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Organisms differ in resource allocation and life-history strategies – an adaptive process 

that has reproduced great diversity of life on earth. Functional tradeoffs between growth and 

reproduction are an important determinant of lifetime fitness in iteroparous organisms, with 

optima varying by the environment. However, the developmental genetics context of the life-

history tradeoff problem has been poorly studied. 

Arabidopsis lyrata, a relative of the annual A. thaliana, provides an excellent model to 

study life-history tradeoffs' developmental and genetic basis, given its wide climatic distribution 

and life-history variation. Past research suggests that variation in apical dominance could be an 

essential aspect of life-history tradeoffs between populations. Auxin transport and signaling 

constitute major factors affecting apical dominance. Therefore, the primary objective of my 

study was to test the hypothesis that regulation of auxin transport underlies life-history variation 

in A. lyrata, specifically between two highly divergent populations, from Mayodan (North 

Carolina, USA) and Spiterstulen (Norway). 

My first objective was to test the effects of auxin transport on life-history traits in A. 

lyrata, which showed mild evidence of variation consistent with the actual differences between 

the populations. My next objective was to identify cis-regulatory variation in genes within major 

life-history QTL mapped in a previous study using allele-specific expression (ASE) analyses in 

F1 hybrids. The result showed significant differences in ASE of PIN3, which encodes a major 

auxin transport regulator. Overall, this research advances our understanding of life-history 

variation's developmental and genetic basis and supports the hypothesis that developmental 

variation in early life stages can be a key mechanism governing plant life-history tradeoffs.
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CHAPTER I: INTRODUCTION AND BACKGROUND 

Life History Evolution 

Organisms differ in their life history strategies which has significant implications for 

adaptation and diversity among life forms. Life histories are a combination of traits that 

incorporate multiple developmental, reproductive, and survival characteristics. Phenotypic 

evolution results from selective advantage or neutral processes (Kimura, 1984, 1991), or both. 

The evolution of contrasting life histories can be shaped by both stochastic (drift) and 

deterministic factors (natural selection) (Wright, 1932) during and after population separation.  

Resource allocation tradeoffs are central to phenotypic variation, and its fitness 

implications drive differences in key life-history traits between populations and taxa. Resource 

allocation tradeoffs emerge from the idea that organisms have limited resources and must 

allocate them to different functions essential for adaptation. The optimal balance of resource 

allocation to different functions in terms of fitness is often specific to particular environmental 

conditions. Natural selection favors the genotypes with the highest fitness in a particular 

environment and directs the population toward fitness peaks in its adaptive landscape (Fisher, 

1958; Orr, 2005). The most basic life history tradeoff is current reproduction vs. maintenance 

and growth (Roff & Fairbairn, 2007; Stearns, 1992; van Noordwijk & de Jong, 1986). At their 

extremes, life histories are classified as either (1) semelparous – population or species with a 

single burst of reproduction that is significant and fatal, e.g., Pacific salmon (Oncorhynchus 

spp.), most annual plants; or (2) iteroparous – population/species with multiple reproductive 

events, e.g., virtually all birds, reptiles and mammals, most perennial plants. These categories 

have a broad but not definite overlap with r vs. K strategists (Young, 2010). However, it is more 

informative to view life histories as a quantitative continuum (Thomas et al., 2000). 
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Key questions about life history variation are as follows: Why is having more offspring 

not always selected (Charnov et al., 1973; Cole, 1954; van Noordwijk & de Jong, 1986)? Why is 

semelparity not always the best strategy?  

Several studies have attempted to answer these questions (Brown & Venable, 1986; 

Charlesworth, 1971; Cohen, 1966; Cole, 1954), proposing evolutionary models and modes of 

selection for variation in life history. However, a direct empirical test for each model remains 

limited. The demographic model proposed by Cole (1954) remains widely accepted and fits well 

with the observed diversity of life history in nature (Charnov & Schaffer, 1973). Cole (1954) 

states that semelparous individuals achieve equal fitness to iteroparous individuals if they 

produce just one more offspring in exchange for their mortality; however, the paradox is that the 

iteroparous organisms seem to abundant in nature. Thus, factors affecting juvenile and adult 

survival must favor a balance between reproduction vs. continued survival and maintenance 

(Charnov & Schaffer, 1973). 

The underlying proximate and ultimate basis for life history are still unknown (Flatt & 

Heyland, 2011). The theoretical basis for life-history evolution is based on the principle of 

optimality; that one or more required resources (nutritional, temporal, the fate of the tissue or 

meristem) is limited, and reproduction (both quantitative and qualitative) vs. probability of 

survival are negatively correlated. Therefore, the organism should use the limited resource pool 

available for its growth during early development vs. during fecundity within a single year or at 

different years over a lifetime of an organism for adaptation. 

Energetic tradeoffs, if nonexistent, would lead to the evolution of a "Darwinian demon" 

characterized by immortality, unlimited reproducibility, and survivability (Law, 1979), for which 

every selection strategy leads to increased fitness. In a simple sense, the nature of resource 
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allocation (timing, output, and bouts) then emerges from consequences of the cost of 

reproduction at a specific age, cost induced by selection on survivability and reproducibility at 

different ages of the organism (Bell, 1980; Charnov & Schaffer, 1973; Cole, 1954; Obeso, 2002; 

Williams, 1966). Therefore, an increase in fitness might include the promotion of one trait or 

intermediate values of two intrinsically constrained traits. However, observed positive vs. 

negative correlation between life-history traits could also be consequences of variation in 

acquisition vs. allocation of resources (van Noordwijk & de Jong, 1986). This raises additional 

questions in life-history analysis: What is the nature of resource allocation tradeoffs at the 

organismal level? Is the tradeoff physiological, meristematic, or hormonal? Is the tradeoff a 

single gene phenomenon or a functional consequence of multiple genes? How do genotype 

differences translate to phenotypic variation in resource allocation and fitness? 

Most of the analysis of resource allocation tradeoffs has focused on genetic and 

phenotypic variance-covariance matrices and the identification of selective factors inducing 

reproductive costs. At the genetic level, reproductive costs are primarily associated with genes 

for resistance to disease and herbivory (Heidel et al., 2004; Holeski et al., 2010; Tian et al., 

2003), which induce the cost on reproductive fitness emerging from functional constraints and 

also fit well with energy limitation theory. These genes affect some aspects of adaptive evolution 

and a certain level of variation in reproductive output but do not fully explain the evolution of 

semelparity vs. iteroparity.
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Figure 1.1 Figure showing Life history differences between Mayodan and  Spiterstulen A. 

lyrata populations 

 

 Note: Fig (a) is an early stage Spiterstulen plants; the upper red circle shows 

rhizomatous shoots emerging from the main plant, the lower red circle show the lateral shoot 

developing from the base of the main plant shoot. The later shoot are distinguishable because 

they showing patterns of growth that show leaf orientation outside the regular pin-wheel 

appearance. (b) The Spiterstulen plant during middle stage of development, and (c) during the 

reproductive period. The amount of lateral vegetative shoot growth, apical dominance is very 

obvious. (d) A Mayodan plant during the early development and (e) during the early 

reproductive stage and (f) around the end or reproductive season. The amount of inflorescences 

in the Mayodan plant is very high compared to the Spiterstulen plant. The Spiterstulen and 

Mayodan plants shown are not the same individuals though.  

a b c 

d e f 
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Figure 1.2 Conceptual Representation of Limited Resource Availability and Allocation to 

Different Functions 

 

Figure 1.3 Turnover (Production Vs. Consumption) 

 

Note: Death results when senescence catches up with growth. The green curve shows 

growth trend and yellow curve shows rate of senescence. The dotted yellow curves shows a case 

when the rate of senescence increases and catches up with the growth rate. Source: Based on 

Thomas (2013) New Phytol. 197: 696–711. Modified version: (Remington et al., 2015). 

One essential life-history trait in plants is flowering time, which is equivalent to the 

mating season in animals. The genetics and ecology of flowering have been extensively studied 

in semelparous A. thaliana (Baker et al., 2005; Callahan et al., 2005; McKay et al., 2003; 

Munné-Bosch, 2008; Scarcelli et al., 2007; Thomas, 2004; Wilczek et al., 2009), and novel genes 

are still being explored. However, reproductive tradeoffs in this model occur in the limited sense 
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of the age of reproduction vs. size and reproductive output. For example, Thomas et al. (2000) 

suggests that annuality vs. perenniality in plants results from the balance between forwarding 

apical growth against following tissue death (Figure 1.3). In flowering plants, this involves the 

production of new shoots vs. their more-or-less irreversible transition to reproduction. 

Resource Allocation Tradeoff Is an Integrated Complex Phenotype 

Developmental morphogenesis is characterized by changes in physical and chemical 

states over time. It is vital to realize that these developmental translations follow a general trend 

– a phenotype later in development is an output of a complex network of fine phenotypes that 

originate earlier in development. The optimum fitness strategy and level an organism gains is an 

output of the collection of a complex network of a cascade of developmental traits and the 

underlying genetic variation and environmental interaction rather than one factor affecting trait 

variations and fitness in a mendelian fashion. (Thomas et al., 2000). 

Resource-allocation is an emergent property of many sub-phenotypes like number of 

inflorescences (reproductive shoots) vs number of vegetative shoots, flowers per inflorescence, 

siliques per inflorescence, number of seeds per silique, and the number of viable seeds. These 

sub-phenotypes grow out of a developmental cascade and are shaped by environmentally specific 

tradeoffs. Observed complexity in resource allocation results from integrating these sub-

phenotypes from both different and same life cycle stages. Therefore, resource allocation – a 

highly emphasized but coarsely characterized life-history trait- can be considered an "integrated 

complex phenotype," which stands on the top of several adaptive features that provide basis for 

its existence. Resource allocation tradeoffs are fundamental in life-history analysis because they 

represent a developmental continuum where multiple components of fitness are eventually 

integrated. Understanding how genetic variation and environment shape the trajectory of 
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developmental cascades and their fitness consequences provides a holistic approach to 

understanding life-history evolution. 

Arabidopsis lyrata as a Model Organism for Understanding Perenniality 

Arabidopsis lyrata provides an ideal system for understanding perenniality due to its 

wide climatic range, adaptive variation in life history, and availability of extensive genomic 

resources. A. lyrata (L.) O'Kane and Al-Shehbaz, an outcrossing perennial, separated from its 

annual relative A. thaliana about 10 million years ago (Hu et al., 2011). A. lyrata has a wide 

circumpolar but highly fragmented population distribution throughout the Northern hemisphere 

and grows primarily in low competition habitats. Each population experiences contrasting 

climate and ecology ranging from warm temperate to subarctic and alpine regimes (Clauss & 

Koch, 2006; Leinonen et al., 2009; Mitchell-Olds & Schmitt, 2006). Climatic variation, 

including edaphic and other conditions at the local site, shape the adaptive strategy and life 

history of A. lyrata populations (Schmickl et al., 2010). A. lyrata is distributed into two main 

gene pools (recognized subspecies):  A. lyrata ssp. lyrata spreads across N. America from the 

great lakes region and southern Appalachian mountains to adjacent foothills, and A. lyrata ssp. 

petraea is found across northern Eurasia and Alaska. The Eurasian lineage contains higher 

genetic diversity suggesting that A. lyrata originated there. The Eurasian lineage probably 

expanded northward into Scandinavia and the British Isles and then eastward across Siberia and 

then into N. America through Beringia (a landmass that once connected Asia and North America 

during several glaciation periods and now exists as the Bering Strait). The expanding population 

faced isolation by climatic changes during the LGM (last glacial maximum). Surviving 

populations later contributed to the most recent expansion of A. lyrata lineage from unglaciated 

parts of the eastern Austrian Alps, arctic Eurasia, including Amphi-pacific Beringia (Koch & 
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Matschinger, 2007; Ross-Ibarra et al., 2008; Schmickl et al., 2010). Following glacial expansion 

and retreat episodes, surviving refugia populations have now spread into their respective 

continents and structured the genetic diversity of the A. lyrata lineage (Schmickl et al., 2010). 

The North American lineage (A. lyrata ssp lyrata) represents a derived lineage state that 

experienced severe genetic bottlenecks during the expansion process, resulting in lower genetic 

diversity (Mattila et al., 2017; Pyhäjärvi et al., 2012; Ross-Ibarra et al., 2008). Local adaptation 

and contrasting variation in adaptive traits and vast geographic and climatic differences at their 

native sites make the populations of A. lyrata an excellent system for investigating adaptive 

variation, gene flow, and life history evolution. 

Arabidopsis lyrata Populations With Contrasting Resource Allocation Patterns Provide a 

Good Model for Genetic Analysis of Life-History 

Several studies have revealed substantial phenotypic differentiation for adaptive and life 

history characteristics between populations of A. lyrata (Karkkäinen et al., 2004; Leinonen et al., 

2009, 2011, 2012; Remington et al., 2013; Riihimäki & Savolainen, 2004; Sandring et al., 2007; 

Sandring & Ågren, 2009; Turner et al., 2010; Vergeer & Kunin, 2011) including variation in 

flowering time and flower morphology (Riihimäki et al., 2005; Riihimäki & Savolainen, 2004; 

Sandring et al., 2007). The A. lyrata populations we have been working with have broader 

relevance in testing the underlying genetic and functional basis of perenniality because they are 

native to sites that represent opposite extremes of the environmental variation (in terms of both 

the temperature and photoperiod) across the range of A. lyrata distribution and also occupy 

opposite extremes of the resource allocation continuum . One of our study populations is native 

to an alpine valley in Spiterstulen Norway (A. lyrata ssp. petraea) in Europe (61◦ 38_N, 8◦ 

24_E,1106 m.a.s.l.) and experiences a shorter growing season with lower annual mean 
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temperature (0.870C; Lom, Norway, 10-year average; Norwegian Meteorological Institute). 

Another population is local to Mayodan NC (A. lyrata ssp. lyrata), near the southern range limits 

of A. lyrata in the United States (36◦25_ N, 79◦58_ W, 225 m.a.s.l.) and faces a longer growing 

season (14.50C; Greensboro, NC, 30-year average; U.S. National Weather Service). Mean annual 

precipitation in NC is 1092 mm and only 461 mm at the Norway site, but the growing season in 

North Carolina faces periodic summer drought. Life histories between these two populations 

vary broadly, which includes flowering time, length of flowering, number of reproductive shoots, 

siliques per shoot, and number of flowers (Leinonen et al., 2012; Remington et al., 2013) and is 

reflected in the pattern of apical dominance and shoot architecture these two populations exhibit. 

Based on microsatellite data, our study populations are highly differentiated (Fst = 0.668) 

(Muller et al., 2007) with an estimated divergence time between North American and Central 

European populations of about 260,000 years (Mattila et al., 2017; Toivainen et al., 2014).  

  



 

  

1
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Figure 1.4 QTL Mapping Results for the North Carolina Field Site (a & b) And For The Norway Field Site (c) 

 

Note: Fig a LOD profiles for vegetative and reproductive traits: spring diameter (blue), reproductive shoots (red), siliques per 

shoot (green), and net reproductive season diameter growth (orange). Fig b LOD profiles for square root transformed flowering dates 

(Leinonen et al. 2013). Horizontal lines represent genome-wide P = 0.05 significance thresholds. Fig c LOD profiles for vegetative 

and reproductive traits in Norway environment. Source: Remington et al. 2013. 

a b 
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Life History Differences in A. lyrata Populations Are Related to Developmental QTLs 

Reciprocal transplant study of Mayodan and Spiterstulen populations have shown 

evidence of local adaptation characterized by higher survival of Spiterstulen alleles when grown 

in Norway and higher reproductive output by Mayodan alleles when grown in North Carolina, at 

the expense of vegetative growth at several resource allocation QTLs (LG or chromosomes 1, 2, 

4, 8) (Figure 1.4, a and c). Importantly, these QTLs were largely independent of flowering time 

QTLs (Figure 1.4, b). More importantly, these resource allocation QTLs and not flowering time 

QTLs were the primary loci contributing to local adaptation (Leinonen et al., 2012; Remington et 

al., 2013). 

Mayodan alleles in both environments showed a larger number of inflorescences and 

higher flowering propensity, suggesting that intrinsic genetic components (Mayodan alleles) that 

influence life history are robust to environmental changes and drive plant development more 

toward reproductive investment. Mayodan alleles also resulted in a much greater loss of 

vegetative rosette diameter during the reproductive season than Spiterstulen alleles.  In other 

words, they contributed to growth vs. reproduction tradeoffs.  Also, Mayodan alleles at the LG2 

QTL region delayed lateral shoot development before flowering, indicating greater apical 

dominance by Mayodan alleles. The LG2 primarily showed the most extensive effects (77% of 

parental mean difference in the number of fruits per inflorescence) of all chromosomes in North 

Carolina (Figure 1.4, a) as well as antagonistic tradeoffs in both the environments (Leinonen et 

al. 2012; Remington et al. 2013) making it an interesting candidate for further analysis. 

However, whether these resource allocation QTLs, especially LG2, harbors single or multiple 

genetic components with tradeoff functions has not been tested. This LG2 QTL region is 

syntenic to A. thaliana (At1g68060–74600) genome, which contains the A. lyrata orthologs of 
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genes encoding two major auxin efflux carriers, PIN1 (At1g73590) and PIN3 (At1g70940), a 

recently identified regulator of intracellular auxin homeostasis, PILS2 (At1g71090) (Barbez et 

al., 2012), and BRC2, a homolog of tb1 gene from maize which has dramatic effects on shoot 

architecture and sex determination in the tip of maize (Doebley et al., 1995, 1997).  

Figure 1.5 (a) Scatterplots Showing the Regression of the Number of Inflorescences on the 

Mean Number of Basal Leaves per Inflorescence, and (b) the Day of First Bolting in the 

Same Plants 

 

Note: Dotted in the ellipses show the phenotypic distributions (number of inflorescences) 

in Spiterstulen (Sp) and Mayodan (Ma) plants. Source:(Remington et al., 2015). 
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Figure 1.6 A Proposed Phenology Model Showing Variation in Growing Seasons in Two 

Extreme Environments of A. lyrata Habitat 

 

Note: (a. North Carolina environment; b. Norway environment. Source: (Remington et 

al., 2015). 

A growth chamber study comparing development in Mayodan vs. Spiterstulen plants in 

2015 showed that individual lateral shoots became more rapidly reproductive on Mayodan plants 

than on Spiterstulen, which explains the higher propensity of Mayodan towards reproduction 

(Remington et al., 2015). Overall, this and several other studies suggest that local adaptation in 

perennials, including A. lyrata, appears to have much more to do with flowering transitions on 

individual shoots, not on the date of first flowering as in annuals. 

Arabidopsis lyrata Growth and Development 

After germination, A. lyrata undergoes vegetative development producing highly 

compressed shoots which appear as a pinwheel. The lateral vegetative shoots have meristems in 

their axils for further vegetative or reproductive tissue development during the reproductive 

episode. During reproductive season individuals from Mayodan populations produce long, 

slender, and large inflorescences, followed by leaves. In contrast, Spiterstulen individuals have 

fewer inflorescences, notably thicker in diameter. Spiterstulen plants also make many lateral 
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vegetative shoots before bolting, indicating that Mayodan individuals exert greater apical 

dominance than Spiterstulen individuals.  

On one hand, increased apical dominance can potentially reduce branching, thereby 

reducing the number of meristems available for both vegetative reproductive growth during the 

reproductive episode. On the other hand, the observed greater apical dominance in Mayodan 

plants is associated with more reproduction. We conjecture that the timing of lateral shoot 

development becomes more compressed under strong apical dominance in Mayodan individuals, 

with new shoots switching over to reproductive much more rapidly after they initiate (Remington 

et al., 2015). Similar relationships between the timing of lateral shoot initiation and reproductive 

output were found in Arabis alpina (Wang et al., 2009) and Erysimum capitatum (Kim & 

Donohue, 2013).  This information from several studies suggests that the developmental genetic 

basis of life-history tradeoffs we discover in A. lyrata may be more broadly prevalent in 

perennial plants. 

Auxin as a Candidate in Life-History Evolution 

Shoot architecture is strongly influenced by auxin dynamics (J. Friml, 2003; Petrásek et 

al., 2009) and is controlled by auxin transport proteins and other interacting proteins and genes. 

Genes involved in auxin biosynthesis, homeostasis, and gradient maintenance include AUX1, 

PIN1 - 7, TAA1, YUCCA, GH3, PGP, TPL, and TIR1. Homology, gene function, and genetic 

pathway for these candidates have been conserved between distant monocots and eudicots 

relatives (Gallavotti, 2013). PIN (PIN FORMED) genes have been extensively studied in A. 

thaliana  (J. Friml, 2003; Petrásek et al., 2009), which derives its name from the pin-like 

phenotype in PIN1 mutants (Okada et al., 1991). Different PIN proteins are asymmetrically 

localized in plants parts which direct auxin transport and gradient. This variation in auxin 
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gradient shapes developmental aspects like organogenesis, morphogenesis, and meristem 

patterning. (Gälweiler et al., 1998; Prusinkiewicz et al., 2009; Vieten et al., 2005). Mutations 

affecting the nature of apical dominance can have a pervasive effect on patterns of shoot 

development and not just shoot initiation (Barbez et al., 2012; J. J. Friml et al., 2002; Gälweiler 

et al., 1998; Prusinkiewicz et al., 2009), which could potentially translate into phenotypic 

variation in resource allocation tradeoffs. Auxin transport is also highly sensitive to 

environmental cues. Individuals with the same genetic background can produce different 

transport responses in other growth conditions (Lewis & Muday, 2009), suggesting an ecological 

influence on auxin dynamics. Therefore, variation in auxin transport between separated 

populations is a likely candidate that could explain the environmental and evolutionary basis of 

shoot architecture variation and ultimately life history variation. And PIN1 and PIN3 genes 

encode auxin transport proteins and are located in the largest-effect QTL region on LG2 of A. 

lyrata.  

