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Abstract: 

In this paper, the convolution theorem and the minimax theorem for estimating the survival 
function in the partial Koziol–Green model (PKG) are presented. The result indicates that the 
partial Abdushukurov–Cheng–Lin (ACL) estimator in the PKG model is asymptotically efficient 
in the sense of being the least dispersed regular estimator. Consequently, the calculation shows 
that the ACL estimator in the KG model is also asymptotically efficient. 
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Article: 

1. Introduction 

Let T be a non-negative random variable defined on some probability space . Assume 
that T is subject to being right censored by the minimum of two independent and non-negative 
random variables TCand TD, where TC is an informative censoring time satisfying the 
proportional hazards condition (1) below and TD is a non-informative censoring time. More 
explicitly, we assume that one observes the pair (Z,Δ), where Z=min(T,TC,TD) and Δ=1 
if T⩽TC∧TD, 0 if TC⩽TD∧T, and −1 if TD⩽T∧TC. Throughout this paper,T,TC and TD are 
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assumed to be independent and continuous random variables. We write G(t),C(t) and D(t) for the 
distribution functions, g(t),c(t) and d(t) for the density functions, and  and  for 
the survival functions of T,TC and TD, respectively. In addition, we let H(t) and  be the 
respective distribution function and survival function of Z. The proportional hazards assumption 
on the censoring variable TC can be expressed as follows: 

equation(1) 

 

for some fixed but unknown parameter θ>0. This is the model of censoring introduced 
by Gather and Pawlitschko (1998) under the name of the partial Koziol–Green (PKG) model. 

Assume that (Z1,Δ1),(Z2,Δ2),…,(Zn,Δn) are n independent copies of (Z,Δ). 
Let Ei=min(TCi,TDi) andξi=I[Δi=1], the indicator function of the event {Δi=1}; 
then, Zi=min(Ti,Ei). The PKG model reduces to a general model of random right censoring 
(GRC), which suggests the Kaplan–Meier estimator ( Kaplan and Meier, 1958) for the estimation 
of the survival function , 

equation(2) 

 

where Ri denotes the rank of Zi within the Z-sample. For notational simplicity, the dependence of 
the estimator on n will be suppressed throughout the rest of the paper. Here the subscript KM 
indicates the method of estimation used. Notice that, as the Kaplan–Meier 

estimator  does not take advantage of (1), one can deduce that (2) may not be an 
efficient estimator under the PKG model. 

As a special case of the PKG model, we consider the Koziol–Green model (KG), in which TD=
∞. Under the KG model, (1) implies 

equation(3) 

 

since . Here p=1/(1+θ)=P(Δ=1). It should also be noted that under the 
framework of the GRC model, (1) holds if and only if Z and Δ are independent provided that 
0<P(T⩽TC)<1. Therefore, an estimator of Ḡ can be exploited based on (3). Abdushukurov 
(1984) and Cheng and Lin (1987) independently proposed the so-called ACL estimator 



equation(4) 

 

where  and  are the empirical 
counterparts of  and p, respectively. The asymptotic consistency and normality of the ACL 
estimator has been fully investigated, for example, see Cheng and Lin (1987). Furthermore, 
under the KG model, it was shown that the ACL estimator is asymptotically more efficient than 
the Kaplan–Meier estimator ( Cheng and Lin, 1987). 

Under the PKG model, Gather and Pawlitschko (1998) proposed the so-called partial ACL 
(PACL) estimator analogue to the ACL estimator above, which is given by 

equation(5) 

 

where , with  if the denominator is zero, 

and  is the Kaplan–Meier estimator based on i.i.d. data (Z1,η1),(Z2,η2),…,(Zn,ηn) 
with ηi=I[Δi≠−1], i.e., 

equation(6) 

 

where Ri denotes the rank of Zi in the Z-sample. Under the PKG model, the PACL estimator was 
shown to be strongly consistent and asymptotically normally distributed ( Gather and 
Pawlitschko, 1998). Further analytic result shows that the PACL estimator is asymptotically 
more efficient than the KM estimator given by (2), see Gather and Pawlitschko (1998) for more 
details. 

