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CHAPTER I 

INTRODUCTION 

 Since 1980, the wage gap between skilled and unskilled workers grew 

substantially. Figure 1 shows median hourly wages for men in the U.S. from 1980 to 

2015 by education and potential experience. What we see is that the wage gap for skilled 

(i.e. educated) workers rose dramatically over the last 40 years. For workers with less 

than 10 years of potential experience, this gap roughly doubled from about $5 to $10 in 

hour in 2015 dollars, with a more modest increase in the gap for workers with more than 

25 years of potential experience. This happened over a period in which the relative 

number of college graduates and high experienced workers rose dramatically. The value 

of work done by high skilled labor has risen while the quantity of high skill laborers has 

increased. The catch here is that “work done by high-skill laborers” conceals enormous 

complexity. High-skill laborers do all sorts of work. Does the productivity increase apply 

to all the work they do, or only some types of work that high-skill laborers 

disproportionately supply? Are high-skill laborers supplying more of some types of work, 

or are they benefiting from labor-augmenting technology? 

 Over the same period, jobs changed in other ways, including through the 

introduction of computers in the workforce. These trends have not gone unnoticed by 

economists, and many have advanced theories connecting this skill gap in wages to 

changes in jobs, most notably skill-biased technical change. What I contribute to this
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 discussion is to use both modern datasets and recently developed empirical 

methodologies to make and test these theoretical claims in the familiar economic 

framework of prices and quantities. This allows a vastly more flexible approach to 

modeling bias in technical change and to modeling wages in general since we can make 

fine distinctions between labor types. 

 Unpacking the details of what makes high-skill workers more or less productive 

over time has been a major focus of the labor economics literature. In chapter 2, I review 

the relevant parts of the literature. This includes a look at the cohort size literature that 

Figure 1. Median Wages and Relative Labor Quantities 

Source: CPS 
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analyzed the effect of the entry of the baby boom generation into the labor market, with 

special attention to Freeman (1979), then a discussion of the literature on the task-based 

framework of jobs, then the literature on the wage effect of computer usage at work. 

These discussions will show that economists have made great progress on deciphering 

what led wages to rise for high-skill workers. That said, progress in the task-based 

framework has been hampered by data limitations. Also, much of the recent research on 

biased technical change is inaccessible even to experts in related fields due to highly 

idiosyncratic empirical methods, as opposed to one based on the relationship between 

prices and quantities. These are issues that the latter half of this dissertation works to 

resolve. 

 In chapter 3, I replicate the work of Freeman (1979) as an exercise. What I show 

here are the limitations of the framework in which workers each provide undifferentiated 

labor, with labor only differing between education-experience groups, along with the 

powerful interpretability of Freeman’s model of relative wages. Freeman (1979) explains 

relative wages using relative labor quantities in the framework of labor types being 

imperfect substitutes, work that spawned the cohort size literature and continued to 

influence the later literature on biased technical change, particularly through Katz and 

Murphy (1992).  

 In short, we can learn much from the relationship between prices and quantities. 

Freeman regresses the log wage ratio for experienced and inexperienced workers on the 

log of the labor ratio and obtains both the elasticity of substitution between them and a 

trend in relative productivity that received less attention. The limitation of his 
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methodology is that he has only time series data and must assume some parameters 

constant over time to identify the model. The example serves to motivate the following 

work of obtaining prices and quantities for tasks as an approach to answering questions 

about biased technical change. 

 The remainder of this dissertation works through a multistep process to describe 

changes in the task composition of the workforce over this time period and show how 

wages have changed in response. These chapters both expand on previous methods of the 

task-based literature and produce datasets usable in a variety of areas, including modeling 

wage inequality, biased technical change, and occupation selection. Put simply, 

describing a situation in terms of prices and quantities makes the situation widely 

understandable. Give me prices and quantities and I can tell a story to an undergraduate. 

See this worker whose wages went up? This worker has been doing the same amount of 

tasks A and B for 10 years, and over that time the price of task A rose. The price of task 

A rose because a trend in technology that affected all workers doing task A. 

 In chapter 4, I adapt existing techniques from the task-based literature to measure 

tasks done by workers at the individual level from 1980 to 2015. My methodology is 

drawn primarily from Acemoglu and Autor (2011) and Peri and Sparber (2009). The 

approach here is significant for three reasons. First, I treat individual workers as 

performing a vector of task quantities as opposed to the more common approach of 

sorting occupations into single task categories. This approach is more flexible and is 

better able at deal with cases in which there are more than two or three possible tasks. 

Second, the approach here permits task quantities to be aggregated across workers, 
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provided assumptions hold about the distribution of task quantities in the population. This 

is a valuable property because the tasks provided by an individual worker affect the 

worker’s wage, but can reasonably be assumed too small to influence the market price. 

Meanwhile, the aggregate task quantity can be used to model price levels (i.e., we have 

quantities.) This is a valuable but underutilized advantage of the method used in Peri and 

Sparber (2009). Third, I introduce computer tasks as a category in the task-based 

framework. This category has not been explored and its inclusion has a variety of benefits 

I discuss in more detail later. 

 In terms of results, I find that the relative intensity of tasks between education-

experience groups has been surprisingly stable since 1980, with the introduction of 

computers being the most obvious change to the task composition of the workforce. I also 

find substantial change in the task compositions of local (state) labor forces1 that suggests 

local specialization in tasks is an underappreciated factor affecting the structure of wages, 

though further analysis is beyond the scope of this dissertation. 

 In chapter 5, I estimate implicit shadow prices for specific tasks based on wages 

for individual workers and their task quantities. Wage data is from the March CPS and 

task data is based on the values obtained in chapter 4. The method is based on the 

approach in Peri and Sparber (2009), but replaces their estimator with a powerful, 

recently developed partialling-out estimator that uses lasso to select control variables, 

introduced in Chernozhukov et al. (2018). Conceptually, the methods are similar. I obtain 

 
1That is, the aggregate quantities of a suite of tasks within a state. For details on the 

construction of aggregate task labor quantities, see chapters 4 and 6. 
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shadow prices as the coefficients in a regression of wages on task quantities, and allow 

prices to vary by education-experience group and time.  

 The shadow price estimates in chapter 5 show that wage differences between 

groups are affected both by higher prices for tasks disproportionately done by high skill 

workers and by higher pay for high skill workers within task categories. The results 

confirm other findings in the literature, particularly a rise in pay for nonroutine analytic 

tasks and a fall in pay for routine manual tasks. I further find that the introduction and 

expansion of computer tasks worked to counter the trend of a steepening experience-

wage profile within education groups. Additionally, I find that differences in the shadow 

prices of tasks between states is in some cases substantial, which can provide useful 

identifying variation in estimating the determinates of task shadow prices. 

 In chapter 6, I model task shadow prices as a function of aggregate task quantities. 

This is where I reap the benefits of the work in chapters 4 and 5. With measured prices 

and quantities for tasks, I can estimate trends in task prices representing bias in technical 

change. A positive trend across all tasks for an education group indicates skill-biased 

technical change, while a positive trend across education groups within a task indicates 

task-biased technical change. This resolves the original question about what types of 

labor became more valuable and why in an accessible framework.  

 My general finding in chapter 6 is that task-biased technical change is an 

economically and statistically significant effect while pure skill-biased technical change 

is close to zero or not statistically significant after accounting for task quantities. I also 

find that a task-based nested CES based specification is a poor fit for most tasks, and that 
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flexible estimation techniques are most appropriate, given a lack of clear alternatives in 

the literature.  



 8 
 

CHAPTER II 

ESTABLISHED EXPLANATIONS FOR CHANGING WAGE STRUCTURE 

 Over the past few decades, the wage structure of the labor force has changed 

substantially, largely in the favor of skilled workers. A major component of this shift is 

attributable to skill-biased technical change, as proposed in Bound and Johnson (1992). 

Given this name, it is natural to jump to a narrative in which the introduction of 

computers and communications technology raised the productivity of high skill workers 

and replaced routine work previously done by unskilled or low skill workers. That story 

may be true, but due to a lack of detailed information about the degree of computer use 

by individual workers and what else those workers were doing on the job, the literature 

has connected computer usage at work to changes in wages in only a few narrow 

contexts.  

 My purpose here is to draw on three previously unconnected strands of the labor 

economics literature to measure jobs tasks, including a measure of computer tasks that I 

introduce, and their wage effects in a common framework. I draw on the segments of the 

labor economics literature discussed below to establish a feasible methodology to 

establish what types of labor workers provide, how well they are compensated, and how 

different groups of workers affect each other’s labor market outcomes. 

 The three elements of the framework I will rely on already exist, but in disjoint 

areas of the labor economics literature. The relevant areas are the cohort size effects 
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literature, the wage effect of computers literature, and the task-based literature. The 

cohort size literature is centered around determining the effect of the entry of the 

unusually large baby boomer cohort on labor market outcomes, including both cross 

sectional and longitudinal experience-wage profiles, substitutability between experience 

groups, and in some cases education decisions. The literature measuring the effects of 

computers on wage establishes empirical methods to estimate how much computer usage 

increased wages for individual workers as computers were introduced to the workforce. 

Finally, the task-based literature is concerned with categorizing what specific types of 

labor workers perform at their jobs, in a way that makes many occupations comparable 

along a few dimensions, and the difference in wage and employment growth for workers 

doing different tasks. The remainder of this chapter is a review of these segments of the 

literature. 

Cohort Size Effects Literature1 

 Substantial discussion of the effects of cohort size on labor market outcomes 

began in the late 1970s and continued into the 1990s. Much of this endeavor was 

prompted by work by Richard Easterlin, who argued that immigration restrictions and 

other developments should cause cohort sizes to have larger economic impacts than in 

earlier periods, as summarized in Easterlin (1978). These arguments led directly to two 

foundational works on cohort size effect in Freeman (1979) and Welch (1979). 

Foundational Work2 

 Welch (1979) focuses on the effect of cohort size on longitudinal age experience 

profiles. Using Current Population Survey (CPS) data from 1967 to 1975 and a log-log 
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regression, he finds a substantial negative effect of cohort size on wages for all education 

groups, especially in the early career phase. An important secondary finding was that the 

persistent component of the negative effect was smaller for workers with only a high 

school degree, at about 8% as opposed to 20%. The author estimates several permutations 

with differing sample restrictions and measures of wages. Later works refine these 

methods and generally support the conclusions. 

 Freeman (1979) again uses CPS data, but uses national averages from 1947 to 

1974 to estimate the elasticity of substitution between experienced workers and new 

entrants by education group, and based on a regression of relative wages onto relative 

cohort size finds that workers with less education have higher substitutability between 

experience groups. Elaborating on this finding became an important topic in the 

subsequent literature. The author also improves on related work by including business 

cycle controls and testing for autocorrelation. That said, the results are based on few 

observations and some years are missing for some specifications of the model. Stapleton 

and Young (1988), addresses some statistical issues with the methods here, and chapter 3 

offers a further discussion, replication, and extension. 

Revisions and Refinements3 

 Since this initial work, discussion on the topic flourished, and many authors 

introduced improvements, refinements, and new implications. Connelly (1986) takes on 

the important task of incorporating schooling choice into the model. The author accounts 

for what has been called the “flight to substitutability” wherein workers in large cohorts 

shift to the education group in which experienced and new workers are more substitutable 
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and the effects of cohort size are smaller. This is a theory-focused paper, but the author 

shows that existing estimates can be used to find the degree to which education decisions 

changed. The author shows that this effect is sensitive to the time preferences of workers 

and that lower discount rates lead to larger reductions in education in response to large 

cohort sizes. 

 Stapleton and Young (1988) continue in the same vein as above, but with more 

empirical support. The authors document the fall in both college enrollment and the 

college degree premium in the 1970s and predict, correctly, the reversal in both trends in 

subsequent decades. The authors use CPS data and an adjusted form of the model from 

Freeman (1979) that better controls for differences in hours worked, and again find that 

high school degree workers have higher substitutability between experience groups. 

Based on their elasticity estimates, they simulate a baby boom to determine the 

adjustment to college enrollment that optimizes present value of lifetime income.  

 Bloom, Freeman, and Korenman (1988) build on prior work by modeling the 

effect of cohort size on expected wages, separating the effect on unemployment and the 

effect on the wages of the employed. The authors also estimate these effects on multiple 

countries including Australia, Canada, France, Japan, Sweden, and the UK, showing the 

general pattern of cohort size negatively affecting wages holds, but that the relative size 

of the unemployment and wage effects differ depending on labor market institutions. 

Relevant here is their finding on demographic shifts within industries from 1970 to 1980. 

The authors characterize this as an increase in the proportion of youth spread broadly 

across all industries. I interpret the values they report differently. My interpretation is that 



 12 
 

young workers entered industries that use low skill workers more intensively. The total 

increase in the proportion of young workers across all industries was 0.03. Industries 

such as construction, mining, retail trade, and personal services saw increases twice as 

large, while industries such as public administration, finance, investment, real estate, 

professional services saw no increase at all.  

 Berger (1989) contributes to the discussion on cohort size effects by incorporating 

position in the demographic cycle. That is, the cohort that precedes a larger cohort may 

be differently affected than one of equal size that follows the large cohort. Using CPS 

data from 1964 to 1984 and a quadratic in experience model of wages, the author finds 

that large adjacent cohorts have a negative effect on starting wages but cause steeper 

experience-wage profiles, which can be attributed to greater human capital investments. 

The implied experience wage profiles show that the pre-peak cohort does especially well 

late in their careers. 

 The cohort size literature discussed above will inform several of my 

methodological decisions, including data source selection and model specification. The 

CPS is the standard dataset used in this literature for good reason. The models require a 

large dataset with wages and employment, along with a variety of controls. Of the 

publicly available datasets fitting that description, the CPS is the only one covering the 

necessary period and at a high frequency. Based on the literature, the appropriate 

functional form has relative wages as the dependent variable and relative labor quantities 

as the key regressor if we want to estimate substitutability.  
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Wage Effects of Computers Literature4 

 Given the time period covered in the literature discussed above, we might expect 

the adoption of computers to be important to labor market changes, and consequently to 

come up frequently in published work. In practice, computerization was difficult to 

incorporate into empirical work due to data unavailability. Typically, technology took the 

form of a parameter in the production function that may or may not drift over time, if it 

was identified at all. In some cases, computers could enter the production function as 

physical capital or R&D spending, but the first attempt to obtain wage effects for 

individual workers was only possible after the CPS added computer use at work as a 

variable in 1984. 

Krueger and Criticisms5 

 Krueger (1993) is the earliest example of estimating the effect of computer use at 

work on wages, but is limited by the data available at the time. The author uses a binary 

indicator of computer use and is limited to a regression with pooled cross sections of the 

October 1984 and 1989 CPS. Later work including DiNardo and Pischke (1997) show 

that a similar methodology leads to sizable estimates of wage premia for the use of 

pencils, calculators, and other office supplies. Most plausibly, more productive workers 

were the first to receive computers, so selection on unobservables led to upward bias in 

the estimate, with available control variables being inadequate as proxies. Later work, 

such as Autor, Katz, and Krueger (1997), supports the existence of wage premia for 

computer users, though how to estimate the premium remained disputed. 
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 The problems with the empirical methods above stem from two underlying issues. 

First, markets were out of equilibrium in the sense that employers were bringing 

computers into the workplace without knowing which workers would see the highest 

productivity gains. Determining and accounting for the selection method employers use is 

certainly difficult and may not be feasible with available data. This problem should 

resolve itself over time. Currently almost all workers use a computer for work in some 

way and employers better know who gets productivity gains. Second, the coarseness of 

the data is limiting. We observe only whether a worker uses a computer or does not use a 

computer. In practice there is major variation in how much workers with computers use 

them. This problem can also be overcome with methods I discuss later in this chapter.  

Later Work6 

 Pabilonia and Zoghi (2005) marks a shift in the literature in part by reorienting the 

focus from computer use to computer skills and in part through improved identification 

techniques. Using matched employer-employee panel data from Canada and 

instrumenting for computer use with an indicator for recent changes in the workplace, the 

authors find that the direct effect of using a computer in any form on the job was small, 

but the effect of having experience with computers was moderate, which the authors 

interpret as a skill premium. The shift in focus from computer use to computer skills was 

partly due to theoretical considerations, but also by shifts in the labor market. Computers 

became less devices assigned to a specific workers and more ubiquitous fixtures of 

workplaces in which most workers had access, but used computers to varying degrees. 
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 Another later example, less subject to the problems mentioned above, comes from 

Dickerson and Green (2004)2, in which the authors use a British survey dataset and find 

that workers that used computers received a wage premium between 1997 and 2001, 

usually of between 10% and 20%. Their work is framed in the context of computer skills, 

though the underlying data is drawn from a question about the importance of the activity 

of using computers, rather than directly asking about the worker’s skill. Rather than 

estimating education-experience groups separately, they use a quadratic in experience 

and dummy variables for education as controls. Another relevant finding is sizable 

differences in computer use within occupations. This is partially attributable to having 

coarsely defined occupations, with only 9 major occupational categories. This highlights 

the need for detailed occupation codes in the analysis. 

Task-based Literature7 

 The task-based literature contains a framework for analyzing the many types of 

labor that workers perform. This framework has influenced the literature on biased 

technical change, and shifted the discussion away from a productivity trend for skilled 

workers and towards a productivity trend for tasks that require skill. Incidentally, there 

are currently no examples in this framework that include computers as a type of task, and 

this framework is substantially different from approaching computers as physical capital 

or in terms of a skill that some workers have. I elaborate on the argument for a computer 

task category in chapter 4. 

 
2This was written contemporaneously with Pabilonia and Zoghi (2005), but had a shorter 

publication lag.  
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Theoretical Framework8 

 The task-based literature stems from Gibbons and Waldman (2002), though the 

premise is much older. The authors here argue for a model of human capital that is 

specific to the tasks a worker does but portable from job to job. Essentially, a job is a 

bundle of tasks. This fact has many implications for our ability to disaggregate labor, 

wages, and human capital. A task has a marginal productivity and the component of 

wages derived from each task can be estimated, so long as we have data on task 

quantities.  

Empirical Framework9 

 The following literature establishes how to categorize and measure tasks, and in 

some cases how to estimate shadow prices for tasks based on their marginal productivity. 

An important property of this framework is that tasks are features of the job, not the 

worker, in contrast to skills. If we know a worker’s occupation, we have a clear 

indication of the tasks a worker does, though we could miss some variation between 

workers within an occupation. In a sense, what this approach does is take a high-

dimensional space of occupations and project it onto a small-dimensional space of tasks, 

so we have a few types of labor and we can compare workers in different occupations. 

 Perhaps the broadest discussion of this framework is found in Acemoglu and 

Autor (2011), who examine changes in the U.S. wage structure since the mid-1960s using 

a variety of datasets, and comparing workers based on education, experience, gender, and 

occupation class. The authors describe the standard schemes for categorizing tasks. In the 

standard approach, tasks are sorted into routine and non-routine, or into analytic (or 
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abstract), manual, and communication (or interactive). When the schemes are combined, 

communication is generally considered non-routine, leading to a suite of five task 

categories. The paper goes on to discuss differences in wage growth by education and 

experience group, but for my purposes the most relevant subjects they discuss are their 

canonical model of wages, based on a nested constant elasticity of substitution (CES) 

production function, and their methods of measuring tasks empirically. Their general 

finding is that wages in occupations intensive in non-routine analytic tasks have risen 

dramatically, while wages in occupations intensive in routine tasks have stagnated, with 

analogous findings for employment growth. 

 The nested CES has been a valuable tool in specifying wage equations, and I 

discuss the model in detail in chapter 5, when I estimate shadow prices in a hedonic 

model of wages. The basic idea is that the labor input within the standard CES production 

function is itself a CES whose inputs are types of labor, and those labor inputs may also 

be in the form of a CES production function of increasingly specific types of labor. This 

has been applied elsewhere, such as Goldin and Katz (2007), though not always by name. 

Ottaviano and Peri (2012) discusses how to specify the nesting structure and how to 

compare alternative nesting structures. The nesting structure informs us of which worker 

types should be compared in regressions modeling relative wages. 

 The empirical approach to task quantities detailed in Acemoglu and Autor (2011) 

makes use of the Occupational Information Network (O*NET). The O*NET dataset is 

widely used and important in the task-based literature, and I describe it in more detail in 

chapter 4. The basic premise is that for each task category, several variables from the 
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O*NET dataset are selected and combined into a single variable rating each task. The 

properties of this new variable depend on the construction method.  

 Acemoglu and Autor (2011) construct task variables by standardizing the O*NET 

variables, summing them within categories, and standardizing the sum to have a mean of 

zero and standard deviation of one. This method yields an intuitive rating for the intensity 

of tasks within occupations, but is not a task quantity that we should be comfortable 

aggregating since by construction it sums to 0 over the population. Where an aggregate is 

required, this method can be extended by identifying occupations that are highly focused 

on one task and summing the number of workers in those occupations, as shown in Autor 

and Dorn (2008), Autor and Dorn (2009) and Autor and Dorn (2013) in which the authors 

examine the rise in the share of low skill service sector jobs, termed the routine share of 

labor. We should expect this extension to work best when there are few task categories. 

Tasks often performed at low intensity will not be fully captured by this method since 

occupations are sorted based on their most intensive task.  

 While the method of aggregation above is the most used, one alternative is 

applied in Peri and Sparber (2009). The authors look for evidence that an increase in 

immigration within states leads low skill native workers to increasingly specialize in 

communication tasks, while immigrants specialize in manual tasks. They use O*NET and 

decennial census data over the period 1960 to 2000, but to aggregate tasks across workers 

they suppose a distribution of task quantities for the population and match percentiles in 

the O*NET data to that distribution. This method is more able to cope with more task 

categories and captures more of the tasks being performed at low intensity. The downside 
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is the need to assume the distribution of tasks in the population, and theory gives little 

guidance on what the distribution of tasks in the population should be, apart from 

bounded below by 0 and above by some finite number. The authors go on to estimate 

task-specific wages via a hedonic model on individual workers. Based on changes in 

task-specific wages and the quantities of each task performed by natives and immigrants, 

the authors find that natives adjust to increased immigration by switching to 

communications tasks, and consequently the total effect on wages for low skill natives 

was modest. 

Applications10 

 More generally, the task-based framework has been used in the literature on 

inequality and often in the literature on immigration. For examples of empirical work, see 

Goos et al (2009), and Crinó (2010) on offshorability, Peri and Sparber (2009), and Haas 

Lucht and Schanne (2013) on immigration, Black and Spitz-Oener (2010) on the gender 

pay gap, and Firpo, Fortin, and Lemeuix (2011) and Scotese (2012) for a more general 

treatment. An important branch of the literature discusses how and why productivity 

trends differ by task (i.e., task-biased technical change), including Autor, Levy, and 

Murnane (2003). We can describe biased technical change among tasks in a similar 

framework to skill-biased technical change, as seen in Adermon and Gustavsson (2015), 

who find different trends in productivity for the tasks workers perform.  

 In fact, Adermon and Gustavsson (2015) is part of a general trend moving away 

from the original formulation of skill-biased technical change as an effect on high skill 

workers and towards a view of biased technical change as affecting nonroutine tasks that 
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high skill workers perform disproportionally. See Böhm (2020) for further discussion of 

this shift, and an alternative empirical approach to pricing task labor inputs.  

 Empirical work in the task-based framework tends to involve heavily processing 

what raw data is available, so a major takeaway from the task-based literature is which 

data sources to use and how, in order to avoid the problems of branching paths3. For 

analyzing the United States workforce, O*NET is the clear frontrunner, despite its 

limitations. The literature offers much guidance on variable selection and construction 

using O*NET data. A second valuable takeaway is how to categorize workers into groups 

when estimating wage effects. The literature suggests a nesting structure of education-

task-experience, as stated in Haas, Lucht, and Schanne (2013). This means that I can 

estimate task-specific wages within education-experience groups and compare relative 

task wages and relative task labor quantities within experience groups while keeping to a 

simple linearizable regression model. Detailed rationale for the regression specification is 

in chapter 5. 

 The task-based literature is less clear about whether and how to organize the data 

geographically. Peri and Sparber (2009) aggregates labor quantities within states. Most 

other research is focused on national trends, making geographic differences less relevant. 

A key benefit of obtaining state or local level aggregates is the increased identifying 

variation of a panel dataset, which is especially important if we suspect parameters can 

 
3Sometimes called forking paths or researcher degrees of freedom, this problem occurs 

when there are a large number of seemingly arbitrary choices regarding data 

transformations, model specifications, etc. 
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vary over time. Additionally, geographic variation is plausibly large, and is of interest for 

purposes other than my own. 

 Absent from the literature is a discussion of work done with computers in a task-

based framework. There are occasional mentions of computers in the theory sections of 

papers as a form of capital that can substitute for tasks, as in Acemoglu and Autor (2011) 

and Autor, Levy and Murnane (2003), or as a binary control variable in some 

specifications, as in Peri and Sparber (2009). Scotese (2012) skirts the issue by 

comparing trends in occupations whose tasks could plausibly be replaced by computers 

with occupations whose tasks could not plausibly be replaced by computers, by the 

author’s assessment. Nowhere in the literature are computer tasks treated as a task 

category, although there are relevant variables in the O*NET dataset. I give arguments 

for why this is a viable approach and solves some problems with measuring computer use 

in chapter 4. 

 A final methodological issue I have yet to mention is the use of hedonic 

modelling. This is applied in the task-based literature and elsewhere and on the surface is 

simple. Wages are determined by the features of the job (or worker), which in this case 

are the task quantities that the worker provides, based on the worker’s occupation. Peri 

and Sparber (2009) do this to calculate task-specific wages for native and immigrant 

workers. Firpo, Fortin, and Lemieux (2011) implicitly work in a hedonic framework, 

though they use an unusual suite of task categories and are ultimately focused on 

decomposing changes in the wage structure, rather than directly claiming to find task-

specific wages. They use CPS and O*NET data to argue that changes in task composition 
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had a large impact on within occupation wage structure. Notable is that the wage effects 

are in rare cases negative.  

 To understand this result, we should recall that once wages are decomposed, some 

of the usual assumptions no longer hold. Specifically, if labor is undifferentiated, 

employers can prevent workers from overcrowding by having superfluous workers stay 

home, so marginal product cannot fall below zero. When workers provide bundles of 

tasks, employers may end up with excess labor in some tasks because the marginal 

worker has positive productivity even if one of the tasks that worker performs does not. 

In some cases, a task may also be treated as an amenity, or performing a task may involve 

learning on the job such that productivity rises in later time periods and current 

productivity below zero is rational. Any of these cases should be the exception rather 

than the rule if tasks are categorized properly, but Firpo, Fortin, and Lemieux (2011) 

shows that we should not be surprised by the occasional appearance of negative wage 

effects for tasks. 