TB1 as a Candidate in Life-History Evolution 

Another molecular candidate that has significant effects on branching is tb1 (teosinte 

branched 1), first identified in maize (Doebley et al., 1995) and its homolog PCF1 and PCF2 in 

rice (Choi et al., 2012) and in Arabidopsis BRC1 (BRANCHED 1) (Aguilar-Martínez et al., 

2007; Poza-Carrión et al., 2007) and BRC2. These genes and orthologs are widely found in 

flowering plants, including A. thaliana, sorghum (Kebrom et al., 2006), and tomato (Martı´n-

Trillo et al., 2011). A good example of change in apical dominance and its influence on shoot 

architecture can be observed in domesticated maize vs. its wild-type relative teosinte. This 

phenotypic change has been traced to tb1 (teosinte branched1) regulation, which affects several 

traits like the number and length of internodes and sex of the inflorescences on the tip of the 
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primary lateral branches in maize (Doebley et al., 1995, 1997). The pattern of tb1 expression and 

morphology of tb1 mutant plants show that tb1 acts to repress the growth of axillary organs and 

enable the formation of female inflorescences (Doebley et al., 1997). Both tb1 and BRC1 contain 

a highly conserved TCP domain (Aguilar-Martínez et al., 2007), facilitating DNA-protein 

dimerization and cell division (Cubas et al., 1999; Poza-Carrión et al., 2007). Transcription 

factors containing the TCP domain are highly regulated in growing flower primordia in A. 

thaliana (Cubas et al. 1999), confirming its role in organ elongation and meristem growth. BRC1 

is also found to interact with endogenous auxin signal pathway, and carotenoid derivative 

produced in roots (Aguilar-Martínez et al., 2007; Niwa et al., 2013) and promotes bud dormancy 

in response to shading (González-Grandío et al., 2013). TCP regulation also responds variably to 

environmental stimuli like planting density and influences the number of branches. BRC1 is also 

found to interact with flowering locus (FLC) to regulate floral transition in axillary meristems 

(Niwa et al., 2013). PEP1 (perpetual flowering) in Arabis alpina (Wang et al., 2009), an ortholog 

of FLC (flowering locus), has pleiotropic effects on shoot branching, the number of meristems 

allocated to flowering, and return to the vegetative state. This highlights the role of BRC1 in 

shoot architecture, possibly by its interaction with auxin signals and other candidates involved in 

apical dominance. One of the significant reasons genes like tb1 homologs could impact resource 

allocation is that extensive branching is positively correlated with the number of reproductive 

structures. This suggests that tb1 like genes may influence the nature of meristem (reproductive 

vs. vegetative) and determines reproductive output by a functional mechanism that might be 

conserved in distant eudicots relatives. Importantly, BRC2 has more minor effects and different 

regulations than BRC1 in A. thaliana (Aguilar-Martínez et al., 2007)  in short-cycling lab 

accessions. However, we speculate that role of BRC2 could be greater in perennial plants that 
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exhibit more prolonged vegetative states. Notably, the BRC2 gene also lies in the QTL LG2 

related to local adaptation in Arabidopsis lyrata. 

Why Are Genes Involved in Apical Dominance Important? 

 The evolution of similar traits in distinct lineages often involves mutations in the same 

gene (a phenomenon called "gene reuse") (Martin & Orgogozo, 2013), representing genetic 

hotspots of evolution. These de-novo mutations primarily include gain-of-function events at 

orthologous sites and produce similar phenotypic variation, representing important evolutionary 

mechanisms shaping adaptive evolution. Furthermore, repeated phenotypic evolution involves 

mutations at cis-regulatory sites more often than changes in coding regions (Stern & Orgogozo, 

2008), which can promote rapid phenotypic response by altering the level of gene expression. 

The TB1 gene and its orthologs in other plant lineages represent a potential genetic hotspot 

where a similar phenotypic response may have evolved when demanded by the forces of 

selection. Also, PIN genes and their homolog are highly conserved in the plant kingdom in 

regulating diverse plant functions, suggesting PIN genes as a potential candidate for shaping 

plant life history. 

Genomic, Transcriptome, and Phenotypic Databases of Arabidopsis thaliana and 

Arabidopsis lyrata Provide Valuable Resources for Genetic Analysis of Perenniality 

Arabidopsis thaliana, a functional genetic model, has been very helpful in identifying key 

genes for several phenotypic traits in plants. Its adoption has helped establish sophisticated 

genetic tools, molecular techniques, and transcriptome databases for plant biology in recent 

decades http://plants.ensembl.org/Arabidopsis_lyrata/Info/Index, http://www.phytozome.net/,  

http://genome.jgi-psf.org/Araly1/Araly1.home.html. Despite the benefits of single candidate 

gene analyses, which can pinpoint specific life-history functions, lab models may be limited in 

http://plants.ensembl.org/Arabidopsis_lyrata/Info/Index
http://www.phytozome.net/
http://genome.jgi-psf.org/Araly1/Araly1.home.html
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elucidating the novel aspects of life-history evolution as the organisms do not fully experience 

the constraints induced by the environment (Anderson et al., 2011). Also, genes conferring 

fitness advantage in one particular environment can have negative fitness consequences in 

another set of conditions (Heidel et al., 2004). Additionally, A. thaliana does not fit as an 

appropriate model for analyzing the genetic basis of perenniality due to its strictly annual nature. 

The study of emerging model systems in the natural environment will instead overcome these 

limitations and identify novel loci and genes that are equally important to life history analysis  

(Anderson et al., 2011). Apart from being perennial, the overall developmental aspects of A. 

lyrata are highly similar to that of A. thaliana (Grbic & Bleecker, 2000), which makes the 

phenotypic analysis, molecular assays, and genetic tools developed in A. thaliana system directly 

applicable to A. lyrata. 

Studying the genetic basis of perenniality in A. lyrata benefits from an extensive genetic 

and genome database available for both species at http://www.Arabidopsis.org/. Also, the 

comparative genetic and syntenic maps between these sister species (Hu et al., 2011) and 

transcriptome database have been developed and available at (http://www.plantgdb.org/), and a 

transcription factor database is available at http://planttfdb.cbi.pku.edu.cn/help_datasrc.php. 

These databases provide an essential resource for comparative genetics and functional analyses 

to test our questions and hypothesis regarding perenniality in the A. lyrata model. Moreover, 

sequence data of the whole genome sequence of several new populations of A. lyrata, including 

the ones involved in our study, are now available to assist further in-depth analysis of the 

signature of selection, genetic differentiation, and adaptive polymorphisms that have evolved 

between populations (Mattila et al., 2017). 

  

http://www.arabidopsis.org/
http://www.plantgdb.org/
http://planttfdb.cbi.pku.edu.cn/help_datasrc.php
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The Rationale for This Research 

The fundamental reason for this research is to understand the developmental genetic basis 

for QTLs affecting adaptive life-history variation in A. lyrata, which could provide novel 

insights into the traits underlying adaptive evolution in perennial plants. This is comparable in 

importance to the role of flowering time variation and the underlying genetics in annual plants. 

As discussed earlier, the genomic, transcriptomic, and phenotypic database for A. thaliana and A. 

lyrata provides a valuable resource and foundation to pinpoint the ultimate and proximate bases 

of life-history variation, including candidate developmental mechanisms and candidate genes 

underlying important QTL regions. 

Dissertation Goals 

Dissertation Goal 1; Chapter II 

Determine whether differences in apical dominance and shoot architecture observed in 

the Mayodan and Spiterstulen populations can be explained by variation in the rate of auxin 

transport. 

I tested variation in auxin transport rates in the plants that belonged to Mayodan and 

Spiterstulen populations grown in a controlled environment. To quantify the variation in 

transport rate, I used radiolabeled 3H-IAA (a synthetic auxin) in the inflorescence shoots and 

tested differences in radioactivity. 

I applied NPA (an auxin inhibitor) to the plants from the Mayodan population to test for 

its effects on life-history traits. First, I measured several traits over the growing season at three 

different time points. The traits data I collected are diameter, changes in diameter, observed 

lateral shoot rating, and the number of inflorescences. Then I compared the NPA treated plants 

with non-treated control. 
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Dissertation Goal 2; Chapter III 

Develop algorithms and tools for phasing and assigning haplotypes in outcrossing 

populations. 

I developed three different methods to help with phasing haplotypes for unphased 

genotype and read-backed-phased genetic variants data. The three tools/algorithms are Phase-

Extender, Phase-Stitcher, and ShortVariantPhaser and are designed to handle three different 

types of data structure generated in concurrent variant genotyping. 

I also tested one of the tools (Phase-Extender) against the haplotype phasing tool ShapeIT 

and found that Phase-Extender can phase variants on par with ShapeIT using a small number of 

samples. The tools also provide a more controlled approach to haplotype phasing. It has the 

potential to be a good utility when phasing genomes that do not have a large number of reference 

haplotypes or in the situation when a small number of sample cohorts are only to be used for 

haplotype phasing. 

Dissertation Goal 3; Chapter IV 

Identify candidate genes underlying a key life-history QTL region by evaluating 

quantitative variation in expression of alleles from Mayodan and Spiterstulen genomes. 

I established some F1 hybrid samples by crossing parental populations, Mayodan and 

Spiterstulen. First, I extracted total mRNA from the whole shoot of these F1s during the late 

vegetative stage. Then, the allele-specific expression in each F1 was quantified by measuring 

read counts by aligning the read competitively against a personalized diploid genome.  

The statistical test of variation in allele expression was done using the DESEQ2 (Love et 

al., 2014) package.  
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CHAPTER II: AUXIN TRANSPORT INHIBITION IN ARABIDOPSIS LYRATA AFFECTS 

SHOOT ARCHITECTURE AND LIFE-HISTORY TRAITS 

Abstract 

Variation in apical dominance influences shoots architecture differences in plants. The 

two populations of A. lyrata (Mayodan and Spiterstulen) show two opposing spectra of life 

history properties, with Mayodan showing higher apical dominance and investment of meristems 

to reproductive shoots and tissues. In this research, we tested if differences in auxin transport 

explained those variations in apical dominance between two study populations. We further tested 

if reducing apical dominance in Mayodan altered its life-history traits (lateral shoot development 

and quantity of inflorescence) consistent with one seen in the Spiterstulen population. Results 

show mild evidence of higher auxin transport in Mayodan individuals (F-statistic 4.082, P-value 

= 0.053). Inhibition of auxin transport in Mayodan using NPA reduced apical dominance and 

increased the production of lateral vegetative shoots and showed a trend toward fewer 

inflorescences. 

Introduction 

Plant Hormones 

Plant hormones are a class of chemical compounds that occur naturally in the plant or are 

artificially synthesized. Plant hormones are effective even at small concentrations and influence 

different physiological processes, mainly growth, differentiation, and development. 

The idea that some chemical substances regulate plant growth and development was introduced 

long before discovering plant hormones. Sachs hypothesized that the chemical substances 

associated with plant growth might have distinct movement patterns throughout the plant (Enders 

& Strader, 2015). Around the same time, Charles Darwin and Francis Darwin were 
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experimenting with the effects of light and gravity on the growth of grass coleoptiles. Boysen-

Jensen and Paál further improved the idea of plant growth regulators that helped to develop 

Cholodny–Went hypothesis (Thimann, 1988). This hypothesis suggests that auxin is the plant 

growth regulator asymmetrically distributed in the plant and results in tropism in root and shoot 

governed by the stimulus of light and gravity (Enders & Strader, 2015; Trewavas, 1992). This 

idea was further explored and documented by Fritz Went (Thimann, 1988). These early 

investigations in plant hormones involved dissecting the role of auxin in tropic growth responses, 

how auxin controls cell elongation, and appropriately reorients growth of plant organs in 

response to environmental stimuli. 

The growth-promoting agents in plants are also known as phytohormones. Now, almost a 

century of research has resulted in the discovery of several phytohormones, including auxins, 

ethylene (ET), cytokinins (CK), gibberellins (GA), abscisic acid (ABA), brassinosteroids (BRs), 

jasmonic acid (JA), salicylic acid (SA), and the recently identified strigolactones (SLs) (Checker 

et al., 2018). These phytohormones work independently or respond appropriately against 

environmental or developmental signaling. The first plant hormone discovered and the major 

one, auxin, causes a growth response far from its synthesis site and qualifies as a chemical 

messenger (Wang et al., 2015). Auxin plays a crucial role in plant growth and developmental 

processes like tropism, embryogenesis, and organogenesis (Davies, 2010).  

Polar Auxin Transport 

One of the most studied and predominantly found plant hormones is indole-3-acetic acid 

(IAA), which helps determine the formation of primary and lateral apices, differentiation of 

vascular tissue, regulation of root system architecture, and embryo development (Casimiro et al., 

2003; Kondhare et al., 2021). IAA in shoots exhibits a phenomenon called "polar auxin 
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transport," i.e., it moves unidirectionally from the apex to the base of the shoot. However, IAA 

transport in roots shows two distinct polarities. First, IAA moves from the root apex towards the 

base (Meuwly & Pilet, 1991). On the other hand, in the central cylinder of the roots, IAA move 

acropetally towards the root apex (Jones, 1998; Kerk & Feldman, 1995; Tsurumi & Ohwaki, 

1978).  

Another naturally occurring auxin is indole-3-butyric acid (IBA), which helps develop an 

adventitious root system. Some synthesized auxins are 2,4-D (2,4-dichlorophenoxyacetic acid) 

and NAA (1-naphthaleneacetic acid). These synthetic auxins are extensively used in plant tissue 

culturing to determine and manipulate plants' growth responses (Flasiński & Hac-Wydro, 2014). 

Auxin's polar movement through developing tissue and established concentration gradient 

triggers its mechanism of action. Moreover, this information also helps determine and analyze 

the positional information for the spatial modulation of gene expression patterns (Casimiro et al., 

2003). 

Most investigations into the role of IAA in plants are done in Arabidopsis thaliana, a 

biological model for molecular and genetics research in plants. In Arabidopsis, both polarities 

have been detected depending on specific physiological processes (A. M. Rashotte et al., 2000; 

Reed et al., 1998). Shoot basipetal movement of IAA confers apical dominance of the main 

shoot, promoting upward growth of the plant and reducing bushiness. On the other hand, the 

acropetal move of IAA from the shoot into the root has been shown to control the roots' lateral 

growth (Reed et al., 1998). However, basipetal movement of IAA is required for gravity 

response (A. M. Rashotte et al., 2000) and has also been suggested to affect the initial cell 

divisions during lateral root initiation (Casimiro et al., 2001). 
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The directional transport of auxin is mainly attributed to the family of auxin efflux 

carriers (the PIN proteins). The acronym "PIN" derives its name from the pin-like phenotype in 

pin1 mutants (Okada et al., 1991). Most of the information about PIN (PIN FORMED) genes, 

their function, and their role in triggering developments have been generated through extensive 

genetic research in Arabidopsis thaliana (Friml, 2003; Petrásek et al., 2009). The unique location 

of PIN proteins in the cell membrane is responsible for maintaining the property of polarity in 

auxin transport. In addition, PIN proteins can also re-localize in response to the changes in auxin 

concentration gradients, which frequently happens during organ initiation (Leyser, 2005, 2009; 

Paciorek et al., 2006; Waldie & Leyser, 2018; Wisniewska et al., 2006). 

Extensive research on Arabidopsis has led to the discovery of eight PIN proteins. These 8 

proteins are divided into two types based on their molecular weights. One type is a long-looped 

PIN (AtPIN 1, 2, 3, 4, and 7), and the other is a short-looped PIN (AtPIN 5 and 8). The cell-to-

cell transport of auxin is facilitated by the long-looped PINs present in the plasma membrane 

(Ganguly et al., 2010; Vieten et al., 2005). Several phosphorylation sites are present in the long-

looped PIN-HLs, necessary for PIN polar trafficking. These conserved phosphorylation motifs 

are absent from short-looped PINs (Ganguly et al., 2010). Small-looped PINs are mainly located 

in the endoplasmic reticulum or plasma membrane and regulate cytosolic auxin homeostasis.  
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Figure 2.1 Polar Auxin Transport – Chemiosmotic Hypothesis 

 

Note: Protonated auxin (IAA-H) readily diffuses into the cell, while non-protonated auxin 

(IAA−) needs additional proton symporter AUX1/LAX transporters. Several PIN proteins 

mediate the direction of intercellular polar auxin transport. Source: (Löfke et al., 2013). 

However, the functioning of short-looped PINs has received little attention compared to 

long-looped PINs (Ding et al., 2012; Mravec et al., 2009). Moreover, PIN6 (long-looped PIN) is 

uniquely present in the ER, unlike other long-looped PINs (Mravec et al., 2009). These different 

PIN proteins localize asymmetrically to specific faces of the plasma membrane in different parts 

of the plant and direct auxin transport and gradient (Friml, 2003; Petrásek et al., 2009). This 

process helps developmental processes like organogenesis, morphogenesis, and meristem 

patterning (Gälweiler et al., 1998; Prusinkiewicz et al., 2009; Vieten et al., 2005). The cellular 

mechanism that drives the dynamics of auxin transport is clathrin-mediated endocytosis and the 
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recycling of PINs which can induce rapid changes in cell polarity (Kitakura et al., 2011). Auxin 

itself inhibits this recycling, resulting in an accumulation of PIN proteins, specifically at the 

plasma membrane opposite the source, promoting its own efflux (Kleine-Vehn et al., 2011). 

Environmental variation and growth conditions can also influence changes in auxin 

dynamics in the same genetic background and produce different transport responses (Lewis & 

Muday, 2009). This environmental-based variation in auxin transport and shoot architecture can 

then translate into variation in the numbers of reproductive shoots/meristems produced, which 

affect the number of flowers, and, ultimately, the reproductive output and any observable 

differences in life history. Therefore, exploring the variation in auxin transport between the 

populations that show contrasting life-history patterns could be an excellent approach to 

understanding the underlying environmental and evolutionary basis of life-history variation. 

Auxin Transport Inhibitors 

Auxin transport inhibitors (ATIs) are the pharmacological tools that researchers have 

been using for decades to understand the mechanisms underlying polar auxin transport and its 

impact on plant growth and development (Dhonukshe et al., 2008). Some of the ATIs are as 

follows: 1-naphthylphthalamic acid (NPA), 2-carboxyphenyl-3-phenylpro- pane-l,2-dione 

(CPD), 2,3,5-triiodobenzoic acid (TIBA), methyl-2-chIoro-9-hydroxyfluorene-9-carboxylate 

(CFM) (Shi et al., 2006) and 2-(1-pyrenoyl) benzoic acid (PBA) (Snyder, 1949).The exogenous 

application of these inhibitors alters the pattern of auxin distribution and interferes with plant 

development. 

One of these auxin transport inhibitors, naphthylphthalamic acid (NPA), interferes with 

the directional auxin flow and critically affects plant growth. The application of NPA in the 

seedlings affects lateral root formation (Muday & Haworth, 1994; Reed et al., 1998). The 
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phenotypes of the mutants of the PIN family of auxin transporters (i.e., barren stalk1 (ba1) and 

barren inflorescence2 (bif2) mutants) resemble the NPA-treated plants (Wu & McSteen, 2007), 

which suggests that both the genes are somehow involved in a similar auxin transport pathway 

that NPA interferes. Moreover, recessive mutations in TIR3 (Transport Inhibitor Response) 

genes show reduced polar auxin transport, followed by morphological abnormalities like short 

siliques, pedicles, roots, and inflorescences. It shows that the absence of TIR3 protein (i.e., NBP 

proteins) leads to the improper localization and distribution of IAA (Ruegger et al., 1997), thus 

affecting life-history traits. 

Auxin (Apical Dominance) as a Candidate in the Evolution of Life-History Tradeoffs 

Auxin coordinates shoot architecture patterning in plants by managing the development 

aspects of plants – quantitative variation in shoot, root, flowers, seeds, fruit, stem elongation, 

tissue differentiation. Auxin dynamics control organogenesis, morphogenesis, and meristem 

patterning at the molecular and developmental levels (Gälweiler et al., 1998; Prusinkiewicz et 

al., 2009; Vieten et al., 2005). These developmental level components are again essential 

contributors to shoot architecture at the organismal level (Friml, 2003; Petrásek et al., 2009; 

Remington et al., 2013). Therefore, it seems intuitive that variation in shoot architecture could be 

one of the key processes affecting resource allocation tradeoffs. 

Treatment of plants using polar auxin transport inhibitors has shown that auxin transport 

is essential for leaf initiation for vegetative development and initiation of flowers primordia for 

reproductive development (Okada et al., 1991; Reinhardt et al., 2000, 2003). Application of 

auxin transport inhibitors on maize inflorescences later in development alters the phenotype of 

spikelets by producing single instead of paired spikelets (Wu & McSteen, 2007). 

Andropogoneae, which includes more than 1000 grasses (maize, sorghum, sugarcane), contain 



 

 28 

paired spikelets, a vital feature of the sorghum tribe, while all other grasses bear single spikelets. 

This alteration of apical dominance and change in spikelet number after NPA application asserts 

the role of auxin transport in the evolution of inflorescence architecture (Wu & McSteen, 2007). 

In another example, alteration of apical dominance by applying endogenous Gibberellic acid 

reduced the number of inflorescences in 'Afterglow' Bougainvillea (Chng & Moore, 2020). 

These results suggest that apical dominance provides a basis for shoot architecture variation as 

an adaptive response and is crucial in altering life history strategy. However, how apical 

dominance and auxin transport mechanistically shape plant life history strategy remains to be 

understood in more clarity – especially the development pathways apical dominance drives, so a 

plant evolves towards one approach vs. another.  

Research by Remington et al. (2013, 2015) showed that the diverged populations of A. 

lyrata (Mayodan from NC and Spiterstulen from Norway), which are adapted to contrasting 

environments, show contrasting life-history trait differences and variation in apical dominance. 

These differences show up as variation in the investment of plant meristems to reproductive vs. 

vegetative tissues (Remington et al., 2015) during early development. Analyses by (Leinonen et 

al., 2013; Remington et al., 2013) indicated that a QTL region on chromosome 2 (LG2) has the 

most prominent effects on this adaptive variation between the two populations. This region 

contains two major genes, PIN1 and PIN3, which encode auxin transport proteins and are vital to 

plant morphological development affecting shoot development and allocating meristems to a 

particular fate.  

We are particularly interested in gaining insights on the following questions. First, is 

there variation in auxin transport between the two populations of A. lyrata? Second, would 

changing the auxin transport using transport inhibitors like NPA alter the life-history traits? 
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My first objective is to test whether these study populations differ in auxin transport. We 

predict that quantitative measurement of auxin transport in the inflorescences of both populations 

using radiolabeled auxin (3H-IAA: indole-3-acetic acid) will demonstrate a higher rate of auxin 

transport in Mayodan individuals (which display greater apical dominance compared to 

Spiterstulen). My next objective was to analyze the effects of auxin transport inhibition on shoot 

architecture and reproductive output in Mayodan populations. For this second objective, I 

specifically predicated that inhibiting auxin transport in the Mayodan populations of A. lyrata 

using the pharmacological auxin transport inhibitor 1-N-Naphthylphthalamic acid (NPA) will 

reduce apical dominance in Mayodan individuals. I predict that it will also induce phenotypic 

changes in developmental patterns, mainly in shoot architecture, which could be observed 

through changes in rosette diameter. I predict that it will also affect the degree of lateral shoot 

development, which is inversely related to apical dominance. Overall, I expect inhibition of 

auxin transport will make the Mayodan genotypes more Spiterstulen-like in shoot development 

and reproductive output. Even though this component of our research doesn't provide direct 

answers to our question, any similarities between phenotypic changes caused by chemical 

inhibition of auxin transport and life history differences between populations would indicate that 

the underlying genes involve auxin transport and signaling. 