Naturally, it is always interesting to know if a proposed estimator uses the available data in an 
efficient manner. In a regular parametric model, the Cramer–Rao lower bound provides the 
answer in terms of a variance lower bound for estimators of unknown finite dimensional 
parameters. Under regularity conditions it is well known that the maximum likelihood estimator 
achieves this lower bound and so is asymptotically efficient. The PKG model is a semiparametric 

model, however, where θ is the parametric component while  is the nonparametric 
component of interest. Therefore, the asymptotic theory for investigating the efficiency property 
of estimates in semiparametric models, as originated by LeCam (1979), Hájek (1970)and later 
generalized, for example, by Begun et al. (1983), may be applied. 



In this paper, we provide an analysis to determine the efficiency of the PACL estimator. 
In Section 2, we present our convolution theorem and minimax theorem analogous to those 
established by Begun et al. (1983) for general semiparametric models. Our theorems assert, 
roughly, that the limiting process for any sequence of regular estimators of  must be as 
least as dispersed as the limiting process corresponding to the PACL estimator (5), and so the 
PACL estimator is asymptotically efficient. Furthermore, our calculation also shows that the 
ACL estimator under the KG model is asymptotically efficient. Some concluding remarks are 
given in Section 3. 

We would like to mention that a simpler proof of the asymptotic efficiency of ACL estimator 
based on a result of Van der Vaart (1991) was given by Hollander et al. (2001). Such a proof 
relies on the fact that Hadamand differentiable functions of efficient estimators are efficient. The 
same approach may be applied to prove the asymptotic efficiency of PACL estimator. However, 
the calculation based on the approach of Begun et al. (1983) in this paper provides more general 
results such as local minimax theorem of the PACL estimator, and the asymptotic lower bounds 
calculated give us some indication of how close or far the estimators considered are from 
efficient if the asymptotic lower bounds are not achieved. An additional example of this 
application can be seen in Zhang and Goldstein (2003) in the consideration of the asymptotic 
efficiency of the relative risk parameter of case-cohort sampling design in Cox's regression 
model. 

2. Efficiency of the PACL estimator 

In this section, we obtain the asymptotic variance lower bound for estimating the survival 

function   and the unknown parameter θ under the PKG model. We closely follow the 
treatment of Begun et al. (1983), referred to as BHHW in what follows. However, we only 
sketch the main idea and provide necessary notations used in this paper. The reader should refer 
to BHHW for more details such as definitions and theorems. 

Recall from Section 1 that θ∈R+ is an unknown positive-valued parameter. Let g(t), the density 
function ofT, be an element of , a fixed subset of the set of all densities absolutely continuous 
with respect to Lebesgue measure ν on R+=[0,∞); let τ be counting measure on {−1,0,1}. 
Then the i.i.d. vectors , i=1,2,…,n, which take values in the space 

 , have density , with respect to the product measure μ=
ν×τ, given by 

equation(7) 

 



from (1). Here . Let  and L2(ν)=L2(R+,ν) denote the usual L2-
spaces of square integrable functions and let 〈·,·〉μ(||·||μ) and 〈·,·〉ν(||·||ν) denote the 
usual inner products (and norms) in L2(μ) and L2(ν), respectively. To compute the effective 
information for θ in the presence of the unknown function g, we need to parametrize  locally 
by a subspace  of L2(ν), where each  is a possible “direction” in which to approach g. 
Explicitly, for every , let 

equation(8) 

 

which implies . Therefore, 

Proposition 1. 

The set   is a subspace ofL2(ν). 

In addition, we let ; gn absolutely continuous with respect to g and 
||n1/2(gn1/2−g1/2)−β||ν→0 as n→∞}. Furthermore, we let  be the union of 
all  over . Similarly, let Θ(θ,h) denote all sequences {θn}n⩾1 such that |n1/2(θ

n−θ)−h|→0, as n→∞, and . 
Given  let fn≡f(·;θn,gn) denote the corresponding sequence of 
densities. 

The following proposition is required for the computation of the asymptotic lower bounds for 

regular estimators of θ and . 

Proposition 2. 