Summary11 

 Over the past four or five decades, wages for skilled workers increased 

disproportionately. Much of this trend appears to be related to technology, plausibly 

driven by the computerization of the workforce. Initially, the productivity trend seemed 

to affect workers based directly on their skill level, but more recent work suggests that 

some tasks benefitted more than others and the fact that the trend benefitted skilled 

workers was in a sense coincidental.  
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Omissions12 

 The key gaps in the literature are several. We lack a continuous measure of 

computer usage at the individual level. We have not resolved ambiguity about how 

computers complement and substitute for various types of labor. To elaborate, if 

computers substitute for routine tasks and complement nonroutine tasks, is this at the 

individual worker level or in the aggregate? Have routine tasks been shifted between 

occupations in response to computerization? Has the introduction of computers changed 

how well experienced and inexperienced workers substitute for one another? Do we have 

reason to expect the substitutability between worker groups should remain constant over 

time, as frequently assumed for the purpose of identification? The results in chapters 3 to 

6 will shed light on these questions. 

Contributions13 

 In terms of what this dissertation adds that the prior literature is lacking, there are 

two main contributions. The first is a more comprehensive measurement of tasks. In 

addition to adding computers as a task category, I add to previous work by providing a 

method in which tasks in a broad suite are aggregable. Earlier methods could calculate a 

“routine share of labor” or quantities for two tasks, rather than aggregate quantities for 

many tasks. The second is a clearer estimate of bias in technical change. Once tasks are 

measured and priced, estimating trends and testing differences in them will reveal 

whether productivity gains are higher for particular tasks or particular groups of workers. 
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CHAPTER III 

EARLY FINDINGS REVISITED 

 In this chapter, I revisit part of the cohort size literature to show how the general 

approach should extend to a task-based framework, while I identify omissions from the 

literature that can be addressed when labor quantities have been decomposed into tasks. 

The cohort size literature traces back largely to a few papers in the late 1970s. One of the 

foundational papers in this literature is Freeman (1979), which examines the effect of 

relative cohort size on wages at a time when the leading edge of the baby boom was 

entering the labor market. Freeman found that cohort size had a substantial impact on 

relative wages. His results implied an elasticity of substitution of 2 for college graduates 

and higher for workers with only a high school degree. Below, I replicate this result for 

the period Freeman considered using microdata and re-estimate the model on later time 

periods up to 2017 to check the stability of the relationship. 

 As a little background, two factors make the decades following the 1960s 

amenable to the study of the effects of cohort size in the United States. First, immigration 

policy at the time was relatively restrictive, reducing endogeneity concerns. Second, the 

large increase in birth rates through the 1950s led to unusually high variation in cohort 

sizes for the next few decades. This can be seen in Table 1 and in Figure 2. Generally, 

relative cohort sizes were much more stable in the periods after the baby boomers entered 

late working age. All else equal, this increased variation should make estimates more
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Table 1. Relative Cohort Sizes over Time  

precise, though other factors specific to this period such as the draft may complicate the 

analysis. These and other factors are discussed in a series of essays by Richard Easterlin 

 20-24 25-34 35-44 45-54 55-64 

1965 0.118 0.211 0.230 0.205 0.155 

1975 0.146** 0.243* 0.182 0.187 0.146 

1985 0.142 0.284** 0.212* 0.148 0.142 

1995 0.114 0.256 0.259** 0.184* 0.121 

2005 0.114 0.215 0.231 0.222** 0.154* 

2015 0.113 0.218 0.199 0.210 0.196** 

Notes: Fraction of male workers ages 18-65. *Early Boomers (1950) in cohort, 

**Peak Boomers (1955) in cohort, data from March CPS  

Figure 2. Relative Cohort Sizes 
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in the 1950s and 1960s. Empirical work on the subject was scant until Freeman (1979) 

and Welch 1979 looked at the effect of cohort sizes on wages, at a time when the leading 

cohort of baby boomers could be observed entering the labor market. These papers 

spawned a substantial literature on cohort size that improved both in terms of model 

specification and data quality. 

 These later papers elaborated on Freeman’s work by looking at changes in a 

variety of labor market outcomes and particularly at estimates of the age-earnings profile. 

These include Berger (1989), which demonstrated the importance of adjacent cohort 

sizes, and Bloom, Freeman, and Korenman (1988), which demonstrated that much of the 

effect on wages was due to changes in unemployment. In general, attention shifted from 

relative cohort size to own and adjacent cohort sizes and how they influenced, for 

example, returns to education. In that sense, the work was absorbed into other literatures 

and after the 1990s was rarely a primary topic. Later work in the literature also struggled 

with efforts to separately identify supply and demand shifts caused by cohort sizes and 

did not reach a consensus on how to do so empirically. 

 While these offered valuable new insights, Freeman’s initial framework offered a 

benefit that has received less attention. Freeman (1979) estimates the elasticity of 

substitution (or complementarity), allowing a look at how older and younger workers 

differ as inputs into a production function, as well as a trend in labor demand. With his 

approach, we can ignore issues such as the functional form of the age-earnings profile. 

 This substitutability interpretation was not Freeman’s primary aim but is 

especially useful in determining how and why outcomes change and sidesteps much of 
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the complexity in modelling other outcomes. In the literature, there is a strong tendency 

to treat job attributes as given and explain productivity differences based on worker 

characteristics. This story is incomplete if changes in substitutability arise from changes 

in the production function as firms adapt to demographic and technological shifts. 

Below, I replicate the results in Freeman (1979) using microdata and estimate the 

model on a longer sample period. Freeman draws from several sources, most of which are 

based on Current Population Survey results. This leaves the degree to which results are 

sensitive to sample restrictions, the choice of age brackets, and the years for which data 

were available unclear. Freeman consequently estimates different models on different 

time periods due to data limitations, and their results may or may not be comparable. 

Theory14 

 While the idea that a worker’s productivity, hence wages, should rise as human 

capital is accumulated through work experience is obvious, less obvious is that the 

worker’s productivity should change in response to the increase in experience of other 

workers. If we think of workers as offering differentiable labor inputs, this makes sense. 

Some groups of workers offer more scarce or plentiful types of labor. To oversimplify a 

little, we may think of young workers providing low skill, physically intensive labor and 

old workers providing high skill, low physicality labor, with middle aged workers 

providing a degree of both. The ability to replace brute strength with expertise is limited. 

It may also be the case the older and younger workers are not equally substitutable for 

capital inputs, though data limitations make this more difficult to see in practice. 
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 The concept of substitutability and the methods of measuring it are well-known 

but bear elaboration in this context. Inputs are substitutable if when one input is reduced 

output can be maintained at a constant level by increasing another input. If the amount of 

the second input needed is a constant multiple of the reduction in the first input, those 

inputs are perfect substitutes. Note that the multiple need not be one; if we need two 

packets of Sweet & Low to replace one packet of Equal, they are still perfect substitutes. 

If the amount of the second input needed rises the more the first input is reduced, they are 

imperfect substitutes.  

 Figure 3 gives an illustration of the substitutability between inputs in the form of 

isoquants. Each line represents a fixed level of output and contains all the combinations 

of two labor types that could produce them. Generally, we expect them to be curved 

inwards as seen here. If the isoquant is perfectly straight, the inputs are prefect 

substitutes. If the isoquant forms a right angle, the inputs are perfect complements. What 

point on the isoquant is actually used in production generally depends on the prices of the 

inputs if we are thinking in a micro framework where this is the production function of a 

price taking firm. In other contexts, we may need to think of prices as adjusting to 

relatively fixed quantities. In either case, the slope of the isoquant indicates the relative 

marginal productivities of the workers. If type 2 is abundant, type 1 is relatively more 

productive, as indicated by the steeper slope. 
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 In the context of labor, it is helpful to think of each worker as having a set of 

abilities that can change over time. If all these abilities rose and fell at the same rate over 

each worker’s lifetime, workers of different ages should be perfect substitutes, since a 

fixed number of young workers could always replace a fixed number of older workers 

and we could normalize labor input measurements for age4. Since it is not plausible that a 

worker’s physical and mental abilities change at the same rate over a lifetime, we should 

expect that older and younger workers be imperfect substitutes. That is, older and 

 
4For a somewhat impolite example, consider dairy cows. A dairy cow’s milk production 

rises over her lifetime, but cows of all ages are perfect substitutes. Human examples 

where workers produce an undifferentiated output, cannot change careers, and do not 

collaborate are hard to come by. 

Figure 3. Isoquants, CES Production Function 
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younger workers will specialize in different tasks, and as younger workers hypothetically 

become scarce, older workers will be used for tasks for which they are less specialized, 

requiring more of them to do the same work.  

 Workers of different ages differ in several ways, some of which are easier to 

observe than others. Older workers tend to be paid higher wages. The usual argument is 

that their wages reflect higher human capital accumulated through job experience. The 

degree to which this is the case varies by group. For more educated workers, the wage 

increase is large, while for workers with less than a four-year degree the difference is 

modest. This is generally interpreted as more educated workers having higher returns to 

experience. There are other situations in which higher wages for older workers arise from 

strategic behavior rather than productivity differences, but these mostly require what we 

would now consider age discrimination to work, and are implausible following legal 

prohibitions introduced in the 1970s and 1980s. 

 If the usual assumptions about competitive markets and perfect information hold, 

wages reflect marginal productivity, and we can interpret the wage ratio of older and 

younger workers as the marginal rate of technical substitution (MRTS) between them as 

inputs5. This is effectively the variable the models will describe. Further interpretation in 

terms of elasticities of substitution depend on assumptions about the production function. 

We should expect the MRTS to fall as the reference input becomes more common. That 

is, as younger workers become more prevalent, it should take fewer older workers to 

 
5This assumption can be relaxed somewhat, as discussed later 
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match the output of each younger worker. Deviations from this should be surprising, and 

subject to careful interpretation. An input becoming relatively more productive as it 

becomes relatively more common is atypical. 

 A natural way to characterize the relationship between older and younger workers 

as inputs for production is using the elasticity of substitution. If there were fewer young 

workers, more older workers would be necessary to maintain a given level of output. If 

younger workers are group 1 and older workers are group 2, to express this in 

percentages, we use the formula 

σ12=dln(x2/x1)/dln(MRTS12) 

Equation 1 

which is conveniently in terms of variables we can find in publicly available datasets. 

Our need to estimate this will guide our model selection. We prefer that σ12 be a constant, 

but one that depends on the data, as opposed to the Cobb-Douglas case in which it is 

always one. Note that σ12 need not necessarily be a constant. Treating it as a constant is 

typically based on the assumption that the production function has a particular form, 

though it may be possible to estimate some kind of average σ12 or to make it constant 

within some subsample. 

 Note also that whether the elasticity of substitution is measurable in the data 

depends on labor mobility. If labor moves freely, the proportion of workers in a given age 

bracket is endogenous as workers go to the area with the best wages. The labor market 

must be defined such that workers are not migrating. As noted elsewhere, this means that 
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relative cohort sizes should become relevant in the United States after immigration 

became heavily restricted in the 20th century. This line of reasoning also supports 

aggregating at the national level as Freeman does in his models.  

 From the reasoning above, the elasticity of substitution between older and 

younger workers should be higher for workers in fields where experience is a major 

factor in productivity. The easiest test case is to compare workers by education group. 

We should also expect the elasticity to be higher between more distant age groups. This 

leaves us with two sets of hypotheses to test. 

Model15 

 In practice, what we can observe are wages and some worker characteristics. 

Consequently, the equation we can establish empirically is a labor demand equation. 

Freeman and others assume inelastic labor supply in arguing that the linear model 

estimates the labor demand equation. Going from the demand equation to a claim about 

substitutability between inputs requires further assumptions. The benchmark case used in 

Freeman (1979) and elsewhere is a constant elasticity of substitution (CES) production 

function. 

If we assert that aggregate output is 

Q = F(al1
ρ
+(1-a)l2

ρ
)
1/ρ 

Equation 2 
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where l1 and l2 are the number of workers in different age brackets, F is total factor 

productivity, and a is relative productivity. The elasticity of substitution between labor 

inputs is σ = 1/(1-ρ). It can also be shown that in equilibrium,  

MP1/MP2 = (a/(1-a))(l1/l2)
ρ-1

. 

Equation 3 

With some minor rearranging, this yields the convenient specification 

ln(w1)- ln(w1) = ln(a/(1-a))-(1/σ)( ln(l1)- ln(l2))-v, 

Equation 4 

where w1 and w2 are wages and v is whatever deviation relative wages have from relative 

productivity. If we wish, we can eliminate the constant term by taking differences, or if 

we suspect it varies over time, we can think of them as relative productivity (demand) 

shocks. The advantage of the CES framework here is that elasticity is a constant, but the 

model allows parameters for total factor productivity, relative productivity, and returns to 

scale to change. The most obvious concern is that 𝑎 may vary over time and that 𝑣 may 

be correlated with labor shares. 

 Freeman briefly discusses the strengths and weaknesses of this specification. The 

primary benefit is that the elasticity of substitution can be estimated in a linear framework 

with available data. Notable limitations are that we require that σ be unrelated to other 

factors, especially capital intensity and labor in other age brackets.  
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 The decision to estimate the model on time series data effectively trades power in 

some statistical tests in order to solve the problem of workers migrating endogenously. At 

the national level, for the time period in question, migration can be ignored. This is a key 

point argued in early work by Easterlin (1978). Aggregating at a subnational level would 

force endogenous migration to be addressed by some more complicated method. The 

downsides are that estimates are based on far fewer observations and that parameters 

must be assumed constant over at least some time period. In principle, it should be 

possible to test the CES-based specification by including other cohort sizes and other 

transformations of own cohort size. In practice, these tests are low power both due to 

small sample sizes and to partial collinearity between the variables increasing the 

standard errors. 

 We may also wish to consider other forms of endogeneity that may or may not be 

solved using time series data. Wages are an imperfect measure of marginal productivity 

in several ways. Older workers may receive alternative compensation in the form of 

health care benefits to a greater degree than younger workers. Suppose the true MRTS is 

given by w1/(w2+h), where h is the additional compensation for older workers. Then  

ln(w1/(w2+h)) = ln(w1/w2)+ ln(w2/(w2+h)). 

Equation 5 

We can subtract the second term from both sides of the regression equation and think of 

this as an omitted variable. In that case, we need to be concerned if the proportion of 

wages to total compensation for older workers is correlated with the proportion of older 



 35 
 

workers in the population. It will almost certainly be the case that these are correlated 

over time, if for no other reason than that they have both risen in the previous decade. If 

the trend is linear, this will be captured by the time trend, so the trend should be included. 

Similar arguments could be made for other deviations of wages from marginal 

productivity, such as deferred compensation, though in many cases the notation becomes 

complicated. Freeman implicitly makes this case when arguing for a labor market 

condition proxy. Additional proxies may also have been appropriate. 

 While the CES model is helpful in specifying the equation we wish to estimate in 

terms of how the variables should be transformed, it is less informative as to which 

control variables should be included. Freeman expresses concern that business cycles 

affect workers differently depending on their age brackets, such as older workers being 

less likely to experience layoffs in a downturn. This concern is well supported, especially 

early in the period when strict seniority rules were more common. To deal with this, 

Freeman uses detrended GNP to control for the current phase of the business cycle. Thus, 

the full equation Freeman estimates is 

ln(w1)- ln(w2) = β0+β1 (ln(l1)- ln(l1))+β2 εGNP+β3t+ε. 

Equation 6 

Freeman defines l2 and w2 using workers ages 45 to 54, which are typically the peak 

earning years. For l1 and w1 he uses workers 25 to 34 and 20 to 24 in separate regressions. 

If our specification is correct, a 1% increase in the number of workers in the lower age 

bracket relative to the number of workers in the higher age bracket will induce a decrease 



 36 
 

in wages of β1 = -(1/σ)% for the younger workers relative to the older workers. Keeping 

in the framework of CES production, ρ = β1+1, so 0 indicates linear production, -1 

indicates Cobb-Douglas, and the Leontief production function is at negative infinity. 

Whether β1 is above or below -1 will indicate whether the goods are gross complements 

or gross substitutes. 

Data16 

 The principal source of data is the Current Population Survey conducted by the 

US Census Bureau on behalf of the Bureau of Labor Statistics. Though conducted each 

month, the March supplement (ASEC) focuses on the economic variables most relevant 

here. Microdata for the March CPS is available from 1962 onwards, with data summaries 

available for earlier years. This is the most often used dataset in the cohort size literature. 

The advantages of the CPS are its large sample sizes and its wide selection of variables. 

Since the survey targets a number of households each year, the number of individual 

observations rises and falls along with average household sizes but tends to be between 

150 and 200 thousand a year. The limitations of the CPS are the measurement error to be 

expected from self-reported data, the changes in data collection practices over time, the 

paucity of a personal history variables. 

 At the time, Freeman would have had access to some microdata on magnetic tape, 

but frequently used results from data summaries rather than the microdata. This allowed 

him to include results for years as early as 1947 but limited his analysis in other ways. In 

particular, he is unable to freely set age brackets and some sample restrictions are 

difficult to discern. He also imputes values for both dependent and independent variables 
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in some years when data were unavailable. The replication will be based entirely on the 

available microdata, and consequently starts in 19616. Since Freeman already changes 

sample periods from model to model based on data availability, modest shifts in the 

sample period are not a major concern for the fidelity of the replication. 

 The income data in the CPS has a complicated history that requires discussion. 

Income is recorded at both the household and individual level and is broken into 

categories including wages and business income. For examinations of labor demand, 

using nonfarm wage income is a common approach, and I follow Freeman in using it. 

This means that we exclude income for the self-employed and farmers. Additionally, for 

early years in the sample period values for the wage variable include unflagged 

imputations. While not explicitly stated in Freeman (1979), based on conversations 

mentioned in Welch (1979), Freeman addresses this by excluding observations with 

flagged imputations at the household level. 

 There are two further issues with the wage data in the March CPS. First, it is 

subject to changing top codes over the years, from as low as $50,000 in the 1970s to as 

high as $200,000 in 1995. From 1996 onwards, the March CPS uses a variety of 

complicated methods to anonymize observations with high incomes, including imputing 

the mean of wages above the top code and switching the wage values of high earners 

using a matching system. In many cases, this can be ignored, but we should be aware that 

the top code should have a larger effect on mean wage estimates for workers in higher 

 
6The survey was conducted in 1962, but the data is over the previous year 
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age brackets. When examining relative wages as Freeman does, this would lead to an 

upwards bias in our estimates that is larger for years with a lower top code. Second, the 

CPS underwent a redesign in 1994 in which the wage and employment questions were 

changed to reduce measurement error. The attempt seems to have been successful, so we 

should be wary of differing measurement error before and after 1994 and check for 

structural breaks around that time. 

 The wage data in the March CPS is annualized, but it is arguably better to use 

hourly or weekly wages in some specifications, as Freeman sometimes does. Since the 

March CPS also reports usual hours worked per week and weeks worked in the past year, 

we can impute these values. Doing so may exacerbate measurement error. Another issue 

is that usual hours worked was not included before 1982, and prior to 1976 weeks worked 

was reported only up to an interval. Where necessary, these values are imputed as the 

midpoint of the interval.  

 The other key variable is more straightforward. The CPS includes age at the time 

the survey was taken. Since wages are reported for the previous year, we subtract one 

from the age reported in the CPS. In principle, there is some degree of measurement error 

here, but sorting workers into multiyear brackets should reduce this. Freeman tries 

several approaches to selecting age brackets, with his key model using the 45- to 54-year-

old bracket and the 25- to 34- year-old bracket. The ratio of men in these brackets is the 

main explanatory variable. Later work in the literature favored using experience brackets 

rather than age. 



 39 
 

 Table 1 reports relative cohort sizes for the male workforce since 1965. We can 

see a few trends over time. The current age distribution is more uniform than in the early 

periods. We can also see the baby boom pass through the age brackets, ballooning cohort 

sizes by as much as 35% in some cases. The generations that followed tended also to be 

large, but the relative cohort sizes are much more stable. Note the sizes of cohorts two 

brackets behind the peak. 

 Freeman uses a few other variables in the CPS to restrict the samples he uses to 

estimate his models. As the degree of substitutability between workers differs by 

education level, Freeman does estimation on high school and college graduates 

separately. The CPS provides detailed data on education levels, but some caution is 

needed as prior to 1992 the education variable did not distinguish between spending 4+ 

years in college and receiving a bachelor’s degree. Another problem is the lack of 

education data in the 1963 survey. It also had a “12th grade, diploma unclear” value. 

Following Freeman, these observations are included as graduates, which seems 

reasonable given that superseniority was much less common at the time. Freeman also 

restricts some samples to year-round full-time workers. Which variables were used to do 

this are unstated, as Freeman draws values for some years from summaries of CPS data in 

Current Population Reports (CPR). Here, I use the FULLPART variable, used to indicate 

full-time or part-time work status. Using the interval weeks worked variable is also 

possible. 

 In addition to the variables obtained in the CPS, Freeman uses detrended log GNP 

(residuals around a time trend estimated by OLS) as a control variable. He does not 
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mention the source of GNP data, but it can be easily obtained through FRED or directly 

from the BEA. A greater concern is that while a linear trend may be a sensible 

approximation in the period Freeman considered, it is less appropriate for a longer 

interval. Detrending from a linear approximation of GNP from 1961 to 2017 will give 

negative values at the beginning and end of the period and positive values in the middle, 

in no way capturing periods of recession and growth as intended. I use separate linear 

detrending for the pre- and post-1975 period in an effort to maintain comparability. 

 Figure 4 shows the natural log of GNP for the early years of the sample. Here, the 

linear trend is a good fit, although the residuals show a clear pattern. Our goal is not 

white noise errors, but this measure suggests that 1969 to 1976 were all weak years. 

Longer time periods increase the degree of the problem. Other work tends to use 

unemployment rates to capture business cycle effects. As an alternative, the cyclical 

component of log GNP derived from a Hodrick-Prescott filter is show below. This 

method is far less sensitive to the time period of the sample and shows more plausible 

variation over time. 

Assessment17 

 When replicating a result, carefully defining the criteria for success or failure in 

advance is critical. I attempt both to replicate Freeman’s results for the period he 

examined and to estimate the model on an extended time period to see if the results 

change. Because of data limitations, we should not expect results to match Freeman’s 

estimates exactly in either case. Recall that many of Freeman’s results are based on 
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summaries in the Consumer Survey Reports and that the source of some of his variables 

(e.g. GNP) were not clearly reported. 

 Freeman reports his key results in table 4 of his paper, which contains coefficient 

estimates from a regression on time series data from 1955 to 19747. We are concerned 

with the coefficient on the log ratio of workers in younger and older age brackets, and to 

a lesser extent with the time trend. The other variables are controls, not of direct interest. 

If older and younger workers are gross substitutes, in all cases the elasticity of 

 
7Some models are estimated from 1947 to 1974, but these use different sample 

restrictions on workers 

Figure 4. Detrended GNP 
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substitution is greater than 1. Thus, our first criterion is that the coefficients remain 

between -1 and 0. 

 A second key result is that the coefficient for college graduates is of greater 

magnitude than the coefficient for workers with only a high school degree. This is what 

theory predicts and Freeman spends some time interpreting it. So, our second criterion is 

that β1,col < β1,hs. 

 A third key result is that the demographic shift is responsible for a large portion of 

the total variation in relative wages. For the period Freeman considers, he finds roughly 

half of the change in relative wages can be attributed to changes in relative cohort size. In 

the replication, this result should hold for Freeman’s sample period. In later periods, 

relative cohort size may explain less of the variation in relative wages, but should account 

for a similar proportion of the variance in the fitted values. Failure to meet any one of the 

three criteria will indicate a failed replication attempt. 

 Assuming the coefficient values match, we need also to establish the statistical 

significance of the results. Freeman reports standard errors but does not mention whether 

they are classic OLS or something more robust. He also estimates many coefficients, so 

the fact that some are significant can be overinterpreted. Additionally, he cannot calculate 

Durbin Watson statistics for his two key models. By using the CPS data directly in our 

estimations and robust standard error estimates, these issues can be remedied. If the 

results of our estimation meet the three criteria above but are not statistically significant, 

this should be taken as a partial failure to replicate. 
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 Another concern is that Freeman’s results may be sensitive to his somewhat 

arbitrary choice of age brackets. Freeman seems to base his choice of age brackets on 

what the CPR and other sources used in their summaries rather than having a theory-

based argument. With the CPS data available, we can shift age brackets a small amount 

to test the sensitivity of the results. If moving the age brackets by a year or two leads to 

large changes in the coefficient estimates, that may indicate that Freeman’s results are 

driven by some cohort specific effects rather than cohort size, which again would 

represent a failed replication. 

Results18 

 The estimates for the key coefficient are reported in two tables. Table 2 follows 

Freeman’s model closely. The results in the pre-1975 period are similar to Freeman’s, 

insofar as that the signs match and the absolute value of the coefficient for college 

graduates is larger than the coefficient for high school graduates. The results for the 

youngest cohort of full-time workers are noticeably different, though Freeman’s estimate 

may be imprecise. While not visible in the table, it should be noted that robust standard 

errors for these coefficients are smaller than the classic OLS standard errors, so standard 

errors may have been overstated. All told, the first and second criteria for replication are 

satisfied, as all estimates are between 0 and -1 and college graduates have a more 

negative coefficient. The third criterion is more debatable, but it appears that variation in 

cohort size is still the primary driver of changes in predicted relative wages, rather than 

the other independent variables, with youngest cohort as an exception. By the standards 

above, the replication is successful. 
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Table 2. Elasticity of Complementarity Estimates, Basic Model 

 Comparing the pre- and post-1976 trends, the coefficients are statistically 

significantly different for both high school and college graduates. Recall that baby 

boomers began entering the 25 to 34 age bracket in 1975 and began to enter the 45 to 54 

age bracket in 1995. If the estimates are true, the elasticity of substitution between young 

and old college graduates rose following the period Freeman examines while it went 

down for high school graduates. I should additionally point out that positive values 

should be disquieting. Recall that the specification implies σ = -(1/β1)%. This makes 0 a 

vertical asymptote, and a positive coefficient is not possible in the CES framework. For 

now, I suppose the true coefficient is nonpositive when interpreting.  

Sample Freeman 

 Basic Model Replication 

 

Pre 1975 1975 to 

1996 

1996 to 

2017 

p-value 

(=) 

D-W 

Full-time 

Workers, 

25 to 35 

-0.14** 

(0.04) 

-0.13 

(0.24) 

-0.09 

(0.05) 

-0.13* 

(0.07) 
0.86 1.10 

Four-year 

Degree 

Workers 

-0.51* 

(0.28) 

-0.30 

(0.21) 

-0.04 

(0.09) 

0.21** 

(0.08) 
0.03 1.87 

High School 

Graduate 

Workers 

-0.07 

(.11) 

-0.15 

(0.20) 

-0.20** 

(0.04) 

0.12** 

(0.05) 
0.00 1.54 

Full-time 

Workers, 20 

to 24 

-0.41** 

(0.19) 

-0.49** 

(0.15) 

-0.06 

(0.07) 

0.37 

(0.24) 
0.01 1.01 

Notes: *-5% significance, **-1% significance. Replicated results were estimated jointly, 

interacting with a dummy variable for the post 1974 period. Standard errors are 

heteroskedasticity robust. Lower critical value on DW is ~0.94, upper critical value is 

~1.95. The test is inconclusive in all cases. 
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 Also worth mentioning is the value of the Durbin-Watson statistics. Freeman 

finds values near 2 in most of his models, but estimating over a longer time period gives 

results that more strongly suggest either autocorrelated errors or some form of 

endogeneity. The results suggest that ARMA type models should be explored. Estimates 

using cohort bins shifted by one year in either direction did not yield statistically 

significantly different results. Results are sensitive to the choice of detrending method of 

GNP. This should not discredit the model, but is concerning and suggests that the model 

would benefit from more robust controls for labor market conditions. Overall goodness of 

fit, in terms of R2, is similar to Freeman’s estimates. Based on the results in Table 2, I 

consider two adjustments to the model: labor market controls and addressing 

autocorrelation in the errors. 