Methods 

Plant Material 

In this study, I used A. lyrata seeds from two different populations. The first population is 

from Mayodan, North Carolina, USA (36°25′ N, 79°58′ W, 225 m.a.s.l.), while the second 

population is from Spiterstulen, Norway (61° 38'N, 8° 24'E,1106 m.a.s.l.). The Mayodan seed 

originated from open-pollinated maternal families, collected in the field in 2010. Spiterstulen 
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seed consisted of four unrelated full-sib families resulting from crossings between plants grown 

from seed gathered in the field. The Spiterstulen seeds were obtained from Outi Savolainen 

(University of Oulu, Finland). 

Experiment I: Variation in Apical Dominance Between Mayodan and Spiterstulen 

Overview 

A. lyrata has a highly compressed vegetative shoot, and analysis of auxin transport in the 

vegetative shoot is problematic. However, the nature of auxin transport (a measure of apical 

dominance) can be easily analyzed in the inflorescences shoot right after reproductive transition 

using the methods developed for A. thaliana (Lewis & Muday, 2009; Okada et al., 1991). It 

involves applying synthetic radiolabeled 3H-IAA (indole-3-acetic acid) at the apical end of the 

inflorescence and counting the levels of radioactivity at the basal end of the inflorescence. 

Growing condition 

In February, we grew both A. lyrata populations in EGC growth chambers for auxin 

transport assay, simulating seasonal light hours (8/16:D/N for growing season, 12/12:D/N for 

flowering season) 2013. Temperature and photoperiod conditions were regulated accordingly to 

mimic seasonal winter and early spring growth patterns and flowering initiation. Plants were 

germinated in plastic inserts filled with Fafard germinating mix. After the seedlings grew about 

two true leaves, the lids of the plastic inserts were removed, and seedlings were watered three 

times a week, fertilized bi-weekly (1.25 mL L-1), and regularly monitored for growth. After two 

months, the plants were transplanted to cups filled with all-sport turface (baked clay grains), 

which helped retain moisture and nutrient. The germination mix-fritted clay combination was 

designed to imitate typical A. lyrata growth habitats in North Carolina, where plants 

usually thrive. The plants were then regularly monitored for signs of bolting, which generally 



 

 31 

occur after 2-3 months of germination in the lab environment under 12 hours light/dark cycle. 

Plant locations in the growth chamber were rotated regularly. When plants bolted and further 

developed, we sampled the inflorescences for auxin transport assays. The earliest flowering date 

was June 20, 2013. 

Data collection 

I sampled three different individuals from each population. Six different inflorescence 

samples (3.5-4 cm inflorescence stem at mid-point) were taken from each individual to 

determine auxin transport. 4 ul of 3H-IAA was used at 25 Ci/mmol in 1 ml of agar (1.25% 

wt/vol) to yield a 100 nMol solution. A small amount, i.e., 5ul of the solution prepared at 100 

nMol concentration, was then transferred to the bottom of the 1.5 mL centrifuge tube in 36 

centrifuge tubes. 

Figure 2.2 Evaluating the 3H-IAA Auxin Flow in A. lyrata Inflorescence 

 

Note: A sample of inflorescence tissue is clipped, and the tissue is transferred to the 

radiolabeled 3H-IAA solution with an apical end in touch with the solution. After a few hours, 

the distal part of the tissue is sampled and transferred to a scintillation counter to measure 

radioactivity which provides a measure of auxin transport. Note that the samples aren't drawn to 
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scale, and tissue clipping shows at 2 cm, but in our Experiment, we only sampled one tissue 

section (4 cm inflorescence stem around mid-point along the stem). 

To measure auxin transport, I clipped 4 cm of inflorescence tissue from around the mid-

point along the sampled inflorescence stem. I then placed the sampled tissue in a 3H-IAA 

solution with the apical surface contacting the radiolabeled auxin and allowed the transport to 

continue for 6 hours. The apical 2 cm part of the sample touching the auxin droplet was clipped 

and discarded safely in a radioactive hazard collector. Next, the remaining 2 cm tissue from the 

basal end (where 3H-IAA is concentrated) was transferred to scintillation vials containing 3 ml 

of scintillation fluid for radioactivity quantification. This process is illustrated in Figure 2.2, and 

instructions for transport assay in inflorescence were derived from the protocol (Lewis & Muday, 

2009; Okada et al., 1991); Box 1 and Procedure 9 B (Lewis & Muday, 2009) with some 

modifications, see, Supplementary Materials S2.A - Protocol #1. DPM (Disintegrations per 

minute) values were measured for quantitative investigation of auxin transport. The data 

gathered in this Experiment can be accessed at the following link - 

https://github.com/everestial/TestOfApicalDominanceInArabidopsisLyrata ). 

Statistical Analyses 

The data consists of 36 observations, with 18 tissue samples in each Mayodan and 

Spiterstulen population. Each population consisted of 3 different individuals, from which six 

inflorescence tissue were sampled for quantifying IAA transport. One observation is omitted 

from the analysis due to being a possible outlier as its DPM value is <4% of the next lowest 

value in the table and barely above background, indicating a likely setup error. 

I used the R (v. 4.0.5) programming language for statistical analysis. First, I analyzed the 

effects of population on H3-IAA transport in the inflorescence shoots using classical pairwise-

https://github.com/everestial/TestOfApicalDominanceInArabidopsisLyrata
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test and non-parametric Wilcoxon Test. I also focused on the differences between individual 

groups. Then, for multiple groups analysis, we used ANOVA to check the hypotheses about the 

contrast within all groups and Tukey post hoc tests to investigate differences within each pair of 

groups. Finally, I performed an nested ANOVA analysis for additional insights. 

Experiment II: Effects of Auxin Inhibitor NPA on Life-History Traits of A. lyrata 

(Mayodan Population) 

Overview 

I performed an auxin transport inhibition assay on individuals from the Mayodan 

population of A. lyrata using the pharmacological auxin transport inhibitor 1-N-

naphthylphthalamic acid (NPA). Polar transport of auxin IAA in the inflorescences is mainly 

mediated by PIN1 protein (Okada et al., 1991), which are localized in vascular parenchyma 

(Blakeslee et al., 2007; Gälweiler et al., 1998; Steinmann et al., 1999), and the effects of NPA 

reduces the transport of IAA to the background levels (Lewis & Muday, 2009; Okada et al., 

1991;  a M. Rashotte et al., 2001). 

Growing condition and treatment assignment 

For auxin inhibition assay, I grew A. lyrata belonging to the Mayodan population in an 

EGC growth chamber using the same seed and growing materials and fertilization materials 

described in Experiment I. After 30 days of germination, plants were potted in cups (on 

8/4/2017) and grown under seasonal light hours (9hr, 20C / 15hr, 15C: D/N). NPA was prepared 

according to the protocol described in, Supplementary Materials S2.A, Protocol #2, at 10uM 

concentration. The experiment consisted of 60 plants from 9 different families representing an 

unequal number of individuals within each family (for more details, the Data-Sheet is available 

at the following https://github.com/everestial/TestOfApicalDominanceInArabidopsisLyrata). On 

https://github.com/everestial/TestOfApicalDominanceInArabidopsisLyrata
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the 72nd day after the seeds were sown, individuals from each family were randomly assigned to 

one of the treatment groups, (1) Water application using a spray, (2) DMSO application using a 

spray, (3) NPA application using a spray, and (4) NPA application using drop on the tip of the 

apical meristem. The treatment was applied weekly. The settings were updated after 10 days of 

treatment to (12hr, 20C / 12hr, 15C: D/N) on 9/25/2017). The NPA concentration was increased 

to 20uM on 10/4/2017 because the plant biomass grew, and higher NPA doses may be required 

to block IAA transport effectively. In mid-December, the NPA treatment was stopped as NPA-

treated plants showed extremely malformed development and were dying, suggesting that auxin 

transport inhibition was beginning to have toxic effects. 

Data Collection 

Plants were monitored every two days once the treatment began, and data were collected 

every week. The data collection involved taking top stock images of each plant weekly using an 

iPhone camera with the plant label and a ruler (inches) on the side (Figure 2.3). The collected 

photo data were analyzed at the end of the Experiment to gather data on the diameter (in mm), 

diameter changes (in mm), bolting (date of bolting), inflorescences (count on a particular date), 

and estimate of apical dominance using the degree of lateral vegetative branching in the rosette. 

The protocol for quantifying lateral vegetative branching is based on Remington (2015). 

However, our ratings ranged from 0 representing no visible lateral vegetive shoots or buds to 4, 

representing a rosette structure dominated completely by lateral shoots, with 4 being the highest. 

The rating method stays the same in these two studies except for the range, where Remington 

(2015) uses a range of 1-5. 

For statistical analyses, only images and data from 3 specific months were chosen that 

represented equally distributed periods (Sept 18, 2017; Dec 18, 2017; and Mar 3, 2018). The data 



 

 35 

gathered in this Experiment can be accessed through the given link. 

(https://github.com/everestial/TestOfApicalDominanceInArabidopsisLyrata ). 

Statistical Analyses 

I used the R (v. 4.0.5) programming language for statistical analysis. The initial treatment 

consisted of 4 treatment groups – a) Spray with water, b) Spray with DMSO, c) Spray with NPA, 

d) Apply NPA using drip on the apical meristem. Due to the small sample size within each 

group, we narrowed the "treatments" into two groups as "treatment-level," (1) NPA treated group 

containing treatments using NPA spray and NPA applicator on the tip of the meristem, and (2) 

Control group containing treatments using DMSO and Water. 

I tested for the effects of NPA treatment on diameter using mixed models using function 

lmer from lme4 (v. 1.1-26) package treating family, observable period and their interaction as a 

fixed effect, and plant-id as a random effect. In addition, I used a mixed model to test for 

treatment effects on the number of inflorescence shoots and lateral shoot rating.  

https://github.com/everestial/TestOfApicalDominanceInArabidopsisLyrata
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Figure 2.3 A. lyrata from Mayodan populations observed in different auxin inhibitor treatment groups 

Note: (a) A typical individual (Id: M-14-08-J) of A. lyrata from the Mayodan population at the beginning of the treatment.  (b) 

A sample (Id: M-14-20-F) was treated with control treatment after 3 months. (c) A sample (Id: M-14-20-D) was treated with NPA. 

The pictures were taken for each individual from a top view using iPhone 5s camera weekly for each individual. The given picture of 

the plant (Id: M-14-08-J) was assigned to the treatment group "NPA application using spray". Since it is at the beginning of the 

treatment, there are no signs of effect by NPA inhibition of IAA. Another plant (Id: M-14-20-D) was also assigned to the treatment 

group "NPA application using spray" and showed results of NPA after a few months (during the month of December 2017).  
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Results 

Experiment I: Variation in Apical Dominance Between Mayodan and Spiterstulen 

Variation in Auxin Transport Between Mayodan and Spiterstulen 

The distribution of auxin transport for Mayodan plants does not pass the Shapiro 

normality test (see, Supplementary Materials S2.B, Table S2.B1, Figure S2.B1), while the 

distribution for the Spiterstulen group can roughly be treated as normal. At the same time, 

Levene's test (see, Supplementary Materials S2.B, Table S2.B2, P-value = 0.990) indicates that 

the two groups' values are homogenous. 

Average disintegration per minute in Mayodan plants exceeds Spiterstulen by about 2400 

DPM. However, the difference in the median is only 1663.15 DPM (see Table 2.1). As the 

histogram shows, a couple of samples show around 20000 DPM among the Mayodan population, 

leading to this group's high gap between mean and median.  

Figure 2.4 Histogram of DPM Values for Two Populations, From Experiment-I 

 

Note: The X-axis shows the DPM values, while the y-axis indicates the number of 

Mayodan and Spiterstulen with those DPM levels. 
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Table 2.1 Summary Statistics of DPM for Populations My and Sp, From Experiment-I 

Population N Mean Std. Dev. IQR %25 Q %50 Q %75 Q 

Mayodan 17 10022.045 4062.547 5036.40 7634.050 8356.310 12670.45 

Spiterstulen 18 7603.797 3458.120 5681.84 4756.292 6693.175 10438.13 

Figure 2.5 Box Plots Showing DPM Values for Populations My and Sp 

 

Note: Y-axis Represents DPM Values, From Experiment-I 

A paired t-test (Figure 2.5) suggests marginal evidence for the significant difference in 

auxin transport between the two populations on the 10% confidence level (P=0.0678). However, 

since assumptions of normality are violated for these groups, a non-parametric Wilcoxon test 

was also conducted (see Table 2.2) with almost the same conclusion (P = 0.0616).  

Table 2.2 Wilcoxon-Test for Comparison of DPM Between My and Sp Individuals, From 

Experiment-I 

Variable µ𝑴𝒂𝒚𝒐𝒅𝒂𝒏 µ𝑺𝒑𝒊𝒕𝒆𝒓𝒔𝒕𝒖𝒍𝒆𝒏 𝑵𝑴𝒂𝒚𝒐𝒅𝒂𝒏 𝑵𝑺𝒑𝒊𝒕𝒆𝒓𝒔𝒕𝒖𝒍𝒆𝒏 W-Statistic P 

dpm3H 10022.045 7603.797 17 18 210 0.0616 
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Table 2.3 Summary Statistics of DPM for Each Individual Plant in Both My and Sp 

Populations, From Experiment-I 

Population Indiv. Mean Std. dev. IQR %25 Q %50 Q %75 Q 

Mayodan MY1 11924.39 4000.068 5247.30 8941.14 11270.45 14188.448 

Mayodan MY2 7902.842 1687.814 1532.45 6823.86 7690.50 8356.310 

Mayodan MY3 9885.695 5067.361 5028.37 6558.53 8241.13 11586.910 

Spiterstulen SP1 6023.430 2987.290 1918.62 4312.28 5019.43 6230.908 

Spiterstulen SP2 6629.805 3459.220 4903.93 4404.55 5088.97 9308.487 

Spiterstulen SP3 10158.15 2793.555 3254.92 8390.90 9743.83 11645.835 

Figure 2.6 Box Plots Showing DPM Values for Each Individual in Both Population (My 

and Sp) From Experiment-I 

 

Note: X-axis Represents DPM Values, From Experiment-I. Box Plots Are Displayed for 

Each Individual for Both Populations.  
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Tukey post hoc test 

Tukey post hoc test (see Figure 2.7) is conducted to determine whether any pair of groups 

show a significant difference in means. Since all the confidence intervals include 0, none of these 

differences can be considered significant. Only pairs MY1-SP1 and MY1-SP2 are close to not 

capturing the zero. 

Figure 2.7 Tukey Post Hoc Test of Significance Between Each Individual in Both My and 

Sp Populations for Observed DPM Values 

 

The classical pairwise t-test shows a similar picture (see Supplementary Materials 

S2.D, Table S2.D2). The difference in means for groups MY1 – SP2 and MY1 – SP3 is 

significant on the 5% confidence level. However, none of the differences are significant after the 

P-value is adjusted (via the FDR method). 

Nested Analysis 

To account for the individual-level effects on population differences, we conducted a 

nested ANOVA, which shows that the population-level effects are marginally significant. In 

contrast, the effects from individuals were not significant (see Table 2.4). 
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Table 2.4 ANOVA Test Statistics for Population, Including Individual-Level Effects on 

Observed DPM Values, From Experiment-I 

Effect F P-value 

Population 4.082 0.053 

Population:Individual 2.078 0.110 

Experiment II: Effects of Auxin Inhibitor NPA on Life-History Traits of A. lyrata 

(Mayodan Population) 

Overall, data contained observations from 59 individual plants from September 2017, 

December 2017, and March 2018 (Table 2.5). After removing observations containing missing 

values (as the plants died during the research period), the dataset resulted in overall 152 

observations. 

Table 2.5 The Number of Observations for Experiment-II for Each Period From 2017 to 

2018 

Month N NA N - NA 

September 2017 59 1 58 

December 2017 59 9 50 

March 2018 59 15 44 

Sum 177 25 152 

Effects of NPA Treatment on Diameter 

Plants in both treatment groups had no significant difference in mean diameter and 

showed similar data distribution before/when the treatment was started in September 2017 (see 

Figure 2.8). As time progressed, plants treated with NPA showed a smaller average diameter 
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growth with a relatively higher deviation by December 2017. However, between December 2017 

and March 2018, after the NPA treatment was discontinued, the NPA-treated plants increased 

growth rate, resulting in a slightly higher average diameter (see Figure 2.8). Individuals in the 

control group (treated with water or DMSO) demonstrated a rapid increase in diameter during 

the first few months, followed by a smaller change during the second stage. Those treated with 

NPA experienced a steady acceleration of diameter growth (see Figure 2.9). 

Despite having a different behavior in the growth process, the usage of NPA does not 

make a significant difference in overall diameter at the last stage of observation. These 

observations are supported by the Student's t-test (Table 2.6 and Table 2.7) and the mixed effect 

model estimates for diameter. In addition, the diameter coefficients at different periods are 

positive, meaning that the plants tend to grow over time. However, coefficients for treatment 

level are not significant except for their interaction with the December 2017 time period. 

Figure 2.8 Box Plots for Observations From Experiment-II for Observed Rosette Diameter 

by Treatment Level and Period 
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Figure 2.9 Rosette Diameters Change by Treatment Level and Time From Experiment II 

 

Table 2.6 T-tests: For the Test of Difference in Diameter by Treatment Level for Each 

Time Period, From Experiment-II 

Stage Prediction µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 µ𝑵𝑷𝑨 𝒕 𝑷
− 𝒗𝒂𝒍𝒖𝒆 

September 

2017 

µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 − µ𝑵𝑷𝑨 = 𝟎 50.89 50.97 -

0.022 

0.98 

December 2017 µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 − µ𝑵𝑷𝑨 > 𝟎 108.45 74.13 5.485 < 0.01 

March 2018 µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 − µ𝑵𝑷𝑨 = 𝟎 117.06 116.72 0.066 0.95 

Table 2.7 T-tests: For the Test of Changes in Diameter by Treatment Levels Between Two 

Consecutive Periods, From Experiment-II 

Stage Prediction µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 µ𝑵𝑷𝑨 𝒕 𝑷 

September 

2017 – 

December 2017 

µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 − µ𝑵𝑷𝑨 = 𝟎 57.20 24.62 4.643 < 0.01 

December 2017 

– March 2018 

µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 − µ𝑵𝑷𝑨 < 𝟎 9.47 32.66 -

3.636 

< 0.01 
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Table 2.8 Mixed Models for Diameter by Treatment Level Across Different Periods, From 

Experiment-II 

  dia mm 

Predictors Estimates CI P 

(Intercept) 50.89 44.07 – 57.71 <0.001 

Treatment Level [NPA] -0.10 -9.57 – 9.37 0.984 

Date [December 2017] 57.35 48.19 – 66.51 <0.001 

Date [March 2018] 65.91 56.75 – 75.07 <0.001 

Treatment Level [NPA] * 

Date [December 2017] 

-33.95 -46.54 – -21.37 <0.001 

Treatment Level [NPA] * 

Date [March 2018] 

-1.54 -14.63 – 11.55 0.817 

Random Effects 

σ2 266.16 

τ00 id 66.91 

ICC 0.20 

N id 59 

Observations 152 

Marginal R2 / Conditional R2 0.713 / 0.770 

Although NPA treatment does not seem to contribute to the final diameter of plants, it 

seems to affect the pattern of growth. The growth rate for plants treated with water outpaced the 

growth of the plants treated with NPA during the period in which NPA was applied (Sept-Dec). 

The mixed-effects model (Table 2.9) for diameter change suggests that plants with no NPA 

treatment on average grow 57.21 mm compared with 24.62 mm for plants with NPA. However, 

plants under no treatment show only about 9.5 mm growth, while using NPA causes a 32.66 mm 

increase after the NPA treatment was discontinued. 
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Table 2.9 Mixed Models for Diameter by Treatment Level Between Two Consecutive Time 

Periods 

  dia diff 

Predictors Estimates CI P 

(Intercept) 57.21 47.57 – 66.84 <0.001 

Treatment Level [NPA] -32.59 -45.81 – -19.36 <0.001 

Period [Dec 2017 – Mar 2018] -47.74 -61.52 – -33.96 <0.001 

Treatment Level [NPA] * 

Period [Dec 2017 – Mar 2018] 

55.78 36.44 – 75.11 <0.001 

Random Effects 

σ2 540.34 

τ00 id 0.00 

N id 50 

Observations 92 

Marginal R2 / Conditional R2 0.355 / NA 

Effects of NPA Treatment on Lateral Shoot Rating 

The visual scoring of the extent of lateral shoot development initially increased at a 

similar rate for both treatment groups. However, the NPA treatment group generally had a higher 

number of plants with a higher lateral shoot rating for most of the growth period. For example, 

the means were similar in December, but the NPA group had a higher mean rating in March. 

This suggests a change in apical dominance during the early stage of the plants during NPA 

treatment.  
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Figure 2.10 Lateral Shoot Rating by Growth Stage (or Time) From Experiment-II 

 

Note: The data points are "jittered" around the X-axis timepoints and the Y-axis integer 

lateral shoot ratings. 

Table 2.10 Observed Lateral Shoot Rating Values for Each Treatment Group at Different 

Times From Experiment II 

Treatment Lateral Shoots Rating Scale 

0 1 2 3 4 

 September 2017 

Control 19 9 0 0 0 

NPA 20 10 0 0 0 

 December 2017 

Control 0 2 21 0 0 

NPA 0 5 16 4 0 

 March 2018 

Control 0 2 7 13 1 

NPA 0 1 2 14 4 

The difference between the two groups is not dramatic for earlier periods. However, the 

results from a Wilcoxon test provide favorable evidence that plants treated with NPA have 

higher lateral shoot ratings during the period of March (P-value for March = 0.0378, see Table 

2.11). 
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Table 2.11 Wilcoxon-Tests for Lateral Shoot Rating Between Control and NPA Treatment 

Group, From Experiment II. Tests Are Shown for Three Different Time Periods 

Stage Prediction µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 µ𝑵𝑷𝑨 𝒘 𝑷 − 𝒗𝒂𝒍𝒖𝒆 

September 

2017 

µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 − µ𝑵𝑷𝑨 = 𝟎 0.321 0.333 415 0.931 

December 2017 µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 − µ𝑵𝑷𝑨 = 𝟎 1.913 2.00 278 0.8 

March 2018 µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 − µ𝑵𝑷𝑨 = 𝟎 2.565 3.00 164 0.0378 

Effects of NPA Treatment on Inflorescence Number 

In September and December, the average number of reproductive shoots in the NPA-

treated and Control groups is very similar, which is a period when the meristems have not yet 

committed to reproductive shoots. Wilcoxon test shows no significant difference in the number 

of inflorescences between the control and NPA treated group for each period (see Table 2.13). 

The confidence intervals are large, which does not let us assume the real difference in means to 

exist. However, specifically during March, the mean number of inflorescences was fewer in the 

NPA-treated group, though the difference is not significant. 