Suppose . If  forh∈R1,β∈L2(ν),andfn
≡f(·;θn,gn) andf≡f(·;θ,g), then under the PKG model, we have 

equation(9) 

 

withα∈L2(μ) given byα=hρ+Aβ, andρ∈L2(μ) and   are given by 

 



 

forδ=−1,0 or 1 andt>0. 

Proof. 

Under the PKG model, the verification of (9) and the determination of α,ρ and A parallel 
computations in Section 6 of BHHW for the Cox's model case, and Lemma 1 of Begun and 
Wellner (1982) for the two-sample case without censoring. □ 

Let  for some , and hence by Proposition 1, H is 
a subspace of L2(μ). For α∈H, we let  denote the collection of all sequences {fn} such 

that (9) holds for the given α and let  . 

We first calculate the effective information for θ in the presence of the unknown function g. We 
orthogonally project ρ onto the nuisance space  to yield the “effective score” 
for θ, ρ−Aβ∗, whereAβ∗, the orthogonal projection, is such that β∗ satisfies the “normal 
equation”: 

equation(10) 

A∗Aβ∗=A∗ρ, 

where A∗ is the adjoint operator of A. The effective asymptotic information then equals 

equation(11) 

 

Now we present the main results for this section. The proofs of the theorems are deferred to the 
end of this section. 

Theorem 1. 

Suppose that  is any regular estimator ofθunder the PKG model, its limit law is 
. Then  may be represented as the convolution of a  distribution with 
, a distribution depending only onf=f(·;θ,g), where 

equation(12) 

 

Here  . 



To present our asymptotic minimax result, we introduce a subconvex loss function , 
that is,  is closed, convex, and symmetric for every y⩾0, and l(x) 

satisfies   for all s>0, where φ denotes the standard normal density 
function. 

Theorem 2. 

Letl(x) be a subconvex function. Then under the PKG model and with 

, 

 

where  for . Ifl(x)=x2, then   is the 
asymptotic lower bound for the variance of any regular estimator. 

Here the infimum over estimators  is taken over the class of “generalized procedures,” the 
class of randomized (Markov kernel) procedures, as in BHHW. 

Next we consider the asymptotic lower bound for the estimation of Ḡ, the continuous survival 
function corresponding to the density , over an interval [0,T0] with P(T>T0)>0 

and P(TD>T0)>0. First, a (continuous) estimator  of Ḡ is said to be regular at f=f(·;θ,g) if, 
for every sequence {fn}={f(·;θn,gn)} with , the 

process , with , converges weakly on C[0,T0] to limit 

process  on C[0,T0] (under fn) where the law of  onC[0,T0] does not 
depend on h or β. 

Analogous to Theorem 1, we have 

Theorem 3. 

Suppose that   is any regular estimator of Ḡ with   under the PKG model with 
limit process . Then   where the process  is independent of  , and   is 
the zero-mean Gaussian process on [0,T0] given by 

equation(13) 

 

with covariance function   given by 

equation(14) 



 

Here  is a zero-mean Gaussian process on [0,T0] with covariance function K(s,t) given by 

equation(15) 

 

and   is independent of . 

To present our minimax theorem for the estimator of , we let  be a 

subconvex loss function such as , 
or l1(x)=I[x:||x||⩾c]. 

Theorem 4. 

Letl1(x) be a subconvex loss function defined above. Then under the PKG model and 
withBn(c) defined in Theorem 2, 

 

where is the zero-mean Gaussian process given in Theorem 3. 

Here again the infimum over estimators  is taken over the class of “generalized procedures,” 
the class of randomized (Markov kernel) procedures, as in BHHW. We say that a regular 
estimator  of Ḡ is asymptotically efficient if the asymptotic covariance function 
of  is . From Gather and Pawlitschko (1998), the PACL 

process  converges weakly to a zero-mean Gaussian process 
with covariance function  given by (14), in other words,  is a sequence of estimators 
for which  in Theorem 3. Note that the PACL estimator is not continuous and thus not 

regular, but as in Wellner (1982), we can always construct a continuous estimator  from the 

continuous “lower linear interpolation”  of , yielding corresponding process . 

Therefore, as in Wellner (1982), since the jump sizes of  tend to zero in probability, we 

have , and  also converges weakly to . We still use PACL for this 
continuous estimator. Hence, we have 

Corollary 1. 