 Table 3 shows elasticity estimates for the two extensions to the model in two 

periods. First, alternative labor market controls are added in the form of GNP and 

unemployment, both detrended using a Hodrick-Prescott (H-P) filter for annual data. This 

yields insignificant results for both high school and college workers in both periods. The 

values are not greatly changed, so this may indicate that earlier results were false 

positives. The next model again uses H-P detrended labor market controls, and adds an 

AR(1) term. This model yields significant results in the pre-1976 period and for high 

school only workers in the post-1976 period. Note that the standard errors are similar to 

the previous model, so significance is not driven by increased precision. The elasticity for 

college graduates is more negative than for high school graduates in the early period, and 

the difference is not significant in the later period. Overall, this is weakly supportive of 



 46 
 

the claim that Freeman’s results were accurate for the period, but that the relationship 

changed. 

Table 3. Elasticity of Complementarity Estimates, Extended Model 

Conclusion19 

 What we have seen in this chapter is that the relationship between relative wages 

and relative labor quantities can reveal both the degree of substitutability and the relative 

level of productivity between types of workers. Estimating this relationship is possible 

with existing data and techniques. A key limitation of the approach seen here is that labor 

is not well differentiated in the data. Workers with college degrees do high skill work and 

workers with a high school degree or less to low skill work. In reality, there are more 

than two types of work and a worker’s education level does not perfectly predict what 

type or types of labor a worker provides. 

 The remainder of this dissertation moves away from the concept of high skill and 

low skill as types of labor and towards a framework in which labor is decomposed into 

Sample 

Basic 

Replication 

Extended Model Replication 

H-P Detrending H-P Detrending, AR(1) 

Pre `74 `74 to `96 Pre `74 `74 to `96 

College  -0.30 

(0.21) 

-0.29 

(0.21) 

-0.03 

(0.08) 

-0.77** 

(0.22) 

-0.04 

(0.10) 

High 

School  

-0.15 

(0.20) 

-.03 

(0.16) 

-0.02 

(0.05) 

-0.17** 

(0.07) 

-0.18** 

(0.06) 

Notes: Replicated results were estimated jointly, interacting with a dummy variable for 

the post 1974 period. Standard errors are heteroskedasticity robust.  
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tasks. Tasks are what workers do, while skill are something workers have. Different tasks 

have their own task-specific human capital. We can measure the quantity of tasks a 

worker does separately for the skill the worker has at performing a task. Once I obtain 

task quantities and shadow prices, we can analyze their relationship in a framework 

similar to the one used in this chapter, but we will be able to distinguish changes in wages 

across education groups within a task from changes in wages within education groups 

across tasks. 
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CHAPTER IV 

WHO DOES WHAT? MEASURED TASK INTENSITY FROM 1980 TO 2015 

 In this chapter I make two extensions to prior findings in the task-based literature. 

First, I apply the measurement technique introduced in Peri and Sparber (2009) to a 

broader suite of tasks. Their method has an advantage that has yet to be fully appreciated, 

in that the method allows for task quantities to be aggregated across workers and can be 

applied to more than a few tasks at once. This aggregability allows for the estimation of 

task-labor demand curves and elasticities of price and substitution that until now have not 

been viable to estimate for many task categories. Second, I introduce computers as a task 

category. 

 The bulk of the chapter describes the construction of task quantity measures from 

the raw data in the March Current Population Survey (CPS) and Occupational 

Information Network (O*NET) datasets. I start with a discussion of the O*NET dataset 

and potential data quality issues, then describe the process of merging the datasets. The 

remainder of the chapter is an extended discussion of how tasks are distributed within the 

workforce and how the distribution of tasks has changed over the sample period. The 

general finding is that, within education-experience groups, mean task intensities have 

been roughly stable aside from computer tasks, which is somewhat surprising if computer 

tasks substitute for routine tasks. If relative task intensities are stable within groups and 

wages are a function of tasks, changing compensation for tasks must explain the changes 
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wages between groups, a topic I explore in chapter 5. I also document the tendency of 

local labor markets to specialize into groupings of tasks e.g., many states will increase 

mean intensity in communication, nonroutine analytic, and computer tasks while 

decreasing manual task intensity. Routine analytic tasks avert this trend with growth 

largely unrelated to growth in other tasks.  

 Conceptually, I take the hundreds of occupations reported in the CPS and reduce 

them to a set of a few interpretable task variables observable at the individual worker 

level. I measure six tasks simultaneously, including, for the first time, computer tasks. 

The task measurements here are continuous at the worker level and, under conditions 

explained below, permit aggregation across workers. I allow variation in task intensity 

within occupations over time, both by using O*NET data from multiple time periods and 

accounting for changes in the composition of detailed occupations within census 

occupation codes. The description of the distribution of tasks within the workforce 

produced here is consequently richer than in other available sources. 

O*NET Database History and Mission20 

 O*NET is a project founded in 1998 to replace the Dictionary of Occupational 

Titles. Conducted by RTI International at the behest of the United States Department of 

Labor, O*NET’s mission is to provide up-to-date information on occupational 

requirements to help workers make decisions about which occupations to enter. Note that 

producing longitudinal or panel datasets is not part of O*NET’s core mission. 

Consequently, O*NET has historically not been averse to changing methodologies from 

year to year in ways that can affect both the interpretation and statistical properties of the 
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variables they record. The existing research that uses O*NET data almost uniformly 

skirts this issue by applying one cross section of O*NET variables to the entire sample 

period, which is reasonable for short time periods or for tasks that do not substantially 

change within occupations over time.  Here, I make use of O*NET data from multiple 

time periods, in what I believe is a useful extension to previous methods.  

O*NET methodology21 

 O*NET’s taxonomy for occupations is an extension of the Standard Occupation 

Classification (SOC) system with additional breakdowns for some occupations. Values 

reported below are based on 882 SOC code occupations. The general methodology of 

O*NET is to survey incumbents. A set of questionnaires goes out to businesses expected 

to have workers in the selected occupations. Each questionnaire contains a set of 

questions on an area of O*NET’s content model, such as skills, work activities, work 

context, etc. Respondents are asked to rate the importance or level of job requirements or 

job tasks, on a 1 to 5 or 1 to 7 scale. Mean values within occupations are reported. In 

some cases, these results are supplemented with input from occupational analysts. Since 

the first survey dataset was collected, about 100 occupations per year have been updated, 

meaning a dataset for a given year is based on a mix of older and newer survey results. I 

use O*NET dataset release versions 5.0, 13.0, 18.0, and 23.0 for the years 2000, 2005, 

2010, and 2015 respectively. 

Variable Selection22 

 A brief discussion of the task-based framework is necessary to explain how 

variables from O*NET should be selected. Each job entails a mix of some number of 
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tasks. Workers differ in the composition of tasks that they perform. We can think of 

workers as providing labor that they apply to producing a mix of intermediate inputs, 

tasks, that are then combined into a final output good or service. Tasks are imperfectly 

substitutable, so the marginal product of a worker doing a specific task depends on the 

worker’s skill at that task and on the aggregate quantities of other tasks, both from the 

worker in question and other workers, potentially in different groups. 

 How to divide tasks into reasonable categories is well covered in the literature; 

see Acemoglu and Autor (2011) for an extended review of the topic. There are two 

commonly used schemes that may be combined. Tasks are sorted into routine and non-

routine categories or into analytic (abstract), manual, and interactive (communication). 

When these are combined, interactive is typically treated as non-routine, leading to a 

framework of five categories. For each category of tasks, a set of several related variables 

is selected and combined through one of a handful of methods covered in more detail 

below. These methods have not been applied to computer tasks, however, and I will 

explain shortly how the framework is applicable. 

 My selection of variables is based on the methods in Acemoglu and Autor (2011) 

and Peri and Sparber (2009). The O*NET variables for each task category are shown in 

Table 4. I will refer to the listed O*NET variables as the “raw” variables as necessary to 

avoid confusion with the task measures I produce later. I use Peri and Sparber’s (2009) 

communication tasks rather than Acemoglu and Autor’s (2011) interaction tasks because 

the latter are focused on the question of offshoring and constructed their variable to be 

sensitive to the need for face-to-face interaction, which is less of a focus here. 
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Table 4. Variable Selection for Task Categories 

 All of these questions are of the form “rate the importance of X on a scale of 1 to 

5.” Figure 5 plots the year 2000 values of O*NET variables within each task category 

against their values in 2015. Taken at face value, over that time many occupations have 

seen substantial change in task intensity. The predominant trend is a broad increase in 

reported task intensity for low intensity occupations. This pattern is visible for all task 

categories except for nonroutine manual. How much of this is real is questionable. The 

result hinges largely on using the year 2000 as the base year. Comparing other years to 

2015 shows occupations evenly scattered around a 45-degree line, though the fluctuations 

are substantial. For most tasks, there is a noticeable but less pronounced drop in task 

intensity for high intensity occupations, suggesting that some degree of measurement 

error is causing strength of the relationship to attenuate. This is a potential issue, but the 

methods used to convert these variables into task measures should reduce it. 

Task Measure O*NET Variables 

Computer Interacting with computers; Programming 

Communication Oral comprehension; Oral Expression; 

Written Comprehension; Written Expression 

Routine Manual Pace determined by speed of equipment; 

Controlling machines and processes; Spend 

time making repetitive motions 

Nonroutine Manual Operating vehicles, mechanized devices, or 

equipment; Spend time using hands to handle, 

control or feel objects, tools, or controls; 

Manual dexterity; Spatial orientation 

Routine Analytic Repeating the same tasks; Being exact or 

accurate; Structured vs unstructured work 

Nonroutine Analytic Analyzing information; Thinking creatively; 

Interpreting information for others 
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 The other takeaway from Figure 5 is that, within task categories, the changes in 

values over time are in most cases strongly correlated. This is especially true for variables 

in the communications category, in which changes have correlation coefficients between 

0.45 and 0.81, while correlation coefficients are weaker for variables in the routine 

manual category at between 0.09 and 0.25. In no case is the correlation between tasks 

within a category negative and significant. In short, values within task categories move in 

the same direction. While not conclusive, this is supportive of the claim that these 

variables are capturing features of the same types of tasks. Recall that prior work 

combining these variables has used O*NET data from single time periods, so this finding 

Figure 5. Within Occupation Changes in Task Intensity, 2000 to 2015 
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is encouraging, since I require a common method of combining variables in different time 

periods. 

The Case for a Computer Tasks Category23 

 One of these task categories is not so well established as the others, so I take a 

moment here to discuss how computer tasks should be defined and interpreted. I must 

establish both that computers are a valid task category and that we can measure computer 

tasks empirically using the same general methods used for other tasks. Starting with the 

latter, my computer task measurement is based on two items on the O*NET surveys: rate 

the importance of “Writing computer programs for various purposes” and “Using 

computers and computer systems to program, write software, set up functions, enter data, 

or process information” on a scale of 1 to 5. These are sufficiently computer related and 

similar in format to commonly used O*NET questions for empirical work. 

 To create a computer task index within the existing framework we need to 

consider both what computers do and how they are used by typical workers. Computers 

manipulate data using operations that have been unambiguously defined in a specialized 

format. In that sense, computers substitute for routine tasks, as argued in Autor, Levy, 

and Murnane (2003). There, the authors approach computers as physical capital that 

substitutes for routine tasks done by human workers, leading to decreased demand for the 

low education workers that tend to do routine tasks and higher demand for college 

educated workers that tend to do nonroutine tasks. They acknowledge computer skills as 

a type of human capital, but do not explore computers tasks as a distinct type of labor.  
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 Someone must induce the computer to produce the desired output, and doing that 

takes dedicated time and effort the same as other tasks. Workers must produce the 

unambiguous instructions that the computer requires to operate. In that sense, computers 

perform work that substitutes for routine tasks done by workers but require non-routine 

labor input to do so, and my definition of computer tasks encompasses the latter. While in 

principle a routine category of computer tasks can be defined, in practice we should 

expect computer tasks that are routine to be done by computers. That is, routine computer 

tasks, once identified, are incorporated into software after a brief potential lag. This is 

really all that software is. Consequently, in equilibrium there are no routine computer 

tasks performed by human workers, keeping in mind that under the definition of 

computer tasks used here typing and data entry are not included. 

 We might think of computer tasks as a second category of interactive or 

communication tasks, where the worker “communicates” with a non-human, not truly 

intelligent device. My definition of computer tasks includes programming, but also other 

activities such as organizing files, customizing settings, and actively using software. It 

does not include passive uses of computers, where the user is watching or reading off the 

screen. The task category definition in this paper can be summarized as “an activity that 

produces instructions a computer can use.”  Fortunately, this is quite close to the phrasing 

used in the O*NET questionnaires. 

Limitations of O*NET Data24 

 I have alluded to the limitations of the O*NET dataset before, but before 

continuing I will state a few explicitly. First, we cannot observe differences within 
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occupations that are frequently of interest, such as by education, experience, or location. 

This is probably not too serious. If an occupation had large task differences between 

workers, we would typically not think of it as a single occupation. Occupations are 

defined such that their internal task compositions are mostly consistent across time, 

location, and worker type. This is especially true when occupations are highly detailed, as 

they are in O*NET’s 1,000 plus detailed occupations, most of which are usable here. 

Additionally, the usual case is that a firm decides on a position and what the position 

requires, rather than finding an employee and setting job requirements to match, so job 

requirements should generally not differ based on the type of worker that eventually fills 

the position.  

 Other concerns include the difficulty of interpreting the self-reported values and 

converting the many variables from O*NET into a small number of task variables. These 

issues I address with methods drawn from Peri and Sparber (2009) and to a lesser extent 

Acemoglu and Autor (2011). A final issue is that changing methodology can lead to 

changing statistical relationships between variables. A case in point is that early in the 

sample periods, the “interacting with computers” variable and the “programming” 

variable mentioned above are questions on separate surveys, while late in the sample 

period the “programming” variable is updated by analysts based on the survey results for 

the “interacting with computers” variable. This is ignorable for this chapter, but could be 

a minor concern in chapter 6. 
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Current Population Survey Data25 

 Looking at the O*NET datasets alone can only take us so far. We need to see the 

changes in the occupational composition of the workforce in addition to shifts in task 

intensity within occupations to get a clear view of how the distribution of tasks in the 

workforce has changed in recent decades. To accomplish this, I link the task variables in 

O*NET to workers in the March CPS. Essentially, I take the high dimensionality census 

occupation data in the CPS and reduce it to a 6-dimensional task intensity space. 

 The CPS is a representative survey of 60,000 U.S. households. I make use of the 

March survey because it has additional questions related to employment and the job 

market, though many of these variables are more relevant in later chapters. To increase 

my sample size, I pool 3-year intervals as cross sections for the years 1980, 1985, 1990, 

1995, 2000, 2005, 2010, and 2015. This pooling should also reduce the influence of 

recession years on occupation counts. Since I need to sort workers into experience 

groups, I restrict the sample to employed men, for whom potential experience is a better 

proxy for actual job market experience. After these restrictions, the sample discussed here 

contains 212,561 observations with workers in 291 census occupations.  

Merger Process and Task Measure Construction26 

 Since the CPS uses census occupation codes rather than SOC codes, some 

crosswalk is needed, preferably one that allows changing occupational composition over 

time. To account for changing SOC occupational composition within the less detailed 

census occupations, I use the American Community Survey (ACS) to produce a 

crosswalk. This is similar to the method used in Acemoglu and Autor (2011), though they 
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use the Occupational Employment Statistics Survey for their labor supply weights. I 

merge the O*NET datasets to the ACS for the same year by SOC code, then collapse to 

census occupation codes.  

 Now that occupation counts are linked to task variables from O*NET, I apply the 

method of constructing task quantities from Peri and Sparber (2009). Each task variable 

is converted into a percentile based in the population, i.e. everyone in the highest rated 

occupation for that year gets a 1, everyone in the lowest rated occupation gets a 0, and 

everyone in the median occupation gets a 0.5. The mean value of variables within each 

task category becomes the measured task quantity for that occupation in that year.  

 Since the process described above can be difficult to picture, I will give an 

example of the calculation. In the year 2015, accountants have scores of 3.75, 4, 3.88, and 

3.75 for the O*NET variables Oral Comprehension, Written Comprehension, Oral 

Expression, and Written Expression respectively. Accountants are coded as “13-2011” 

under the SOC taxonomy and “800” under the census occupation taxonomy. Since the 

taxonomies have a one-to-one correspondence for this occupation, the O*NET values for 

accountant are applied to any workers labeled “800” under the census occupation code in 

the CPS. In cases where multiple SOC codes fall under one census code, I take a mean 

weighted by total workers in each of the SOC occupations based on the ACS for that 

year. The are 650,785 workers in the ACS sample for that year, and accountants are at 

about the 45th percentile for Oral Comprehension. After converting to percentiles, the 

rating for the four variables in the communications category are 0.4478, 0.9564, 0.6067, 

and 0.8672. I take the mean of these four values and get a communications task quantity 
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of 0.7195 for accountants in the year 2015. Differences in measured task quantity within 

occupations over time come from changing values of the O*NET variables and changes 

in occupation counts in the ACS. 

 What features the resulting task measure has depends on a few underlying 

conditions. Suppose each raw variable is the sum of the real task variable and an 

idiosyncratic error term arising from measurement error. Then the mean of several raw 

variables will have reduced measurement error. This plausibly arises when the raw 

variables are based on results from separate surveys and the questions are closely related. 

Now suppose that task quantities follow a uniform distribution in the population, though 

the method can be adjusted for other assumed distributions. Under this second condition, 

the task quantity can be aggregated across workers.  

How easily we can determine the true distribution of tasks in the population is 

debatable, as is whether tasks should follow the same marginal distribution. That said, we 

can safely assume that tasks quantities for individual workers are bounded below by zero 

and bounded above by a finite number, so the uniform distribution may be the most 

defensible guess. Verifying the population distribution of tasks is infeasible with existing 

publicly available datasets, and would likely require detailed time use data relating to 

work activities. A benefit of the method here is that all we would need to check 

alternative distributions is to apply the inverse CDF of the distribution in question. 
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Task Composition Changes within Occupations over Time27 

 Figure 6 plots year 2000 task intensities within occupations against their year 

2015 values. What we see here is a moderate improvement over the relative chaos of 

Figure 5. Within occupation changes are much more similar over time, while allowing for 

moderate fluctuations. Changes over short time periods are much smaller, so what we 

have here are mostly believable changes over a tumultuous 15-year timespan. We also 

fail to see the seeming attenuation that was visible in the relationships in Figure 5. 

Figure 6. Scatterplots of Measured Task Intensity  

Note: Based on ACS occupation counts. 
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 A concern about this method is that if the distributional assumptions are wrong, 

the value obtained will be purely relative. This would lead measured task intensity to fall 

simply because more task intensive occupations saw higher employment growth, even if 

workers in each occupation are doing as much of the task as before. In that case, most of 

the values in this chapter can still be usefully interpreted, though some methods used in 

later chapters would be invalidated. Note that if the measured task intensities in this 

chapter are purely relative, we would expect the relative increase in college graduates 

over the sample period to drive down the measured intensity in analytic and nonroutine 

tasks for high school degree workers. 

Data Differences Pre- and Post-200028 

 Recall that the CPS data used here goes back to the year 1980, while O*NET and 

ACS data only goes back to the year 2000. This necessitates caution when comparing 

results in the late and early sample period, since the results stem from different types of 

variation. Post-2000, results are influenced by changing values within SOC occupations 

in O*NET, changing SOC composition within census occupations from the ACS, and 

changing census occupation composition within the CPS. For the pre-2000 period, both 

task values and SOC occupation labor weights are constant at year 2000 values. Shifts in 

the means within groups reflect only changing census occupation composition in the 

CPS, with one exception. 

Adjustment for Pre-2000 Computer Tasks29 

 I make one additional adjustment to the merged dataset. While most tasks have 

plausibly been, to a first approximation, stable over time within occupations, this is 
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clearly not the case for computer tasks, as computers were gradually adopted over the 

sample period. I use computer usage rates reported in the 1984, 1989, 1993, 1997, and 

2001 October CPS to adjust computer task quantities downwards. I take the mean usage 

rate within occupations for each year, interpolate between years where necessary, and 

divide by the 2001 rate to obtain the adjustment factor for each occupation, which I apply 

for the pre-2000 period. For example, if 40% of accountants used computers in 1984 and 

80% used computers in 2001, the computer task intensity for accountants in 1985 would 

be half of the year 2000 value of computer task intensity for accountants, ignoring 

interpolation between years. 

Description of Measured Task Quantities30 

 Having merged the datasets, I have detailed task measurements at the individual 

level. The remainder of this chapter discuses patterns in the task distribution of the 

workforce over time. I find that the apparent stability at the national level hides 

substantial shifts at the level of local labor markets. I also find moderate shifts in the 

relationships between tasks. 

 With occupation counts and a smaller number of task quantities to work with, we 

can better see the relationships between tasks. Figure 7 plots the relationships between 

task intensities within occupations. We can see that the relationships are similar in both 

the year 2000 and the year 2015, though the strength of the relationships vary. We can 

also see a positive relationship between computer, nonroutine analytic, and 

communications tasks. Routine analytic tasks are weakly correlated with other tasks 

within these cross sections. Meanwhile, routine and nonroutine manual tasks are strongly 
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correlated, while both are negatively correlated with computer, communications, and 

nonroutine analytic tasks. 

 In short, Figure 7 suggests that jobs cluster into groups that focus on nonroutine 

analytic, communication, and computer tasks or on manual tasks, while routine analytic 

tasks are dispersed across occupations regardless of specialization into other tasks. I will 

turn to the question of why shortly. While the results in Figure 7 are not surprising, they 

are encouraging. We have prior reason to expect correlation between routine and 

nonroutine manual tasks and for nonroutine analytic tasks to be correlated with computer 

Figure 7. Task Intensity Changes within States. 
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and communications tasks. The method for constructing task quantities used here has not 

been applied in quite this way before, so establishing that the method works consistently 

over time and preserves known relationships is important. While the O*NET data showed 

fluctuations in task variables over time, the constructed task intensity measures here do 

not show major shifts in the relationships between occupations over time.  

Mean Task Composition by Experience Group31 

 While we cannot observe differences between education and experience groups 

within occupations, we can now examine mean task levels within those groups. Figure 8 

shows the mean task intensity within education-experience groups over time at the 

national level. The margin of error on these means is generally less than 0.01, so most 

differences large enough to see in the graphs are real. Means here are weighted by hours 

worked. 

 The first feature to note is that one of these categories is much different than the 

others. Computer tasks saw a massive increase while other tasks were roughly stable. 

This is largely because computer task intensity was adjusted in the pre-2000 period, 

which was not possible for other tasks. For other tasks, recall that all pre-2000 task 

quantity shifts are based on changes in the occupational composition of the workforce as 

observed in the CPS. Keep in mind that this should not be taken as evidence that 

computer tasks changed more dramatically than other task categories, but rather this is an 

estimate of the degree of the change in computer tasks given we know a major change 

occurred over the period and were able to make an adjustment. None of this is likely to 

have had a major effect on the results, given that we know computers were being adopted 
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in workforce over this period and we should expect other tasks to be approximately stable 

within occupations over time. 

 We can see several patterns in Figure 8 that match known facts about the task 

composition of the workforce. High school only workers are more intensive in both 

routine and nonroutine manual task than college degree workers. College degree workers 

are more intensive at nonroutine analytic, communications, and computer tasks than high 

school only workers. We can also see that college degree workers vary less in their task 

composition by experience group, while experienced high school only workers engage 

Figure 8. Mean Task Intensity by Year, Education, and Potential Experience.  

Sources: O*NET, March CPS. 
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less in manual tasks and more in nonroutine analytic, communications, and computer 

tasks than their low experience counterparts. That this holds for computer tasks, both 

before and after the year 2000, is a positive sign. Though not covered in the task-based 

literature, a similar finding appears in Weinberg (2002), who found that experienced high 

school only workers used computers at a higher rate than their inexperienced 

counterparts. 

 In a few cases, we can see changes in task intensity within groups over time. 

Since 1980, there has been a modest increase in communications tasks by new high 

school only and college degree workers, a decrease in routine and nonroutine manual 

tasks by new high school only workers, and a sizable decrease in communications and 

routine analytic tasks by experienced high school only workers. The steepness of the 

profiles of manual tasks for high school only workers has decreased over time, such that 

late in the sample period low and high experienced high school workers provide more 

similar levels of manual tasks. Given that their profile for communication and computer 

tasks have also flattened, the mean task intensities for high and low experience high 

school degree workers are noticeably more similar at the end of the sample period than at 

the beginning. This may suggest that high school only workers are more substitutable 

across experience groups now than in the past. 

 Aside from computer tasks, communication tasks exhibit the most noticeable 

shifts. In general, communications tasks shifted from high experience workers to low 

experience workers. This is surprising, given that we would expect communications skill 

to increase with experience and to be more valuable for workers doing more skill 
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sensitive tasks such as nonroutine analytic tasks. This pattern partially reversed in the 

later sample period. We may be seeing a response to the introduction of computers in the 

workplace, in which communication with young workers comfortable with the new 

technology became more important.  

 All that said, Figure 8 primarily shows a story of a stable distribution of tasks 

between worker groups over time. This is surprising in light of both technological change 

and the dramatic relative increase in college educated workers over time. When 

interpreting this result, we should recall that task quantities here are based entirely on 

occupations, with no within occupation differences by education being observable.  

Task Specialization within States32 

 In addition to national trends, linking the O*NET data to the CPS allows us to 

look at the geographic variation in the task composition of the labor force. This allows us 

to see trends within states as well as differences between states at a given time. In 

particular, we can see differential specialization into tasks or groups of tasks. Note that 

due to methodological differences, we should consider the pre-2000 and post-2000 

sample periods separately. 

 Table 5 shows correlation coefficients between mean task intensity growth at the 

state level in the early and late sample periods. That is, a positive coefficient indicates 

that growth in two task categories was correlated across states. Cells bolded indicate that 

correlation is higher relative to the other time period. The first notable feature is that 

growth in computer tasks is strongly positively correlated with growth in analytic and 

communications tasks, negatively correlated with growth in manual tasks, and that the 
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relationship is stronger late in the sample period. This is an interesting finding. We may 

have expected computer task growth to be weakly correlated with growth in other tasks, 

simply because growth in computer tasks was so widespread. The ability to observe this 

pattern stems largely from the richer, continuous measure of computer tasks introduced 

here, compared to the binary indicators that the early research on computerization was 

forced to use. Now we see that areas that specialized in computer tasks more aggressively 

specialized in nonroutine analytic and communication tasks. We may be concerned that 

the relationships between variables appears stronger later in the sample period due to 

more accurate measurement, but we also observe some relationships that are less 

correlated in the late period. 