Nevertheless, the results show some negative correlation between lateral shoot rating vs. 

the number of inflorescences, suggesting NPA might have played a role in altering resource 

allocation by changing apical dominance. 
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Figure 2.11 Number of Reproductive Shoots by Months for Each Treatment Level 

 

Table 2.12 The Number of Plants by the Number of Inflorescences Across Treatment 

Groups and Periods 

Treatment Number of inflorescences 

0 1 2 3 4 5 6 7 8 9 

 September 2017 

Control 27 1 0 0 0 0 0 0 0 0 

NPA 28 2 0 0 0 0 0 0 0 0 

 December 2017 

Control 5 16 1 0 1 0 0 0 0 0 

NPA 12 10 2 2 0 0 0 1 0 0 

 March 2018 

Control 5 4 3 3 2 3 0 0 2 1 

NPA 6 4 2 3 1 3 2 0 0 0 
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Table 2.13 Wilcoxon-Tests for the Number of Inflorescences Between Control and NPA 

Treatment Groups. Tests Are Shown for Three Different Periods 

Stage Prediction µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 µ𝑵𝑷𝑨 𝒘 𝑷
− 𝒗𝒂𝒍𝒖𝒆 

September 

2017 

µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 − µ𝑵𝑷𝑨 = 𝟎 0.0357 0.0667 407 0.612 

December 2017 µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 − µ𝑵𝑷𝑨 > 𝟎 0.9565 1.00 351 0.39 

March 2018 µ𝑪𝒐𝒏𝒕𝒓𝒐𝒍 − µ𝑵𝑷𝑨 = 𝟎 2.913 2.286 267 0.551 

The mixed-effects model estimates  show that the treatment level does not significantly 

affect the number of inflorescences (reproductive shoots). 

Discussion 

Experiment I 

We predicted that analysis of 3H-IAA transport would show a higher level of auxin 

transport in Mayodan individuals. We found weak evidence (F-statistic = 4.082, P=0.0527) of 

variation in the strength of auxin transport between populations, with Mayodan individuals 

showing higher auxin transport. However, the results might have been confounded by variation 

in the diameter of inflorescences as Spiterstulen individuals mostly have a thicker diameter 

which is visually apparent. However, we did not measure inflorescence diameters, preventing 

using diameter measurements as covariates in this analysis. We would expect the amount of 

transport to increase with diameter, so the actual differences in the transport rate might have been 

more significant if those were taken into account. 

Future studies measuring transport differences with larger biological and technical 

replicates and the measurements of the diameter of the inflorescences (as a covariate) can 

provide more clarity on this issue. In addition, further analyses of transport differences can be 

done at population levels, using auxin pulse-chase assay or further investigating variations in 

auxin transport rate in individuals with contrasting homozygous genotypes in the QTL regions. 
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This test would help us test the role of specific QTLs in auxin transport and potentially on life-

history tradeoffs.  

Experiment II 

It is known that the response of the different tissues to IAA transport inhibitor is not 

uniform (Negi et al., 2008; Lewis and Muday, 2009). We found weak evidence indicating that 

auxin transport inhibition affects life-history traits (lateral shoot rating and the number of 

inflorescences). While the evidence is not strong, it points to the direction as predicted and 

observed in Experiment I; altering apical dominance using NPA inhibitor increased the 

emergence of lateral vegetative shoots and reduced the number of inflorescences. The plant 

treated with NPA also had high mortality, thus reducing the test's statistical power. This 

mortality could be due to altered auxin dynamics causing direct toxic effects of NPA or the 

ecological consequences of the tradeoff or NPA affecting some developmental pathways. In the 

NPA treatment group, we observed a delay in the apparent effects of transport inhibition on 

lateral shoot rating and the number of inflorescences, with effects showing up three months after 

NPA treatment was discontinued. This is consistent with the idea that variation in traits such as 

apical dominance in early development can cascade through later developmental stages, 

changing the entire trajectory of life history. If the NPA treatment could have been continued 

without any adverse effects based on the dose of NPA, the measured differences in life history 

traits between the two groups might have become greater. 

Also, the last set of measurements was taken early in the reproductive period. If we had 

continued the measurements during the the reproductive period, we would expect that the 

number of inflorescences might have increased over time for the control group and decreased for 

the NPA treated individuals. And, for the lateral vegetative shoots, the application of NPA could 
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have reduced apical dominance and allowed more lateral shoots to grow. These lateral shoots 

could have turned into lateral vegetative shoots at the later stage of plant development, even after 

the effects of NPA wore off. The results conclude that similar experiments are required with 

larger sample size and more controls to attest that variation in apical dominance in early life 

stages could be one of the fundamental mechanisms driving life-history variation and tradeoffs. 

I also emphasize that even though none of the differences in either the auxin transport or 

auxin inhibition assays were statistically significant other than diameter growth during the month 

of December, and lateral shoot rating during the month of March, all the trends were in the 

predicted direction. This provides evidence, although tentative, that genetic variation affecting 

auxin transport could underlie adaptive variation in life history in A. lyrata. 

Future studies involving optimized doses of NPA treatment can provide a more robust 

estimate of this question. Additionally, genetic insertion of My alleles (for auxin transport-

related genes) on the Spiterstulen genotype background and vice-versa can test whether auxin 

transport genes result in life-history variation.   



 

 52 

Supplementary Materials: Chapter II 

Abbreviations 

2,4-D    2,4-dichlorophenoxyacetic acid 
3H-IAA   radiolabeled auxin 

ABA    abscisic acid  

ABCB transporters  ATP-binding cassette transporters 

ANOVA   Analysis of variance 

approx.   Approximately 

ATIs    Auxin transport inhibitors 

ba1    barren stalk1 

bif2    barren inflorescence2 

BRs    brassinosteroids 

CFM    methyl-2-chIoro-9-hydroxyfluorene-9-carboxylate 

CK    cytokinins 

cm    centimeter                                     

CPD    2-carboxyphenyl-3-phenylpro- pane-l,2-dione 

d     days 

d.p.m.    disintegrations per minute 

ddH2O    double-distilled water 

DMSO    Dimethyl sulfoxide   

DPM    Disintegrations per minute 

EGC    Environmental Growth Chamber 

ET    ethylene 

FDR     false discovery rate 

fmol    femtomole   

GA    gibberellins  

IAA    indole-3-acetic acid 

IBA    indole-3-butyric acid 

IQR    interquartile range 

JA    jasmonic acid 

MES    2-(n-morpholino)-ethanesulfonic acid 

mg    milligram 

mg/mL    milligram per milliliter      

ml    milliliter 

mm    millimeter 

mmol    milimole  

MY    Mayodan 

MY1, MY2, MY3  Mayodan individual 1, 2 and 3 

NAA    1-naphthaleneacetic acid 

NBP proteins   nonamer-binding protein 
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nMol    number of moles 

NPA    1-naphthylphthalamic acid 

PBA    2-(1-pyrenoyl) benzoic acid 

pH    potential of hydrogen 

PIN    pin-like phenotype 

PIN-HL   PIN-Hydrophilic Loop 

QQ-plot    quantile-quantile 

QTL    quantitative trait locus 

SA    salicylic acid 

SLs    strigolactones 

SP    Spiterstulen 

SP1, SP2, SP3   Spiterstulen individual 1, 2 and 3 

TIBA    2,3,5-triiodobenzoic acid 

TIR3    Transport Inhibitor Response 

uM    micrometer 

wt/vol    Mass by Volume 

 

Supplementary Materials S2.A: Protocols for Auxin Transport and Auxin Transport 

Inhibition Assay 

Protocol # 1. for auxin transport assay 

This method was used to quantify the basipetal transport of auxin in inflorescence tissue 

samples. The original protocol (Lewis and Muday, 2009) was modified to fit our experimental 

needs. The radioactive substance's medium can be prepared either as agar or liquid. However, 

necessary measures should be taken if the solution is aqueous as it promotes wicking and 

diffusion and affects the measurements.  

• The grown plants with healthy inflorescences were prepared as described in the 

experiment 1A. 

• The 100 nM 3H-IAA was prepared by adding approximately 2–4 ml of 3H-IAA at 20–50 

Ci mmol1 to 1 ml of 0.05% MES, pH 5.5–5.7.  
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• About 20 ml of radioactive IAA solution was dispensed into the 0.5-ml microcentrifuge 

tubes.  

• The inflorescence stem was cut at 2 cm and 4.5 cm from the apex using microscissors.  

• The apical part of the samples (cut segment of the inflorescences) were dipped into the 

IAA solution for 6 hours.  

A 2 cm section of the sample was again excised using micro scissors from the non-

submerged end of the segment (basipetal end of the tissue) and transferred to a scintillation vial 

to measure 3H d.p.m. 

Protocol # 2. for Auxin inhibition assay 

The NPA stock solution was purchased from https://www.chemservice.com/n-1-

naphthylphthalamic-acid-solution-s-12507t1-1ml.html , with concentration of 100 ug/ml in T-

butylmethyl Ether solution (Part #:S-12507T1-1ML, CAS: 132-66-1). 

Step A: Prepare a concentrated and dilute NPA stock. 

1) Dissolve 100 mg of NPA in 5 mL DMSO to get a 2 % w/v (i.e. 20 mg/mL) solution of 

NPA. 

2) Prepare a 10x dilution of the NPA stock solution by combining the appropriate 

quantity of ddH2O; for example, if you want to create a 20 mL dilute NPA stock, 

combine 2 mL stock solution with 18 mL ddH20. It gives a 2 mg/mL dilution. 

3) Wrap the container in aluminum foil and place it in the freezer to keep the 

concentrated (2%) stock safe. 

Step B: Prepare the NPA treatment and control solutions. 

1) Make two 500 mL dd-H20 media bottles. 

2) Add 728 ul of 10x dilution NPA stock solution to one of the ddH2O stocks using 

sterile pipette tips. 

3) Add 728 ul of DMSO to the other flask of cooled medium for preparing the control 

treatments. NOTE: Make sure to keep the NPA control and treatment solutions in the 

dark and cool (4 °C) environment before and after the use. 

Step C: Bi-weekly application of treatment and control solutions  

https://www.chemservice.com/n-1-naphthylphthalamic-acid-solution-s-12507t1-1ml.html
https://www.chemservice.com/n-1-naphthylphthalamic-acid-solution-s-12507t1-1ml.html


 

 55 

NOTE: Step-C can vary according to the experimental requirements. 

1) Divide the plants into four categories based on their treatment assignment: a) Spray 

with water , b) Spray with DMSO, c) Spray with NPA, d) Apply NPA using drip on the 

apical meristem. 

2) Apply respective treatments weekly. NOTE: Remove the plants from the GC (growth 

chamber) while applying treatments to avoid the treatment residues from spreading to 

other groups of plants. 

3) Apply treatments bi-weekly; be sure to follow all necessary safety precautions. 

• Spray the crown of the plants in group-A with water. 

• Spray the crowns of the plants in group-B with DMSO solution in a way that it 

sufficiently wets the crown. 

• Spray the crowns of the plants in group-C with NPA solution in a way that it sufficiently 

wets the crown. 

• For the plants in group-D apply the NPA solution (0.5-1.0 mL) on the apical meristem 

(tip of the plant's main shoot apex) using an applicator. 
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Protocol # 3. Lateral shoot rating system. 

Unlike the original ratings that use a scale of 1-5, this study uses a 0-4, with no apparent 

distinction in ratings between the two studies, except for their rating values (derived from source 

(Remington et al., 2015)). 

Lateral vegetative shoot ratings: 

0 – All visible rosette leaves are primary leaves (on main stem, not emerging from lateral 

shoots). All newer leaves (not fully elongated yet) are attached above the older, fully-

elongated leaves. Primary shoot apex is obvious and dominant, and the leaves extend 

horizontally from it. 

1 – Some leaves emerging from lateral shoots are visible but are much smaller than fully-

elongated primary leaves. Some newer leaves are obviously attached below larger leaves 

on main stem. Primary shoot apex is obvious and still clearly dominant over lateral 

vegetative shoots. 

2 – Leaves from lateral shoots are apparent, and some may be difficult to distinguish 

from primary leaves. The primary shoot apex is still apparent but is losing its dominance, 

and some lateral shoots are nearly as vigorous as the main shoot. The rosette is beginning 

to acquire a bushy form, with many leaves in a vertical orientation. 

3 – Many lateral shoot leaves are nearly as large as the primary leaves. The primary and 

lateral shoot apices are becoming difficult to distinguish, though larger primary leaves 

produced earlier may still be apparent on the lower part of the plant. The rosette has a 

bushy form, with leaves extending at all angles. 

4 – The primary and lateral shoots can no longer be distinguished. All fully-elongated 

leaves are relatively compact. The rosette has a dense cushiony appearance, with leaves 

extending at all angles. 

Supplementary Materials S2.B: Checking for Normality and Endogeneity (Experiment #1) 

Table S2.B1 Shapiro Test for Observed DPM Values in Individuals of Each My and Sp 

Population 

Population Variable Statistic P-value 

Mayodan dpm3H 0.875 0.027 

Spiterstulen dpm3H 0.917 0.116 

Table S2.B2 Levene's Test Statistic for normality of DPM Values 

Statistic P-value 

0.0001666 0.990 
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Figure S2.B1: QQ-Plot – Checking for Normality and Endogeneity for Population-Level 

DPM Values 
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Supplementary Materials S2.C: Checking for Normality and Endogeneity for Each 

Individual. (Experiment #1) 

Table S2.C1 Shapiro Test for observed DPM values in individuals of population 

Population Variable Statistic P-value 

MY1 dpm3H 0.933 0.604 

MY2 dpm3H 0.948 0.722 

MY3 dpm3H 0.866 0.212 

SP1 dpm3H 0.791 0.049 

SP2 dpm3H 0.826 0.099 

SP3 dpm3H 0.968 0.880 

Table S2.C2 Levene's test statistic for normality of DPM values. 

Statistic P-value 

0.6746619 0.646 

 Figure S2.C1: QQ-plot for DPM (3H) (y-axis) of each population 
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Supplementary Materials S2.D: Pairwise Comparison Between Individuals of Both the 

Populations 

Table S2.D1 Tukey Test Results between individuals of both the populations 

Term Group1 Group2 Estimate CI lower CI upper P-value 

(adj.) 

individual MY1 MY2 -4021.55 -10554.78 2511.6750 0.436 

individual MY1 MY3 -2038.7 -8267.89 4190.4884 0.915 

individual MY1 SP1 -5900.97 -12130.16 328.2234 0.0713 

individual MY1 SP2 -5294.59 -11523.78 934.5984 0.132 

individual MY1 SP3 -1766.24 -7995.43 4462.9484 0.952 

individual MY2 MY3 1982.85 -4550.38 8516.0827 0.937 

individual MY2 SP1 -1879.41 -8412.64 4653.8177 0.949 

individual MY2 SP2 -1273.04 -7806.27 5260.1927 0.991 

individual MY2 SP3 2255.31 -4277.92 8788.5427 0.896 

individual MY3 SP1 -3862.27 -10091.46 2366.9251 0.428 

individual MY3 SP2 -3255.89 -9485.08 2973.3001 0.609 

individual MY3 SP3 272.46 -5956.73 6501.6501 1 

individual SP1 SP2 606.38 -5622.82 6835.5651 1 

individual SP1 SP3 4134.73 -2094.47 10363.9151 0.354 

individual SP2 SP3 3528.35 -2700.84 9757.5401 0.526 
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Table S2.D2 Pairwise Test results between individuals of both the populations 

Variable Group1 Group2 n1 n2 P-value Significance P-value 

(adj.) 

Significance 

(adj.) 

dpm3H MY1 MY2 6 5 0.0707 ns 0.212 ns 

dpm3H MY1 MY3 6 6 0.327 ns 0.493 ns 

dpm3H MY2 MY3 5 6 0.362 ns 0.493 ns 

dpm3H MY1 SP1 6 6 0.00726 ** 0.109 ns 

dpm3H MY2 SP1 5 6 0.388 ns 0.493 ns 

dpm3H MY3 SP1 6 6 0.0688 ns 0.212 ns 

dpm3H MY1 SP2 6 6 0.0148 * 0.111 ns 

dpm3H MY2 SP2 5 6 0.557 ns 0.643 ns 

dpm3H MY3 SP2 6 6 0.122 ns 0.261 ns 

dpm3H SP1 SP2 6 6 0.769 ns 0.824 ns 

dpm3H MY1 SP3 6 6 0.394 ns 0.493 ns 

dpm3H MY2 SP3 5 6 0.301 ns 0.493 ns 

dpm3H MY3 SP3 6 6 0.895 ns 0.895 ns 

dpm3H SP1 SP3 6 6 0.0523 ns 0.212 ns 

dpm3H SP2 SP3 6 6 0.0949 ns 0.237 ns 

Supplementary Materials S2.E: Data, Codes, and R-scripts (Experiment #1) 

All the source code and data for these analyses are hosted on this GitHub repo. 

https://github.com/everestial/TestOfApicalDominanceInArabidopsisLyrata  

 

  

https://github.com/everestial/TestOfApicalDominanceInArabidopsisLyrata
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NOTE: Supplementary Materials for Experiment 2 begins. 

Supplementary Materials S2.F Checking for Normality and Endogeneity (Experiment #2) 

Table S2.F1 Shapiro Test for normality of Diameter (mm) in each Treatment Level 

Treatment 

Level 

Date Variable Statistic P-value N 

Control September 

2017 

Diameter 

(mm) 

0.958 0.317 28 

Control December 

2017 

Diameter 

(mm) 

0.954 0.352 23 

Control March 2018 Diameter 

(mm) 

0.970 0.689 23 

NPA September 

2017 

Diameter 

(mm) 

0.968 0.505 30 

NPA December 

2017 

Diameter 

(mm) 

0.976 0.770 27 

NPA March 2018 Diameter 

(mm) 

0.960 0.515 21 

Table S2.F2 Shapiro Test for normality of Diameter difference (mm) in each Treatment 

Level 

Treatment 

Level 

Date Variable Statistic P-value N 

Control Sep 2017 – 

Dec 2017 

Diameter 

difference 

(mm) 

0.929 0.105 23 

Control Dec 2017 – 

Mar 2018 

Diameter 

difference 

(mm) 

0.957 0.425 23 

NPA Sep 2017 – 

Dec 2017 

Diameter 

difference 

(mm) 

0.984 0.944 27 

NPA Dec 2017 – 

Mar 2018 

Diameter 

difference 

(mm) 

0.929 0.129 21 
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Table S2.F3 Shapiro Test for normality of Lateral Shoots ratings in each Treatment Level 

Treatment 

Level 

Date Variable Statistic P-value N 

Control September 

2017 

Lateral 

Shoots 

0.590 0.000 28 

Control December 

2017 

Lateral 

Shoots 

0.324 0.000 23 

Control March 2018 Lateral 

Shoots 

0.808 0.000 23 

NPA September 

2017 

Lateral 

Shoots 

0.59 0.000 30 

NPA December 

2017 

Lateral 

Shoots 

0.770 0.000 27 

NPA March 2018 Lateral 

Shoots 

0.762 0.000 21 

Table S2.F4 Shapiro Test for normality Inflorescence number  in each Treatment Level 

Treatment 

Level 

Date Variable Statistic P-value N 

Control September 2017 Inflorescence 0.188 0.000 28 

Control December 2017 Inflorescence 0.639 0.000 23 

Control March 2018 Inflorescence 0.885 0.013 23 

NPA September 2017 Inflorescence 0.275 0.000 30 

NPA December 2017 Inflorescence 0.655 0.000 27 

NPA March 2018 Inflorescence 0.872 0.010 21 
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Figure S2.D1 QQ-plot for rosette diameter (mm) (y-axis) of each Treatment Level (Control 

and NPA) 

 

 Figure S2.D2 QQ-plot for observed diameter difference (mm) in each Treatment Level 
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Figure S2.D3 QQ-plot for observed Lateral Shoots rating in each Treatment Level 

 

Figure S2.D4 QQ-plot for the observed number of inflorescence in each Treatment Level 

 

Supplementary Materials S2.G: Data, Codes, and R-scripts (Experiment #2) 

All the source code and data for these analyses are hosted on this GitHub repo. 

https://github.com/everestial/TestOfApicalDominanceInArabidopsisLyrata  

https://github.com/everestial/TestOfApicalDominanceInArabidopsisLyrata
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CHAPTER III: PHASING OF INDIVIDUAL GENOMES USING READ-BACKED-PHASED 

HAPLOTYPE AND MARKOV CHAIN MAXIMUM LIKELIHOOD ESTIMATION  

Abstract 

Haplotype phasing is the second most crucial issue in genomics after sequence alignment. 

A polyploid genome generates not appropriately arranged variants in a haplotype that forms a 

whole chromosome homolog. If the organism is diploid or polyploid, the called variants need to 

be scrutinized, so they are assigned to the proper homolog they originated from. Unfortunately, it 

isn't easy to separate a pair of chromosomes with current technology, and we often get the two 

haplotypes mixed. 

Phased haplotypes provide better estimates while doing analyses related to genetics, 

phylogenetics, and dissecting genotype-trait association. If the organism is diploid or polyploid, 

the called variants need to be scrutinized and assigned to the proper homolog they originated 

from. While there are different approaches to haplotype phasing, a statistical model is the most 

applied methods to phasing haplotypes.  

Most of the sequencing tools are challenging to customize during haplotype phasing. 

They also require a large number of reference haplotype samples. Therefore, we built a group of 

haplotype phasing tools/algorithms: Phase-Extender, Phase-Stitcher, and ShortVariantPhaser. 

These tools aim to fulfill the following major requirements - be able to customize parameters 

during haplotype phasing and run haplotype phasing using genotype containing unphased and 

read-backed-phased VCF data. Phasing using read-backed-phased haplotype blocks reduces the 

number of required reference panels. Additionally, this tool helps phase a cohort of samples 

where the partially phased genotypes information can help the samples phase each other. 
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We expect this tool to be beneficial for those organisms that do not have a substantial 

number of reference panels. While comparing results with other tools, Phase-Extender performs 

on par with ShapeIT using only 10 read-backed-phased samples. In comparison, ShapeIT uses 

1010 samples to achieve the same level of phasing accuracy. 

Introduction 

General Introduction to Modern Genomics 

The revolutionary advances in genome sequencing technology have, in turn, required 

advances in bioinformatics tools, including tools for sequence alignments, variant calling, and 

individual to population-level analyses of the variants. These tools help identify the genetic basis 

of traits and diseases and also help us apply the developed methods to the genomics and 

transcriptomics analyses in other biological models. 

Introduction to Haplotype Phasing 

"Haplotype phasing" is a significant discipline in bioinformatics that deals with putting 

the called variants into their original order on homologous chromosomes in a polyploid genome, 

with the earliest known method developed by Clark (1990). The technique for phasing 

haplotypes has grown over time and has been reformulated to incorporate new information 

gained from the increased sample size, increased length of the sequence reads, and partially 

phased variants, read-backed-phased (RBP) haplotypes, haplotypes from long reads. It also has 

seen improvements in statistical methods.  