The PACL estimator under the PKG model is asymptotically efficient. 

Similar calculation and consideration apply to the derivation of the asymptotic lower bounds for 

estimatingθ and  under the KG model, and therefore, one can also conclude 

Corollary 2. 

The ACL estimator under the KG model is asymptotically efficient. 

We are now back to the proofs of theorems. 

Proofs of Theorem 1 and Theorem 2. 

Our proofs parallel those of Theorems 3.1 and 3.2 of BHHW. We have verified the subspace 
condition of BHHW in Proposition 1, and the conclusion of Proposition 2.1 of BHHW 
in Proposition 2. Therefore, it remains only to compute . 

First, following the notations in Proposition 2, we compute β∗(t), the solution of “normal 
equation” (10), and so the orthogonal projection . Note that with classical functional 
analysis theory (cf. Luenberger, 1969) and straightforward calculation, we have 

 

 

 

where . Hence we find that 

equation(16) 

 

Therefore, with , the orthogonal projection  of  onto the closed 
space  of L2(ν) is given by 

equation(17) 

 



for δ=−1,0 or 1. Therefore, it is easy to get  from (11) after simple computation. Theorem 
2 now follows by a direct application of Theorem 3.2 of BHHW 

with . □ 

Proofs of Theorem 3 and Theorem 4. 

Our proofs parallel those of Theorem 4.1 and Theorem 4.2 of BHHW. We have verified the 
subspace condition of BHHW in Proposition 1, and the conclusion of Proposition 2.1 of BHHW 
in Proposition 2. In addition, from the proof of Theorem 1, we see that (A∗A)−1 is bounded linear 
operator on [0,T0]. Therefore, from Theorem 4.1 of BHHW, Theorem 3 holds with the 
covariance function  of given by 

 

where 

equation(18) 

 

Hence, it remains only to compute K(s,t). 

Notice that  and 

 

Therefore, for , K(s,t) of (18) becomes 

 

Hence, noting that p0=θp1 and  given in (12), we can get (14). Theorem 4 now follows by a 
direct application of Theorem 4.2 of BHHW. □ 

Proof of Corollary 2. 

Under the KG model, one can easily see that Theorem 1, Theorem 2, Theorem 3 and Theorem 
4 hold with . Therefore, simple simplification gives, 0⩽s<t⩽T0, 

 



and 

 

since p0+p1=1 under the KG model. From Cheng and Lin (1987), notice that the asymptotic 

covariance of the ACL process  is , and therefore, the ACL 
estimator is asymptotically efficient. □ 

3. Concluding remarks 

This paper provides an analysis of asymptotic efficiencies of the ACL estimator under the KG 
model and the PACL estimator under the PKG model. Our analysis shows that both estimators 
are asymptotically efficient in the sense of being the least dispersed regular estimators. 
Throughout this analysis we assume the existence of the density functions of the life time T and 
the non-informative censoring time TD. Our analysis follows closely the treatment of Begun et 
al. (1983) on asymptotic efficiency in semiparametric models. 

In addition, one can easily verify that the estimator of the unknown parameter θ under either 
model is actually asymptotically efficient, i.e., achieves the corresponding asymptotic lower 
bound. Furthermore, the asymptotic lower bound for the estimation of joint 
parameter  can be easily obtained following Begun et al. (1983). 

In addition to the ACL estimator considered in the Koziol–Green model, Hollander et al. 
(2001) proposed a generalized maximum likelihood estimator (GMLE) which maximizes the 
likelihood of the data over the class of allowable distributions including all continuous and 
discrete distributions. This GMLE has been observed to be different from the ACL estimator, 
empirically (Hollander et al., 2001) the difference is small for large risk sets. Therefore, it is 
expected that the GMLE estimator is asymptotically equivalent to the ACL estimator. In 
particular it was recently proven in Zhang et al. (2003) that the GMLE and the ACL estimators 
have the same asymptotic distribution. Hence, from Corollary 2, we may expect that the GMLE 
estimator in Koziol–Green model is also asymptotically efficient, and that an analogous result 
will hold in the PKG model. 
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