Table 5. Pairwise Correlation in Task Intensity Growth within States 

2000 to 2015 Computer N.R. 

Analytic 

R. Analytic N.R. 

Manual 

R. Manual 

Computer 1.00     

N.R. Analytic 0.60* 1.00    

R. Analytic 0.12* -0.08* 1.00   

N.R. Manual -0.57* -0.29* 0.07* 1.00  

R. Manual -0.56* -0.50* 0.21* 0.78* 1.00 

Communication 0.53* 0.61* -0.09* -0.72* -0.82* 

1980 to 2000 Computer N.R. 

Analytic 

R. Analytic N.R. 

Manual 

R. Manual 

Computer 1.00     

N.R. Analytic 0.66* 1.00    

R. Analytic -0.05 -0.13* 1.00   

N.R. Manual -0.48* -0.52* 0.20* 1.00  

R. Manual -0.30* -0.49* 0.22* 0.80* 1.00 

Communication 0.37* 0.68* -0.05 -0.68* -0.73* 

*-denotes significance at the 1% level. Bold indicates significant change in correlation 

between periods. 
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 The next most notable feature is a weakening relationship between nonroutine 

manual tasks and analytic tasks. This suggests that nonroutine manual tasks are more 

commonly paired with nonroutine analytic tasks than previously, though the relationship 

is still negative. The overall picture we should take from Table 5 is that areas are 

specializing either into manual tasks or into computer, communications, and nonroutine 

analytic tasks, and this process has been occurring since at least 1980.  

 Over the sample period, there have been substantial changes to both the age 

profile and the education level in the population. We may be concerned that the results in 

Figure 9. Within State Mean Changes in Task Intensity, 2000 to 2015  

Note: Midcareer 20 to 25 and New Entrant 0 to 5 Years Potential Experience. 
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Table 5 are influenced by these shifts. If we look at task growth by education-experience 

groups, the findings are broadly similar, with minor variations between groups. Figure 9 

gives scatterplots of growth in mean task intensities for the later sample period. We see 

here the changes in how states’ workforces have specialized since 2000. Overall, states 

have become more polarized between those that focus on manual tasks and those that 

focus on other task categories. In fact, the correlations suggest that states have specialized 

into three broad groups: Nonroutine analytic and communications tasks, routine analytic 

tasks, or manual tasks. The change in routine and nonroutine manual tasks are strongly 

correlated within states, as are the changes between communication and computer tasks.  

 In some cases, differences between groups are of interest. For example, routine 

and nonroutine analytic mean task intensity is negatively correlated for mid-career 

college graduates, suggesting that states have specialized for one type of analytic task or 

the other over the sample period. For other groups, the relationship is weak. Also, 

changes in computer and routine analytic tasks are positively correlated for new entrants 

with a high school degree. This may indicate that routine tasks previously bundled with 

nonroutine analytic task oriented occupations have shifted to new entrants. 

 A somewhat surprising finding is that growth in computer task intensity is 

strongly linked to growth in communication task intensity, except for midcareer college 

graduates. This suggests that midcareer college graduates in an area tend to specialize 

into nonroutine analytic and computer tasks or nonroutine analytic and communications 

tasks, but not combine communications and computer tasks. For other groups, all three 
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tasks go together. Also, midcareer college graduates saw a much more consistent increase 

in mean computer task intensity within states. 

 The state level breakdown of the data also suggests that task intensity rose across 

all groups and categories from 1980 to 2000. This is a surprising result, given that this is 

the period in which within occupation changes are lacking. This essentially shows us that 

occupations that were more task intensive in the year 2000 saw higher employment 

growth over the previous 20 years. 

 Figure 10 shows correlations between within state changes in task intensities for 

the early sample period, again by education-experience group. The general patterns are 

similar to the later sample period, suggesting that the trends in specialization seen there 

are part of an ongoing process that has lasted several decades. A handful of differences 

are worth discussing. First, changes in computer task intensity are less correlated with 

changes in nonroutine analytic task intensity for most groups. This suggests that as 

computers were adopted, they were not targeted at workers doing specific tasks. In fact, 

the clearest patterns are for midcareer high school only workers. 

 Less prominently, the slopes of the best fit lines tend to be shallower, even if the 

degree of correlations are similar. Higher manual tasks are associated with lower 

computer, nonroutine analytic, and communications tasks, but the gradient is shallow. 

This suggests areas were specializing more slowly in this period, with the overall trend 

still being for areas to focus on computers, nonroutine analytic, and communications or 

on manual tasks, while college graduates tending to focus on either routine or nonroutine 

analytic tasks. 



 72 
 

Summary and Comparison to Prior Findings33 

 To summarize the changes in the task composition of the labor force revealed in 

this chapter, the national level means within education-experience groups is largely stable 

aside from computer tasks, while states have increased specialization in two directions. 

Where comparable, the findings here match findings in the earlier literature, especially in 

terms of the marginal distribution of tasks across worker types. The findings are broadly 

consistent with stories about polarization in the job market, but is more complicated than 

the stories in which computers substitute for routine tasks. What we see here is that 

Figure 10. Within State Mean Change in Task Intensity, 1980 to 2000  

Note: Midcareer 20 to 25 and New Entrant 0 to 5 years potential experience. 
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routine analytic tasks were historically bundled with nonroutine analytic and 

communications tasks, but have been unbundling from them for the last few decades. 

Routine analytic tasks did not vanish as they would if computers directly replaced them, 

but are done by workers and in areas separate from the ones that do nonroutine and 

communications tasks. Drudgery has been redistributed. Additionally, the measured task 

composition of the labor force has not much changed in response to the increase in 

college graduates. 

 The task measurement here suggests that differences in outcomes, such as the 

college wage premium, must be driven by differences in the implicit shadow prices more 

so than changes in the tasks workers perform, unless we look to computers as the 

principal driver of the changing wage structure. This prompts the questions addressed in 

chapters 5 and 6. If the task composition of workers within education-experience groups 

has remained similar over time aside from computer tasks, changes in the wage gaps 

between these groups must be due to some combination of rising computer task quantities 

and changes in compensation related to other existing tasks, due either to substitution 

effects or human capital differences. In chapter 5, I estimate wage effects in the form of 

shadow prices for tasks. In chapter 6, I explain changes in task shadow prices.
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CHAPTER V 

DO TASK SHADOW PRICES EXPLAIN THE EVLUTION OF SKILL PREMIA 

FROM 1980 TO 2015 

 In the previous chapter, I constructed a measure of task quantities and showed that 

the relative amounts of tasks done by education-experience groups have been stable since 

1980. Over the same period, skill premia changed substantially, as documented in Bound 

and Johnson (1992) and Goldin and Katz (2009), who both show large growth in the 

college degree premium. Here I seek to explain wage changes through changes in the 

shadow prices of tasks. Based on the observed changes in wages, shadow prices for tasks 

conducted by more experienced and more educated workers should have risen over the 

period. I find that a few task shadow prices explain most of the overall wage differences 

between groups. Additionally, computer task shadow prices had a mitigating effect on the 

increase in experience premia. 

 The premise here is that a worker’s overall labor can be decomposed into task 

labor quantities. Since tasks are bundled into jobs, we cannot observe the exchange of 

singular tasks for wages in the market, but given wages and task quantities at the 

individual worker level, shadow prices for tasks can be estimated in a hedonic 

framework. This approach is established in the literature, and I base the method here 

primarily on Peri and Sparber (2009). Chapter 4 describes how I adapted their method of 

measuring task quantities for individual workers, while this chapter covers how I adapt 
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their method of estimating shadow prices, while making use of recently developed 

improvements to estimation techniques.  

 Another contribution of this chapter is a dataset of task shadow prices that can 

illuminate how wage premia have developed over time. A limitation of the existing 

literature is that the explanations for why wages grew for nonroutine analytic oriented 

jobs are nebulous. The dataset of task shadow prices and quantities produced here will 

allow a more detailed examination of the determinants of task shadow prices and how 

tasks substitute for each other. We will be able to see whether quantities of one task 

strongly affect prices for another and the extent to which workers in different education-

experience groups influence the shadow prices of different tasks. We may also be able to 

track task-specific human capital accumulation within cohorts over time based on shadow 

price changes. Not all of these topics are within the scope of this dissertation, but in 

chapter 6 I will estimate time trends in shadow prices, searching for bias in technical 

change. 

 Since some of  the task measures here are novel, checking that they fit the stylized 

facts of the literature is worthwhile. Figure 11 show scatterplots of median hourly wages 

within occupations and task intensities for occupations in the years 2000 and 2015. What 

we can see here is that the relationships between wages and routine manual, nonroutine 

manual, and routine analytic tasks have weakened over the period, such that the best fit 

line has a less positive (or more negative) slope. Over the same time, occupations 

intensive in nonroutine analytic, computer, and communication tasks pay better than they 

once did, and the strength of the correlation with wages is stronger than for the other task 
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categories. This is in line with the usual stories about declining pay for a strong back and 

for routine work as discussed in Acemoglu and Autor (2011), Autor and Dorn (2013), 

and Goldin and Katz (2009), and elsewhere, but figures like Figure 11 are often 

misleading as the trendlines almost certainly suffer from omitted variable bias. This 

chapter will reveal whether the relationships between task intensity and prices remains 

after controlling for other factors. 

Figure 11. Scatterplots of Hourly Wages and Task Intensity, 2000 and 2015  

Sources: ACS, O*NET 
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Data and Methodology34 

 The dataset used here is the March CPS merged with task quantities based on the 

O*NET dataset, as covered in detail in chapter 4. This sample contains 212,561 

observations of individual workers in 16 education experience groups over 8 periods 

from 1980 to 2015. Shadow price estimates are based on cross sectional variation in 

wages and task intensities within these cells. The model includes 6 categories of tasks, 

including the widely used suite of routine and nonroutine analytic, routine and nonroutine 

manual, and communication tasks, as well as a measure of computer tasks I introduce. 

 The CPS is a nationally representative survey of 60,000 households. These 

households are surveyed repeatedly throughout the year, with the March survey 

containing additional questions related to work and income. The number of individuals 

contained in these samples varies from year to year. To get a reasonable number of 

observations in each cell, I combine 3-year periods at 5-year intervals, i.e. the 1985 

sample contains 1984, 1985, and 1986, etc. I restrict the sample to full-time (as defined in 

the CPS, at 35 hours or more per week) working males surveyed from 1980 to 2015, with 

reported values for annual wages, hours worked, occupation, education group, age, state, 

and other demographic and household variables. The March supplement is preferrable to 

other CPS products due to its more extensive control variable availability, such as 

previous year occupation and pension program participation. 

 I convert to real wages in 2015 dollars using GDP deflator and use usual hours 

worked and weeks worked to obtain hourly wages. Within education and experience 

groups, real median wages grew at about 0.5% per year in the sample. An exception to 
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this pattern is a jump for low experience college graduates in the late 1990s that may 

have been as high as 10%. Thus, overall wage growth over the period can be explained 

almost entirely by rising education and an aging population. If trends in total 

compensation follow trends in wages, this implies anemic productivity growth over the 

period. Note also that the stagnant national median wage conceals moderate growth in 

wages in some states, which is offset by lower population growth in high wage states.  

 I sort workers into 5-year potential experience groups based on their age and 

education. By assumption, high school graduates enter the workforce at age 18, college 

graduates at age 22. I choose to use comparatively narrow experience groups in the 

expectation that cohort differences may be important, and this choice influences several 

other choices in constructing the sample dataset. To illustrate, suppose a cohort 

experiences a shock that affects their productivity at computer tasks. Perhaps the cohorts 

in high school just before and just after Sputnik received differently relevant educations. 

For example, the National Defense Education Act prompted by the Sputnik crisis greatly 

increased funding for education and increased the emphasis on the sciences in the public 

education system. If those shocks affect only a few years of students each, we lose 

information by sorting into wider potential experience bins. This could also occur for 

workers that enter the labor market in a recession, as discussed in Kahn (2010) and 

elsewhere. Dealing with these shocks is feasible when the experience bins are narrow and 

observed frequently, allowing for balanced panels. These concerns are another reason the 

CPS, with frequent observations in the relevant period, is preferrable to other data 

sources. 
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 In terms of potential experience, the median worker in both education groups has 

six more years in 2015 than in 1980, with the rise following a linear trend. The 

distribution of experience is highly left skewed in 1980 and is symmetric by 2000 and 

afterwards. After 2000, the distribution also flattens out to become roughly uniform near 

the end of the sample period. This is interesting in light of a result from Lam (1989), 

which suggests that a uniform age distribution minimizes lifetime wages if workers of 

differing ages are imperfect substitutes. This suggests that cohorts that experienced a 

skewed age distribution in earlier periods of the sample benefited compared to the later 

cohorts that experienced a more symmetric distribution. 

 The great value of the March CPS over other data sources is the abundance of 

labor marker and demographic control variables available. Below I describe the 

estimation method used to obtain shadow prices in this chapter and how it permits the use 

of large numbers of control variables. The controls in March CPS include indicators for 

race, marital status, number of children, number of children under 5, number of people in 

the household, detailed education, age, recent changes in occupation, and inclusion in 

employee pension plan. Using a data driven approach to selecting controls, I use all of 

these and their interactions as potential control variables. To avoid controlling for too 

much, estimation is conducted separately by education-experience group and I use only 

an indicator for whether a worker switched occupations in the last year rather than full 

indicators for last year’s occupation. 

 Peri and Sparber (2009) serves are the basis for the approach taken here. The 

authors model wage differences between low skill migrants and natives to see if 
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immigration leads to changes in the relative task intensity for natives, and show that low 

skill native workers switch to communications tasks and away from manual tasks in 

response to rising immigration. To obtain prices, they use a variant of the partialling-out 

estimator by regressing wages on demographic variables, regressing task quantities on the 

same variables, then regressing the residuals from the first regression on the residuals 

from the second regression. Unusually, their method has wages in log form in the first 

regression. Their model is implicitly in a hedonic framework. 

 A little more formally, Peri and Sparber (2009) derive their specification based on 

a task-based nested CES production function. This is a natural extension of the familiar 

CES production function in which the labor inputs are themselves CES conglomerates 

whose inputs are specific types of labor. The details of the task-based nested CES are 

more relevant in chapter 6, so for the moment I will describe the general case. Suppose 

aggregate production is F(X), where X is a 1 x n vector of total task labor quantities from 

all workers. Then a worker’s marginal productivity is the directional derivative Dy F =   

∑
n

i       =1 
vi ∂f/∂xi, where v is the vector of task labor quantities performed by the worker in 

question. We can interpret the ∂f/∂xi’s as task-specific wage rates if conditions hold for 

wages to equal marginal productivity. These derivatives are not directly observable 

unless firms explicitly use piece rate compensation schemes, but are reflected in the labor 

demand curve. These wage effects are what the hedonic model estimates using the 

measures (vi) of task intensity constructed in chapter 4.  

 In terms of the production function, I need prices (∂f/∂xi) for one task not to 

depend on quantities of other tasks provided by the same worker, which will hold in the 
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case of the task-based nested CES as long as the number of workers is large. This yields 

the expression for the basic model of wages I estimate, 

w = wrmMr+wnrmMnr+wraAr+wnra+Anr+wII+wCC 

Equation 7 

where w is wages, M, A, I, and C indicate manual, analytic, communication (interactive), 

and computer tasks respectively, while r and nr denote routine and nonroutine. 

 The empirical approach to estimating this equation is slightly more complicated. 

In the decade following the publication of Peri and Sparber (2009), partialling out 

estimators were an active area of research and several more powerful estimation 

techniques were introduced. See Belloni et al (2014) and Chernozhukov et al (2018) for 

discussion. The key advantages of the new methods are data driven control variable 

selection via lasso and more accurate standard errors in the second stage regression.   

 The approach I adopt here is termed cross-fit partialling-out or debiased machine 

learning (DML). The intuition behind this approach is that when variable selection is 

based on the sample, what would usually be misspecification bias is a random variable, 

and under surprisingly plausible conditions that random variable will converge in 

probability to 0. To summarize DML, control variables are selected using lasso on both 

the dependent (outcome) and key independent (policy) variables. For those unfamiliar, 

lasso selects control variables by restricting the length of the coefficient vector in a 

regression. The outcome and policy variables are then separately regressed onto the 

selected controls, after which the residuals of the outcome variable are regressed on the 
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residuals for the policy variables. This is extremely close conceptually to Peri and 

Sparber’s (2009) approach, though with additional technical details.  

 The DML framework supposes that 

y = dα+g(x)+u 

Equation 8 

and 

d=m(x)+v 

Equation 9 

where d is the policy variable (or vector), y is the outcome of interest, g(x) and m(x) are 

unknown functions of the control variables x, and u and v are error terms with expected 

value 0 after conditioning on d and x. Here dα corresponds to Equation 7, with α being 

[wrm wnrm wra wnra wI wC]. Note that since the final stage regression is of residuals on 

residuals, the model contains no constant as all have mean 0. The DML approach 

estimates g(x) and m(x) using the large number of control variables made possible by 

implementing lasso. Specifically, the models of x and y is estimated on the full set of 

control variables, but in addition to the usual ∑N
i=1 ε

2
i term in the objective function, a 

penalty term λ∑P
k=1 |ψkβk| is included in the objective function. This effectively restricts 

the length of the coefficient vector. We may think of this as a control function approach, 

though that term is not usually applied to this method. The key conditions to estimate α 

consistently are that we observe sufficient control variables to approximate g(x) and m(x) 
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and that the number of variables necessary to do so is small. We need not know which of 

the variables are relevant a priori. 

 On a side note, Stata introduced a command, xporegress, to estimate DML the 

year after the method was first published. This is a relevant example of the argument 

made in chapter 4 that computer tasks done by workers are necessarily nonroutine, as in 

equilibrium any routine computer task is incorporated into software.  

 The benefits of using DML here are several. First, Peri and Sparber (2009) make 

use of few control variables, selected based on their expertise. This is reasonable in the 

context of their work, but less so here. For example, I wish to conduct estimation 

separately by education-experience group, as I expect shadow prices to vary with skill. 

For some groups, within group age differences are surely important, such as recent labor 

market entrants. For the highly experienced groups, within group age differences should 

be irrelevant. Theory offers little guidance as to when within group differences cease to 

be relevant, so a data driven approach is helpful. Similar issues arise for education, and in 

some cases where the CPS variables are needlessly detailed. For instance, Peri and 

Sparber use racial indicators for both Chinese and Japanese when partialling out, even 

though they lack many other race categories. Similarly, whether divorced and separated 

individuals should be treated differently is not obvious. A final benefit to the data driven 

approach is that the relevant variables may vary over time. For example, divorce has 

become much more common over time, so divorce may not be as strongly related to other 

worker features as in earlier times.  
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 A more minor benefit of the DML approach over Peri and Sparber’s (2009) 

method is reduced sensitivity to functional form. For example, Peri and Sparber (2009) 

have wages in log form in their first step regression, meaning they have to convert 

residuals back to levels for their second stage regression. How sensitive their results are 

to the details of this process are unclear. They also lack a method of adjusting the 

standard errors in their final regression to account for this process. 

 There are a few details to keep in mind when interpreting the coefficients. The 

resulting estimate of α is the vector of shadow prices, or wage effects. Taken literally, 

going from doing no computer tasks to doing computer tasks at peak intensity would 

raise hourly wages by wC. A coefficient of 10 indicates that moving to an occupation with  

task intensity 0.1 higher would raise the worker’s hourly wages by $1. Since the task 

quantities used here are based on occupation, it is more defensible to think of this as the 

wage effect of a worker switching to an occupation with differing task intensity, keeping 

in mind that the coefficients are estimated off of cross-sectional variation within 

education-experience groups. This potentially differs from the effect of a change in task 

intensity within an occupation over time. 

Shadow Price Estimates Assuming Convergence35 

 I first consider the case in which shadow prices are assumed constant across 

states. This should occur if workers face no cost to relocating and have perfect 

information of wages in all states so that shadow prices converge via competition. The 

estimates here are based on the model above, with no interaction with task quantities 

included, though state indicators are possible control variables. Generally, the results are 
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in line with which tasks we would expect to pay well or poorly, and at what tasks more 

skilled workers should be more highly compensated. 

 The precision of the shadow price estimates leaves a little to be desired. Standard 

errors range from about $0.50 to as high as $20, with most being less than $3. This level 

of precision is similar for all tasks. This leaves most estimates statistically significant, but 

for cells with few observations the shadow prices remain uncertain. Given that we expect 

experience-wage profiles to be roughly quadratic, I fit a quadratic expression to the 

estimates to visualize the experience-wage effect profiles for tasks. Note that since these 

are cross-sectional profiles rather than longitudinal, the shape may be irregular due to 

differences between cohorts, especially if the entering and exiting cohorts are well 

compensated. 

 Figure 12 shows quadratic fits in experience of shadow price estimates for each 

task by education group over time. Overall, Figure 12 suggests that a few changes in task 

prices are driving skill premia, while for many tasks the shadow prices are fairly low and 

stable. Several notable results are visible. First, we can see a rise in nonroutine analytic 

task prices over time in both education groups, more prominently for workers with 

college degrees and later in the sample period. We can also see a drop in routine manual 

task prices for both groups. Given that workers with college degrees are more intensive at 

nonroutine analytic tasks and less at routine manual tasks, these trends work to increase 
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the college degree premium, especially in the post 2000 period. Additionally, routine 

analytic prices rose for college graduates but were flat for high school only workers, 

while computer task prices fell for high school only workers. 

 Also notable are which tasks have shadow prices that rise with experience. For 

high school only workers, only computer tasks have a clear upward trend with 

experience, though this was more prominent in the early sample period. Worth noting is 

that this result matches the findings of Weinberg (2002), though the author there used 

Figure 12. Task Shadow Prices from 1980 to 2015 



 87 
 

substantially different data and methodology than the one used here. For college 

graduates, an upward trend in experience is evident both for computer tasks and for 

nonroutine analytic tasks. This is sensible given that these are tasks at which workers are 

likely to learn from experience. Also visible for college graduates is a downward trend in 

experience for nonroutine manual tasks, and for routine analytic tasks after the early 

career stage. This may indicate the workers with college degrees have an initial 

advantage at these tasks, but their abilities diminish with age. 

 To give an idea of the degree of smoothing in Figure 12, Figure 13 shows the 

quadratic fits and the shadow price estimated for nonroutine analytic tasks. The degree of 

Figure 13. Quadratic Fits vs Shadow Price Estimates 
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smoothing is moderate. The fitted curves are generally a good representation of the 

pattern of task shadow prices at a given time and the features discussed above are visible 

in a scatterplot as long as the graph is large and includes fewer years. Issues such as the 

outlier in the lower right of the college shadow prices plot are mitigated by using the 

inverse square of their standard errors as weights. That particular estimate is for the 

cohort that reached retirement age as the dot com bubble burst, and the shadow price 

estimate is imprecise, possible due to the unusual conditions of the time. 

 To confirm my interpretation of Figure 12, I run an Oaxaca decomposition to find 

the portion of the experience premium attributable to each task price. Table 6 shows 

partial results from an Oaxaca decomposition of hourly wages as a function of task 

quantities. This will reveal how much of the difference in wages between experience 

groups stems from price differences as opposed to task quantities. Overall, the hourly 

wage premium of experience for college graduates rose from about $3.50 to $4.50 over 

the sample period, while for high school only workers the premium went from about 

$1.20 to $1.80. As anticipated, task price differences explain most of the experience wage 

gap. A surprising finding is that computer task prices consistently served to decrease the 

overall experience premium.  

 Aside from computer task prices, the results of the Oaxaca decomposition suggest 

that communications task prices and routine analytic task prices drove the experience 

wage premium over the entire sample period, while nonroutine analytic task price 

increases led to an increase in the experience premium in the post-2000 period. These 

trends were similar for both high school only and college degree workers. Routine and 



 89 
 

nonroutine manual task tended to have a modest effect and slightly favored younger 

workers.  

Table 6: Oaxaca Decompositions of Hourly Wages by Experience 

Shadow Price Estimates Allowing State Differences36 

 In practice, we should expect that workers are not perfectly free to move. This 

may be due to the material costs of moving or coordination problems with moving. 

Information costs relating to wages in distant labor markets may also make moving less 

appealing. The fact that geographic mobility has declined in the U.S. in recent decades is 

well established and known to affect labor market outcomes. See Karahan and Rhee 

(2014) for discussion. Consequently, differences in task shadow prices between states is 

entirely plausible. 

 College Degree High School Degree 

Year 

Total 

Difference 

From 

Prices 

From 

Computer 

Task Price 

Total 

Difference 

From 

Prices 

From 

Computer 

Task Price 

1980 3.49 (0.19) 3.31 (0.17) -0.33 (0.54) 1.22 (0.10) 1.10 (0.09) -0.01 (0.01) 

1990 3.30 (0.36) 3.23 (0.36) -1.16 (0.85) 1.94 (0.14) 1.86 (0.14) -0.05 (0.21) 

2000 4.28 (0.40) 4.45 (0.40) -1.78 (1.66) 2.11 (0.22) 2.09 (0.21) -0.67 (0.50) 

2010 4.47 (0.39) 4.26 (0.37) -1.02 (1.96) 1.83 (0.20) 1.79 (0.18) -0.36 (0.61) 

Notes: Standard errors in parentheses. Reference groups are workers with less than 10 

years of experience. Comparison groups are workers with more than 20 years of 

experience. Five other task categories included in the model of wages.  
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 How to account for these differences is not a trivial question. The obvious 

approach here is to interact task quantities with state indicators, but should these all be 

included as policy variables or should these interactions be treated as potential control 

variables in the DML framework? The answer to this question depends on how the 

estimates are to be used. Here in chapter 5, we wish to interpret the estimates, so noisy 

shadow price estimates are a problem. In chapter 6, the estimates are to be used as a 

dependent variable, and measurement error in the dependent variable is not necessarily a 

major problem. Random, classical measurement error in the dependent variable makes 

estimation less precise, but does not bias the results. For the purposes of chapter 5, I will 

treat the state task quantity interactions as potential controls. This means in effect that 

most states will have the same task prices, but we will detect differences in task prices for 

selected states in some cells. 

 Figure 14 reports the (national) shadow price estimates obtained in the framework 

discussed above. The results are broadly similar to those seen in Figure 12, but are 

generally better behaved, even though the degree of precision is nearly identical. We 

again see a rise in nonroutine analytic task prices for both groups over time and a similar 

decline in routine manual task prices. College graduates have also seen an increase in 

wages from routine analytic tasks, which again is a little surprising if we expect 

computers to substitute for routine analytic tasks. The trends in experience are the same 
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as we saw in Figure 12, though we can also see an upward trend with experience in 

communication task prices for high school only workers. 

 We may be interested to see which states had clear deviations from the national 

prices for tasks. In total, DML suggests there were 1,557 cases in which a state deviated 

from the national levels of prices, out of 39,168 potential cases. Table 7 lists the top 5 

states in terms of how often task prices differed from the national level. These tend to be 

large states, so lasso may have an easier time detecting price differences when there are 

many workers observed in a state. This is probably not too serious, as even lightly 

Figure 14. Task Shadow Prices with Controls for State Heterogeneity 
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populated Wyoming occasionally has measurable price deviations from the rest of the 

country. California was the clear leader, with New York as a distant second. Their task 

shadow price levels tend to be higher than the rest of the nation, as we might expect. 