A haplotype is the linearly arranged genotypes (by position) in a phased state, linked 

along a chromosome. A phased haplotype can also be called a single "haploid genotype" and, in 

such instances, can contain multiple SNP genotypes (Consortium et al., 2005). Technically, a 

haplotype represents strongly correlated adjacent genotypes in linkage disequilibrium (Daly et 
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al., 2001; Reich et al., 2001). Theoretically, a whole chromosome can be considered a haplotype. 

Therefore, a haplotype corresponds to a segment in the genome that provides necessary 

information for testing questions related to ancestry, demography, and association between 

genetic variation and phenotype or disease. 

The set of genetic variants received exclusively from the father are considered one 

haplotype, and the variations solely received from the mother are considered another haplotype 

of a particular chromosome. "Haplotype phasing" involves resolving this original state or order 

of inherited genetic variation, i.e., which specific variations came from which parent (Figure 

3.1). 

Figure 3.1 Evolution of Haplotypes. 

 

Note: A child inherits one chromosome from the father and one from the mother. In this 

example, there is a mutation at the second site of the paternal chromosome (C → T). There is 

also recombination on the maternal chromosome between the third and fourth site. Source:(Lo, 

2014). 
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Importance of Haplotype Phasing 

Haplotypes provide a holistic and detailed insight into the organism's genome and are 

much more informative than genotypes. In the polyploid genome, haplotypes refer to combined 

genetic variants on each homolog, highlighting the collective variation between the homologs. 

These unique variations in each homolog (aka chromosomal haplotypes) are vital in dissecting 

several evolutionary and molecular mechanisms related to allele-specific genetic and epigenetic 

changes (Adey et al., 2013; Shendure & Aiden, 2012; Snyder et al., 2015). They are also vital in 

association studies, detecting positive selection (Sabeti et al., 2002, 2007), understanding gene 

function, identifying recombination hotspots and recombination rates, and studying regions of 

the genome that are functionally related. Knowledge of chromosomal haplotype can also 

improve the accuracy of the analyses that depend on a diploid genome, such as competitive 

alignment of sequence reads to identify allele-specific expression (Pendleton et al., 2015; Seo et 

al., 2016). They also help identify a somatic mutation in heterogeneous cell populations (Loh et 

al., 2018; Nik-Zainal et al., 2012) and single-cell genomes (Zhang & Pellman, 2015), identifying 

associations between particular genes and disease. However, the associations we can detect with 

haplotypes cannot always be detected only using unphased genotypes (see Figure 3.2). (Atwell et 

al., 2011; Giakountis et al., 2009). 
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Figure 3.2 Haplotypes Help With Detecting Associations. With Only Genotype Data, We 

Cannot Establish the Association Between an Individual With the Disease and Their 

Genotype. 

 

Note: But if haplotypes are known, we can detect an association of disease with 

haplotype 'GG' ('00'). Source: (Lo, 2014) 

Approaches to Haplotype Phasing 

Haplotype inference of polyploid genome requires knowledge of DNA sequence on each 

homologous chromosome. The most common method for phasing haplotype is analyzing the 

genotypes of related individuals (Browning & Browning, 2011; Kong et al., 2008; Loh, 

Palamara, et al., 2016). For example, the haplotype of an individual can be prepared by learning 

the genotypes of the parents or inferred from the genotypes of several related individuals 

(siblings) who provide "surrogate parent genotypes." Another method is applying statistical 

modeling of recombination based on genotype frequencies in a population (Loh, Danecek, et al., 

2016). Statistical methods aim to estimate the probability of recombination between adjacent 

polymorphic sites from a panel of reference haplotypes and produce the haplotype of an 

individual as the most likely configuration based on the estimated recombination probabilities. 

Statistical phasing makes highly accurate local haplotypes, but long-range haplotypes are only 

possible for closely related individuals or huge sample cohorts. It also has limited power in 

identifying low-frequency haplotypes and cannot phase de novo mutations or rare variants. 
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More accurate haplotype information can be directly obtained by sequencing or 

genotyping chromosomal fragments that have homologs separated (Browning & Browning, 

2011; Snyder et al., 2015). In this experimental separation method, the DNA sequences of each 

homolog are tagged before genotyping or sequencing. Experimental phasing is done at the single 

chromosome level (Fan et al., 2011; Ma et al., 2010; Porubsky et al., 2017; Yang et al., 2011; 

Zhang et al., 2015), which can produce whole-chromosome phased haplotype of an individual 

genome with no switch errors. But even in such cases, the haplotype is often incomplete due to 

uneven sequence coverage caused by amplification bias in the generation of sequencing libraries 

from a single chromosome. In addition, single chromosomes are difficult to isolate, and the 

process is highly laborious and not scalable. 

Rationale 

This tool described below was born out of the requirement to have a diploid phased 

genome for ASE (allele-specific expression) analyses (Chapter 4). A. lyrata is an outcrossing 

model with high heterozygosity, affecting the mappability of the sequence reads from two 

haplotypes when aligned on a single haploid reference genome. For RNAseq reads, these 

differences in mappability can lead to biased outcomes as analyses based on RNAseq mainly 

depend upon the count of reads aligned to the genes. Adding to that problem, our RNAseq reads 

are from F1 hybrids of plants from two different populations (Mayodan, NC, USA; and 

Spiterstulen, Norway). Given that the reference genome of A. lyrata has most of its variants from 

the North American population, ASE analyses required extra caution. We had to identify the 

sources of RNA sequence reads in F1 hybrids of a cross between parents from genetically 

diverse parental populations, and genome and transcriptome sequences were not available from 

the parents. This is especially important for RNAseq data analyses where the counts of reads 
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aligned have some significance. Another inherent problem was that A. lyrata does not have a 

population-specific genome published. The current genome (Hu et al., 2011) is closer to North 

American populations, including Mayodan. 

This limitation regularly occurs in samples from many natural populations, including 

humans. Therefore, we developed an in-house tool that provides a comprehensive and more 

controlled approach to haplotype phasing and helps with phasing when very few samples are 

utilizing the read-backed-phased haplotypes. 

Read-backed-phased Haplotypes 

RBP (read-backed-phased) haplotypes are generally short, phased haplotype block 

generated by sequence reads that overlap two or more heterozygous variants. Due to the increase 

in the size of PE reads, RBP haplotypes are an increasingly common occurrence in current VCF 

databases. However, as discussed in the previous section, whole-genome level haplotype 

generation is still a challenge. Figure 3.3 shows a sequence read spanning two heterozygous 

sites. If there are multiple reads spanning multiple heterozygous sites, a large RBP haplotype can 

be prepared. Individual genome or transcriptome sequence reads provide phase information for 

variants on the same read, and overlapping reads sharing the same variants allow this to be 

extended. 

  



 

 72 

Figure 3.3 RBP Variants in the Sequence Reads Aligned to the Reference Sequence. 

 

Note: The former part of the alignment reads contains two heterozygous sites (T, A), (G, 

C). This read-level information helps phase those two sites. The reads in the later part of the 

alignment support the phasing of 3 heterozygous sites. If all the reads are taken into account, we 

can have 5 variants phased together because a few reads overlap at the heterozygous site (G, C). 

Objective 

Our objective is to create an algorithm and pipeline that helps to 

• Phase consecutive read-backed-phased haplotypes in an individual diploid genome. 

• Phase interspersed non-phased variants in an individual diploid genome between the two 

RBP haplotypes. 

Proposed Haplotype Phasing Method 

The primary intent of the proposed method is to take in partially phased haplotype 

information from several diploid samples (see Table 3.1 for more details) and apply one or more 

of the following:  
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• join two consecutive blocks,  

• assign the haplotypes from an RBP block to a specific population if distinct populations 

are set in the input data,  

• create short haplotypes using non-RBP variants, the unphased ones interspersed between 

two RBP blocks. 

During the phasing process, other samples in the cohort that have variants (phased 

haplotype blocks and unphased genotypes) with similar properties provide the statistical power 

to solve haplotype phasing for the particular individual diploid variants. We expect this pipeline 

to be beneficial primarily to the community working with emerging models and organisms that 

are a part of a genomics study but do not have the necessary haplotype reference panels.  

Data Requirements 

The data required for this tool and pipeline can be prepared using: 

• Phaser  (Castel et al., 2016) – This application uses the aligned BAM or SAM file and 

VCF file to produce RBP VCF. The haplotype block size obtained using this method may 

range from 2 to higher. Generally, on average, 10 to 50 variants are phased within the 

block, but it mainly depends upon the size of the Single End or Paired End reads. 

• VCF-Simplify (Giri, unpublished, https://github.com/everestial/VCF-Simplify ) – This 

application takes in the RBP VCF and simplifies the variants into a table format for 

further phasing. Other similar tools can be used to prepare the haplotype data in the 

required format. 

  

https://github.com/everestial/VCF-Simplify
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Algorithms 

We provide three classes of algorithms: 

• PhaseExtender – This algorithm/tool joins two consecutive RBP haplotype blocks in a 

proper configuration using likelihood estimates derived from a population of samples and 

computed using Markov chains. 

• PhaseStitcher – This algorithm/tool reads a RBP haplotype from the F1 diploid hybrid 

and assigns each haplotype (in the short haplotype block) to a respective parental 

population given variant information of the two distinct populations are provided. 

• ShortVariantPhaser – This algorithm/tool phases the non-RBP interspersed variants 

between two RBP blocks. 

In Table 3.1, a typical haplotype dataset prepared using Phaser and VCF-Simplify is 

shown. The RBP VCF is simplified into a table, and numeric genotypes are converted into 

IUPAC bases. The data represents standard partially phased haplotype data prepared nowadays 

due to the increased size of PE reads and the availability of several tools to do RBP. In this 

dataset, CHROM represents the chromosome number. POS represents the genomic position. 

The example data contains four samples (S1 to S4), S*_PI represents the index of a block, and 

S*_PG represents the phased genotype at that genomic position. The state of the genotype 

(phased or unphased) depends upon the S*_PI; if PI values are the same, the two consecutive 

genotypes are considered phased. Two blocks with different PI values are not in a phased state, 

e.g., the haplotype blocks belonging to PI=3 and PI=4 in sample S1_PI are not in a phased state 

with each other. Furthermore, any genotypes with "/" or "." in PG are not in a phased state with 

consecutive genotypes (above or below). 
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The objective of phaseExtender is to solve the phase state between two consecutive 

blocks; for example, PI=3 and PI=4 in sample S1 using information from other samples. 

Similarly, consecutive blocks in a different sample can also be extended using data from other 

samples.  

The objective of phaseStitcher is to assign haplotype (left and right) from a particular 

block to a specific population if samples in the data were categorized into two distinct 

populations. For example, if sample S1 was a hybrid of two populations, A and B, this method 

helps determine if the left haplotype of S1 belongs to population A or B. All the haplotypes 

assigned to a particular population are then joined to create a genome-wide haplotype. 

The objective of shortVariantPhaser is to solve phasing in interspersed variants where 

RBP was absent. For example, in sample S3, the interspersed variants with PI= "." are phased, 

and the index (PI) is updated with a new and unique value. The new phased block is then joined 

with consecutive blocks using phaseExtender or phaseStitcher. 

Table 3.1 A Typical Haplotype Blocks Produced by Readbackedphasing 

CHROM POS S1_PI S1_PG S2_PI S2_PG S3_PI S3_PG S4_PI S4_PG 

2 1 3 A|T 4 A|T 2 A|T 7 T|A 

2 11 3 T|G 4 T|G 2 T|G 7 G|T 

2 16 3 G|C 5 G|C 2 G|C 7 C|G 

2 26 3 C|A 5 A|A . A/C 7 A|C 

2 32 4 G|C 5 G|C . G/C 7 C|G 

2 48 4 T|G 5 T|G . G/C 7 G|T 

2 59 4 A|T 5 A|T 3 A|T 7 T|C 

2 81 4 C|A 5 C|A 3 C|A 7 A|C 

2 95 . T/C 5 C|T 3 C|G 8 C|T 

2 99 . C/A 5 A|C 3 A|C 8 A|C 

Note: The CHROM represent the chromosome number, POS represents the position of 

the allele in the genome. The other headers with *_PI indicate the block index of the phased 

haplotype block, and *_PG indicates the diploid genotype at that that OS. Two PI with same 

name and number indicates that the genotypes are in phased state. 



 

 76 

Algorithm #1: Phase-Extender 

We developed an algorithm/method to phase RBP haplotypes in an individual diploid 

genome by applying Markov chains between the adjacent blocks. 

Overview and Objective 

Consider a chromosome from a diploid organism (with 𝑦 heterozygous sites) split into 𝑧 

Readback-Phased haplotype blocks of a random size such that: 

𝐿𝑧𝑥 ∈ (1, 𝑦 − 1) 

Each RBP block is represented by two haplotype strings in a diploid organism, 

 𝑧 = {ℎ, ℎ‾} 

Therefore, using the intuitive notation 𝐻𝑧 = {ℎ𝑧 , ℎ‾𝑧}, a chromosome-wide haplotype is, 

CWhap = {𝐻1}, {𝐻2}, . . . , {𝐻𝑧} 

However, unlike traditional haplotype phasing, where the genotype at each genomic 

position has to be phased, we solve the whole phased state by solving the phase state between 

two consecutive haplotype blocks at one time. 

Given two adjacent RBP haplotypes, 𝐻1 = (ℎ1, ℎ‾1) and 𝐻2 = (ℎ2, ℎ‾2), the objective is to 

identify the most likely haplotype, 𝐻 = (ℎ, ℎ‾), in a sample (𝑆𝑖) conditional upon the given 

reference haplotypes in other samples ℎ𝑆=1
𝑛 . Analytically,  

𝐻 = arg max 
𝐻
ℙ(𝐻|𝐻1, 𝐻2|ℎ𝑆=1

𝑛 ) 

Algorithm 

The most likely haplotype state, 𝐻 = {ℎ, ℎ‾}, given two consecutive haplotypes, 

Block 1: 𝐻1 = {ℎ1, ℎ1‾ }

Block 2: 𝐻2 = {ℎ2, ℎ2‾ }
 

can be, 
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𝐻 = {
{ℎ1ℎ2, ℎ1 ℎ2, } − if phased in 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

{ℎ1ℎ2,ℎ1ℎ2, } − if phased in 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒
 

To solve the phase state, we build a Markov chain from each site in Block 1 to each site 

in Block 2 and compute the likelihood of each possible configuration. If Block 1 had 𝑚 sites 

(indexed as 𝑖) and Block 2 has 𝑛 sites (indexed as 𝑗), and if "ATGC" represents the four possible 

nucleotide bases represented by 𝐷 as: 

D: A=1, T=2, G=3, C=4 

Then the maximum likelihood estimates of the configuration 𝐿1 (parallel) and 𝐿2 

(alternate) are: 

{
  
 

  
 
𝐿1 = ∏  

2

𝑘=1=𝑙

 {∏  

𝑚

𝑖=1

  [
𝑁(𝐷𝑖)

2𝑠
∏  

𝑛

𝑗=1

 (
∑  𝑠
𝑓=1  𝑁(𝐷𝑖𝑗)

𝑁(𝐷𝑖)
)]}

𝐿2 = ∏  

2

𝑘 =1≠ 𝑙

 {∏  

𝑚

𝑖=1

  [
𝑁(𝐷𝑖)

2𝑠
∏  

𝑛

𝑗=1

 (
∑  𝑠
𝑓=1  𝑁(𝐷𝑖𝑗)

𝑁(𝐷𝑖)
)]}

 

where we compactly define 𝑁(𝐷𝑖) to be the number of allele 𝐷 at the 𝑖th position across 

the entire sample, and ∑ 𝑁𝑠
𝑓=1 (𝐷𝑖𝑗) as the sum of allele 𝐷 at the 𝑖th position to D at the 𝑗th 

position across the entire sample. 

We then calculate the likelihood ratio R to join two haplotypes in either configuration. 

𝑅 =
𝐿1
𝐿2

 

So, if ( )

2log R  is positive, "parallel configuration" is the more likely configuration; else 

"alternate configuration" is more likely. We can also set a threshold value for R that can be set 

for assigning phases. We provide a detailed process and likelihood estimation using examples in 

Supplementary Materials S3.A. 
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Algorithm #2: Phase-Stitcher 

We developed this algorithm/method to phase RBP haplotypes in the F1 hybrid by 

haplotype segregation. 

Overview and Objective 

Consider a diploid hybrid sample 𝑆𝑖, with haplotype pairs (ℎ, ℎ‾) and reference haplotypes 

from two populations, population A and population B, both with the number of haplotypes 𝑚 

and 𝑛: 

ℎ𝑆𝑎=1
𝑚 , ℎ𝑆𝑏=1

𝑛  

The objective is to assign haplotypes 𝐻 ∘ (ℎ, ℎ‾) from a diploid phased (or RBP) F1 

hybrid to the respective parental population. Analytically, 

𝐻 ∘ (ℎ, ℎ‾) = arg max 
𝐻
ℙ(ℎ ∈ {𝐴, 𝐵}, ℎ‾ ∈ {𝐴, 𝐵}|ℎ𝑆𝑎=1

𝑚 , ℎ𝑆𝑏=1
𝑛 ) 

Algorithm 

Given the reference haplotypes from two populations (𝑆𝑎 and 𝑆𝑏) representing the hybrid, 

we can solve the phase assignment of each haplotype in {ℎ, ℎ‾} to either population A or 

population B, by estimating the likelihood of each haplotype conditional on it belonging to each 

population using Markov chain models. 

ℎ ∈ 𝐴, ℎ‾ ∈ 𝐵

ℎ‾ ∈ 𝐴, ℎ ∈ 𝐵
 

To prepare a genome-wide haplotype, the haplotypes assigned to a particular population 

can be strung together. If the two haplotypes in a RBP haplotype block were ℎ and ℎ‾  and if 

populations A and B have alleles in 𝑚 sites (indexed as 𝑖), and if "ATGC" represents the four 

possible nucleotide bases represented by 𝐷 as, 

D: A=1, T=2, G=3, C=4 
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the likelihood estimates of haplotype assignment are then, 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝐿ℎ∈𝐴 =∏

𝑁𝑎(𝐷𝑖)

2𝑆𝑎

𝑙

𝑖=1

∑ 𝑁𝑎
𝑆𝑎
𝑓=1 (𝐷𝑖𝑘)

𝑁𝑎(𝐷𝑖)
, 𝑖 < 𝑘 ≤ 𝑙

𝐿ℎ∈𝐵 =∏
𝑁𝑏(𝐷𝑖)

2𝑆𝑏

𝑙

𝑖=1

∑ 𝑁𝑏
𝑆𝑏
𝑓=1 (𝐷𝑖𝑘)

𝑁𝑏(𝐷𝑖)
, 𝑖 < 𝑘 ≤ 𝑙

𝐿ℎ‾∈𝐴 =∏
𝑁𝑎(𝐷𝑖)

2𝑆𝑎

𝑙

𝑖=1

∑ 𝑁𝑎
𝑆𝑎
𝑓=1 (𝐷𝑖𝑘)

𝑁𝑎(𝐷𝑖)
, 𝑖 < 𝑘 ≤ 𝑙

𝐿ℎ‾∈𝐵 =∏
𝑁𝑏(𝐷𝑖)

2𝑆

𝑙

𝑖=1

∑ 𝑁𝑏
𝑆𝑏
𝑓=1 (𝐷𝑖𝑘)

𝑁𝑏(𝐷𝑖)
, 𝑖 < 𝑘 ≤ 𝑙

 

Where we intuitively define 𝑁𝑎(𝐷𝑖) to be the allele D at the 𝑖th position in population A, 

and 𝑆𝑎 to be the number of haplotypes in population A. Additionally, we define ∑ 𝑁𝑎
𝑆𝑎
𝑓=1 (𝐷𝑖𝑘) as 

the transition matrix counts for alleles from the 𝑖th to the 𝑘th position across the population. This 

is done to specify three scenarios: if the phase is known, 𝐷𝑖𝑘 = 1; if the phase is unknown, 𝐷𝑖𝑘 =

0.5; and if the phase does not occur, 𝐷𝑖𝑘 = 0. 

We then calculate the likelihood ratio R to assign haplotype to the population they most 

likely belong to. 

Likelihood ratio that left haplotype belongs to Population A vs Population B. 

𝑂𝑑𝑑𝑠𝐿 =
𝑃𝐿𝑃𝑎
𝑃𝐿𝑃𝑏

 

Likelihood ratio that right haplotype belongs to Population A vs Population B. 

𝑂𝑑𝑑𝑠𝑅 =
𝑃𝑅𝑃𝑎
𝑃𝑅𝑃𝑏

 

Odds that the left haplotype blongs to Population A and the right haplotype to Population 

B vs. the alternative assignment.  
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𝑅 =
𝑂𝑑𝑑𝑠𝐿
𝑂𝑑𝑑𝑠𝑅

 

So, if ( )

2log R  is positive, "left haplotype" is the more likely to belong to population A; 

else, "right haplotype" is more likely belong to population A. We can also set a threshold value 

for R that can be set for assigning haplotype to population. We provide a detailed process and 

likelihood estimation using examples in Supplementary Materials S3.B. 

Algorithm #3: Short-Variant-Phaser 

An algorithm/method developed to phase variants interspersed between RBP haplotypes 

in a diploid genome based on the HapHedge data structure and algorithm explained in Eagle2 

(Loh, Danecek, et al., 2016). 

Objective 

Consider a panel of diploids (pairs of haplotypes) containing 𝑛 variant sites 𝑆𝑘 , such that  

𝑘 ∈ (1, 𝑛). Our objective is to determine the most likely orientation of a given (unphased) target 

diploid 𝐻 = (ℎ, ℎ‾); that is, on a per-site basis, we determine if switching to the "alternative" 

orientation is more probable than staying in a predefined "parallel" orientation. Analytically, we 

can say our objective is to determine, for each site 𝑆𝑘, 

𝐻𝑘 = arg m  ℙ (𝐻𝑘 = (ℎ𝑘 , ℎ‾𝑘) ∣ 𝐻𝑘−1 = (ℎ𝑘−1, ℎ‾𝑘−1)) 

This quantity is calculated using the Positional Burrows-Wheeler Transform (PBWT) to 

determine the transition matrix. Positional Burrows-Wheeler Transform (PBWT) provides an 

appropriate data structure for bi-allelic data as it supports a run-length compressed representation 

of aligned haplotype data (Durbin, 2014). PBWT approaches haplotype matching using suffix 

array ideas. This compresses with run-length encoding on large data sets by more than a factor of 

a hundred smaller than using gzip on the raw data. With the increasing sample sizes, more multi-
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allelic sites are expected to be observed. Hence, there is a necessity to handle multi-allelic 

genotype data(Naseri et al., 2019). In addition, PBWT data structure has been used for genotype 

imputation (Rubinacci et al., 2020).  

