusion was also obtained by Arnold (1981), Section 14.9. 

To be more specific, let us work with the data y= (1, − 1, 0)⊤. Then under the transformation 

 

we observe that in the transformed 
model (4),  with  ∼N3 (0, 
diag(σ2

1, σ2
2I2)) with σ2

1=σ2 (1 + 2 ρ) and σ2
2=σ2 (1 −ρ), and the log-likelihood of the data z is 

given by 



 

Note that if −1/2 < ρ < 1, the mapping between (σ2, ρ) ∈{(σ2, ρ); σ2 > 0, − 1/2 < ρ < 1} in 
model (1) and (σ2

1, σ2
2) ∈{(σ2

1, σ2
2); σ2

1 > 0, σ2
2 > 0} in the transformed model (4) is one-to-one, 

and all parameters are free to choose without restriction. Obviously, there is no ML estimate. 

Now we consider the existence theorem (Theorem 3.1) in Demidenko & Massam (1999) as 
applied to the data y= (1, − 1, 0)⊤. If we assume 0 ≤ρ < 1, ML estimates of β, ρ, and σ2 do exist 
and they are given by , and . 

It seems that there is a contradiction between our Theorem 1 and Theorem 3.1 of Demidenko & 
Massam (1999). However, notice that Theorem 3.1 of Demidenko & Massam (1999) can only be 
applied to our model (1) when 0 ≤ρ < 1. Under the condition 0 ≤ρ < 1, the parameter space {(σ2, 
ρ); σ2 > 0, 0 ≤ρ < 1} in model (1) will be one-to-one mapped into {(σ2

1, σ2
2); σ2

1 > 0, σ2
2 > 0, 

σ2
1≥σ2

2} in the transformed model (4). Therefore, in the example we considered, if an additional 
constraint σ2

1≥σ2
2 is added when ML estimates are calculated, ML estimates for β, σ2

1, 
and σ2

2 will be given by , which implies , and . In 
summary, the conditions −1/(n− 1) < ρ < 1 (ours) and 0 ≤ρ < 1 (Demidenko & Massam 1999) 
lead to different conclusions on the existence of ML estimates. 

We now consider the work of Birkes & Wulff (2003). To begin with, we put model (1) in the 
framework of the variance components model ofBirkes & Wulff (2003). Following the notation 
from Birkes & Wulff (2003) and with the spectral decomposition of Jn, (3.1) of Birkes & 
Wulff(2003, pp. 38) can be written as 

 

where  , and E2=In− (1/n) Jn. 
Therefore, we have 

 

We now apply Theorem 5.1 of Birkes & Wulff (2003, pp. 42) to model (1). 

Theorem 6 (A direct translation of Birkes & Wulff, 2003). Consider the problem of ML 
estimation in model(1). 



1. If1n∈V⊥, and dim(V) < n− 1, then with Model(1)constrained to a relatively closed subset 
ofΨpd, ML estimates exist with probability1. 

2. If1n∈Vwith dim(V) ≤n− 1, or neither1n∈Vnor1n∈V⊥withdim(V) < n− 1, ML estimates do 
not exist for the entire Ψpd. 

Parallel result holds for the existence of REML estimates. 

Theorem 7 (A direct translation of Birkes & Wulff (2003, Corollary 7.3)) Consider the problem 
of REML estimation in Model(1). If   and dim(V) < n− 1, then with the 
model(1)constrained to a relatively closed subset ofΨpd, REML estimates exist with 
probability 1. 

Theorems 1 and 4 of this paper cover every possible scenario, whereas Theorems 6 and 7 above 
cover only a subset of all possible scenarios. However, it should be pointed out that Theorems 1 
and 4 work for the entire parameter space Ψpd, whereas Theorems 6 and 7 are operational for 
any relatively closed subset of Ψpd. 
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