Texas, Pennsylvania, and Florida have smaller price differences and tend to have task 

prices below other states. 

Table 7: State Level Shadow Price Deviations 

 The fairly small mean shadow price differences can conceal some cases where the 

differences are quite large. There are rare cases of price differences estimated at $40, 

which we can reasonably assume are estimation errors, but a comparison of Figure 12 

and Figure 14 suggest that shadow price differences in a handful of states are having a 

nontrivial effect on the national level shadow price estimates obtained under the 

assumption that the shadow prices have converged. 

State Price Deviation Count 

Mean Price Deviation 

(2015$) 

California 414 1.03 

New York 237 1.37 

Texas 193 -0.19 

Pennsylvania 121 -0.12 

Florida 108 -0.55 



 93 
 

Discussion37 

 Overall, the estimates obtained here should be an improvement over previous 

work. That said, the interpretation and in some cases the reliability of the estimate bear 

discussion. DML is a broadly applicable technique, and can be used in both treatment 

effect and structural frameworks. In this case, I believe that interpretation as a treatment 

effect is more defensible, but interpreting the wage effects here as marginal productivity 

effects is fairly reasonable. That is, increasing task intensity causes wages to adjust as 

described, but the claim that changing productivity is the underlying cause is a further 

inference.  

 In a perfectly competitive market, compensation equals marginal product. We 

lack total compensation data and use wages as the dependent variable, but in this case the 

control variables should be adequate to account for that, since DML allows a large 

number of control variables and the March CPS offers a wide selection. We observe 

pension plan participation, along with a range of demographic variables that should 

determine preference for nonwage compensation, including age, marital status, and 

number of children, and when using DML all of these can be interacted with each other.  

 A potential concern is that in a nontrivial number of cases the results are 

significant and negative. This could arise for several reasons. First, we should note that 

since tasks are bundled, the usual condition that marginal product is always positive need 

not hold. An employer can hire superfluous amounts of a task if the marginal worker still 

has net positive marginal product after accounting for other tasks. Marginal product can 

also be negative if the worker treats the task as an amenity. This explanation is 
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implausible for most of the results here. While workers may treat some tasks as 

amenities, a marginal increase in computer task intensity, for example, is unlikely to be 

an amenity. The tasks workers would most plausibly treat as amenities are also the ones 

with consistently positive estimates, communication and nonroutine analytic. Workers 

may benefit from on the job learning that raises their future productivity. This would 

suggest that the wage profile should have a noticeable upwards slope and wouldn’t 

explain negative wage effect late in worker’s careers. If none of these are the case, then 

tasks may be correlated with unobserved low ability, meaning the estimates are biased 

downwards. This last explanation is most plausible in the case low routine manual 

shadow prices for mid-career college graduates. 

 I find the most plausible explanation to be that there is a glut of some tasks. The 

task composition of the workforce has, after all, been surprisingly stable in light of the 

degree of technological change. This is not a major problem for this chapter, but negative 

marginal productivity is evidence against a range of production functions, including the 

nested CES I wish to utilize in chapter 6. 

Conclusion38 

 This chapter’s accomplishment is to obtain reasonable shadow price estimates for 

the standard suite of tasks, plus the computer task category introduced in chapter 4. The 

immediate use of these estimate is to show that task shadow prices explain the lion’s 

share of the wage premia for experience and education. In particular, the results here 

show that computer task shadow prices substantially mitigated the trend of rising 
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experience premia while rising nonroutine analytic task shadow prices drove the increase 

in the experience premia on the post-2000 period. 

 The secondary use the task shadow prices here is that we can now model the 

evolution of these shadow prices over time. Up to now, what drives the changes in these 

shadow prices has been unclear and the literature gives us an embarrassment of riches in 

terms of explanations. Shadow price differences may stem from economies of scale, 

trends in technology, unobserved human capital differences, or changes in the aggregate 

labor supply of other tasks. Fortunately, these explanations correspond to different 

patterns in task shadow prices that can be tested. Modeling the shadow prices obtained 

here will be the subject of chapter 6.
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CHAPTER VI 

BIAS IN TECHNICAL CHANGE SINCE 1980 

 In this chapter I use the data on task shadow prices and labor quantities from 

chapters 4 and 5 to estimate the bias in technical change. To recap, over the past few 

decades, the wage gap between high and low skill workers grew substantially. We have a 

mostly plausible explanation for why in the form of skill-biased technical change 

(SBTC), but we wish to distinguish between several cases of biased technical change, 

some of which may fall outside the scope of SBTC. 

 Technical change here means a time trend in a technology parameter of a 

production function. The central question is: where is technical change neutral and where 

is technical change biased? Common assumptions are that technology (represented by 

parameter A) is factor augmenting, Y = AF(K, L) (Hicks neutral), labor augmenting,  

Y=F(K, AL L) (Herrod neutral), or capital augmenting, Y = F(AK K, L) (Solow neutral)8. 

The feature we require here is that technology is labor augmenting but not necessarily 

neutral, a fact which is reflected in differences in wage trends between types of labor.  

 Nonneutral labor augmenting technical change can be illustrated by supposing 

aggregate labor input L is a function of specific labor inputs, here written as the vector h. 

SBTC is the claim that we can sort the elements of h into high skill and low skill labor

 
8Attentive readers will notice that if and only if the production function is Cobb-Douglas, 

these cases are equivalent, and the trends cannot be distinguished based solely on 

observed output, labor, and capital. 
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 depending on the worker and write aggregate production as Y = F(K, L(Ashs,hl)), with As 

trending upwards over time9. Task-biased technical (TBTC) change is the case where the 

elements of h can be sorted into tasks, for simplicity suppose two, and for one task the 

technology parameter has a positive trend higher than the other. The slightly narrower 

claim of routine-biased technical change (RBTC) is that the task categories are routine 

and non-routine and that nonroutine tasks have a stronger trend in technology. See Böhm 

(2020) for a detailed look at the recent literature on RBTC. Note that h can be sorted both 

ways, so we may have 

Y = F(K, L(AsAnrhs,nr, Ashs,r, Anrhus,nr, hus,r)), 

Equation 10 

in which both types of bias occur, with s and us denoting skilled and unskilled, and nr 

and r denoting nonroutine and routine. 

 What I have documented so far is that within education-experience groups, mean 

task intensities have not changed since 1980 (chapter 4), and that changes in the shadow 

prices of tasks led to an increase in the wage gap favoring workers with a college degree 

(chapter 5). In particular, routine analytic task shadow prices rose for college graduates, 

nonroutine analytic task shadow prices rose across all groups, and routine manual task 

shadow prices fell across all groups. These findings are less consistent with the classical 

form of SBTC described in, e.g., Katz and Murphy (1992), with a separate technology 

 
9For simplicity, suppose for now that only high skill workers face an upwards 

productivity trend. In practice we may need to distinguish between trends for each worker 

type. 
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parameter for high skilled workers, and more consistent with a task-biased technical 

change (TBTC) mentioned in Acemoglu and Autor (2011) and in Adermon and 

Gustavsson (2015), in which the authors attempt but are unable to document such a trend 

in task-specific productivity based on panel data of Swedish wages. 

 The dataset constructed in chapters 4 and 5 allows me to estimate time trends in 

task-specific wages by education-experience groups. I will show that time trends for task 

productivity are statistically and economically significant, but are usually not statistically 

significantly different between education groups. I take this as evidence in favor of TBTC 

over SBTC. 

Data and Methodology39 

 The empirical approach here uses two steps. First, I obtain shadow prices for each 

task, in each year, and for each education-experience group. This is similar to the process 

detailed in chapter 4, with two key differences. I now estimate state varying shadow 

prices and I forego the cross-fitting step10 for computational efficiency. Second, I 

estimate time trends in these shadow prices and test whether these time trends vary across 

tasks and education groups. I interpret these time trends as biased technical change, and 

the types of labor over which the time trends vary will indicate whether recent changes in 

the wage structure stem from SBTC in its original proposed form or TBTC. A difference 

 
10The consequence of this is an estimator that is √N -consistent rather than N-consistent. 

This could mean that estimates for cells with few observations are far from their 

asymptotic distributions, but should not affect the asymptotic properties of the estimator 

unless the number of necessary control variables is rising with N, which I do not expect 

in this case.  
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in trend between high school degree only workers and college graduate workers across all 

tasks indicates SBTC, while a trend difference between the shadow prices of tasks across 

both education groups indicates TBTC. 

Shadow Price Estimation40 

 The state varying shadow prices are estimates from the same dataset constructed 

in chapter 4 and used in chapter 5. The sample contains 212,561 observations of 

individual workers from 1980 to 2015, recording their hourly wages, intensities for each 

task, and a range of demographic and employment data from the CPS and O*NET. The 

shadow price estimates are obtained via a partialling out method. I regress wages and a 

set of task intensities interacted with state level indicator variables on a set of control 

variables selected by lasso. As before, I model wages as 

w = dα´+xβ´+ϵ. 

Equation 11 

The difference here is that d is a set of 51 interactions between a particular task and state 

level indicator variables, so α´ is a vector of state specific shadow prices. Note that I 

allow parameters to vary by education-experience group, task, state, and year, so we may 

want to think of these as α íjkst, though the number of indices quickly becomes 

cumbersome. 

 A caveat here is that in this case the goal is not to interpret α´ directly. These are 

estimates of state level shadow prices, but the statistical significance of the price in any 

particular state is not important. The aim here is to obtain state level variation, even if my 
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estimates have substantial amounts of noise. Recall from chapter 5 that in a given year, 

few states were detected as having shadow prices that deviated from the national average. 

Fortunately, the imprecision in the estimate should reflect sampling error, and since the 

shadow prices act as the dependent variable in step two, this is a case of measurement 

error in the dependent variable and should be a manageable issue. 

 To recap the selection process, w and each element of d are separately regressed 

on x, but the objective function contains a penalty term along with the sum of squared 

errors. We can write the objective function as 

QLasso = (1/2N) ∑N
i=1 ϵ

2
i +λ∑P

k=1 |ψk βk| 

Equation 12 

Here, ϵi and βk have their usual meanings, while λ and ψk are a penalty parameter and 

weights, respectively, selected to minimize estimation noise under the assumption of 

heteroskedastic error terms11. See Belloni and Chernozhukov (2011), Belloni et al. 

(2012), and Hastie et al. (2015) for technical details. The basic idea is that by restricting 

the size of the β’s we obtain a model in which most β’s are 0. If we happen to know that 

most of the β’s in the true model are 0, this method will identify the relevant regressors, 

or at least a set of regressors that approximates them arbitrarily well, provided some 

conditions hold. Once the β’s are selected, I obtain in-sample residuals from regressions 

of w and each element of d on the relevant elements of x, then regress the wage residuals 

 
11Specifically, λ=(1.1/√N)Φ-1(1-0.1/(2p ln(max{p,N}))) and ψk=√(1/N)∑N

i=1 (xijϵ
^
i)

2, where 

ϵ^i is obtained by an iterative algorithm. 
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on the task residuals to estimate α´. See Belloni et al. (2012) for the derivation of this 

method. 

 The consistency of the partialling out estimator here depends on two conditions. 

The first condition is sparsity, i.e., the number of nonzero coefficients in the true model is 

small relative to the sample size N. The second condition is that we have observed values 

for all the relevant variables, or strong proxies, even if we do not know which variables 

these are. Because of the penalty term, the model is identifiable even if the number of 

control variable candidates, p12, is much larger than N. The partialling out approach relies 

on stronger sparsity conditions than the cross-fit partialling out method used in chapter 5. 

This estimator is √N-consistent as opposed to N-consistent. In slightly simplified terms, 

the number of potential control variables with non-zero coefficients in the true model 

must be on the order of √N. In practical terms, the estimates will be inconsistent in a 

sample of 10,000 observations if there is no set of 100 control variables sufficient to 

eliminate omitted variable bias13. While more restrictive than the cross fit partialling out 

method from chapter 5, the number of control variables permitted is still large. 

 The product of this first step is a dataset of shadow prices and aggregate labor 

quantities by task, education-experience group, state, and year. For each task, there are 

6,528 estimated “observations” of shadow prices, with the quality of the estimates 

depending on the number of observations in each cell. 

 
12 Here, p=7,433. 
13More precisely, or perhaps less precisely but more accurately, s/(N-1/ln(p)) must be 

small, where s is the number of regressors in the true model, though there is no exact 

threshold. 
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Models of Shadow Prices and Time Trend Estimation41 

 In the second step, I model the shadow prices as a function of aggregate labor 

quantities. The method here is analogous to the methods used to model wages seen in 

chapter 3 and much of the literature on SBTC. The canonical framework for this is the 

nested CES, so I begin with a discussion of this framework before moving to a more 

general, semiparametric framework. 

 The nested CES is a fairly simple extension of the standard CES production 

function model with several highly convenient properties and at least one key limitation 

relevant to distinguishing SBTC from TBTC. The premise is that the aggregate 

production function takes on the standard CES form, 

Y = A(θK
ρ
+(1-θ)L

ρ
1)

1/ρ, 

Equation 13 

where Y, A, K, θ, and ρ have their usual interpretations, but now L1 is a CES 

conglomerate of more detailed labor types, usually low and high skill, usually 

distinguished empirically by education, 

L1 = (θ1L11
ρ1+(1-θ) L12

ρ1)
1/ρ1. 

Equation 14 

We can generalize further by allowing L1 and L2 to themselves be CES labor 

conglomerates that depend on narrower types of labor, such as labor by experience group 
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or, in rarer cases, by task. This is a flexible framework in that we can treat different many 

different types of labor as imperfect substitutes.  

 Suppose that the nesting structure is education-task-experience, indexed by i, j, 

and k respectively14. We can easily apply the chain rule to obtain the marginal product of 

labor, 

MPijk = θiθijθijkY
1-ρ

Li

ρ-ρ
iLij 

ρi-ρijLijk
ρij-1, 

Equation 15 

where Lijk is the aggregate task labor quantity for the relevant education-experience 

group. While at first glance, this formula appears complicated, we can divide by a 

reference type of labor within the ij nest and take logs to obtain 

ln(MPijk/MPij1) = ln(θijk/θij1)+(ρij-1)ln(Lijk/Lij1). 

Equation 16 

This specification is convenient because it is linear, and both the coefficients and the 

constant have useful interpretations. The coefficient is the elasticity of complementarity, 

indicating the degree to which labor types are imperfect substitutes, while the constant is 

a difference in productivity levels. Time trends in the constant are trends in productivity 

(hence labor demand) that we could link to biased technical change, as pointed out in 

 
14The literature on nested CES models generally supposes education is the highest nesting 

level. See Ottaviano and Peri (2012) for methods of testing the nesting structure. A 

nesting level for tasks is rarely used, though Haas, Lucht, and Schanne (2013) assume a 

nesting structure with tasks between education and experience. 
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Katz and Murphy (1992), though not in a task-based context. Note also that the constant 

is decomposable in other ways that may be of interest, such as allowing cohort effects or 

interacting it with lagged task quantities to test for learning on the job. 

 The key relevant limitation of the nested CES is that marginal productivity can 

never be negative. As discussed in previous chapters, the task-based model does not in 

general require the marginal product of tasks to be positive, even in a perfectly 

competitive labor market. Additionally, chapter 5 shows cases in which shadow prices 

are negative and significant. In addition to the inability to take logs, negative values mean 

we lose information by dividing, as we would lose an indication of whose shadow prices 

were negative and a time trend would be uninterpretable. 

 Two approaches could resolve the issue of negative shadow prices. If the negative 

values arise from measurement error or some random shocks, Equation 16 can still be 

estimated via nonlinear least squares, keeping in the nested CES framework, though this 

leaves many nuisance parameters in the model. Having attempted this approach, I can 

attest to its inappropriateness. Estimates are extremely sensitive to initial values, 

frequently fail to converge, and even when initial values are reasonable and convergence 

is achieved, the estimates not credible15. Alternatively, if the shadow prices for tasks are 

in some cases negative due to an overabundance of labor, technology trend estimates can 

still be obtained nonparametrically or semiparametrically. I go forward with the 

semiparametric approach explained below. 

 
15For example, the education-experience group indicators are not significant, except for 

one with t=40, and R2=-6. 
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 If the aggregate production function is not CES, estimation is still possible in a 

more generalized framework. Suppose aggregate production is of the form seen in 

Equation 10, then by the chain rule marginal product is 

MPijk = ∂F(K, L(φ,h))/∂hijk=φijkf(L) 

Equation 17 

where hijk is the aggregate task quantity for the education-experience group and task in 

question, and φ is a vector of labor augmenting technology parameters. In the CES case 

above, φijk could be decomposed into the product of θi, θij, and θijk, while here we have 

less guidance. I am interested in time trends in φijk, here the technology parameter for 

education-experience group ik at task j. If f is an unknown function, a semiparametric 

approach is appropriate. As the φijk term enters multiplicatively rather than additively, and 

taking logs is not an option, the relevant approach is the smoothly varying coefficient 

model (SVCM). Essentially, we can estimate φijk in narrow bands of values of aggregate 

labor quantity1617. See Rios-Avila (2020) for technical details. Centorrino and Racine 

(2017) use this approach in a context similar to what I do here. The authors model wages 

as a function of experience, allowing the coefficient to vary by educational attainment. 

Note that here I suppose that task labor supply is inelastic in the short term. Were this not 

 
16The model supposes the coefficients βx(z) vary with 𝑧 in the form βx(Zi) ≈ 

βx(z)+∂βx(z)/∂z(Zi-z). 
17Here, aggregate labor quantity is the total amount of the task for the state, year, and 

group. I rely on the properties of the task measure from Peri and Sparber (2009) to allow 

task quantities to be summed over workers. 
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the case, using a shift share instrument for aggregate task quantities is an alternative 

approach. 

 Since in the SVCM framework, we have a linear model at any fixed value of the 

smoothing variable z (here the labor quantity f(L)), we need to specify a linear expression 

for φijk. I assume  

φijk = DkX+akt+bikt*Col, 

Equation 18 

where X is a set of education-experience group indicators, t is time, and Col is an 

indicator for a four year college degree. The parameters of interest here are ak and bik. 

These are the time trend in the shadow price for the task and the difference in time trend 

by education. I further interpret these as technology trends. A steeper positive time trend 

for some tasks is indicative of TBTC while a steeper time trend for college graduates than 

high school only workers across all tasks is indicative of SBTC in the traditional sense, 

the same as in the nested CES case above. 

 Strictly speaking, MPijk is not observed, so I require an empirical stand-in. I make 

the assumption that αijk=MPijk+vijk within each state and year, where vijk is an 

idiosyncratic error term. That is, employers adjust wages by αijk because that is the size of 

the productivity increase due to rising task intensity. This assumption leads me to 

estimate the equation 

αijk = (DkX+akt+bikt*Col)f(L) 

Equation 19 
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semiparametrically on each task.  

 The estimates I obtain from SVCM are coefficients that vary by quantity of labor. 

This heterogeneity may be interesting, but here is a byproduct of the estimation technique 

rather than the focus of the investigation. Note that the marginal effect of a technology 

trend on wage levels will depend on the aggregate labor quantity in any plausible model. 

The nested CES approach, and others, avoids the issue by transforming the equation in a 

way that is not possible here, to isolate the parameters of interest in the constant term. 

Recalling that f(L) is the derivative of the production function with regard to labor, we 

should expect f(L) to be positive and decreasing, so all else equal the coefficients should 

decrease in absolute value with labor quantity. Deviations from this patter may indicate 

heterogeneity in the marginal effects apart from what would occur in a nested CES 

framework. 

 When interpreting the results, converting the coefficient estimates into marginal 

effects is helpful. We can obtain marginal effects at the mean by multiplying the 

coefficients by the local mean task intensity for the relevant group. Table 8 reports mean 

task intensity by education and task for each task category except computers. As an 

example, suppose the coefficient on the time trend is 1 for all labor quantities and the 

mean task quantity is 0.7 for college graduate and 0.4 for high school only graduates 

across all states, experience groups, and years. Then the trend in that task raised college 

graduates’ wages by $0.70 every 5 years and high school only graduates by $0.40 every 5 

years. For most purposes, mean task intensity varies little by experience or over time. See 

chapter 4 if more a more detailed breakdown of mean task quantities is needed. 
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Table 8. Mean Task Intensity by Education 

 Before proceeding, a few caveats bear mentioning. First, the SVCM approach can 

yield imprecise estimates at extreme values of the distribution of z. Coupled with the 

imprecision of estimates for cells with few observations, this leads to a high degree of 

noise for small labor markets. Results shown and discussed below are restricted to the 

upper 80% of the distribution of the relevant z variables. In practice this leads to 

excluding small states such as Wyoming and the Dakotas. Most of the variation in z is 

driven by state populations, as opposed to differing cohort sizes and task intensities 

within states. Second, the commonly used SVCM method allows only one 𝑧 variable. 

Additional variables increase complexity exponentially. Results below use within 

education-experience group aggregate labor quantities for z18 Aggregating across all 

experience groups gives similar results. Finally, interpreting the time trends as bias in 

technical change assumes I am estimating labor demand. I am relying on the inelasticity 

of supply for the labor quantities defined here. 

 
18 That is, I aggregate individual task quantities across all workers in each education-

experience group, state, and year, using the method discussed in chapters 4 and 5 and 

based on Peri and Sparber (2009). 

 
N.R. Analytic R. Analytic Communication R. Manual N.R. Manual 

College  0.69 0.52 0.70 0.34 0.28 

High School 0.45 0.54 0.45 0.60 0.57 
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Results42 

 Figure 15 plots the coefficients on the time trends for each task. For the most part, 

we can think of the x-axis as having small states on the left while large states like 

California and New York are on the right and more closely reflect national averages. 

Note that here, a 1 indicates an upward trend in hourly wages of $1 per 5 years for all 

workers intensive at the task (i.e. task intensity is 1), given the indicated aggregate labor 

quantity. We can see that each task tends to have a clearly positive or negative trend, with 

Figure 15. Time Trend Coefficients by Task 

 (95% Bootstrap CIs) 
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some variation by the aggregate quantity of labor. For the most part, the sign of the trend 

is positive for nonroutine tasks and negative for routine tasks, as we may expect based on 

the literature. 

 Nonroutine analytic and communication tasks exhibit a similar pattern of positive 

time trends across all observed labor quantities, supporting claims of TBTC. 

Communication tasks exhibit the pattern we would expect to see under the standard 

model: positive and decreasing with f(L). Workers intensive in nonroutine analytic tasks 

saw a wage increase of about $6 per hour over the previous 4 decades, while workers 

intensive in communications task saw an increase of about $4.80 per hour. Variation in 

these effects by f(L) is modest. For nonroutine analytic, the effect appears larger for 

markets where the aggregate quantity of that task is larger, while the reverse is true for 

communications tasks. This is not directly of interest here, but does imply that averaged 

across all workers the effect of nonroutine analytic task is larger and more noticeable.  

 Also supporting the TBTC position are negative trends for routine analytic and 

routine manual tasks. Workers intensive in these tasks saw wages fall by $4 to $5 over 

the sample period. This decline was larger in bigger labor markets, making it especially 

noticeable. A negative technology trend may be confusing at first, but we must recall that 

technology is defined in the broad economic sense here. This may reflect issues like 

bureaucracy that leads labor inputs to be less productive, which has plausibly worsened 

for routine work and more so in larger states, though establishing this connection would 

require further investigation.  
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 While the results above support both TBTC and RBTC, the remaining two task 

categories do not fit easily into a RBTC framework. Nonroutine manual tasks exhibit a 

trend similar to routine manual tasks, though less steep. For small labor markets, the 

trend was near zero over the sample period, but in larger labor markets, the trend was 

significant and negative to the tune of about $0.60 per decade. If technical bias was 

strictly in favor of nonroutine tasks, this should not be the case. Additionally, computer 

tasks have a positive trend for small labor markets, but generally the trend is not 

statistically significant, and any plausible effect is small compared to other tasks. 

 Figure 16 shows the difference in time trends by education group. Here, a 1 

indicates that workers intensive in this task with a four-year college degree saw wages 

rise at a rate of $1 over 5 years higher than the rate for similar workers with only a high 

school degree. Positive values indicate a bias towards skill within a particular task 

category. Overall, the results here suggest that in most cases such bias is small or 

nonexistent, though there is a pattern of significant and positive trend differences in 

larger labor markets. 

 Routine and nonroutine analytic tasks, along with computer and communications 

tasks, exhibit highly similar patterns. The difference in trends is near zero, but rises with 

aggregate labor quantity until the difference in trends becomes positive for larger labor 

markets. The size of these effects is also similar, at between $0.50 and $1 per 5 years. 

This is a somewhat surprising result in that it supports pure SBTC, but only in some labor 

markets. That said, the evidence is not especially strong given the number of estimates 

produced here. 
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 The remaining task categories, routine and nonroutine manual, also show a 

common pattern in the difference in trends. Where the aggregate labor quantity is small, 

the trend is strongly negative, while for larger labor markets the trend is near zero. Before 

interpreting this, we should note that the practical effect here is modest, both because 

college graduates do these tasks with low intensity and because the large negative trend 

exists only in small labor markets. That is, the results imply hourly wages fell by about 

$1 per 5 years for typical college graduates that work in small labor markets, ignoring 

other factors influencing their wages.  

Figure 16. Education Gap in Time Trend by Task  

(95% Bootstrap CIs) 
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Conclusions43 

 In this chapter I estimated trends in the shadow prices of wages. I interpret time 

trends within tasks as task-biased technical change and differences in time trends by 

education groups as skill-biased technical change. On balance, the results here support 

the case for task-biased technical change in favor of nonroutine analytic and 

communications tasks and against routine analytic and routine and nonroutine manual 

tasks. The results are not supportive of skill-biased technical change in general, but may 

support skill-biased technical change for large labor markets. 

 Taken together with the findings in chapter 4 that showed that mean task 

intensities within education-experience groups were stable over time, the results here 

suggest that the rising wage gap between skilled and unskilled workers was driven 

largely by the positive time trend in the shadow prices of nonroutine analytic and 

communications tasks that are disproportionately done by workers with a college degree. 

Other factors were generally small or affected workers similarly across education groups.
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CHAPTER VII 

CONCLUSION 

 In this dissertation, I measured the task intensity of workers and used them first to 

estimate shadow prices for tasks, and then to estimate trends in technology reflecting bias 

in technical change. The process revealed several interesting results that warrant 

investigation in the future, and overall supported other findings in the literature regarding 

the nature of technical change. I briefly discuss these findings and their implications 

below. 

 In chapter 4, I used established techniques to obtain a measure of task intensity 

for a standard suite of 5 tasks, and for the first time, a computer task category. The most 

notable finding was that mean relative task intensities within education-experience 

groups saw only small fluctuations over time, except for computer tasks. This means the 

average college graduate and the average high school only graduate of a given experience 

level have about the same task profiles today as 40 years ago, aside from both using 

computers more extensively. This strongly suggested that changes in the wage gap 

between college graduates and high school only graduates are due to changes in how well 

compensated tasks are, rather than changes in the quantities of tasks.  