Algorithm 

We use a shorthand notation for the transformation of the variant site 𝑆𝑘. Let 𝑆𝑘
′  denote 

the PBWT of the site 𝑆𝑘 such that, 

PBWT (𝑆𝑘): 𝑆𝑘 ↦ 𝑆𝑘
′  

allows us to determine the transition matrix 𝑇𝑘 between sites 𝑆𝑘
′  and 𝑆𝑘+1. More 

specifically, 

𝑇𝑘 = [
1

𝑐(0)

1

𝑐(1)
] ⋅ [

𝑐(0𝑡0) 𝑐(0𝑡1)

𝑐(1𝑡0) 𝑐(1𝑡1)
] 

Where, for 𝑖, 𝑗 ∈ {0,1}, we define an operation 𝑐(𝑖) to count the number of transitions 

from the allele encoded 𝑖 in the site 𝑆𝑘
′ , and 𝑐(𝑖𝑡𝑗) to count the number of transitions from 𝑖 to 𝑗 

between sites 𝑆𝑘
′  to 𝑆𝑘+1. Our problem described in the above section then reduces to 

determining the greatest elements in each row of 𝑇𝑘. Supplementary Materials S3.C provides a 

detailed process and likelihood estimation for this method. 

Application Test, Results, and Usage 

This section deals with testing the haplotype phasing application Phase-Extender and 

compares the phase quality of the haplotype by comparing it with the known dataset belonging to 

a sample of human genomes, NA12891. This test and result can also be used as a test case for 

doing recursive phase-extension with RBP data derived using a phaser or other sources. A more 

extensive version of the test and tutorials are available at 

https://github.com/everestial/TestSwitchErrors. 

 

https://github.com/everestial/TestSwitchErrors


 

 82 

Test Data And Parameters 

I used phased genomes (HapMap3 release #2, NCBI build b36) released in 2009, b36  

(Altshuler et al., 2012; Consortium et al., 2005; Howie et al., 2009) for testing phasing quality by 

phase-Extender. Data source - https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#reference, 

https://www.internationalgenome.org/data-portal/sample/NA12891  

I set sample NA12891 as the target sample for phasing and other samples in the cohort as 

the reference samples. To emulate RBP haplotype blocks, we split each phased genome into 

fragments of varying lengths. The fragments were prepared by breaking the whole genome into 

blocks containing a random number of variants between 3 and 12 per block and flipping the 

haplotype position (left to right and vice-versa) randomly. Other samples in the cohort were also 

randomly fragmented and flipped, so it represented a typical dataset for haplotype phase 

extension. Overall, we prepared two sets of data, Set-A containing 10 samples including sample 

NA12891 and Set-B containing 25 samples including NA12891. The simulated RBP blocks 

(each containing 3 to 12 variants) were prepared assuming Poisson-like distribution. A Python 

script for this simulation is available as file "makeHapFile.py" in the source repo.  

Phasing accuracy was measured using the proportion of adjacent haplotypes that were 

phased incorrectly with each other (switch errors) against the known dataset for sample 

NA12891. 

Phase extension was run using the following parameters.  

Set-A: 

Iteration 01 

$ item= ‘NA12891’ 

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#reference
https://www.internationalgenome.org/data-portal/sample/NA12891
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$ python3 –m phase-extender --input SetA/simulated_RBphasedHaplotype_SetA.txt --

SOI ${item} --output SetA/phased_${item}_SetA_run01 --numHets 25 --lods 5 --writeLOD yes 

--hapStats yes --addMissingSites no 

Iteration 02  

$ python3 –m phase-extender --input SetA_02/phaseExtendedHaplotype_SetA_02.txt --

SOI ${item} --output SetA_02/phased_${item}_SetA_run02 --numHets 40 --lods 1 --writeLOD 

yes --hapStats yes --addMissingSites no 

Set-B: 

Iteration 01  

$  python3 –m phase-extender --input SetB/simulated_RBphasedHaplotype_SetB.txt --

SOI {item} --output SetB/phased_${item}_SetB_run01 --numHets 25 --lods 5 --writeLOD yes --

hapStats yes --addMissingSites no 

Iteration 02 

$ python3 –m phase-extender --input SetB_02/phaseExtendedHaplotype_SetB_02.txt --      

SOI {item} --output SetB_02/phased_${item}_SetB_run02 --numHets 40 --lods 1 -- writeLOD 

yes --hapStats yes --addMissingSites no 

Note that haplotypes may not phase genome-wide in just two iteration and may require 

further iteration. The phasing process can be fine-tuned by adjusting parameters such as "lods", 

"numHets", "useSample", "snpTh". 

A short description of each of the arguments of phase extender are as follows: 

It denotes the number of heterozygotes. The maximum number of heterozygote SNPs is 

used from each consecutive block to compute the maximum likelihood estimate of each 

configuration between two blocks. The default value is 40. 
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lods  :- log2 of Odds cut off threshold. The cutoff threshold used to extend consecutive 

haplotype blocks. The default value is set at (2^5 = 32 times likely). Two consecutive blocks will 

be joined in parallel configuration if computed log2(likelihood) > lods threshold 

useSample :- Samples to use in the given input haplotype file (plus reference haplotype) 

to compute transition matrix. By default all the samples in the reference haplotype file and input 

file will be used. 

writeLOD :- It is a Boolean argument which writes the calculated LODs between two 

consecutive haplotype blocks when processing phase extension to the output file if true is passed. 

Note: the 'lods-score' are printed regardless of if the consecutive blocks are joined or not. 

hapStats :-  Prepare descriptive statistics and histogram of the haplotype size distribution 

of the input haplotype file vs. extended haplotype for the sample of interest. By default, the 

program doesn't print haplotype statistics. 

AddMissingSites :- It directs programs to include the non-phased and missing genotype 

data from the input haplotype file to the final phase-extended output file.  

Results and Discussion 

The phase-extension using phase extender showed an increase in the number of 

variants/blocks phased with each iteration for both data sets (See, histogram, figure 3.3, 3.4, 3.5 

both Set-A and figure 3.8, 3.9, 3.10 for Set-B). As expected, the switch-error (SE) was lower for 

Set-B (iteration 01, adjusted SE = 0.026; iteration 02, adjusted SE = 0.0144) compared to Set-A 

(iteration 01, adjusted SE = 0.046; iteration 02, adjusted SE = 0.017483), see Table 3.3 and 

Table 3.4. The phasing accuracy was also comparable to the one done by ShapeIT (SE = 0.03) 

(Zhan, 2017). 
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Comparison Of Phase-Extender With Shape-IT 

We compared the results from Phase-Extender with results from SHAPEIT, a fast and 

accurate tool for the estimation of haplotypes (aka phasing) from genotype or sequencing data. It 

is a new computational algorithm to infer haplotypes under the genetic model of coalescence 

with recombination in Phasev2.1 (Delaneau et al., 2008). It uses binary trees to represent the sets 

of candidate haplotypes for each individual, making it faster than other alternatives. It can also 

be used in other HMM-based inferencing software from various fields.  

It is important to distinguish that ShapeIT application phased completely unphased 

NA12891 sample using 1010 phased reference samples producing SER=0.03, while phase-

Extender produced adjusted SER= 0.032 with only 10 RBP samples. The SER for set-B was 

even lower (adj. SER = 0.00982). This result shows that phase-extension using RBP haplotypes 

provide a good method for phasing haplotypes. 

Phase-Extender has not been tested for speed against other tools like ShapeIT, beagle 

given it's written in python, but the convenience and accuracy it would provide with small data 

makes this application an excellent utility for phasing haplotype. The most significant advantage 

is that the application can use few sequenced samples that are related to each other and can help 

phase each other. Overall, we expect Phase-Extender to be a tool of choice when phasing 

genome with a limited number of reference panels or in experiments where cohort of sequenced 

samples can help phase each other. Another benefit of phase-Extender is that it provides finer 

controls over haplotype phasing when accuracy and reiterative process is important during 

phasing process.  

 

 

http://en.wikipedia.org/wiki/Haplotype_estimation
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Results: from phase-Extender on Set-A Dataset 

Table 3.2 shows the results of phase extension for set-A data after 2 iterations. The initial 

data set has 9666 variants distributed in 1933 RBP blocks. The block with minimum variants has 

3 variants and block with maximum variants has 12 variants. The block covering the shortest 

genomic distance covers 104 bp and longest one covers 2057927 (bp – base pairs). The first 

iteration of phase extension joined several RBP blocks reducing the number of haplotypes to 391 

and increasing the maximum number of variants to 237 variants in the new haplotype block. 

Phase extension also increased the genomic distance covered. Subsequently iteration-02 further 

increased haplotype phase extension. 

Figure 3.4 Histogram Showing the Frequency of Haplotype by Size of the Haplotype 

(Measured As Genomic Distance) 
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Note: With each iteration, the size of the haplotype increases with decrease in the number 

of haplotypes. With further iteration, we expect there to be a single haplotype block covering the 

whole genome. 

Figure 3.5 Histogram Showing Frequency of Haplotype by Size of the Haplotype 

(Measured As Number of Heterozygous Sites Within the Haplotype) 

 

Note: With each iteration the size of the haplotype increases with a decrease in the 

number of haplotypes. With further iteration, we expect a single haplotype block covering the 

whole genome.  
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Figure 3.6 Bar Plot Showing Frequency of Haplotype in Each Iteration for Chromosome 

#20 

 

Note: Each iteration reduces the number of haplotypes, showing that smaller haplotype 

blocks are being extended into longer ones. With further iteration, we expect a single haplotype 

block covering the whole genome. Right subplot shows total numbers of variants present in 

chromosome. 

Table 3.1 Metrics of Changes in Haplotypes for Set-A Data 

Stage No of 

variants 

No of 

haplotypes 

No of  

variants in 

(shortest, 

longest) block 

Genomic 

distance in 

(shortest, 

longest) block 

Switch 

Error 

Rate 

Switch 

error rate 

(adjusted) 

initial 9666 1933 3 - 12 104 - 2057927 - - 

iteration 1 9666 391 3 - 237 753 - 4386983 0.03062 0.046658 

iteration 2 9666 67 3 - 879 

2245 - 

6022477 

0.01665 0.017483 
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Figure 3.7 Switch Error Points After First Iteration of Phase Extension for Sample 

NA12891 Using Data Set-A 

 

Note: The switch error is calculated at 0.03062. 

Figure 3.8 Switch Error Overlayed With Haplotype Breaks for Sample NA12891 Using 

Data Set-A 

 

Note: The adjusted switch error is calculated at 0.04658 after accounting for haplotype 

breaks (two consecutive haplotypes which did not join). 

Results: from phase-Extender on Set-B Dataset 

Table 3.3 shows the results of phase extension for set-B data after 2 iterations. Initially 

the data has 9666 variants distributed in 1933 RBP blocks. The block with minimum variants has 
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3 variants and the block with maximum variants has 12 variants. The block covering the shortest 

genomic distance covers 104 bp and the longest one covers 2057927 (bp – base pairs). The first 

iteration of phase extension joined several RBP blocks reducing the number of haplotypes to 391 

and increasing the maximum number of variants to 237 in the new haplotype block. Phase 

extension also increases the genomic distance covered. Subsequently iteration-02 further 

increased haplotype phase extension. 

Figure 3.9 Histogram Showing Frequency of Haplotype by Size of the Haplotype 

(Measured As Genomic Distance) 

 

Note: With each iteration the size of the haplotype increases with decrease in the number 

of haplotypes. With further iteration, we expect a single haplotype block covering the whole 

genome. 
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Figure 3.10 Histogram Showing Haplotype Frequency by Size of the Haplotype (Measured 

As Number of Heterozygous Sites Within the Haplotype) 

 

Note: With each iteration, the size of the haplotype increases with a decrease in the 

number of haplotypes. With further iteration, we expect a single haplotype block covering the 

whole genome. 
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Figure 3.11 Bar Plot Showing the Frequency of Haplotype in Each Iteration for 

Chromosome 

 

Note: Note that each iteration reduces the haplotype frequency, suggesting smaller 

haplotype blocks are being extended into longer ones. We expect a single haplotype block 

covering the whole genome with further iteration. 

Table 3.2 Metrics of Changes in Haplotypes for Set-B Data 

Stage No of 

variants 

No of 

haplotypes 

No of  

variants in 

(shortest, 

longest) 

block 

Genomic 

distance in 

(shortest, 

longest) 

block 

Switch Error 

Rate 

Switch error 

rate (adjusted) 

initial 9666 1933 3 - 12 

104 - 

2057927 

- - 

iteration 

01 9666 207 3 - 232 

1290 - 

3442116 

0.01572522 0.02607076 

iteration 

02 9666 4 

284 -

3386 

2245 - 

26087506 

0.01417339 0.0144837575 
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Application Repos 

All three applications are available at 

1. https://github.com/everestial/phase-extender 

2. https://github.com/everestial/phase-stitcher 

3. https://github.com/everestial/short-variant-phaser 

A detailed description and test result is provided in Supplementary Materials S3.D. Due 

to time and resources constraints; only application phase-Extender has been tested in detail. 

Web source for phasing on same sample NA12891 using ShapeIT. 

1. https://gist.github.com/zhanxw/3c4e764cf1a3be6eb74c88dff08be3f4  

2. https://portal.biohpc.swmed.edu/content/training/bioinformatics-nanocourses/gwas/zhan-

phasing-workshop/   

https://github.com/everestial/phase-extender
https://github.com/everestial/phase-stitcher
https://github.com/everestial/short-variant-phaser
https://gist.github.com/zhanxw/3c4e764cf1a3be6eb74c88dff08be3f4
https://portal.biohpc.swmed.edu/content/training/bioinformatics-nanocourses/gwas/zhan-phasing-workshop/
https://portal.biohpc.swmed.edu/content/training/bioinformatics-nanocourses/gwas/zhan-phasing-workshop/
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Supplementary Materials: Chapter III 

Supplementary Materials S3.A: Phase-Extender in Detail 

Example showing the detailed computation of haplotype phasing using Phase-Extender. 

This section will provide a quantitative explanation of the Phase-Extender algorithm 

meant to prepare long-range haplotypes (and possibly genome-wide haplotype) by threading two 

adjacent RBP haplotypes. Phase-Extender applies the LD test between two consecutive blocks to 

estimate the possible configuration for phase extension. 

Table S3.A1: A typical VCF file produced by phaser 

 

Table S3.A2: A typical haplotype file produced from the VCF (not exact, though) 
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Figure S3.A1 Representing a breakpoint in the "sample – ms02g" 

 

In the above haplotype, there is a breakpoint in sample ms02g at position 15882091-

15882451. The RBP haplotypes are [C-T-A-G, T-C-C-T] at index PI=6, and [T-T-T-T and C-C-

C-A] at index PI=4. We want to solve which phase from PI=6 connects with PI=4. Given that 

all other samples have haplotype intact that bridges this breakpoint position, we can compute LD 

between the two blocks using the other samples and find the most likely configurations for 

joining the two haplotypes.  

Looking at the data, the left block of PI-6 (C-T-A-G) is more likely to phase with the 

right block of PI-4 (C-C-C-A) generating C-T-A-G-C-C-C-A and T-C-C-T-T-T-T-T. Therefore, 

we use the first-order Markov chain to compute the likelihood estimates extend the haplotype in 

the most likely configuration. 

Steps: 

1. Prepare emission and transition probability matrix to estimate likelihoods. 

2. Compute maximum likelihood estimate of each haplotype configuration. 
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Figure S3.A2 Two consecutive haplotype blocks 

 

Note: Top PI-6 is Block-1, and the bottom PI-4 is Block-2. The phased haplotype in the 

left is Hap-A and on the right is Hap-B. 

Figure S3.A3 Allele transition from all sites of former block-01 to all sites of later block-02 

Identify possible phase configuration 

 

• Parallel Configuration: 

Block 1-HapA with Block 2-HapA, so B01-HapB with B02-HapB 

• Alternate Configuration: 

Block 1-HapA with Block 2-HapB, so B 1-HapB with B 2-HapA 
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Build Markov chains for likelihood estimation  

Start at two sites of the blocks closest to each other (here, the positions are 15882091 and 

15882451). Starting at the nearest site maximizes the two blocks' LD (linkage disequilibrium) 

estimates under the condition the whole block is not used for LD estimates. 

1. Then, estimate emission counts of each nucleotide (A, T, G, C); see Figure-A1. And 

convert the emission counts to emission probabilities; see Table S3.A3 and S3.A4. 

2. Estimate transition counts from each nucleotide (A, T, G, C) of PI-6 to each nucleotide 

(A, T, G, C) of PI-4 for both haplotype configurations across all the samples. See Table 

04-A. The observed transition is counted as "1" if the "PI value" match between the 

former and later nucleotide, else as "0.5". Transition counts are then converted to 

transition probabilities, see Table A6. 

3. The likelihood estimates are maximized along the chain using either a max-sum or max-

product approach. 

4. Finally, log2Odds (of the maximum likelihood estimates) are computed to identify the 

possible haplotype configuration. 

Table S3.A3 Emission counts of each possible nucleotide 

 

Table S3.A4 Emission probabilities of each possible nucleotide 
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Note: Count the emission values for all the nucleotides (A, T, G, C) at each position of 

two consecutive blocks. Then convert the emission counts to emission probabilities. 

Calculation of transition counts and probability 

Table S3.A5 Representation of transition matrix (counts) 

 

Table S3.A6 Representation of transition matrix (probabilities) 

 

Note: Transitions are computed starting with the closest heterozygote sites between the 

two blocks. Therefore, the "1st" transition begins with the heterozygous sites of two blocks most 

close to each other. Likewise, the "2nd" transition begins from the 2nd nearest heterozygous site 

of the former block with the first heterozygous site of the later block. All other transitions are 

computed similarly. 
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Figure S3.A4 "Emission probabilities" of nucleotides at position 15882091. 

 

Figure S3.A5 Transition probabilities of nucleotides to position 15882451 following 

emissions at position 15882091 

 

Estimate maximum likelihood 

The maximum likelihood for a Markov chain is estimated as or "maximized product" of 

all the "p(emission) x p(transitions)" in the chain. Below, I show the maximum likelihood 

estimate for an example snippet using the max-product approach (using just two positions) and 

another example with two small haplotype blocks. 
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Estimation of maximum likelihood with examples 

Example 1. Computing Maximum Likelihood For Just Two Sites 

If we consider just two positions (15882091 & 15882451), we can estimate the maximum 

likelihood as: 

Table S3.A7 Example 1 Parallel configuration 

Parallel configuration: Alternate configuration: 

G|T G|T 

T|C C|T 

2 .5 4 .5

12 2 12 4

.001736

( ) ( ) ( ) ( )
P

P P G P GtT P T P TtC

=  

=

=   

  

𝑃𝑃𝐴𝑣𝑔 =
𝑃𝑃
2
= .000868 

2 1.5 4 3.5

12 2 12 4

0.036458

( ) ( ) ( ) ( )
A

P P G P GtC P T P TtT

=  

=

=   

  

.018229
2Avg

A
A

P
P = =  

 

Note: 

“ ”AtC −  represents "A" to "C" transition 

Estimate likelihood ratio(R): 

0.000868
0.047619

0.018229

Avg

Avg

P

A

P
R

P
= = =

 

So, if ( )

2log R  is positive, "parallel configuration" is the more likely configuration; else, 

"alternate configuration" is more likely. Here, in example-1 
( )

log 4.392
2
R

= − , suggesting alternate-

configuration is more likely. 
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Example 2. Maximum Likelihood Using Data From The Whole Block 

We run a Markov chain from each site in the former block to each site in the later block. 

Only a certain number of sites may be used in a real dataset when blocks have many sites. This 

capability is also provided in the built application. We maximize the score by multiplying the 

likelihood of each "emission-transition" estimate. 

Likelihood estimates of Parallel Configuration (Block-1-Hap-A (C-T-A-G) with Block-2-

Hap-A (T-T-T-T)) 

( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( ) ( ) 
2 .5 .5 .5 .5 3 .5 .5 .5 .5

12 2 2 2 2 12 3 3 3 3

2 .5 .5 .5 .5

12 2 2 2 2

P HA HB

HA

P P P

P P G P GtT P GtT P GtT P GtT P A P AtT P AtT P AtT P AtT

P T P TtT P TtT P TtT P TtT P C P CtT P CtT P CtT P CtT

= 
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         

       
=               
       

   
      
  

( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( ) ( ) 

6

0.0

4

00

2

65

5

1

4 .5 .5 .5 .5
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.6529

4 .5

0.0001929 0.000651 0.00008138

. .5

12 4

1

4

5

HBP P T P TtC P TtC P TtC P TtA P C P CtC P CtC P CtC P CtA

P C P CtC P CtC P CtC P CtA P T P TtC P TtC P TtC P TtA

E

   
      



−

   

=

=
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         

 
=  


  

 


.5 8 1.5 1.5 1.5 1.5

4 12 8 8 8 8

10 2.5 2.5 2.5 2.5 8 .5 .5 .5 .5
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2.22

(6.6529 (

0.00008138 0.00082397 0.003255 0.0000101725

15

15)
AvgP HA HBP

E
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     





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       
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Likelihood estimates of Alternate Configuration(Block-1-Hap-A (C-T-A-G) with Block-2-

Hap-B (C-C-C-A)) 
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Likelihood estimate of Parallel vs. Alternate configuration 

1.477 29
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Here, In example-2 
( )

log
2

70.38
R

= − suggesting alternate configuration is more likely.  
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Table S3.A8 Output Data from phase-Extender 

 

Supplementary Materials S3.B: Phase-Stitcher in Detail 

Example showing a detailed computation of haplotype phasing using Phase-Stitcher.  

This section will provide a quantitative explanation of the phase-stitcher algorithm for 

preparing long-range haplotypes (and possibly genome-wide haplotype) in an F1 hybrid.  

Table S3.B1 A typical haplotype file containing data from F1 hybrid and two 

representative parental populations 

pos f1/hybrid a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6 

11 A|C C|C T|C C|G C|C C|C C|C A|A A|A A|A T|A C|A A|A 

17 T|G G|G C|G G|G G|G G|G G|G T|T A|T T|T T|G T|T T|T 

23 G|T T|T T|T A|C T|G T|T T|T G|G G|G A|G G|G G|G G|G 

37 C|A A|A A|A A|A A|A A|A A|A C|C C|A C|C C|C C|A C|A 

 Note: this haplotype output does not match the VCF file shown in Table S3.A1 and 

Table S3.A2. 
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Figure S3.B1 A haplotype representing a hybrid sample. Based on the data (Table B1) we 

know which haplotype came from either "A" or "B" 

f1/hybrid

A|C

T|G

G|T

C|A

left-haplotype right-haplotype

Most likely came 

from pop  B  

Most likely came 

from pop  A  

 

Intuitively, we can tell that the left haplotype of the "F1" hybrid is more likely to have 

come from the population "B," and the right haplotype is more likely to have come from 

population "A," see data in Table S3.B1. To solve the phase assignment, we prepare the first 

order Markov-chain of emission and transition matrix to compute the likelihood estimates. We 

then take 𝑙𝑜𝑔2
𝑂𝑑𝑑𝑠  of the ratio of the computed likelihoods and assign each haplotype to the most 

likely population it came from. Several assigned haplotypes from F1 hybrids can then be joined 

to prepare a genome-wide haplotype. 