 Chapter 4 also showed that the task specialization in local labor markets changed 

substantially since 1980. Some areas specialized in nonroutine analytic and 

communication tasks, while others specialized in manual tasks. This was not thoroughly
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 explored here, but suggests that the mix of task quantities in local labor markets is an 

important and understudied factor in labor market outcomes, and that the methodology 

used here could be a valuable tool in explaining local variation in labor market 

conditions. 

 In chapter 5, I estimated shadow prices for tasks using the recently developed 

DML estimator. The results of chapter 5 are about what we would expect. Routine 

manual tasks declined in price while nonroutine analytic prices rose, especially for 

college graduates. Less predictably, computer task prices fell, and routine analytic task 

prices rose for college graduates only. The results are notable in that shadow prices have 

not previously been reported on this large a suite of tasks. 

 Chapter 5 also brings a few issues to light that have yet to be fully addressed by 

the literature. Foremost, task shadow prices can be negative in equilibrium. This has 

barely been mentioned and never been a focus. Previous attempts tended to use 

estimation techniques that could not produce negative estimates, though theory does not 

indicate negative values are impossible in this framework. This result has implications for 

which identification strategies are appropriate in determining the nature of technical 

change, as seen later in chapter 6. 

 A few minor points also reveal themselves in chapter 5. While most states have 

shadow prices close to the national mean, in some cases even large states can experience 

a price differential. These differences do not seem to persist over time, so likely reflect 

temporary market imperfections. A final minor point is that the experience-shadow price 

profile fluctuates over time more for some tasks than others, and not all have the usual 
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concave shape. In the future, the ability to measure this could help clarify how human 

capital is accumulated on the job. 

 In chapter 6, I estimated bias in technical change using the task labor quantities 

and shadow prices derived in previous chapters and a semiparametric approach, SVCM, 

as an alternative to the nested CES. I distinguish between SBTC, TBTC, and RBTC 

based on trends in shadow prices within and between groups. On balance, I find evidence 

in favor of TBTC, some evidence of SBTC, and evidence against general RBTC. This is 

notable both in that I document significant trends in shadow prices and in that the trends 

suggest that the shift in the literature away from SBTC as originally envisioned was 

warranted, but that making routineness and non-routineness the primary categories may 

be a misstep, though the distinction is important.  
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APPENDIX A. FREEMAN REPLICATION REGRESSIONS 

Freeman Model Estimated on CPS data, 1961 to 1975 

1961 to 1974 

Sample Constant Time Cycle Labor Ratio 

Full-time 

Workers, 25 

to 35 

0.063  

(0.017) 

-0.005  

(0.002) 

0.006  

(0.242) 

-0.125  

(0.114) 

Four-year 

Degree 

Workers 

27.113  

(12.475) 

-0.014  

(0.006) 

-0.177  

(0.639) 

-0.298  

(0.214) 

High School 

Graduate 

Workers 

0.066  

(5.712) 

0.000  

(0.003) 

-0.237  

(0.405) 

-0.150  

(0.205) 

Full-time 

Workers, 20 

to 24 

-0.720  

(0.179) 

-0.002  

(0.008) 

0.448  

(0.338) 

-0.491  

(0.150) 
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Freeman Model Estimated on CPS data, 1975 to 1996 

Sample Constant Time Cycle Labor Ratio 

Full-time 

Workers, 25 

to 35 

0.015  

(0.026) 

-0.005  

(0.002) 

0.657  

(0.156) 

-0.088  

(0.054) 

Four-year 

Degree 

Workers 

-42.418  

(13.129) 

0.008  

(0.002) 

-0.083  

(0.289) 

-0.042  

(0.089) 

High School 

Graduate 

Workers 

9.138  

(5.922) 

-0.005  

(0.001) 

0.652  

(0.162) 

-0.197  

(0.037) 

Full-time 

Workers, 20 

to 24 

0.483  

(0.182) 

-0.020  

(0.001) 

1.518  

(0.284) 

-0.056  

(0.070) 
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Freeman Model Estimated on CPS data, 1996 to 2017 

Sample Constant Time Cycle Labor Ratio 

Full-time 

Workers, 25 

to 35 

-0.211 

(0.049) 

-0.005 

(0.002) 

-0.283 

(0.086) 

-0.132 

(0.079) 

Four-year 

Degree 

Workers 

-31.310 

(13.530) 

0.002 

(0.003) 

0.714 

(0.296) 

0.208 

(0.081) 

High School 

Graduate 

Workers 

-15.732 

(8.272) 

0.008 

(0.003) 

0.738 

(0.242) 

0.122 

(0.046) 

Full-time 

Workers, 20 

to 24 

-0.269 

(0.226) 

0.005 

(0.003) 

0.655 

(0.259) 

0.370 

(0.242) 
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Extensions to Freeman Model, CPS 1961 to 1996 

 H-P Filter H-P Filter, AR(1) 

 High School College High School College 

Constant 5.414 

(3.062) 

32.455 

(9.006) 

2.043 

(1.958) 

26.371 

(9.111) 

Labor Ratio pre 

‘75 

-0.030 

(0.163) 

-0.295 

(0.215) 

-0.170 

(0.073) 

-0.766 

(0.215) 

GNP pre ‘75 -0.109 

(0.380) 

0.438 

(1.958) 

-0.300 

(0.305) 

0.454 

(1.438) 

Unemployment 

pre ‘75 

-0.018 

(0.006) 

-0.011 

(0.032) 

-0.018 

(0.006) 

-0.031 

(0.039) 

Time pre ‘75 -0.003 

(0.002) 

-0.017 

(0.005) 

-0.001 

(0.001) 

-0.013 

(0.005) 

Post ‘75 3.185 

(3.661) 

-48.617 

(9.688) 

5.493 

(3.087) 

-43.457 

(10.860) 

Labor Ratio post 

‘75 

-0.020 

(0.049) 

-0.034 

(0.082) 

-0.183 

(0.061) 

-0.043 

(0.095) 

GNP post ‘75 -0.358 

(1.208) 

1.399 

(1.494) 

-0.298 

(1.192) 

1.449 

(1.580) 

Unemployment 

post ‘75 

-0.024 

(0.024) 

0.043 

(0.032) 

-0.022 

(0.023) 

0.045 

(0.034) 

Time post ‘75 -0.004 

(0.001) 

0.008 

(0.002) 

-0.004 

(0.001) 

0.008 

(0.003) 

Lag 
  

0.102 

(0.123) 

-0.069 

(0.229) 

R-squared 0.9377 0.7387 0.9488 0.7666 

N 34 34 32 32 
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APPENDIX B. SHADOW PRICE DML ESTIMATES 

Shadow Price Estimates 1980 

 Exp. N.R. 

Analytic 

R. 

Analytic 

N.R. 

Manual 

R. Manual Computer Comm. 

H
ig

h
 S

ch
o
o
l 

0-5 
0.538 

(0.896) 

-1.156 

(0.815) 

2.435 

(0.609) 

2.028 

(0.751) 

0.311 

(0.534) 

1.767 

(0.759) 

6-10 
1.664 

(0.795) 

-0.744 

(0.864) 

3.831 

(0.700) 

2.709 

(0.886) 

-0.008 

(0.803) 

3.512 

(0.816) 

11-15 
3.206 

(0.897) 

0.749 

(0.884) 

2.128 

(0.792) 

4.415 

(0.956) 

2.348 

(0.813) 

1.99 

(0.925) 

16-20 
1.233 

(1.129) 

-0.804 

(1.024) 

1.301 

(0.871) 

3.253 

(1.047) 

3.201 

(0.935) 

5.558 

(.952) 

21-25 
0.867 

(1.239) 

-1.25 

(1.095) 

0.952 

(1.041) 

0.595 

(1.173) 

1.623 

(1.081) 

6.09 

(1.075) 

26-30 
3.25 

(1.453) 

0.596 

(1.29) 

1.582 

(1.743) 

1.454 

(1.297) 

1.944 

(1.286) 

5.472 

(1.725) 

31-35 
1.348 

(1.326) 

1.456 

(1.198) 

1.506 

(1.118) 

0.66 

(1.25) 

3.458 

(1.187) 

4.863 

(1.233) 

36-40 
1.538 

(1.481) 

-1.077 

(1.465) 

2.987 

(1.202) 

3.464 

(1.783) 

-0.277 

(1.498) 

10.311 

(1.801) 

C
o
ll

eg
e 

0-5 
2.971 

(1.367) 

-1.361 

(1.268) 

-0.671 

(1.858) 

0.117 

(1.635) 

2.547 

(0.978) 

-0.53 

(1.246) 

6-10 
1.79 

(1.508) 

-4.519 

(1.56) 

-2.025 

(1.448) 

0.059 

(1.531) 

.635 

(1.157) 

0.046 

(1.466) 

11-15 
1.041 

(2.174) 

-3.676 

(2.224) 

-0.853 

(2.093) 

1.008 

(2.203) 

5.29 

(1.687) 

8.461 

(2.139) 

16-20 
9.484 

(3.055) 

-4.691 

(3.026) 

-9.782 

(3.318) 

8.251 

(3.006) 

1.576 

(2.526) 

0.356 

(2.515) 

21-25 
2.790 

(3.94) 

-3.535 

(4.951) 

-9.997 

(4.744) 

2.927 

(4.343) 

3.541 

(3.168) 

7.323 

(3.985) 

26-30 
9.635 

(3.952) 

-6.05 

(4.156) 

-13.838 

(4.426) 

12.335 

(3.894) 

6.911 

(3.308) 

3.738 

(4.083) 

31-35 
12.626 

(4.613) 

9.519 

(5.28) 

-6.582 

(5.839) 

-5.85 

(4.743) 

2.835 

(4.077) 

-6.415 

(4.703) 

36-40 
1.465 

(5.997) 

-3.064 

(6.562) 

0.550 

(4.297) 

0.593 

(6.594) 

16.202 

(4.283) 

3.536 

(6.022) 
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Shadow Price Estimates 1985 

 Exp N.R. 

Analytic 

R. 

Analytic 

N.R. 

Manual 

R. Manual Computer Comm. 

H
ig

h
 S

ch
o
o
l 

0-5 
0.003 

(0.712) 

-1.765 

(0.933) 

3.762 

(0.716) 

-0.338 

(0.898) 

2.390 

(0.816) 

0.657 

(0.763) 

6-

10 

1.102 

(0.918) 

0.002 

(0.754) 

5.240 

(0.664) 

-0.730 

(0.921) 

3.097 

(0.842) 

2.053 

(0.743) 

11-

15 

1.283 

(1.010) 

-2.114 

(1.008) 

3.506 

(0.948) 

2.631 

(1.065) 

4.883 

(1.167) 

3.571 

(1.079) 

16-

20 

2.342 

(1.283) 

-1.936 

(1.103) 

3.445 

(0.985) 

5.336 

(1.258) 

5.895 

(1.397) 

6.709 

(1.128) 

21-

25 

1.944 

(1.439) 

-2.953 

(1.199) 

3.094 

(1.169) 

3.711 

(1.265) 

6.404 

(1.313) 

5.848 

(1.260) 

26-

30 

4.093 

(1.703) 

-1.397 

(1.639) 

0.546 

(1.442) 

2.046 

(1.676) 

5.910 

(1.497) 

4.952 

(1.360) 

31-

35 

4.198 

(1.624) 

-1.956 

(1.567) 

3.259 

(1.337) 

2.348 

(1.592) 

6.985 

(1.893) 

6.215 

(1.360) 

36-

40 

4.760 

(3.966) 

-1.590 

(2.601) 

1.588 

(1.584) 

4.418 

(2.018) 

2.917 

(2.472) 

5.961 

(1.762) 

C
o
ll

eg
e 

0-5 
4.362 

(1.688) 

1.668 

(1.605) 

2.025 

(2.456) 

-0.907 

(2.263) 

0.655 

(1.404) 

1.945 

(1.879) 

6-

10 

5.098 

(1.885) 

-0.043 

(1.523) 

-0.632 

(1.727) 

0.031 

(1.904) 

2.781 

(1.369) 

0.763 

(1.717) 

11-

15 

7.600 

(2.172) 

-1.118 

(1.884) 

-5.662 

(1.861) 

3.651 

(2.183) 

2.497 

(1.831) 

3.492 

(1.937) 

16-

20 

6.665 

(3.142) 

-6.153 

(2.603) 

-14.443 

(2.486) 

9.252 

(3.028) 

0.550 

(2.190) 

2.152 

(2.707) 

21-

25 

9.039 

(4.436) 

-6.780 

(4.019) 

-8.779 

(4.625) 

1.757 

(4.876) 

2.618 

(3.487) 

1.568 

(4.055) 

26-

30 

-1.443 

(5.957) 

-11.229 

(5.492) 

-16.279 

(5.668) 

6.617 

(4.739) 

6.301 

(4.851) 

-6.958 

(4.787) 

31-

35 

-1.037 

(6.508) 

-15.307 

(5.434) 

-6.896 

(6.797) 

-1.114 

(6.310) 

7.651 

(4.734) 

2.030 

(5.330) 

36-

40 

10.330 

(7.540) 

5.056 

(7.907) 

-4.723 

(7.697) 

-4.833 

(6.924) 

11.398 

(6.645) 

3.439 

(6.363) 
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Shadow Price Estimates 1990 

 Exp N.R. 

Analytic 

R. 

Analytic 

N.R. 

Manual 

R. Manual Computer Comm. 

H
ig

h
 S

ch
o
o
l 

0-5 
1.983 

(1.047) 

-1.287 

(0.902) 

1.587 

(0.966) 

0.261 

(0.932) 

-0.383 

(0.886) 

0.933 

(0.950) 

6-

10 

1.868 

(0.827) 

-0.865 

(0.920) 

3.658 

(0.771) 

-0.206 

(1.142) 

1.637 

(0.805) 

2.955 

(0.854) 

11-

15 

3.756 

(1.130) 

-0.345 

(0.864) 

4.233 

(0.846) 

-2.798 

(1.198) 

1.821 

(0.886) 

2.064 

(0.974) 

16-

20 

2.645 

(1.425) 

-1.268 

(1.408) 

3.242 

(1.074) 

2.209 

(1.441) 

2.211 

(1.035) 

6.478 

(1.199) 

21-

25 

2.462 

(1.367) 

-0.663 

(1.780) 

5.046 

(1.305) 

4.389 

(2.066) 

4.565 

(1.235) 

7.426 

(1.445) 

26-

30 

4.226 

(1.698) 

-1.312 

(1.600) 

2.200 

(1.300) 

4.020 

(1.633) 

2.871 

(1.481) 

6.552 

(1.366) 

31-

35 

5.384 

(1.642) 

0.755 

(1.807) 

-1.835 

(1.460) 

2.945 

(1.754) 

1.985 

(1.651) 

3.992 

(1.614) 

36-

40 

3.256 

(2.347) 

-1.044 

(2.865) 

4.670 

(1.568) 

3.668 

(2.106) 

4.605 

(2.010) 

9.158 

(1.903) 

C
o
ll

eg
e 

0-5 
3.089 

(1.635) 

-1.622 

(1.641) 

-3.178 

(1.698) 

0.109 

(2.164) 

2.053 

(1.386) 

0.877 

(1.835) 

6-

10 

8.911 

(2.047) 

1.440 

(1.546) 

-5.502 

(1.827) 

1.864 

(2.221) 

-2.526 

(1.777) 

3.650 

(1.735) 

11-

15 

10.417 

(2.419) 

1.004 

(2.074) 

-7.727 

(2.006) 

2.140 

(2.618) 

-0.413 

(1.985) 

-1.166 

(2.215) 

16-

20 

0.470 

(2.831) 

-8.269 

(2.412) 

-7.491 

(2.120) 

3.416 

(2.520) 

5.026 

(2.126) 

4.249 

(2.276) 

21-

25 

14.188 

(3.224) 

-4.626 

(3.173) 

-19.462 

(4.204) 

7.906 

(3.752) 

-5.694 

(2.956) 

-2.732 

(4.048) 

26-

30 

2.277 

(5.920) 

-4.100 

(4.998) 

-5.559 

(4.342) 

0.910 

(5.478) 

1.484 

(3.498) 

6.044 

(3.822) 

31-

35 

17.283 

(6.059) 

1.950 

(5.520) 

-20.739 

(6.292) 

7.011 

(5.794) 

-3.733 

(5.183) 

-5.189 

(6.894) 

36-

40 

0.661 

(6.484) 

-22.777 

(5.804) 

-18.843 

(8.701) 

21.359 

(6.763) 

10.438 

(4.555) 

6.682 

(5.602) 
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Shadow Price Estimates 1995 

 Exp N.R. 

Analytic 

R. 

Analytic 

N.R. 

Manual 

R. Manual Computer Comm. 

H
ig

h
 S

ch
o
o
l 

0-5 
-0.080 

(1.379) 

-1.165 

(1.356) 

0.565 

(1.418) 

-0.638 

(1.840) 

1.210 

(1.063) 

0.912 

(1.371) 

6-

10 

4.228 

(1.422) 

-0.131 

(1.484) 

5.210 

(1.486) 

-4.150 

(1.859) 

0.562 

(1.497) 

1.000 

(1.275) 

11-

15 

5.505 

(1.594) 

1.653 

(1.399) 

3.868 

(1.077) 

-1.079 

(1.624) 

-0.644 

(1.058) 

3.246 

(1.337) 

16-

20 

3.431 

(1.602) 

-0.134 

(1.430) 

4.377 

(1.102) 

-2.523 

(1.799) 

1.851 

(1.373) 

2.652 

(1.237) 

21-

25 

4.277 

(2.033) 

2.312 

(1.854) 

3.059 

(1.423) 

-6.805 

(2.566) 

2.149 

(1.342) 

0.973 

(1.531) 

26-

30 

0.450 

(2.586) 

-4.599 

(2.778) 

2.587 

(3.273) 

1.324 

(3.352) 

3.240 

(1.345) 

5.475 

(1.659) 

31-

35 

-2.009 

(2.773) 

-1.554 

(1.757) 

0.646 

(1.546) 

-0.731 

(2.271) 

5.371 

(1.838) 

7.729 

(1.992) 

36-

40 

2.199 

(2.998) 

-4.822 

(3.274) 

2.928 

(2.382) 

-0.455 

(3.451) 

7.482 

(2.508) 

8.053 

(2.742) 

C
o
ll

eg
e 

0-5 
5.923 

(2.449) 

5.424 

(1.897) 

1.611 

(2.162) 

-3.752 

(2.290) 

-1.869 

(1.999) 

2.724 

(1.966) 

6-

10 

10.000 

(2.825) 

2.877 

(2.083) 

-6.141 

(2.216) 

1.408 

(3.036) 

-3.254 

(2.150) 

0.752 

(2.127) 

11-

15 

12.437 

(3.287) 

-0.769 

(3.144) 

-6.420 

(2.607) 

1.298 

(3.233) 

-3.571 

(2.697) 

1.850 

(2.474) 

16-

20 

10.259 

(3.033) 

2.779 

(3.041) 

-11.54 

(3.129) 

0.945 

(3.496) 

-2.251 

(2.406) 

0.104 

(2.819) 

21-

25 

10.213 

(3.595) 

0.765 

(3.180) 

-4.832 

(3.264) 

0.762 

(3.937) 

2.233 

(2.627) 

4.898 

(3.104) 

26-

30 

11.479 

(5.144) 

-6.726 

(4.170) 

-17.036 

(4.158) 

6.979 

(5.108) 

2.207 

(3.962) 

-1.824 

(4.137) 

31-

35 

10.792 

(5.680) 

-14.163 

(7.251) 

-7.820 

(5.233) 

-1.010 

(6.846) 

9.819 

(5.135) 

1.565 

(5.819) 

36-

40 

14.802 

(7.392) 

-2.141 

(7.294) 

-6.447 

(6.757) 

6.889 

(8.548) 

3.385 

(7.605) 

6.671 

(6.704) 
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Shadow Price Estimates 2000 

 Exp N.R. 

Analytic 

R. 

Analytic 

N.R. 

Manual 

R. Manual Computer Comm. 

H
ig

h
 S

ch
o
o
l 

0-5 
1.656 

(1.628) 

-4.120 

(2.297) 

-0.384 

(3.261) 

2.476 

(3.478) 

1.011 

(1.355) 

-0.360 

(2.628) 

6-

10 

3.454 

(2.845) 

-0.454 

(1.941) 

7.383 

(2.934) 

-4.747 

(3.919) 

5.017 

(2.365) 

1.682 

(2.352) 

11-

15 

9.082 

(1.496) 

-0.521 

(1.493) 

3.372 

(1.584) 

-3.004 

(2.050) 

-1.323 

(1.434) 

1.403 

(1.623) 

16-

20 

8.653 

(1.570) 

-2.274 

(1.670) 

4.118 

(1.367) 

-6.452 

(2.288) 

-0.002 

(1.402) 

2.746 

(1.472) 

21-

25 

7.778 

(1.792) 

1.507 

(1.661) 

4.047 

(1.422) 

-3.290 

(1.909) 

1.042 

(1.170) 

4.827 

(1.671) 

26-

30 

1.660 

(2.078) 

-1.770 

(1.965) 

2.864 

(1.383) 

-1.058 

(2.008) 

4.145 

(1.421) 

4.765 

(1.694) 

31-

35 

4.427 

(2.051) 

-0.480 

(2.067) 

1.088 

(1.620) 

2.953 

(1.973) 

5.559 

(1.501) 

5.443 

(1.687) 

36-

40 

10.254 

(3.480) 

-2.159 

(3.621) 

0.332 

(2.511) 

5.670 

(2.977) 

6.524 

(2.346) 

4.241 

(3.451) 

C
o
ll

eg
e 

0-5 
12.963 

(3.362) 

5.406 

(2.832) 

-11.211 

(3.367) 

6.319 

(3.728) 

-1.530 

(3.121) 

-8.055 

(3.869) 

6-

10 

9.730 

(4.207) 

-1.127 

(2.412) 

-11.90 

(2.534) 

6.379 

(3.558) 

4.091 

(3.040) 

2.309 

(3.681) 

11-

15 

7.434 

(5.412) 

4.975 

(3.112) 

-11.02 

(2.903) 

-1.529 

(4.104) 

2.841 

(3.623) 

1.314 

(3.581) 

16-

20 

8.260 

(4.852) 

-2.719 

(4.150) 

-19.638 

(3.044) 

3.386 

(3.940) 

4.029 

(3.584) 

-2.639 

(3.720) 

21-

25 

15.618 

(5.191) 

-2.791 

(4.559) 

-19.748 

(3.657) 

4.122 

(5.236) 

1.527 

(3.798) 

-4.955 

(4.383) 

26-

30 

21.491 

(4.894) 

-1.799 

(4.864) 

-16.43 

(3.786) 

2.062 

(5.557) 

3.408 

(3.641) 

-5.809 

(4.720) 

31-

35 

8.477 

(9.030) 

-3.918 

(6.967) 

-9.989 

(7.826) 

-6.075 

(9.454) 

0.263 

(7.255) 

9.739 

(7.140) 

36-

40 

-17.86 

(16.287) 

-3.166 

(9.926) 

-3.248 

(10.621) 

-16.803 

(14.702) 

8.138 

(8.182) 

9.066 

(9.581) 
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Shadow Price Estimates 2005 

 Exp N.R. 

Analytic 

R. 

Analytic 

N.R. 

Manual 

R. Manual Computer Comm. 

H
ig

h
 S

ch
o
o
l 

0-5 
1.322 

(1.520) 

-2.391 

(1.823) 

5.499 

(1.642) 

-2.667 

(2.020) 

1.549 

(1.428) 

2.321 

(1.896) 

6-

10 

6.837 

(1.924) 

-0.374 

(2.085) 

0.881 

(2.128) 

-3.097 

(3.138) 

0.487 

(1.708) 

-3.543 

(2.003) 

11-

15 

12.943 

(3.262) 

2.692 

(2.594) 

6.112 

(3.547) 

-7.603 

(3.672) 

-2.219 

(1.659) 

-1.651 

(3.426) 

16-

20 

13.027 

(1.472) 

4.637 

(1.634) 

3.898 

(1.395) 

-7.236 

(1.881) 

-3.342 

(1.310) 

0.466 

(1.283) 

21-

25 

10.394 

(1.787) 

1.296 

(1.933) 

5.914 

(1.218) 

-4.966 

(1.755) 

0.362 

(1.210) 

2.962 

(1.361) 

26-

30 

10.17 

(1.686) 

0.235 

(1.839) 

4.898 

(1.427) 

-0.678 

(1.820) 

0.716 

(1.396) 

6.694 

(1.361) 

31-

35 

8.618 

(2.684) 

-0.573 

(2.330) 

4.958 

(1.616) 

-1.595 

(3.269) 

2.066 

(1.710) 

7.359 

(2.276) 

36-

40 

10.705 

(3.812) 

0.449 

(3.217) 

4.349 

(2.268) 

-4.385 

(3.309) 

2.018 

(3.698) 

5.957 

(2.530) 

C
o
ll

eg
e 

0-5 
14.442 

(2.411) 

6.134 

(2.890) 

-5.224 

(2.277) 

-2.348 

(3.483) 

0.040 

(2.252) 

-3.683 

(3.509) 

6-

10 

5.651 

(5.194) 

1.330 

(2.662) 

-6.700 

(2.904) 

-1.884 

(4.431) 

4.148 

(3.337) 

1.666 

(4.159) 

11-

15 

12.348 

(4.372) 

5.017 

(2.679) 

-14.75 

(2.597) 

-1.573 

(4.546) 

-2.363 

(3.401) 

6.608 

(4.016) 

16-

20 

11.891 

(5.812) 

10.986 

(3.805) 

-11.142 

(3.782) 

-4.141 

(5.546) 

-1.181 

(4.378) 

16.28 

(4.759) 

21-

25 

13.049 

(7.180) 

3.506 

(4.006) 

-23.081 

(4.009) 

0.748 

(6.132) 

-2.254 

(5.193) 

9.702 

(5.351) 

26-

30 

5.819 

(6.364) 

10.116 

(3.534) 

-12.002 

(3.374) 

-12.224 

(4.864) 

5.488 

(4.303) 

4.879 

(3.976) 

31-

35 

0.193 

(7.850) 

3.928 

(4.482) 

-9.422 

(4.333) 

3.415 

(7.471) 

8.713 

(4.791) 

25.82 

(6.766) 

36-

40 

14.005 

(10.13) 

-5.620 

(6.765) 

-21.458 

(7.367) 

-3.027 

(7.377) 

1.346 

(6.941) 

3.895 

(6.493) 

  



 

 133 
 

Shadow Price Estimates 2010 

 Exp N.R. 

Analytic 

R. 

Analytic 

N.R. 