Steps: 

1. Prepare emission and transition probability matrix to estimate likelihoods. 

2. Compute maximum likelihood and assign haplotypes to respective populations. 

Identify possible haplotype assignment 

• Left haplotype belong to population A vs B. 

• Left haplotype belong to population A vs B. 
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Figure S3.B2 Markov chains of allele transition matrix in simple case 

Hap-A Hap-B

Transition

1st

2nd

3rd

4th

f1/hybrid

A|C

T|G

G|T

C|A

 

Figure S3.B3 Markov chains of allele transition matrix in complex case 

Hap-A Hap-B

Transition

1st

2nd

3rd

4th

f1/hybrid

A|C

T|G

G|T

C|A

 

Build Markov chains for likelihood estimation 

• Estimate the emission counts of each nucleotide (A, T, G, C) at each position for each 

population; see Table S3.B2 (for population A) and Table S3.B3 (for population B). To 

prevent the likelihood estimates from turning out to zero due to non-observed alleles, all 

the alleles are given default starting counts of 0.25. The count is then added to the actual 

observed counts; see Table S3.B4 and S3.B5. The emission counts are then converted to 

emission probabilities. See Table S3.B6 and Table S3.B7 

• Estimate transition counts from each nucleotide (A, T, G, C) in the former position to 

each nucleotide (A, T, G, C) in the later positions, see Table S3.B8 and Table S3.B9. 

The observed transition is counted as "1" if the "PI value" match between the former and 

later nucleotide in that sample, else as "0.5". 
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• To prevent the likelihood estimates turning out to zero due to non-observed allele 

transition (or haplotypes), all the possible changes (or haplotypes) are given default 

starting counts of 1/16 (i.e., 0.0625). The count is then added to the actual observed 

counts; see Table S3.B10 and Table S3.B11. Finally, the transition counts are converted 

to transition probabilities; see Table S3.B12 and Table S3.B13. 

Method for computing transition values.   

• Transitions are computed from alleles in the position earlier in the haplotype block to 

alleles later in the block. 

• In "simple-case" the transition is run only between two consecutive alleles starting at the 

beginning of the blocks. However, in the "complex-case" the transition values are 

calculated from each allele in earlier part of the block to each allele in later part of the 

block.  

Compute the maximum likelihood estimates for haplotype assignment 

• The likelihood estimates of each haplotype belonging to either population are maximized 

along the chain. Maximum likelihood for a Markov chain can be estimated as a 

"maximized product" of all the "p(emission) x p(transitions)" in the chain. 

• Finally, 𝑙𝑜𝑔2
𝑂𝑑𝑑𝑠  ratio of the maximum likelihood estimates is taken to identify the 

possible haplotype assignment to the respective population. 

Estimation of maximum likelihood with examples 

Example 3. Computing Maximum Likelihood For Just Two Sites 

If we consider just two positions (11 and 17), we can estimate the likelihood of haplotype 

assignment by computing "emission" and "transition" counts as shown in the tables below: 
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Emission counts: 

• This emission count is computed for all the nucleotides (A, T, G, C) at all positions in the 

block. In Table S3.B4, only counts at positions 11 and 17 are shown. 

• Add a default pseudo count of 0.25 to each allele (A, T, G, C) due to an unobserved allele 

in the path to avoid the maximum likelihood estimate turning out zero. If the alleles are 

observed, the observed count is added to the pseudo count. For example, since nucleotide 

"A" is not observed in population "A", at position 11, a pseudo count (i.e., count of 0.25) 

is added to the list of alleles. 

Table S3.B2 Emission counts of each possible nucleotide at position 11 and 17 in population 

"A" 

Pop A↓/ 

nucleotide  A T G C 

Total 

pos11 0 1 1 10 12 

pos17 0 0 11 1 12 

Table S3.B3 Emission counts of each possible nucleotide at position 11 and 17 in population 

"B" 

Pop B↓/nucleotide → A T G C 
Total 

pos11 10.25 1.25 0.25 1.25 13 

pos17 1.25 10.25 1.25 0.25 13 

Table S3.B4 Emission counts of each nucleotide for population "A" after adding pseudo 

counts (0.25 count per allele) 

Pop B↓/ 

nucleotide → A T G C 

Total 

pos11 10 1 0 1 12 

pos17 1 10 1 0 12 
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Table S3.B5 Emission counts of each nucleotide for population "B" after adding pseudo 

counts (0.25 count per allele) 

Pop A↓/nucleotide → A T G C 
Total 

pos11 0.25 1.25 1.25 10.25 13 

pos17 0.25 0.25 11.25 1.25 13 

Step 01-B: Convert emission count to emission probabilities. 

• This emission probability is computed based on counts adjusted with pseudo counts (i.e., 

Table S3.B3 and Table S3.B4). 

Table S3.B6 Emission probabilities of each possible nucleotide in population "A" 

Pop A↓/nucleotide→ A T G C 
Total 

pos11 0.25/13 1.25/13 1.25/13 10.25/13 1 

pos17 0.25/13 0.25/13 11.25/12 1.25/13 1 

Table S3.B7 Emission probabilities of each possible nucleotide in population "B" 

Pop B↓/nucleotide→ A T G C 
Total 

pos11 10.25/13 1.25/13 0.25/13 1.25/13 1 

pos17 1.25/13 10.25/13 1.25/13 0.25/13 1 

Step 02-A: Compute the transition count. 

• The transition matrix is prepared from nucleotides (A, T, G, C) at each earlier position to 

nucleotides (A, T, G, C) at each of the later positions. For example, in Table S3.B8 and 

Table S3.B9, only transition from alleles at positions 11 to 17 is shown. 

• If "PI" values match between two blocks in a sample, the observed transition is counted 

as 1, else 0.5, because non-matching "PI" indicates that all possible configurations are 

likely. 

• To avoid the maximum likelihood estimate turning out zero (0) due to unobserved 

transition in the path, a default pseudo count of 1/16 is attributed to each transition from 

{A, T, G, C} to {A, T, G, C}. If the alleles are observed, the observed count is added to 
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the pseudo count, e.g., a pseudo transition count (i.e., count of 1/16) is added to all other 

observed and unobserved transitions from nucleotide at position 11 to 17 in Table 

S3.B10 and Table S3.B11. 

Transition counts and probabilities for nucleotides from position 11 to 17 

Table S3.B8 Representation of transition count in population "A" 

from↓ A T G C total 

A 0 0 0 0 0 

T 0 0 0 1 1 

G 0 0 1 0 1 

C 0 0 10 0 10 

Table S3.B9 Representation of transition count in population "B" 

from↓ A T G C total 

A 1 8 1 0 10 

T 0 1 0 0 1 

G 0 0 0 0 0 

C 0 1 0 0 1 

Note: Transition counts and probabilities for nucleotides from positions 11 to 17 in both 

the populations after accounting for pseudo transition counts. 

Table S3.B10 Representation of transition counts (position 11 to 17) in population “A” 

after adding a pseudo count of 1/16. 

From↓ / to -> A T G C total 

A 1/16 1/16 1/16 1/16 0.25 

T 1/16 1/16 1/16 17/16 1.25 

G 1/16 1/16 17/16 1/16 1.25 

C 1/16 1/16 161/16 1/16 10.25 
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Table S3.B11 Representation of transition counts (position 11 to 17) in population "B" 

after adding a pseudo count of 1/16 

from↓ / to -> A T G C total 

A 17/16 129/16 17/16 1/16 10.25 

T 1/16 17/16 1/16 1/16 1.25 

G 1/16 1/16 1/16 1/16 0.25 

C 1/16 17/16 1/16 1/16 1.25 

Step 02-B: Compute the transition probabilities. 

• Transition probabilities are computed based on counts adjusted with pseudo counts (i.e., 

Table B10 and Table B11). 

Table S3.B12 Representation of transition matrix(probabilities) in population "A" 

(position 11 to 17) 

from↓ A T G C total 

A 0.25 0.25 0.25 0.25  1 

T 0.05 0.05 0.05 0.85  1 

G 0.05 0.05 0.85 0.05  1 

C 0.006 0.006 0.98 0.006  1 

Table S3.B13 Representation of transition matrix(probabilities) in population "B" 

(position 11 to 17) 

from↓ A T G C total 

A 0.103 0.787 0.103 0.006 1 

T 0.05 0.85 0.05 0.05 1 

G 0.25 0.25 0.25 0.25 1 

C 0.05 0.85 0.05 0.05 1 
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Emission and transition probabilities for a 4-state Markov process can be represented with 

figures below: 

Figure S3.B4 "Emission probabilities" of nucleotides at position 11 for Pop A 

 

Figure S3.B5 “Transition probabilities” of nucleotides from position 11 to position 17 for 

Pop A before applying pseudo count 
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Figure S3.B6 “Transition probabilities” of nucleotides from position 11 to position 17 for 

Pop A after applying pseudo count 

 

NOTE: Maximum likelihood estimation using alleles at sites 11 and 17 only 

Table S3.B14 For just two positions (11 & 17), we can estimate the likelihood as 

ml (lh is pop "a"): ml (lh is pop "b"): 

A|C A|C 

T|G T|G 
𝑃𝐿𝑃𝑎 = 𝑃(𝐴) × 𝑃(𝐴𝑡𝑇)

=
0.25

13
×

1

16 ∗ 0.25
= 0.0048

 

𝑃𝐿𝑃𝑏 = 𝑃(𝐴) × 𝑃(𝐴𝑡𝑇)

=
10.25

13
×

129

16 × 10.25
= 0.62

 

 
 

ml (rh is pop "a"):            ml (rh is pop "b"): 

A|C A|C 

T|G T|G 
𝑃𝑅𝑃𝑎 = 𝑃(𝐶) × 𝑃(𝐶𝑡𝐺)

=
10.25

13
×

161

16 × 10.25
= 0.77

 

𝑃𝑅𝑃𝑏 = 𝑃(𝐶) × 𝑃(𝐶𝑡𝐺)

=
1.25

13
×

1

16 × 1.25
= 0.0048

 

Note: "𝐴𝑡𝑇" → represents "A" to "T" transition 
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Estimate Likelihood ratio(R): 

𝑂𝑑𝑑𝑠𝐿 =
𝑃𝐿𝑃𝑎
𝑃𝐿𝑃𝑏

=
. 0048

. 62
= .0077 

𝑂𝑑𝑑𝑠𝑅 =
𝑃𝑅𝑃𝑎
𝑃𝑅𝑃𝑏

=
0.77

0.0048
= 160.41 

𝑅 =
𝑂𝑑𝑑𝑠𝐿
𝑂𝑑𝑑𝑠𝑅

=
. 0077

160.41
= .000048 

Therefore, there is ample evidence that the left haplotype belongs to population "B", and 

right haplotype belongs to population "A". 

Example 4. Maximum Likelihood Estimation Using Alleles From The Whole Block. 

Maximum likelihood estimates for left haplotype. 
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Maximum likelihood estimates for right haplotype 
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Likelihood estimates of left vs. right haplotype 

𝑅 =
𝑂𝑑𝑑𝑠𝐿
𝑂𝑑𝑑𝑠𝑅

=
32.245 12E −

2.2593 11E +
= 9.9371084𝐸 − 25 

Therefore, there is ample evidence that the left haplotype belongs to population A and the 

right haplotype belongs to population B. 

Table S3.B15 Output Data from phase-Stitcher 

f1/hybrid popA|popB 

A|C A|C 

T|G T|G 

G|T G|T 

C|A C|A 
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Supplementary Materials S3.C: ShortVariantPhaser in Detail 

Example showing a detailed computation of ShortVariantPhaser using the haphedge data 

structure. 

Overview and objective 

The titular Hap-Hedge algorithm aims to determine the most likely diploid (pair of 

haplotypes) using the method described in the article "Reference-based phasing using the 

haplotype Reference Consortium panel" (Loh, Danecek, et al., 2016) . This includes encoding 

input alleles given in the reference panel, running Positional Burrows-Wheeler Transform, and 

then determining the most likely diploid. 

Here we describe the algorithm analytically using simple example data. We intend to give 

definitive clarity on the algorithm using this example data and provide explicit visualization of 

each of its steps. Here is the tabular data we will be using, 

Table S3.C1 Example Data 

Site Genotype 1 Genotype 2 Genotype 3 Target Genotype 

S_1  A ∣ G A ∣ G A ∣ C A/G 

S_2  T ∣ C T ∣ C C ∣ T T/C 

Note the" Target Genotype" column in the table in Figure B1; haplotypes are separated 

using a forward slash,"/", instead of a bar,"|", to convey the target haplotypes are unphased. We 

may also include unphased haplotypes in the reference panel itself. But for now, the above table 

depicting three fully phased genotype sequences over two variant sites serves as our easy-to-use 

example. 
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Encoding Alleles 

We encode alleles in a binary form (we'll use 0 s and 1𝑠 ) as per-site operation. Meaning 

we assign each of the alleles in the target genotype a binary which need not be consistent over 

variant sites, and this encoding extends to the rest of the panel. Using our example data in Figure 

1 , the first and second sites may be encoded as, 

𝑆1: 𝐴 → 0, 𝐺 → 1

𝑆2: 𝑇 → 0, 𝐶 → 1
 

Applying this transformation to the entire panel, 

Table S3.C2 Encoded Data 

Site Genotype 1 Genotype 2 Genotype 3 Target Genotype 

S_1 0 ∣ 1 0 ∣ 1 0 ∣ 𝐶 0/1 

S_2 0 ∣ 1 0 ∣ 1 1 ∣ 0 0/1 

We may note that the allele labeled initially as" C" has not changed in site S_1. Naturally, 

this is because it does not fit into our binary encoding; and to the Positional Burrows-Wheeler 

Transform, this can be interpreted as an" empty" or" none type" object less than both 0 and 1. 

Running Positional Burrows-Wheeler Transform 

The Positional Burrows-Wheeler Transform (PBWT) is a proper numerical technique for 

deriving information from strings. In our case, we have binary sequences comprising haplotypes. 

Moreover, the" positional" part of the PBWT implies that we could make good use of 

visualization: 
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Figure S3.C1 Positional Burrows-Wheeler Transform on Encoded Data 

 

In the above figure, we take three steps. In step (A), we draw a column of boxes made 

distinct by the upper numeral, and we fill these boxes with the alleles from the first site. In step 

(B), we reorder the boxes by their filled object with the schema 1 > 0 > (anything else). 

Additionally, similar binaries are distinct. Meaning we can impose the ordering still preserves 

the relative ordering of those binaries; that is, if one 0 came before another 0, then that order is 

also preserved. Finally, step (C) is filling the second column of boxes (now rearranged) with the 

alleles from the second site. We can imagine repeating these steps over multiple sites; simply 

loop the instructions of filling the boxes with alleles and then reordering them. 

Ultimately, the goal of this transformation is to produce transition matrices between these 

binaries. We will have one transition matrix because we only have the transitions from the two 

variant sites. However, for N sites, we would have 𝑁 − 1  transition matrices. For our example 

data, we derive our transition matrix from part (𝐶), 

𝑇 = [
1/3 2/3
1/2 1/2

] 
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In more detail, from the first site to the second site, we transition from 0 to 0 exactly 1/3 

of the 3 transitions. Additionally, we transition from 1 to 0 once of the two transitions. Lastly, we 

simply disregard the" C." This ends the construction of the transition matrix from the PBWT. 

Calculating most-likely diploid 

The ultimate step in determining the most likely diploid, is constructing the 

HapHedge data structure. This is a rather simply step because we only have the one 

transition: 

Figure S3.C2 HapHedge Data Structure 

 

We should be keen to note why there are no transition probabilities between the very 

first node and the two incipient nodes: we know the two haplotype paths must be distinct, 

so one path must start at the node labeled "1" at the first site, and one path  must  start at the  

node  labelled " 0" at the first site. We effectively have two possible diploids, 
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Table S3.C3 Possible diploid haplotype configurations with probabilities 

Site Diploid 1 Diploid 2 

S_1  0 ∣ 1 0 ∣ 1 

S_2  0 ∣ 1 1 ∣ 0 

Probability         (2/3)(1/2) =  1/3 (1/3)(1/2) = 1/6 

And we arrive at the result that "Diploid 1" described in the table is our most likely 

diploid. Undoing our binary encoding, our phased target haplotypes, because of this 

algorithm, are (A, T) and (G, C) as one might readily interpret from the panel by 

inspection.  
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CHAPTER IV: ALLELE-SPECIFIC EXPRESSION OF CANDIDATE GENES FROM LG2 

QTL IN ARABIDOPSIS LYRATA USING F1 HYBRIDS  

Abstract 

Allele-specific expression (ASE), also called allelic imbalance in gene expression, is a 

biological process in which a heterozygous locus transcribes unequal levels of transcripts from 

the two alleles. Analysis of ASE helps identify allele and gene expression basis of variation in a 

phenotype caused by cis-regulatory variation.  

This chapter tests variation in ASE (allele-specific expression) of alleles between the 

Mayodan and Spiterstulen genome in F1 hybrids, specifically in the LG2 QTL, using RNA 

sequence data. Specifically, we tested ASE in a few candidate genes (PIN1, PIN3, PILS2, 

BRC2), which lie in LG2 (Chromosome 2) of the Arabidopsis lyrata reference genome. We 

picked these specific candidates based on a previous study conducted in A. lyrata populations 

(Mayodan and Spiterstulen) (Leinonen et al., 2013; Remington et al., 2013), which indicated that 

the genetic basis of adaptive variation in the life history of these two populations is in LG2 QTL.  

The auxin efflux transport carrier PIN3 showed statistically significant ASE (P-

value=1.053203e-07) and high expression of My allele followed by PILS2 (P-value=0.00062). 

We also did a global ASE assessment and found other interesting genes in the QTL regions; 

AL2G30710 shows higher expression of the Mayodan allele, and AL2G27860 shows higher 

expression of the Spiterstulen allele and are involved in phytohormone response. Functionally, 

AL2G30710 is an ethylene-responsive transcription factor, and AL2G27860 is a positive 

regulator of cytokinin-mediated development, which could affect plant developmental variation 

or work together with PIN3 to mediate developmental variation. 
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Introduction 

Allele-specific expression (ASE), also called allelic imbalance in gene expression, is a 

phenomenon where a single gene or locus in a heterozygous individual transcribes unequal levels 

of transcripts from the two alleles. Due to cis-regulatory variation, maternal and paternal alleles 

are unequally regulated and expressed in an allele-specific manner. ASE can be identified by 

quantifying the difference between RNA expression of the haplotypes, particularly at 

heterozygous loci. 

ASE could happen due to changes in the mRNA stability, differential transcription rate, 

and other processes that interfere with transcript abundance, like mutations that affect the 

binding of regulatory elements. The magnitude of allelic differences varies from purely 

monoallelic expression to subtle quantitative effects. The factors that regulate ASE are 

associated with genes and act in cis to change the transcript quantity. These cis-factors could be 

epigenetic marks or genetic variants that identify and interact unequally with paternal and 

maternal alleles. In contrast, the trans-acting factors would influence the expression of both 

parental alleles equally in the absence of cis-acting variation. Therefore, the ASE assessment 

plays a significant role in identifying a disease or phenotypic state caused by the expression 

levels of specific alleles (Raghupathy et al., 2018; Wittkopp et al., 2004). 

Importance of ASE Analyses 

The integration of transcriptome and genome data has been widely used to understand 

genome function. For example, ASE, which integrates the allelic variation information with the 

level of expression of the alleles, helps assess and identify biological processes like nonsense-

mediated decay (see Figure 4.1) (Castel et al., 2015). In addition, ASE helps identify maternal 

vs. paternal sources of genetic variation and uses that information on genetic variants (alleles) to 
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quantify variations in the level of gene expression, which could be a potential basis for variation 

in a particular phenotype. 

Figure 4.1 Allelic Expression With Its Sources 

 

A. Illustration of ASE. B. Biological sources of AE; the x-axis denotes the approximate 

sharing of AE across tissues of an individual. The y-axis shows the estimated sharing of AE 

signal in one tissue across different individuals. Source: (Castel et al., 2015). 

Allelic Variation for the Genetic Basis of Phenotype 

One way to identify gene-phenotype associations is GWAS, which has become popular 

with human genomics and a few other organisms where a plethora of genomics data is available. 

However, the GWAS study has some limitations or shortcomings. It requires large amounts of 

data from many samples, and the analyses must be genome-wide. The genotype-phenotype 

associations established through these methods are mostly not causal and need further testing and 

verification. Also, it does not provide a strong case for establishing the gene expression to 

phenotype basis of adaptation. ASE is a robust approach for identifying the gene-expression 

basis of phenotypic differences, as two alleles are exposed to the same trans-factors but different 

cis-factors. It also helps dissect the allelic and expression level basis of the association between 

genotype and phenotype. 
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ASE Identification and Quantification 

Genomic techniques like gene expression profiling or eQTL (expression QTL) analysis 

can help assess allelic differences. These approaches also help identify regulatory variations in 

cis- and trans-acting factors (Keurentjes et al., 2007; Kirst et al., 2005; Schadt et al., 2003) but 

cannot directly distinguish between cis- and trans-regulatory causes of expression variation. ASE 

analysis, by contrast, analyzes gene expression differences between two alleles caused by 

epigenetic and cis-acting regulatory variations. 

ASE can be measured using sequencing methods that can help identify two copies of the 

transcripts or the alleles. For example, one of the methods for ASE analyses uses RNA 

sequencing technologies (RNAseq), which can help identify the allelic origin of some or most of 

the reads using SNP or INDEL markers (Castel et al., 2015; Lalonde et al., 2011). In addition, 

the RNAseq method helps further with the quantitative estimate of expression (i.e., the counts of 

the sequence reads).  

ASE using RNAseq, therefore, provides a unique opportunity to understand the 

molecular mechanisms of metabolic disorders and complex health conditions (Lister et al., 2008; 

Nagalakshmi et al., 2008). However, there are some limitations to this approach. First, the data 

from RNA-seq alone does not provide enough information required to identify the origin of the 

transcript, except pointing out that they are different; i.e., it needs to be clear if a particular allele 

came from the paternal or maternal chromosome. Plus, quantifying ASE variation is another 

challenge because there is a chance of systemic biases in alignment due to the allelic differences 

(Degner et al., 2009). The alignment bias originates from the fact that we are trying to quantify 

variation in the counts of the two alleles arising from two homologs but by aligning reads to a 

single/haploid reference genome. In such a situation, a particular allele or haplotype (either 
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maternal or paternal) could be more similar to the reference, in which case the more similar 

allele will align at a higher frequency than the other allele giving a false estimate of ASE 

(Degner et al., 2009; Munger et al., 2014).   