Manual 

R. Manual Computer Comm. 

H
ig

h
 S

ch
o
o
l 

0-5 
4.488 

(1.415) 

-0.839 

(1.933) 

4.026 

(1.668) 

-2.228 

(3.030) 

-0.817 

(1.452) 

1.368 

(2.177) 

6-

10 

11.781 

(1.776) 

-1.256 

(2.130) 

2.454 

(1.417) 

-4.127 

(2.182) 

-2.786 

(1.517) 

-1.337 

(1.869) 

11-

15 

7.950 

(1.907) 

-0.073 

(2.591) 

6.350 

(1.434) 

-4.936 

(3.258) 

1.403 

(2.413) 

1.835 

(1.850) 

16-

20 

8.324 

(4.150) 

1.498 

(2.994) 

2.145 

(2.554) 

-2.087 

(3.821) 

0.224 

(2.397) 

4.252 

(2.335) 

21-

25 

8.589 

(1.998) 

1.184 

(1.881) 

6.544 

(1.449) 

-9.640 

(2.662) 

-0.630 

(1.528) 

5.060 

(1.720) 

26-

30 

6.551 

(2.207) 

-4.003 

(2.348) 

3.930 

(2.126) 

-5.589 

(1.903) 

1.515 

(1.682) 

3.097 

(2.441) 

31-

35 

10.043 

(2.626) 

-3.961 

(3.087) 

4.322 

(1.742) 

0.343 

(3.274) 

3.199 

(2.623) 

6.128 

(2.351) 

36-

40 

6.011 

(5.500) 

2.067 

(3.994) 

2.834 

(1.947) 

-3.493 

(2.711) 

4.076 

(2.302) 

6.251 

(2.759) 

C
o
ll

eg
e 

0-5 
14.214 

(2.624) 

6.701 

(2.094) 

1.383 

(2.570) 

-3.070 

(3.429) 

-0.827 

(2.677) 

0.541 

(2.398) 

6-

10 

16.597 

(3.730) 

8.638 

(2.293) 

-4.834 

(2.287) 

-4.192 

(4.324) 

-2.885 

(3.044) 

1.940 

(3.198) 

11-

15 

17.984 

(3.562) 

9.775 

(2.997) 

-14.02 

(3.006) 

2.293 

(4.783) 

-4.917 

(3.989) 

5.983 

(4.079) 

16-

20 

18.518 

(4.080) 

10.19 

(2.919) 

-15.122 

(3.058) 

-0.321 

(5.078) 

-8.169 

(3.893) 

4.777 

(4.645) 

21-

25 

24.209 

(5.222) 

10.618 

(4.038) 

-17.537 

(3.192) 

-11.465 

(5.397) 

-11.799 

(4.655) 

0.415 

(3.619) 

26-

30 

33.465 

(4.610) 

6.644 

(4.122) 

-14.56 

(4.052) 

-14.769 

(5.615) 

-16.717 

(4.653) 

-0.599 

(4.470) 

31-

35 

15.509 

(5.147) 

5.799 

(4.223) 

-8.727 

(3.712) 

-12.977 

(5.787) 

-0.920 

(3.933) 

1.998 

(4.445) 

36-

40 

3.804 

(11.324) 

0.730 

(5.869) 

-7.300 

(8.657) 

-2.488 

(9.784) 

7.507 

(7.356) 

8.746 

(8.360) 
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Shadow Price Estimates 2015 

 Exp N.R. 

Analytic 

R. 

Analytic 

N.R. 

Manual 

R. Manual Computer Comm. 

H
ig

h
 S

ch
o
o
l 

0-5 4.487 

(2.297) 

-5.948 

(2.913) 

2.339 

(2.154) 

-3.247 

(2.820) 

-0.217 

(2.086) 

-1.612 

(2.314) 

6-

10 
8.675 

(2.396) 

-3.993 

(2.138) 

5.589 

(3.038) 

0.379 

(4.490) 

-0.416 

(2.095) 

4.236 

(3.206) 

11-

15 
4.390 

(2.811) 

1.184 

(4.386) 

7.588 

(2.611) 

-10.355 

(4.178) 

-4.795 

(2.677) 

5.092 

(2.702) 

16-

20 
6.759 

(2.439) 

-0.952 

(2.913) 

5.237 

(2.347) 

-5.403 

(3.494) 

-3.924 

(1.738) 

6.980 

(2.268) 

21-

25 
4.366 

(2.932) 

-0.272 

(2.950) 

7.096 

(2.636) 

-8.118 

(4.215) 

0.122 

(2.477) 

6.320 

(2.843) 

26-

30 
6.182 

(3.191) 

-4.547 

(2.603) 

3.567 

(2.527) 

-1.160 

(3.144) 

0.193 

(2.226) 

5.743 

(3.497) 

31-

35 
9.186 

(3.106) 

-8.450 

(4.420) 

9.675 

(2.946) 

-3.828 

(3.976) 

3.188 

(3.110) 

4.527 

(2.950) 

36-

40 
7.773 

(3.390) 

-4.252 

(3.117) 

4.168 

(3.001) 

1.635 

(3.085) 

0.143 

(2.473) 

6.900 

(2.987) 

C
o
ll

eg
e 

0-5 5.944 

(4.968) 

8.592 

(2.882) 

11.057 

(6.740) 

-13.539 

(6.929) 

1.066 

(4.381) 

5.910 

(4.440) 

6-

10 
18.246 

(4.759) 

11.704 

(3.533) 

4.091 

(3.760) 

-16.057 

(5.112) 

-5.726 

(4.627) 

-7.267 

(5.004) 

11-

15 
27.924 

(4.369) 

9.906 

(4.006) 

-15.259 

(3.410) 

-4.063 

(5.269) 

-9.820 

(4.112) 

-3.328 

(4.366) 

16-

20 
13.726 

(10.389) 

2.115 

(4.702) 

-15.17 

(3.786) 

-12.302 

(6.609) 

0.769 

(5.429) 

-0.324 

(4.396) 

21-

25 
14.867 

(4.814) 

5.998 

(4.722) 

-11.769 

(3.410) 

-6.934 

(5.717) 

0.474 

(4.287) 

8.632 

(4.090) 

26-

30 
0.935 

(7.856) 

0.932 

(5.746) 

-17.951 

(4.512) 

9.894 

(6.659) 

16.077 

(5.396) 

11.607 

(6.304) 

31-

35 
7.095 

(7.498) 

9.534 

(4.737) 

-14.571 

(4.811) 

-9.873 

(6.611) 

8.509 

(5.476) 

2.281 

(5.542) 

36-

40 
3.819 

(10.103) 

-3.766 

(7.557) 

-9.572 

(6.295) 

2.587 

(9.320) 

21.658 

(6.644) 

6.528 

(6.296) 
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APPENDIX C. OAXACA DECOMPOSITION OF WAGES BY TASK 

College Graduates, 1980 

O
v
er

al
l 

High Experience 21.580 (0.264) 

C
o
ef

fi
ci

en
ts

 

Computer -0.333 (0.543) 

Low Experience 18.088 (0.271) Communication 1.851 (0.939) 

Difference 3.492 (0.194) N.R. Manual -1.717 (0.323) 

Endowments  0.056 (0.064) R. Manual 2.618 (0.578) 

Coefficients 3.314 (0.180) N.R. Analytic 2.034 (1.040) 

Interactions 0.121 (0.038) R. Analytic -1.138 (0.845) 

E
n
d
o
w

m
en

ts
 

Computer 0.013 (0.010) 

In
te

ra
ct

io
n
s 

Computer 0.006 (0.010) 

Communication 0.037 (0.033) Communication 0.013 (0.013) 

N.R. Manual 0.065 (0.018) N.R. Manual 0.152 (0.038) 

R. Manual -0.103 (0.034) R. Manual -0.071 (0.028) 

N.R. Analytic 0.0599 (0.047) N.R. Analytic 0.015 (0.014) 

R. Analytic -0.015 (0.016) R. Analytic 0.007 (0.010) 

N 11,404 
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College Graduates, 1990 
O

v
er

al
l 

High Experience 24.215 (0.312) 

C
o
ef

fi
ci

en
ts

 

Computer -1.163 (0.846) 

Low Experience 20.916 (0.443) Communication 1.355 (0.859) 

Difference 3.299 (0.362) N.R. Manual -2.588 (0.429) 

Endowments  -0.032 (0.059) R. Manual 2.828 (0.756) 

Coefficients 3.225 (0.357) N.R. Analytic 3.134 (1.155) 

Interactions 0.106 (0.034) R. Analytic -0.341 (1.035) 

E
n
d
o
w

m
en

ts
 

Computer -0.002 (0.005) 

In
te

ra
ct

io
n
s 

Computer 0.002 (0.007) 

Communication 0.005 (0.040) Communication 0.001 (0.007) 

N.R. Manual -0.002 (0.014) N.R. Manual 0.117 (0.035) 

R. Manual -0.050 (0.026) R. Manual -0.035 (0.020) 

N.R. Analytic 0.034 (0.034) N.R. Analytic 0.016 (0.017) 

R. Analytic -0.019 (0.014) R. Analytic 0.006 (0.017) 

N 12,838 
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College Graduates, 2000 
O

v
er

al
l 

High Experience 30.440 (0.559) 

C
o
ef

fi
ci

en
ts

 

Computer -1.778 (1.664) 

Low Experience 26.161 (0.650) Communication 2.693 (1.192) 

Difference 4.279 (0.399) N.R. Manual -2.273 (0.612) 

Endowments  -0.195 (0.073) R. Manual 1.182 (0.816) 

Coefficients 4.453 (0.397) N.R. Analytic 3.666 (1.796) 

Interactions 0.020 (0.049) R. Analytic 0.963 (1.139) 

E
n
d
o
w

m
en

ts
 

Computer 0.012 (0.027) 

In
te

ra
ct

io
n
s 

Computer 0.048 (0.046) 

Communication -0.057 (0.045) Communication -0.014 (0.013) 

N.R. Manual 0.049 (0.021) N.R. Manual 0.068 (0.027) 

R. Manual -0.001 (0.018) R. Manual 0.000 (0.007) 

N.R. Analytic -0.232 (0.050) N.R. Analytic -0.089 (0.046) 

R. Analytic 0.033 (0.027) R. Analytic 0.007 (0.010) 

N 20,894 
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College Graduates, 2010 
O

v
er

al
l 

High Experience 33.544 (0.544) 

C
o
ef

fi
ci

en
ts

 

Computer -1.017 (1.963) 

Low Experience 29.071 (0.642) Communication 2.444 (1.217) 

Difference 4.473 (0.385) N.R. Manual -1.918 (0.689) 

Endowments  0.107 (0.097) R. Manual -0.297 (1.086) 

Coefficients 4.264 (0.365) N.R. Analytic 3.431 (2.417) 

Interactions 0.102 (0.044) R. Analytic 1.621 (1.380) 

E
n
d
o
w

m
en

ts
 

Computer 0.009 (0.014) 

In
te

ra
ct

io
n
s 

Computer 0.005 (0.012) 

Communication 0.097 (0.055) Communication 0.020 (0.015) 

N.R. Manual 0.058 (0.025) N.R. Manual 0.074 (0.031) 

R. Manual -0.052 (0.028) R. Manual 0.004 (0.013) 

N.R. Analytic 0.007 (0.057) N.R. Analytic 0.002 (0.019) 

R. Analytic -0.013 (0.029) R. Analytic -0.003 (0.008) 

N 22,029 
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High School Only, 1980 
O

v
er

al
l 

High Experience 15.363 (0.190) 

C
o
ef

fi
ci

en
ts

 

Computer -0.074 (0.105) 

Low Experience 14.139 (0.204) Communication 0.022 (0.212) 

Difference 1.224 (0.095) N.R. Manual -1.524 (0.242) 

Endowments  -0.079 (0.029) R. Manual -0.136 (0.341) 

Coefficients 1.100 (0.089) N.R. Analytic 1.644 (0.248) 

Interactions 0.202 (0.023) R. Analytic 1.168 (0.334) 

E
n
d
o
w

m
en

ts
 

Computer 0.029 (0.009) 

In
te

ra
ct

io
n
s 

Computer -0.007 (0.010) 

Communication 0.357 (0.033) Communication 0.002 (0.021) 

N.R. Manual -0.227 (0.023) N.R. Manual 0.141 (0.025) 

R. Manual -0.277 (0.025) R. Manual 0.008 (0.020) 

N.R. Analytic 0.058 (0.011) N.R. Analytic 0.072 (0.014) 

R. Analytic -0.020 (0.007) R. Analytic -0.014 (0.006) 

N 30,857 
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High School Only, 1990 
O

v
er

al
l 

High Experience 16.185 (0.258) 

C
o
ef

fi
ci

en
ts

 

Computer -0.045 (0.212) 

Low Experience 14.247 (0.262) Communication 0.201 (0.289) 

Difference 1.938 (0.141) N.R. Manual -1.677 (0.371) 

Endowments  -0.007 (0.033) R. Manual 0.565 (0.522) 

Coefficients 1.859 (0.142) N.R. Analytic 1.354 (0.352) 

Interactions 0.086 (0.022) R. Analytic 1.462 (0.401) 

E
n
d
o
w

m
en

ts
 

Computer 0.069 (0.018) 

In
te

ra
ct

io
n
s 

Computer -0.003 (0.015) 

Communication 0.236 (0.038) Communication 0.012 (0.018) 

N.R. Manual -0.205 (0.032) N.R. Manual 0.081 (0.021) 

R. Manual -0.134 (0.023) R. Manual -0.023 (0.022) 

N.R. Analytic 0.040 (0.011) N.R. Analytic 0.044 (0.014) 

R. Analytic -0.013 (0.005) R. Analytic -0.025 (0.009) 

N 26,257 
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High School Only, 2000 
O

v
er

al
l 

High Experience 18.735 (0.244) 

C
o
ef

fi
ci

en
ts

 

Computer -1.778 (1.664) 

Low Experience 16.622 (0.230) Communication 0.649 (0.483) 

Difference 2.114 (0.221) N.R. Manual -2.077 (0.636) 

Endowments  -0.015 (0.049) R. Manual 1.011 (1.056) 

Coefficients 2.091 (0.213) N.R. Analytic 2.450 (0.556) 

Interactions 0.038 (0.027) R. Analytic 0.743 (0.823) 

E
n
d
o
w

m
en

ts
 

Computer 0.014 (0.009) 

In
te

ra
ct

io
n
s 

Computer -0.012 (0.010) 

Communication 0.085 (0.037) Communication 0.013 (0.011) 

N.R. Manual -0.079 (0.030) N.R. Manual 0.035 (0.017) 

R. Manual -0.042 (0.019) R. Manual -0.019 (0.021) 

N.R. Analytic 0.023 (0.020) N.R. Analytic 0.026 (0.022) 

R. Analytic -0.017 (0.011) R. Analytic -0.005 (0.006) 

N 29,969 
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High School Only, 2010 
O

v
er

al
l 

High Experience 19.144 (0.203) 

C
o
ef

fi
ci

en
ts

 

Computer -0.366 (0.614) 

Low Experience 17.308 (0.240) Communication 0.812 (0.503) 

Difference 1.836 (0.195) N.R. Manual -1.765 (0.740) 

Endowments  -0.004 (0.053) R. Manual 0.247 (0.892) 

Coefficients 1.791 (0.185) N.R. Analytic 1.495 (0.785) 

Interactions 0.049 (0.028) R. Analytic 1.367 (0.907) 

E
n
d
o
w

m
en

ts
 

Computer 0.008 (0.009) 

In
te

ra
ct

io
n
s 

Computer -0.006 (0.011) 

Communication 0.116 (0.056) Communication 0.019 (0.015) 

N.R. Manual -0.107 (0.038) N.R. Manual 0.030 (0.016) 

R. Manual -0.042 (0.018) R. Manual -0.005 (0.018) 

N.R. Analytic 0.039 (0.021) N.R. Analytic 0.029 (0.020) 

R. Analytic -0.019 (0.012) R. Analytic -0.017 (0.013) 

N 26,220 
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APPENDIX D. SMOOTHLY VARYING COEFFICIENTS MODEL ESTIMATES 

 The following tables report the coefficients and bootstrap standard errors for the 

smoothly varying coefficients model discussed in chapter 6. The dependent variable is 

the task shadow price. The left-hand column is the level of labor quantity at which the 

coefficients are estimated. 

SVCM Nonroutine Analytic 

Log 

Labor 

Quantity 

Constant Trend 6 to 10-

Years 

Experience 

11 to 15-

Years 

Experience 

16 to 20-

Years 

Experience 

16.266 -0.606 

(1.237) 

0.690 

(0.344) 

1.364 

(1.344) 

-0.626 

(1.393) 

0.437 

(1.695) 

16.665 -1.329 

(0.917) 

0.660 

(0.263) 

1.826 

(0.944) 

0.302 

(1.442) 

1.577 

(1.144) 

17.064 -1.861 

(0.655) 

0.681 

(0.197) 

2.187 

(0.613) 

1.274 

(1.393) 

2.709 

(0.795) 

17.463 -2.140 

(0.491) 

0.742 

(0.144) 

2.436 

(0.403) 

2.313 

(1.206) 

3.684 

(0.655) 

17.862 -2.133 

(0.459) 

0.819 

(0.117) 

2.579 

(0.392) 

3.349 

(0.998) 

4.413 

(0.655) 

18.260 -1.816 

(0.506) 

0.881 

(0.123) 

2.600 

(0.485) 

4.190 

(0.908) 

4.861 

(0.698) 

18.659 -1.211 

(0.561) 

0.909 

(0.149) 

2.461 

(0.567) 

4.598 

(0.957) 

5.070 

(0.742) 

19.058 -0.412 

(0.604) 

0.908 

(0.187) 

2.161 

(0.619) 

4.446 

(1.071) 

5.188 

(0.789) 

19.457 0.452 

(0.668) 

0.897 

(0.235) 

1.760 

(0.655) 

3.799 

(1.235) 

5.428 

(0.909) 

19.785 1.287 

(0.819) 

0.885 

(0.301) 

1.365 

(0.782) 

2.867 

(1.505) 

6.013 

(1.239) 

R-squared 0.06304 

 

  



 

 144 
 

SVCM Nonroutine Analytic Continued 

Log 

Labor 

Quantity 

21 to 25-Years 

Experience 

26 to 30-Years 

Experience 

31 to 35-Years 

Experience 

36 to 40-Years 

Experience 

16.266 2.069 (1.145) -0.044 (2.039) -0.898 (1.372) 4.628 (2.294) 

16.665 3.195 (0.967) 1.491 (1.440) 1.051 (1.011) 5.116 (1.525) 

17.064 4.090 (0.745) 2.907 (0.981) 2.748 (0.784) 5.695 (1.032) 

17.463 4.747 (0.606) 4.172 (0.706) 4.175 (0.706) 6.264 (0.849) 

17.862 5.188 (0.647) 5.258 (0.664) 5.388 (0.805) 6.723 (0.864) 

18.260 5.447 (0.780) 6.096 (0.772) 6.498 (1.029) 6.955 (0.920) 

18.659 5.548 (0.901) 6.583 (0.948) 7.647 (1.341) 6.857 (1.045) 

19.058 5.512 (0.984) 6.662 (1.214) 9.018 (1.815) 6.379 (1.323) 

19.457 5.375 (1.052) 6.390 (1.623) 10.813 (2.654) 5.518 (1.732) 

19.785 5.204 (1.189) 5.955 (2.239) 13.203 (4.066) 4.324 (2.232) 
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SVCM Nonroutine Analytic 

 Interacted with College Degree 

Log 

Labor 

Quantity 

Trend 0 to 5-

Years 

Experience 

6 to 10-

Years 

Experience 

11 to 15-

Years 

Experience 

16 to 20-

Years 

Experience 

16.266 0.816 

(1.337) 

-3.820 

4.908) 

-6.335 

(4.535) 

-1.840 

(4.990) 

1.678 

(5.747) 

16.665 0.391 

(0.733) 

-1.259 

(2.749) 

-2.238 

(2.697) 

-0.052 

(3.132) 

3.323 

(3.480) 

17.064 0.036 

(0.423) 

1.000 

(1.612) 

1.079 

(1.754) 

1.769 

(2.369) 

5.142 

(2.142) 

17.463 -0.207 

(0.338) 

2.825 

(1.253) 

3.655 

(1.358) 

3.725 

(2.175) 

6.954 

(1.542) 

17.862 -0.277 

(0.336) 

4.055 

(1.141) 

5.482 

(1.142) 

5.838 

(2.037) 

8.634 

(1.495) 

18.260 -0.118 

(0.334) 

4.528 

(1.003) 

6.536 

(0.974) 

7.977 

(1.847) 

10.111 

(1.716) 

18.659 0.263 

(0.340) 

4.210 

(0.997) 

6.918 

(0.993) 

9.862 

(1.717) 

11.472 

(2.038) 

19.058 0.745 

(0.368) 

3.397 

(1.277) 

6.995 

(1.229) 

11.261 

(1.701) 

13.068 

(2.391) 

19.457 1.120 

(0.425) 

2.718 

(1.735) 

7.337 

(1.509) 

12.327 

(1.748) 

15.343 

(2.817) 

19.785 1.213 

(0.546) 

2.847 

(2.382) 

8.469 

(1.808) 

13.755 

(2.058) 

18.460 

(3.639) 
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SVCM Nonroutine Analytic Continued 

 Interacted with College Degree 

Log 

Labor 

Quantity 

21 to 25-Years 

Experience 

26 to 30-Years 

Experience 

31 to 35-Years 

Experience 

36 to 40-Years 

Experience 

16.266 -2.429 (5.181) 0.063 (5.231) 5.725 (11.561) -32.498 (33.626) 

16.665 3.421 (2.981) 0.741 (4.093) 7.869 (8.164) -14.992 (17.871) 

17.064 8.337 (1.973) 3.471 (4.413) 9.178 (5.676) -2.128 (8.772) 

17.463 12.253 (1.592) 7.612 (4.045) 9.998 (3.895) 6.803 (4.465) 

17.862 15.158 (1.418) 12.278 (2.888) 10.854 (2.985) 12.569 (3.139) 

18.260 17.109 (1.398) 16.503 (1.890) 12.281 (3.102) 15.970 (2.996) 

18.659 18.363 (1.747) 19.575 (2.329) 14.617 (3.722) 17.915 (3.247) 

19.058 19.479 (2.593) 21.423 (3.239) 17.897 (4.444) 19.512 (4.100) 

19.457 21.136 (3.923) 22.673 (3.893) 21.854 (5.257) 21.931 (5.741) 

19.785 23.741 (5.867) 24.246 (4.473) 26.051 (6.349) 25.992 (8.055) 

 

  



 

 147 
 

SVCM Routine Analytic 

Log 

Labor 

Quantity 

Constant Trend 6 to 10-

Years 

Experience 

11 to 15-

Years 

Experience 

16 to 20-

Years 

Experience 

16.192 -0.648 

(0.817) 

-0.218 

(0.200) 

1.021 

(1.275) 

-0.112 

(1.712) 

0.726 

(0.864) 

16.596 -1.008 

(0.417) 

-0.234 

(0.105) 

0.695 

(0.653) 

-0.759 

(0.724) 

-0.768 

(0.648) 

17.000 -1.213 

(0.465) 

-0.281 

(0.101) 

0.526 

(0.390) 

-0.375 

(0.553) 

-0.987 

(0.666) 

17.403 -1.133 

(0.485) 

-0.341 

(0.095) 

0.400 

(0.413) 

-0.066 

(0.544) 

-0.915 

(0.556) 

17.807 -0.669 

(0.331) 

-0.411 

(0.062) 

0.240 

(0.384) 

-0.383 

(0.444) 

-0.974 

(0.449) 

18.211 -0.036 

(0.280) 

-0.489 

(0.055) 

0.052 

(0.266) 

-0.749 

(0.361) 

-1.011 

(0.367) 

18.615 0.422 

(0.344) 

-0.584 

(0.076) 

0.056 

(0.227) 

-0.610 

(0.330) 

-0.754 

(0.282) 

19.018 0.437 

(0.360) 

-0.666 

(0.086) 

0.373 

(0.309) 

-0.015 

(0.294) 

-0.156 

(0.343) 

19.422 0.266 

(0.491) 

-0.674 

(0.097) 

0.539 

(0.368) 

0.484 

(0.411) 

0.293 

(0.520) 

19.826 0.161 

(0.610) 

-0.549 

(0.124) 

0.418 

(0.468) 

0.823 

(0.839) 

0.427 

(1.137) 

R-squared 0.09398 
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SVCM Routine Analytic Continued 

Log 

Labor 

Quantity 

21 to 25-Years 

Experience 

26 to 30-Years 

Experience 

31 to 35-Years 

Experience 

36 to 40-Years 

Experience 

16.192 -1.462 (1.827) -4.118 (1.294) -5.032 (0.977) -2.845 (1.968) 

16.596 -1.430 (0.913) -2.868 (0.777) -3.974 (0.643) -2.983 (1.129) 

17.000 -1.056 (0.661) -2.107 (0.603) -3.187 (0.407) -2.812 (0.666) 

17.403 -0.658 (0.450) -1.948 (0.475) -2.503 (0.421) -2.165 (0.604) 

17.807 -0.669 (0.355) -1.988 (0.456) -2.197 (0.422) -1.428 (0.544) 

18.211 -0.889 (0.314) -2.031 (0.425) -2.137 (0.419) -1.377 (0.375) 

18.615 -0.669 (0.387) -2.026 (0.421) -1.716 (0.502) -1.552 (0.446) 

19.018 -0.006 (0.400) -1.688 (0.467) -0.891 (0.496) -1.097 (0.508) 

19.422 0.486 (0.379) -1.293 (0.598) -0.331 (0.785) -0.498 (0.539) 

19.826 0.822 (1.022) -0.795 (1.259) -1.171 (1.367) -1.011 (1.477) 
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SVCM Routine Analytic Continued 

 Interacted with College Degree 

Log 

Labor 

Quantity 

Trend 0 to 5-

Years 

Experience 

6 to 10-

Years 

Experience 

11 to 15-

Years 

Experience 

16 to 20-

Years 

Experience 

16.192 -0.535 

(0.461) 

2.952 

(2.109) 

1.747 

(2.431) 

-4.115 

(2.157) 

-2.850 

(2.719) 

16.596 -0.576 

(0.225) 

2.620 

(0.964) 

3.449 

(1.270) 

-1.724 

(1.311) 

-1.424 

(1.324) 

17.000 -0.569 

(0.196) 

2.939 

(0.707) 

3.999 

(1.149) 

0.046 

(1.083) 

0.244 

(1.087) 

17.403 -0.463 

(0.177) 

2.977 

(0.785) 

3.620 

(0.927) 

1.053 

(0.992) 

0.875 

(0.922) 

17.807 -0.124 

(0.183) 

2.234 

(0.796) 

2.313 

(0.651) 

1.348 

(0.987) 

0.505 

(0.864) 

18.211 0.363 

(0.144) 

1.159 

(0.625) 

0.909 

(0.545) 

1.053 

(0.854) 

0.106 

(1.042) 

18.615 0.837 

(0.195) 

0.298 

(0.756) 

0.171 

(0.765) 

-0.023 

(0.836) 

-0.057 

(1.306) 

19.018 1.025 

(0.289) 

0.583 

(1.353) 

0.539 

(1.150) 

0.089 

(0.975) 

0.855 

(1.797) 

19.422 0.801 

(0.493) 

1.963 

(2.711) 

2.210 

(1.851) 

3.294 

(1.675) 

2.636 

(2.479) 

19.826 0.368 

(0.798) 

3.156 

(5.057) 

5.435 

(3.140) 

8.491 

(2.827) 

4.417 

(3.391) 

 

  



 

 150 
 

SVCM Routine Analytic Continued 

 Interacted with College Degree 

Log 

Labor 

Quantity 

21 to 25-Years 

Experience 

26 to 30-Years 

Experience 

31 to 35-Years 

Experience 

36 to 40-Years 

Experience 

16.192 -4.001 (5.149) -1.451 (2.952) 1.204 (3.691) 8.917 (2.971) 

16.596 -0.890 (2.411) -0.969 (1.703) 3.291 (2.143) 5.268 (1.632) 

17.000 0.221 (1.366) 1.435 (1.301) 3.621 (1.523) 5.015 (1.210) 

17.403 1.293 (1.212) 2.826 (1.222) 4.360 (1.079) 4.832 (1.648) 

17.807 1.019 (1.017) 2.088 (1.299) 4.415 (1.085) 3.256 (2.366) 

18.211 -0.731 (1.061) 0.295 (1.122) 2.403 (1.407) 1.559 (2.028) 

18.615 -1.841 (1.369) -1.145 (0.998) 0.298 (1.949) 0.402 (2.051) 

19.018 -1.432 (1.623) -1.390 (1.307) 1.624 (2.322) 0.856 (2.650) 

19.422 -0.063 (1.937) -0.061 (2.328) 5.118 (5.836) 3.445 (3.939) 

19.826 2.576 (3.371) 3.914 (6.841) 7.726 (12.590) 6.747 (5.383) 

  



 

 151 
 

SVCM Communication  

Log 

Labor 

Quantity 

Constant Trend 6 to 10-

Years 

Experience 

11 to 15-

Years 

Experience 

16 to 20-

Years 

Experience 

16.290 -1.635 

(1.084) 

0.690 

(0.140) 

1.562 

(1.650) 

0.615 

(1.573) 

1.420 

(1.776) 

16.685 -2.548 

(0.552) 

0.586 

(0.107) 

1.515 

(0.615) 

2.065 

(0.586) 

2.821 

(0.699) 

17.080 -2.937 

(0.500) 

0.544 

(0.098) 

1.609 

(0.351) 

2.998 

(0.520) 

3.500 

(0.438) 

17.475 -2.867 

(0.339) 

0.570 

(0.072) 

1.848 

(0.397) 

2.890 

(0.505) 

3.593 

(0.533) 

17.870 -2.571 

(0.289) 

0.587 

(0.069) 

2.005 

(0.282) 

2.498 

(0.485) 

3.668 

(0.514) 

18.265 -1.965 

(0.464) 

0.511 

(0.096) 

1.862 

(0.375) 

2.742 

(0.570) 

3.550 

(0.441) 

18.660 -1.387 

(0.618) 

0.369 

(0.117) 

1.918 

(0.391) 

3.085 

(0.571) 

3.720 

(0.534) 

19.055 -1.257 

(0.460) 

0.312 

(0.095) 

2.009 

(0.442) 

3.241 

(0.334) 

4.092 

(0.431) 

19.450 -1.085 

(0.248) 

0.305 

(0.088) 

1.751 

(0.764) 

3.392 

(0.975) 

4.634 

(0.993) 

19.845 -0.548 

(0.474) 

0.255 

(0.141) 

2.104 

(1.620) 

3.932 

(2.244) 

6.181 

(2.512) 

R-squared 0.20636 
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SVCM Communication Continued 

Log 

Labor 

Quantity 

21 to 25-Years 

Experience 

26 to 30-Years 

Experience 

31 to 35-Years 

Experience 

36 to 40-Years 

Experience 

16.290 2.074 (1.905) 1.188 (1.648) 2.721 (1.705) 5.793 (1.776) 

16.685 2.936 (0.896) 3.638 (0.910) 4.128 (0.551) 5.459 (0.716) 

17.080 3.494 (0.513) 4.763 (0.684) 4.933 (0.599) 5.586 (0.618) 

17.475 4.023 (0.382) 4.814 (0.595) 5.295 (0.582) 6.224 (0.743) 

17.870 4.264 (0.348) 4.926 (0.508) 5.538 (0.464) 6.715 (0.719) 

18.265 4.314 (0.450) 5.129 (0.481) 5.570 (0.582) 6.136 (0.684) 

18.660 4.738 (0.528) 5.104 (0.551) 5.989 (0.596) 5.572 (0.737) 

19.055 5.092 (0.528) 4.980 (0.525) 7.064 (0.701) 5.171 (0.792) 

19.450 5.091 (1.040) 5.206 (1.157) 8.737 (1.358) 4.386 (1.467) 

19.845 5.829 (2.511) 6.583 (2.460) 9.173 (1.116) 3.545 (2.236) 
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SVCM Communication Continued 

 Interacted with College Degree 

Log 

Labor 

Quantity 

Trend 0 to 5-

Years 

Experience 

6 to 10-

Years 

Experience 

11 to 15-

Years 

Experience 

16 to 20-

Years 

Experience 

16.290 -0.145 

(0.420) 

2.074 

(1.889) 

1.688 

(1.981) 

1.448 

(1.587) 

6.443 

(3.051) 

16.685 0.075 

(0.200) 

2.410 

(0.836) 

3.714 

(1.076) 

2.409 

(0.978) 

5.328 

(1.182) 

17.080 0.169 

(0.158) 

2.413 

(0.688) 

4.165 

(1.024) 

3.827 

(0.989) 

5.337 

(0.830) 

17.475 0.024 

(0.141) 

2.587 

(0.514) 

4.442 

(0.795) 

4.947 

(0.844) 

6.460 

(0.673) 

17.870 -0.122 

(0.138) 

2.854 

(0.508) 

4.520 

(0.576) 

5.963 

(0.794) 

7.877 

(0.645) 

18.265 0.082 

(0.145) 

2.578 

(0.639) 

3.530 

(0.509) 

6.263 

(0.742) 

8.019 

(0.860) 

18.660 0.469 

(0.124) 

1.601 

(0.586) 

2.627 

(0.735) 

6.103 

(0.698) 

7.827 

(0.978) 

19.055 0.649 

(0.182) 

1.325 

(0.513) 

3.016 

(0.761) 

5.758 

(0.584) 

8.288 

(0.975) 

19.450 0.536 

(0.220) 

2.652 

(0.912) 

4.185 

(0.562) 

6.474 

(0.866) 

10.054 

(1.510) 

19.845 0.412 

(0.497) 

3.515 

(2.702) 

5.591 

(1.352) 

9.303 

(1.312) 

10.684 

(2.276) 
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SVCM Communication Continued 

 Interacted with College Degree 

Log 

Labor 

Quantity 

21 to 25-Years 

Experience 

26 to 30-Years 

Experience 

31 to 35-Years 

Experience 

36 to 40-Years 

Experience 

16.290 4.112 (2.787) 3.722 (2.269) v17 7.416 (3.322) 

16.685 6.255 (1.124) 4.457 (1.362) 5.191 (2.334) 6.381 (1.623) 

17.080 7.801 (0.961) 6.027 (1.183) 6.885 (1.785) 6.015 (1.191) 

17.475 8.989 (0.775) 8.599 (0.929) 7.710 (1.772) 7.376 (1.051) 

17.870 10.444 (0.757) 10.208 (1.067) 7.941 (0.982) 8.169 (0.868) 

18.265 9.684 (0.719) 9.957 (1.240) 9.402 (0.781) 8.136 (1.271) 

18.660 8.370 (0.771) 9.350 (0.875) 10.794 (1.090) 7.598 (1.620) 

19.055 9.030 (0.892) 9.638 (0.886) 10.953 (0.984) 7.218 (1.287) 

19.450 9.969 (1.026) 10.900 (1.100) 10.965 (1.782) 8.572 (1.534) 

19.845 10.864 (1.058) 10.990 (2.209) 11.682 (2.250) 10.495 (3.048) 
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SVCM Computer 

Log 

Labor 

Quantity 

Constant Trend 6 to 10-

Years 

Experience 

11 to 15-

Years 

Experience 

16 to 20-

Years 

Experience 

15.887 -3.924 

(1.048) 

0.705 

(0.252) 

4.468 

(1.462) 

1.487 

(1.356) 

1.276 

(2.015) 

16.316 -2.557 

(0.771) 

0.395 

(0.167) 

3.300 

(0.851) 

1.292 

(0.897) 

1.766 

(1.116) 

16.746 -1.788 

(0.609) 

0.223 

(0.128) 

2.361 

(0.602) 

1.436 

(0.672) 

2.430 

(0.707) 

17.176 -1.132 

(0.514) 

0.123 

(0.099) 

1.737 

(0.465) 

1.518 

(0.597) 

2.860 

(0.585) 

17.606 -0.376 

(0.496) 

0.042 

(0.100) 

1.493 

(0.385) 

1.499 

(0.558) 

2.977 

(0.524) 

18.036 0.248 

(0.579) 

-0.035 

(0.109) 

1.604 

(0.400) 

1.694 

(0.534) 

3.015 

(0.485) 

18.466 0.422 

(0.732) 

-0.078 

(0.110) 

1.957 

(0.454) 

2.100 

(0.519) 

3.194 

(0.519) 

18.896 0.380 

(0.975) 

-0.088 

(0.145) 

2.196 

(0.572) 

2.401 

(0.639) 

3.556 

(0.622) 

19.325 1.012 

(1.555) 

-0.172 

(0.233) 

2.008 

(0.809) 

2.490 

(1.068) 

3.861 

(1.032) 

19.755 2.878 

(2.559) 

-0.415 

(0.391) 

1.636 

(1.083) 

2.572 

(1.647) 

3.751 

(1.950) 

R-squared 0.17720 
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SVCM Computer Continued 

Log 

Labor 

Quantity 

21 to 25-Years 

Experience 

26 to 30-Years 

Experience 

31 to 35-Years 

Experience 

36 to 40-Years 

Experience 

15.887 4.609 (1.870) 3.471 (2.075) 2.968 (1.132) 5.756 (1.393) 

16.316 4.278 (1.115) 4.031 (1.263) 4.309 (0.683) 5.485 (0.908) 

16.746 4.026 (0.629) 4.495 (0.804) 4.816 (0.524) 5.689 (0.838) 

17.176 3.957 (0.481) 4.502 (0.624) 5.021 (0.530) 6.121 (0.842) 

17.606 4.002 (0.459) 4.286 (0.597) 5.120 (0.478) 6.363 (0.781) 

18.036 4.093 (0.561) 4.108 (0.652) 5.278 (0.447) 6.023 (0.761) 

18.466 4.263 (0.714) 3.892 (0.743) 5.761 (0.674) 5.177 (0.895) 

18.896 4.456 (0.649) 3.757 (0.798) 6.741 (1.002) 4.192 (1.083) 

19.325 4.453 (0.648) 3.949 (0.899) 8.068 (1.286) 3.153 (1.356) 

19.755 4.273 (1.151) 4.632 (1.169) 9.313 (1.498) 1.906 (1.872) 
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SVCM Computer Continued 

 Interacted with College Degree 

Log 

Labor 

Quantity 

Trend 0 to 5-Years 

Experience 

6 to 10-

Years 

Experience 

11 to 15-

Years 

Experience 

16 to 20-

Years 

Experience 

15.887 0.199 

(0.395) 

4.204 

(1.564) 

3.377 

(1.678) 

3.847 

(2.160) 

4.574 

(1.809) 

16.316 0.036 

(0.253) 

4.763 

(0.926) 

4.178 

(1.173) 

4.178 

(1.221) 

5.353 

(0.938) 

16.746 0.020 

(0.184) 

4.995 

(0.667) 

4.810 

(0.946) 

4.752 

(0.933) 

6.096 

(0.801) 

17.176 0.069 

(0.161) 

4.755 

(0.617) 

4.676 

(0.786) 

4.872 

(0.970) 

6.640 

(0.780) 

17.606 0.145 

(0.154) 

4.085 

(0.600) 

3.962 

(0.660) 

4.728 

(0.917) 

6.897 

(0.723) 

18.036 0.288 

(0.148) 

3.386 

(0.689) 

3.264 

(0.691) 

4.818 

(0.874) 

7.039 

(0.871) 

18.466 0.478 

(0.131) 

3.145 

(0.696) 

3.100 

(0.789) 

5.282 

(0.974) 

7.530 

(1.012) 

18.896 0.578 

(0.184) 

3.583 

(0.826) 

3.726 

(0.979) 

5.877 

(1.010) 

8.846 

(1.234) 

19.325 0.518 

(0.323) 

4.476 

(1.763) 

4.745 

(1.636) 

6.644 

(1.375) 

10.843 

(1.944) 

19.755 0.458 

(0.602) 

4.970 

(3.803) 

5.294 

(3.128) 

7.693 

(2.525) 

12.250 

(3.542) 
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SVCM Computer Continued 

 Interacted with College Degree 

Log 

Labor 

Quantity 

21 to 25-Years 

Experience 

26 to 30-Years 

Experience 

31 to 35-Years 

Experience 

36 to 40-Years 

Experience 

15.887 3.331 (2.863) 7.699 (3.232) 10.861 (2.921) 8.706 (3.987) 

16.316 5.862 (1.768) 8.607 (1.745) 9.832 (1.670) 9.665 (2.169) 

16.746 7.085 (1.241) 9.101 (1.148) 9.311 (1.266) 9.664 (1.475) 

17.176 7.550 (1.008) 9.860 (1.132) 9.175 (1.102) 9.362 (1.146) 

17.606 7.902 (0.833) 10.688 (1.204) 9.536 (0.780) 9.082 (1.002) 

18.036 8.053 (0.813) 11.025 (1.210) 10.409 (0.747) 8.880 (1.152) 

18.466 8.071 (0.953) 11.136 (1.008) 11.423 (0.961) 9.140 (1.230) 

18.896 8.674 (1.382) 11.791 (1.020) 12.523 (1.586) 10.071 (1.441) 

19.325 9.956 (2.048) 12.849 (1.664) 13.920 (2.854) 11.506 (1.772) 

19.755 10.670 (3.230) 13.241 (2.730) 14.572 (5.537) 13.088 (2.460) 
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SVCM Nonroutine Manual 

Log 

Labor 

Quantity 

Constant Trend 6 to 10-

Years 

Experience 

11 to 15-

Years 

Experience 

16 to 20-

Years 

Experience 

15.863 0.839 

(0.633) 

0.009 

(0.116) 

-0.827 

(0.661) 

-1.087 

(1.167) 

-3.744 

(1.015) 

16.299 0.408 

(0.483) 

0.016 

(0.101) 

-0.517 

(0.522) 

-0.911 

(0.838) 

-3.315 

(0.772) 

16.735 0.215 

(0.380) 

-0.003 

(0.086) 

-0.340 

(0.412) 

-0.790 

(0.586) 

-3.017 

(0.591) 

17.170 0.218 

(0.303) 

-0.042 

(0.071) 

-0.263 

(0.324) 

-0.729 

(0.414) 

-2.812 

(0.459) 

17.606 0.369 

(0.240) 

-0.096 

(0.057) 

-0.247 

(0.257) 

-0.720 

(0.322) 

-2.664 

(0.362) 

18.042 0.617 

(0.196) 

-0.157 

(0.049) 

-0.253 

(0.220) 

-0.741 

(0.295) 

-2.540 

(0.296) 

18.478 0.914 

(0.191) 

-0.222 

(0.048) 

-0.244 

(0.219) 

-0.757 

(0.302) 

-2.406 

(0.264) 

18.914 1.214 

(0.236) 

-0.286 

(0.056) 

-0.197 

(0.248) 

-0.725 

(0.323) 

-2.229 

(0.266) 

19.349 1.482 

(0.317) 

-0.348 

(0.073) 

-0.105 

(0.289) 

-0.602 

(0.358) 

-1.984 

(0.298) 

19.785 1.701 

(0.421) 

-0.407 

(0.097) 

0.019 

(0.333) 

-0.360 

(0.426) 

-1.660 

(0.364) 

R-squared 0.374 
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SVCM Nonroutine Manual Continued 

Log 

Labor 

Quantity 

21 to 25-Years 

Experience 

26 to 30-Years 

Experience 

31 to 35-Years 

Experience 

36 to 40-Years 

Experience 

15.863 -3.550 (1.084) -5.850 (0.793) -6.277 (0.857) -5.884 (1.073) 

16.299 -3.287 (0.794) -4.973 (0.712) -6.073 (0.629) -5.506 (0.840) 

16.735 -3.102 (0.575) -4.331 (0.627) -5.802 (0.446) -5.143 (0.647) 

17.170 -2.980 (0.421) -3.891 (0.528) -5.468 (0.319) -4.786 (0.499) 

17.606 -2.894 (0.319) -3.614 (0.431) -5.075 (0.266) -4.429 (0.397) 

18.042 -2.809 (0.257) -3.459 (0.355) -4.627 (0.289) -4.068 (0.351) 

18.478 -2.682 (0.227) -3.387 (0.315) -4.119 (0.361) -3.699 (0.395) 

18.914 -2.471 (0.232) -3.357 (0.322) -3.542 (0.458) -3.319 (0.539) 

19.349 -2.143 (0.274) -3.330 (0.396) -2.885 (0.570) -2.921 (0.749) 

19.785 -1.681 (0.358) -3.275 (0.554) -2.145 (0.703) -2.501 (0.986) 
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SVCM Nonroutine Manual Continued 

 Interacted with College Degree 

Log 

Labor 

Quantity 

Trend 0 to 5-Years 

Experience 

6 to 10-

Years 

Experience 

11 to 15-

Years 

Experience 

16 to 20-

Years 

Experience 

15.863 -3.516 

(0.360) 

2.538 

(1.840) 

2.798 

(2.781) 

-9.638 

(1.878) 

-11.508 

(2.105) 

16.299 -3.160 

(0.258) 

2.504 

(1.321) 

1.582 

(1.924) 

-8.642 

(1.380) 

-10.286 

(1.476) 

16.735 -2.772 

(0.192) 

2.375 

(0.984) 

0.343 

(1.304) 

-7.955 

(1.026) 

-9.504 

(1.059) 

17.170 -2.372 

(0.154) 

2.131 

(0.769) 

-0.792 

(0.889) 

-7.512 

(0.802) 

-9.110 

(0.889) 

17.606 -1.982 

(0.149) 

1.774 

(0.677) 

-1.714 

(0.728) 

-7.244 

(0.720) 

-9.049 

(0.953) 

18.042 -1.617 

(0.176) 

1.333 

(0.765) 

-2.341 

(0.859) 

-7.079 

(0.799) 

-9.269 

(1.171) 

18.478 -1.283 

(0.223) 

0.847 

(1.043) 

-2.635 

(1.150) 

-6.945 

(1.012) 

-9.720 

(1.497) 

18.914 -0.979 

(0.280) 

0.351 

(1.493) 

-2.607 

(1.492) 

-6.775 

(1.329) 

-10.347 

(1.920) 

19.349 -0.694 

(0.348) 

-0.136 

(2.134) 

-2.324 

(1.853) 

-6.519 

(1.759) 

-11.096 

(2.446) 

19.785 -0.408 

(0.433) 

-0.633 

(3.024) 

-1.899 

(2.260) 

-6.164 

(2.322) 

-11.922 

(3.082) 
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SVCM Nonroutine Manual Continued 

 Interacted with College Degree 

Log 

Labor 

Quantity 

21 to 25-Years 

Experience 

26 to 30-Years 

Experience 

31 to 35-Years 

Experience 

36 to 40-Years 

Experience 

15.863 -9.132 (2.280) -7.435 (3.435) -6.401 (4.352) -0.980 (4.482) 

16.299 -9.069 (1.583) -7.548 (2.288) -7.656 (2.965) -1.315 (3.197) 

16.735 -9.414 (1.129) -8.095 (1.529) -8.665 (1.966) -1.890 (2.308) 

17.170 -10.059 (0.909) -9.007 (1.162) -9.487 (1.510) -2.700 (1.748) 

17.606 -10.912 (0.932) -10.216 (1.110) -10.207 (1.575) -3.735 (1.530) 

18.042 -11.906 (1.132) -11.652 (1.274) -10.924 (1.839) -4.959 (1.710) 

18.478 -12.998 (1.438) -13.243 (1.641) -11.722 (2.114) -6.310 (2.221) 

18.914 -14.172 (1.840) -14.911 (2.251) -12.661 (2.390) -7.708 (2.957) 

19.349 -15.420 (2.368) -16.577 (3.147) -13.783 (2.692) -9.062 (3.876) 

19.785 -16.738 (3.045) -18.169 (4.390) -15.133 (3.015) -10.293 (4.999) 
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SVCM Routine Manual 

Log 

Labor 

Quantity 

Constant Trend 6 to 10-Years 

Experience 

11 to 15-

Years 

Experience 

16 to 20-

Years 

Experience 

16.011 1.154 

(0.442) 

-0.405 

(0.115) 

-1.004 

(0.546) 

-2.236 

(1.099) 

-3.190 

(1.275) 

16.433 0.797 

(0.363) 

-0.402 

(0.093) 

-0.851 

(0.449) 

-2.002 

(0.729) 

-3.040 

(0.885) 

16.856 0.676 

(0.345) 

-0.428 

(0.081) 

-0.765 

(0.393) 

-1.821 

(0.516) 

-2.916 

(0.653) 

17.279 0.752 

(0.331) 

-0.476 

(0.069) 

-0.743 

(0.349) 

-1.713 

(0.390) 

-2.816 

(0.511) 

17.702 0.967 

(0.305) 

-0.537 

(0.058) 

-0.763 

(0.310) 

-1.676 

(0.311) 

-2.728 

(0.409) 

18.125 1.252 

(0.282) 

-0.604 

(0.049) 

-0.786 

(0.270) 

-1.671 

(0.268) 

-2.624 

(0.325) 

18.548 1.530 

(0.281) 

-0.673 

(0.049) 

-0.770 

(0.225) 

-1.625 

(0.248) 

-2.459 

(0.258) 

18.971 1.734 

(0.302) 

-0.741 

(0.060) 

-0.682 

(0.189) 

-1.460 

(0.236) 

-2.189 

(0.231) 

19.394 1.827 

(0.337) 

-0.806 

(0.079) 

-0.512 

(0.194) 

-1.133 

(0.248) 

-1.802 

(0.282) 

19.817 1.808 

(0.405) 

-0.861 

(0.100) 

-0.272 

(0.251) 

-0.659 

(0.341) 

-1.326 

(0.428) 

R-squared 0.338 
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SVCM Routine Manual Continued 

Log 

Labor 

Quantity 

21 to 25-Years 

Experience 

26 to 30-Years 

Experience 

31 to 35-Years 

Experience 

36 to 40-Years 

Experience 

16.011 -3.727 (1.185) -5.941 (0.876) -5.643 (0.830) -4.913 (1.147) 

16.433 -3.576 (0.898) -4.911 (0.811) -5.362 (0.598) -4.487 (0.945) 

16.856 -3.457 (0.696) -4.161 (0.726) -5.045 (0.419) -4.121 (0.742) 

17.279 -3.368 (0.535) -3.681 (0.623) -4.678 (0.300) -3.787 (0.565) 

17.702 -3.288 (0.404) -3.421 (0.527) -4.251 (0.262) -3.478 (0.443) 

18.125 -3.171 (0.308) -3.308 (0.441) -3.753 (0.313) -3.194 (0.401) 

18.548 -2.955 (0.252) -3.251 (0.360) -3.164 (0.419) -2.923 (0.450) 

18.971 -2.587 (0.240) -3.153 (0.328) -2.466 (0.535) -2.636 (0.566) 

19.394 -2.051 (0.282) -2.943 (0.428) -1.675 (0.627) -2.307 (0.704) 

19.817 -1.371 (0.394) -2.601 (0.643) -0.851 (0.689) -1.936 (0.828) 
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SVCM Routine Manual Continued 

 Interacted with College Degree 

Log 

Labor 

Quantity 

Trend 0 to 5-Years 

Experience 

6 to 10-

Years 

Experience 

11 to 15-

Years 

Experience 

16 to 20-

Years 

Experience 

16.011 0.816 

(1.337) 

4.404 

(2.152) 

5.640 

(1.752) 

-4.368 

(2.145) 

-5.243 

(2.850) 

16.433 0.391 

(0.733) 

3.716 

(1.366) 

4.170 

(1.389) 

-3.671 

(1.573) 

-4.968 

(1.774) 

16.856 0.036 

(0.423) 

3.139 

(0.871) 

2.764 

(1.113) 

-3.162 

(1.205) 

-4.948 

(1.228) 

17.279 -0.207 

(0.338) 

2.601 

(0.642) 

1.471 

(0.853) 

-2.900 

(0.949) 

-5.183 

(1.051) 

17.702 -0.277 

(0.336) 

2.057 

(0.645) 

0.388 

(0.690) 

-2.883 

(0.750) 

-5.605 

(1.047) 

18.125 -0.118 

(0.334) 

1.513 

(0.785) 

-0.358 

(0.769) 

-3.031 

(0.688) 

-6.098 

(1.145) 

18.548 0.263 

(0.340) 

1.012 

(0.999) 

-0.656 

(1.053) 

-3.155 

(0.888) 

-6.552 

(1.373) 

18.971 0.745 

(0.368) 

0.593 

(1.290) 

-0.455 

(1.424) 

-2.971 

(1.316) 

-6.914 

(1.744) 

19.394 1.120 

(0.425) 

0.252 

(1.730) 

0.197 

(1.864) 

-2.210 

(1.932) 

-7.201 

(2.232) 

19.817 1.213 

(0.546) 

-0.107 

(2.495) 

1.167 

(2.477) 

-0.757 

(2.704) 

-7.496 

(2.859) 
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SVCM Routine Manual Continued 

 Interacted with College Degree 

Log 

Labor 

Quantity 

21 to 25-Years 

Experience 

26 to 30-Years 

Experience 

31 to 35-Years 

Experience 

36 to 40-Years 

Experience 

16.011 -3.913 (2.835) -1.699 (3.225) -1.316 (5.181) 5.229 (4.828) 

16.433 -4.125 (1.999) -1.714 (2.382) -2.048 (3.247) 4.764 (2.983) 

16.856 -4.541 (1.479) -2.383 (1.750) -3.040 (1.863) 3.900 (1.933) 

17.279 -5.195 (1.183) -3.612 (1.296) -4.273 (1.360) 2.788 (1.872) 

17.702 -6.061 (1.122) -5.239 (1.127) -5.756 (1.701) 1.584 (2.216) 

18.125 -7.066 (1.269) -7.047 (1.258) -7.450 (2.158) 0.484 (2.464) 

18.548 -8.123 (1.499) -8.803 (1.612) -9.216 (2.479) -0.285 (2.653) 

18.971 -9.143 (1.716) -10.317 (2.280) -10.874 (2.652) -0.511 (3.112) 

19.394 -10.019 (1.884) -11.480 (3.357) -12.347 (2.710) -0.036 (4.140) 

19.817 -10.643 (2.030) -12.254 (4.840) -13.749 (2.799) 1.265 (5.812) 

 

 