There are a few approaches to addressing the biased ASE estimate:  

• Align DNA sequence from the hybrids to set a baseline for alignment bias and use that as 

an expected ratio of alignments against the observed alignment of the RNA sequence 

data.  

• The ASE regulatory variation can also be inferred by measuring the ratio of the 

transcripts obtained from two different alleles generated by comparing the ratios 

calculated in parental mix RNAs and F1 hybrid (Wittkopp et al., 2004). The alleles 

present in the F1 hybrid sample possess similar regulatory factors as they are located in 

the same nucleus. Hence, the hybrid genes with cis-acting regulatory variation will show 

a biased ASE ratio if there is a bias in expression between two parental alleles. However, 

the genes possessing trans-acting regulatory variation will exhibit different ASE ratios in 

parental mixes than the F1 hybrid.  

• Prepare a diploid genome by integrating known phased variants onto the reference 

genome representative of variants that the F1 contains and create a personalized diploid 

genome (Munger et al., 2014; Raghupathy et al., 2018; Rozowsky et al., 2011). Then 

competitively align RNAseq reads from the F1s against the diploid genome. 

Aims and Rationale 

This study's motivation is to identify the genetic basis of resource allocation tradeoffs 

using divergent populations (Mayodan and Spiterstulen) from outcrossing and perennial 

Arabidopsis lyrata. I will refer to Mayodan as My and Spiterstulen as Sp in the rest of the 
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chapter. A. lyrata is a close relative of Arabidopsis thaliana, a model organism used for research 

in plant genetics. As an outcrossing model, A. lyrata provides a better opportunity to identify 

novel alleles, QTLs, and genotypes and understand the genetic basis of adaptation in different 

environments. In addition, its relationship to A. thaliana offers a rich resource of genetic 

methods, materials, and databases for functional analyses. 

Studies by Leinonen (2011) showed that two study populations of A. lyrata exhibit local 

adaptation and strong life-history differences. Further analyses of variation in local adaption by 

Leinonen (2013) showed that the most significant effect of QTL for resource allocation tradeoffs 

and adaptation in a cross between these phenotypically divergent populations was on 

chromosome 2 (LG2). In the same study (Leinonen et al., 2013) and Remington et al. (2013), 

using SEM (structural equation modeling) and an analysis of lateral shoots architecture by 

Remington et al. (2015) suggested that the early developmental differences between the two 

populations are causal to life-history tradeoffs during and after the reproductive season. 

Following those findings, one of the main goals has been to test a few candidate genes 

that underlie the LG2 QTL and are central to the plants' developmental process. Previously, in 

Chapter 2, we explicitly tested those differences' chemical/hormonal basis in our two study 

populations. As a result, we obtained some evidence supporting a functional role for auxin 

transport, with Mayodan individuals showing a greater rate of auxin transport. This chapter aims 

to take this further by testing if those differences correlate with variation in the expression of 

genes involved in auxin homeostasis and transport. We are also interested in other genes in the 

LG2 QTL region with functions potentially relevant to shoot architecture development and 

potential contributors to life history differences between the two populations. A few candidate 

genes of interest located in LG2 QTL (region spanning 2:12,875,693 to 2:16,344,528, and 
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containing a total of 521 genes) are PIN1, PIN3, PILS2, and BRC2. PIN1 and PIN3 are 

essentially involved in auxin homeostasis and transport, and PILS2 is mainly involved in auxin 

homeostasis and accumulation. At the same time, BRC2 encodes a TCP transcription factor, a 

tb1 ortholog found in maize (Doebley et al., 1995, 1997) that arrests axillary bud development 

and prevents axillary bud outgrowth. 

Unlike in the auxin transport assay, where we tested for differences in transport responses 

in two populations, we use F1 hybrids to identify differentially expressed alleles. With ASE, the 

differences in genetic basis are more readily dissectable because we can distinguish the alleles 

between parents and quantify them, making it a robust method to identify population-level 

effects on gene expression and, hence, the variation in life-history traits. However, if the genetic 

basis for life-history variations is instead differences in protein sequences caused by non-

synonymous substitutions or InDels and not the variation in the quantity of the gene expression, 

ASE would not be able to pinpoint the genetic basis of adaptive divergence in life-history traits. 

Since individuals from Mayodan show greater apical dominance and a higher rate of 

auxin transport, we predict that the candidate genes PIN1 and PIN3 will show higher expression 

of Mayodan alleles because these genes are associated with promoting auxin transport. We also 

predict that the candidate gene PILS2 will show higher expression of Mayodan alleles because 

higher auxin transport will need higher auxin homeostasis and accumulation. Furthermore, since 

BRC2 expression arrests axillary bud outgrowth and Mayodan individuals exhibit lower lateral 

shoot development, we predicted BRC2 expression to be higher for Mayodan alleles. 

In addition, we also looked at the global ASE variation in several other genes contained 

in LG2 QTL. Again, we expected to see the higher expression of alleles that functionally 

promote the development of lateral vegetative shoots. 
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Methods 

Experimental Design 

The seeds for parents (Mayodan and Spiterstulen) were obtained as described in Chapter 

2 and grown in the same manner in Chapter 2, Experiment #2. We established crosses between 3 

unrelated Mayodan and Spiterstulen parents and obtained F1 seeds. The F1 hybrid seeds were 

sown as described in Chapter 2, Experiment #2, and allowed to grow until lateral vegetative 

shoots started developing. It was essential to select these F1s at this stage because this stage 

represents the early developmental time point that determines the fate of the meristems (whether 

the meristem should transition into a reproductive shoot or remain vegetative), providing the 

very basis of life-history tradeoffs from a developmental standpoint. We sampled twelve F1 

hybrids for RNA extraction. 

For RNA extraction, we removed the leafy tissue and the roots by clipping and retaining 

the whole shoot and lateral meristems for RNA extraction. Next, we extracted mRNA from the 

entire vegetative shoot tissue using MasterPure™ Plant RNA Purification Kit (Illumina - catalog 

# MPR09010) and tested for quality using a nanodrop spectrometer. Next, we selected the four 

samples with the highest-quality RNA representing two full sibs (2ms02g, 2ms03g) from the 

same family and two unrelated F1 (2ms01e, 2ms04h) for library preparation using the poly-A 

selection method to enrich coding transcripts and eliminate the rRNAs. The mRNA library was 

then sequenced at David H. Murdock Research Institute (DHMRI) at North Carolina Research 

Campus in Kannapolis sequencing center. The mRNAs from each F1 individual were 

individually barcoded and ran in a single lane on the Illumina Hiseq to generate100 bp paired-

end read. 
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Genomic Sequence Reads 

We obtained additional complete sets of genomic sequence data for both My and Sp 

populations from Outi Savolainen's lab based on previous research done by Mattila (Mattila et 

al., 2017), which were also 100 bp paired-end reads. Both genome and RNA sequence reads 

were quality tested using FastQC, and adapters, including low-quality reads at the end, were 

trimmed using Trimmomatic; see Supplementary Materials S4.B AND S4.C for more details. 

Variant Calling 

We aligned the RNAseq reads to the A. lyrata reference genome (T. T. Hu et al., 2011) 

using rnaSTAR (STAR Manual 2.7.10a, 2022), and called variants using GATK (Genome 

Analysis ToolKit) (Van der Auwera et al., 2013). In addition, genome sequence reads were 

aligned to the same reference genome using BWA (Burrows-Wheeler Aligner) (Li et al., 2008; 

Li & Durbin, 2009), and variants were called using GATK (Van der Auwera et al., 2013), and 

multisample VCFs was generated. Specific details and parameters from alignment to variant 

calling are available in Supplementary Materials S4.B for genome sequence data and in 

Supplementary Materials S4.C for RNA sequence data. 

Haplotype Phasing 

The variants called from both genome sequence and RNA sequence data were read-

backed-phased using the application called Phaser (Castel et al., 2015, 2016). Phaser-produced 

RBP VCF files were parsed using VCF-Simplify (unpublished, 

https://github.com/everestial/VCF-Simplify) to prepare analyzable haplotype blocks. The 

haplotype files were further phased into extended haplotypes (for variants called from population 

genome data) using Phase-Extender (discussed in Chapter 3, unpublished). For haplotype phase 

extension, we used all the samples in the cohort plus the common allele of 24 A. lyrata genomes 

https://github.com/everestial/VCF-Simplify
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(generated at the Max Planck Institute for Developmental Biology by Sang-Tae Kim and D. 

Weigel) (Arnold et al., 2015). Finally, RBP haplotypes from F1s were phased genome-wide 

using Phase-Stitcher (discussed in Chapter 3, unpublished); in this case, the haplotypes phased 

by Phase-Extender were used as population reference panels. Specific parameters and steps used 

in phasing are provided in step 6 of Supplementary Materials S4.C. 

Preparation of Custom Diploid Genome and GFF 

The initial step in quantifying ASE using RNA-seq data is to align the sequence reads to 

a transcriptome or genome and ensure unbiased alignment. The main challenge for accurate ASE 

estimation is to overcome the alignment bias. This can be solved by finding a haploid genome 

that equally represents both the parents or by establishing an individualized diploid genome 

sequence representing each parent; this diploid genome can be used for competitive alignment of 

the sequence reads.  

In our case, we created a diploid individualized genome for each F1s. The variants 

prepared from F1 RNAseq reads and phased using Phase-Stitcher were used to prepare the 

variant template for the custom diploid genome. Not using the diploid genome would have 

increased ASE bias because Mayodan reads are closer to the A. lyrata reference genome (T. T. 

Hu et al., 2011), which was prepared from a single North American genotype (strain MN47 from 

Michigan, USA). Another reason was that we did not have any genome sequence from F1s or 

genome or RNA sequence from each parent, complicating the elimination of biases. We then 

patched the template variants (phased VCFs) prepared for each F1 with homozygous variants 

prepared from the population genome sequence data (Mattila et al., 2017) using python scripts 

built in-house and created a final and personalized diploid phased variants template. Finally, this 

personalized phased variant was patched onto the A. lyrata reference genome (T. T. Hu et al., 
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2011) using g2gtools (Munger et al., 2014) to create a final personalized and diploid version of 

the genome and GFF (Gene Feature Format) file for each F1 sample. These steps and parameters 

are documented in step 6 of Supplementary Materials S4.B and made available on GitHub as 

ASE-CADG (unpublished, Allele-specific expression – using Competitive Alignment on Diploid 

Genome, https://github.com/everestial/ASE-CADG). 

Alignment of RNAseq to Custom Diploid Genome 

We first aligned the RNAseq reads to the haploid A. lyrata reference genome (T. T. Hu et 

al., 2011) on all the scaffolds using rnaSTAR 2.5.4b (STAR Manual 2.7.10a, 2022). Then we 

selected reads that aligned to haploid LG2 (or Chromosome 2) for alignment to the personalized 

diploid genome. Finally, we aligned the selected RNAseq reads to the custom diploid genome 

prepared for each F1 sample using rnaSTAR 2.5.4b (STAR Manual 2.7.10a, 2022) using a 2-

pass alignment protocol. The alignment was limited to only LG2. The percentage of unique 

alignments for each F1s was > 40% Supplementary Materials S4., Table S4.C1). So, the scope 

of the result presented in this chapter is limited to what was observed in the LG2 only. 

Subsequent mention of the global data and observation refers to globally at the level of LG2. 

We set alignment parameters to only select and score the best alignment to an individual 

haplotype; however, it would be possible to have the same score across both haplotypes at a 

single location if scores were the same. Finally, we parsed the SAM files containing the reads 

aligned to personalized diploid genomes using custom python scripts developed in-house to 

count and prepare the following metrics for each gene for each sample:  

1. unq_C_My – number of unique reads that aligned to Mayodan haplotype. 

2. unq_C_Sp – number of unique reads that aligned to Spiterstulen haplotype. 

3. bi_C_My – number of reads that aligned equally to Mayodan and Spiterstulen haplotype. 
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4. bi_C_Sp – number of reads that aligned equally to Mayodan and Spiterstulen haplotype. 

The value for this variable is the same as bi_C_My. 

5. mul_C_My – number of reads aligned to Mayodan haplotype and aligned to more than 

two other regions in the genome. 

6. mul_C_Sp – number of reads aligned to Spiterstulen haplotype and aligned to more than 

two different regions in the genome. 

The integer value in the "NH" field of the SAM file (the one aligned to the genome) 

produced by rnaSTAR (STAR Manual 2.7.10a, 2022) was used to count the reads aligned to 

each haplotype. 

Additionally, other counts were derived for our statistical analyses: 

7. unq_C_sum = unq_C_My + unq_C_Sp 

8. mul_C_sum = mul_C_My + mul_C_Sp 

9. total_C_My = unq_C_My + bi_C_My + mul_C_My 

10. total_C_Sp = unq_C_Sp + bi_C_Sp + mul_C_Sp 

11. total_C_sum = total_C_My + total_C_Sp 

Finally, we obtained sum aggregated measures for all samples. In the formulas below 𝑗 

refers to the specific sample and 𝐽 refers to the overall number of samples. 

12. unq_C_total = ∑ (𝑢𝑛𝑞_C_My
𝑗
+ 𝑢𝑛𝑞_C_Sp

𝑗
) 𝐽

𝑗=1 = ∑ 𝑢𝑛𝑞_C_Sum
𝑗

𝐽
𝑗     

13. mul_C_total = ∑ (𝑚𝑢𝑙_C_My
𝑗
+𝑚𝑢𝑙_C_Sp

𝑗
𝐽
𝑗=1 ) = ∑ 𝑚𝑢𝑙_C_Sum

𝑗
𝐽
𝑗   

14. total_C_total = ∑ (𝑡𝑜𝑡𝑎𝑙_C_My
𝑗
+ 𝑡𝑜𝑡𝑎𝑙_C_Sp

𝑗
)𝐽

𝑗=1 = ∑ 𝑡𝑜𝑡𝑎𝑙_C_Sum
𝑗

𝐽
𝑗  

For data analyses, we selected genes that passed the following filters:  

• Genes that have the expression of more than ten counts (either Mayodan or Spiterstulen) 

in at least one of the samples. 
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• Genes for which either mul_C_total does not exceed 20% of totalC_total or unqC_total 

exceeds 20% of totalC_total, i.e., either, unq_C_total > 0.2 * total_C_total , or, 

mul_C_total < 0.2 * total_C_total. 

Filters are used to avoid a situation where one or both My and Sp expressions are zero (or 

very low) and leave expressed genes ratio very high or at infinity. 

Data Analyses 

We did statistical tests in R (version 4.0.5). We tried two approaches to check the 

difference in allele expression between Mayodan and Spiterstulen alleles. In the first approach, 

we made a basic comparison of ASE using exact binomial tests. In this approach, tests were done 

individually for each sample and each gene between the two alleles at 0.05, 0.01, and 0.001 

levels of significance. 

We used package DESeq2 (version 1.30.1) (Love et al., 2014) in the second approach and 

applied the Wald test for the test of significance. Although the DESeq2 package is not developed 

for the ASE analysis, it helps test the data generated for ASE. For ASE analyses, we treated 

unique reads count aligned to My haplotype as the first group and unique reads count aligned to 

Sp haplotype as the second group. Thus, we can fit the negative binomial model for each gene 

and perform ASE as the differential expression testing. The specification of the model is 

described in the following formula: 

𝐾𝑖𝑗 = 𝑁𝐵(𝑠𝑖𝑗𝑞𝑖𝑗, 𝛼𝑖) 

Where 𝐾𝑖𝑗 refers to the raw counts of gene 𝑖 for sample 𝑗 (in our case, samples are 

2ms01e, 2ms02g, 2ms03g, 2ms04h), 𝑠𝑖𝑗 is the mean counts, 𝑞𝑖𝑗 is the normalization factor, and 

𝛼𝑖 is the dispersion for the gene.  
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After the model is fit, we estimated coefficients for each sample group and their standard 

error. The coefficients are the estimates for the Log2FoldChanges for each sample group. Once 

the model is fitted with maximum likelihood, we apply the Wald test-based parameters that have 

been estimated by maximum likelihood. Finally, we test for the primary hypothesis: 

𝐻0: 𝐿𝑜𝑔2𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒 = 0 

Preparation of Heatmap 

We assessed the similarity between samples by first applying regularized-logarithm 

(rlog) transformation to the data. We then estimate "Euclidean distances" between the samples 

and visualize sample distances with the heatmap.  

"Euclidean distance" between samples 𝑥 and 𝑦 is estimated as, 

𝑑𝑖𝑠𝑡𝑥,𝑦 = √∑(𝑥𝑗 − 𝑦𝑗)
2

𝐽

𝑗=1

 

where 𝑥𝑗 and 𝑦𝑗 refer to the jth gene expression from samples 𝑥 and 𝑦, and 𝐽 indicates the 

total number of genes in the samples. We also estimate the PCA using the same rlog transformed 

data. PCA reduces the dimensionality of the data while retaining most of the variation in the data 

set, by identifying directions, called principal components, along which the variation in the data 

is maximal. 

Results 

Data After Filter 

Our data consisted of 4 sample datasets ("2ms01e", "2ms02g", "2ms03g" and "2ms04h"). 

Initially, each dataset contained 3017 unique genes (a total of 12068 observations). However, we 

processed the data via several filters we discussed earlier. After applying those filters, the sample 
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dataset was reduced to 1761 observations per dataset (a total of 7044 observations) for the whole 

LG2 (whole chromosome 2). 

General Expression Statistics 

Table 4.1 Summary Statistics of the Number of Genes (Second Column, N) and the 

Average Number of Reads (Third Column, Mean), IQR (Interquartile Range), Across All 

the Samples’ Genes 

Sample N Mean Std. dev. IQR Min %25 Q %50 Q %75 Q Max 

My 

2ms01e 1580 530.5861 1391.753 466.0 0 66 218 532.0 34392 

2ms02g 1552 576.0077 1324.961 530.5 0 74 230 604.5 28150 

2ms03g 1598 496.2178 1071.471 465.5 0 64 206 529.5 20864 

2ms04h  1595 571.8934 2302.589 482.0 0 66 214 548.0 76562 

Sp 

2ms01e 1580 541.3785 1862.259 450 0 64 202 514 57822 

2ms02g 1552 516.1456 1196.342 498 0 58 211 556 27098 

2ms03g 1598 473.7059 1100.764 435 0 60 181 495 24710 

2ms04h 1595 579.4683 2477.427 466 0 58 204 524 85362 

unqC_Sum 

2ms01e 1580 1071.9646 3078.293 925.0 16 146.0 430 1071.0 79846 

2ms02g 1552 1092.1534 2436.139 978.5 16 151.5 485 1130.0 55248 

2ms03g 1598 969.9237 2071.002 905.5 16 142.0 404 1047.5 45574 

2ms04h 1595 1151.3618 4702.487 926.0 16 134.0 436 1060.0 161924 

Note: %25Q, %50Q and %75Q refer to the three quartile of number of reads.Some of the 

genes have high gene expression in all or several samples. For example, Figure 4.2 shows the 

number of genes in each sample with total gene expression for My and Sp (unq_C_My + 
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unq_C_Sp) higher than 75% quantile. Among these genes, 213 have a total expression in the 4th 

quartile in all samples. 

Figure 4.2 Venn Plot of Number of Genes With Total Expression Greater than the 3rd 

quartile (> 3Q) of the Sample 

 

Note: The overlapping sets show the number of genes exhibiting the same (> 3Q) 

expression in the intersected samples. 

The Venn diagrams (Figure 4.3) show that among all the genes, there are 512 (My > Sp: 

307, Sp > My: 205) genes that have the same direction difference across all the samples. The 

total share of such genes is 37.8% among the total amount of genes. The following sections 

discuss genes that have statistically significant differences in gene expression between alleles 

(using Wald test) and are in the same direction. 
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Figure 4.3 Venn Diagram Showing Number of Genes With the Same Directional Difference 

in Expression Across All Four Samples 

 

Binomial Tests 

More than 50% of the genes showed significant ASE (P-value < 0.001) across all the 

samples in binomial tests, see Table 4.2, which seems unrealistic. For the rest of the analyses, we 

used the result from the Wald test provided by the DESeq2 package (Love et al., 2014). 

Table 4.2 Summary Statistics for the Number of Genes Showing Significant ASE (P-value < 

0.001) Under Binomial Tests 

Sample 𝑃 − 𝑣𝑎𝑙𝑢𝑒
< 0.001 

0.001 < 𝑃 − 𝑣𝑎𝑙𝑢𝑒
< 0.01 

0.01 < 𝑃 − 𝑣𝑎𝑙𝑢𝑒
< 0.05 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 > 0.05 

(not significant) 

2ms01e 761 135 139 545 

2ms02g 880 111 111 450 

2ms03g 818 113 155 512 

2ms04h 855 122 129 489 

Note: In this test, we applied one extra filter; we only analyzed genes with unq_C_sum > 

16, which reduced the total number of observations to 6325. 

Heatmap and PCA 

The heatmap (Figure 4.4) and PCA (Figure 4.5) show the distances between samples and 

haplotypes. The heatmap is based on the rlog-transformed data and represents sample-to-sample 
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differences in gene expression. Distances between My groups are relatively lower than for Sp 

groups. For all My samples, the distance lies from 47.11 to 51.70, while the distance for Sp 

samples lies between 50.94 and 59.63. Thus, expression in Sp haplotypes seems more variable 

than expression in My haplotypes across samples. 

Results from the PCA analysis support the conclusion obtained from the heatmap. We 

can see that the values for My vs. Sp are clustered together (i.e., values representing My 

expression are more closely grouped than those representing Sp expression across samples). This 

difference especially shows ups for the pairs of My-2ms03g – My-2ms04h and Sp-2ms03g – Sp-

2ms04h.  

Figure 4.4 Heatmap of Sample Distances for All the Sample and Haplotype Pairs 
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Figure 4.5 PCA Plot for Samples Distance for All the Samples and Haplotype Pairs 

 

Results from Wald Test 

The Wald test was used to test the significance of differences between two groups (in our 

case, My and Sp). This test works for the whole dataset and gives an overall picture of the ASE 

and its significance across all samples. The results from the Wald test indicate that a relatively 

higher number of genes show ASE in favor of My alleles, compared to the Sp alleles, but still 

statistically not that significant. Overall, the number of genes that do not have significant 

differences (P-value > 0.05) is almost three times higher than those with significant differences, 

see Table 4.3. This estimate of ASE appears to be more realistic compared to the one provided 

by the Binomial test. 

Table 4.3 Number of Genes Showing ASE at Different Significance Levels Under Wald 

Test 

P-value interval 𝑃 − 𝑣𝑎𝑙𝑢𝑒
< 0.001 

0.001
< 𝑃 − 𝑣𝑎𝑙𝑢𝑒
< 0.01 

0.01 < 𝑃 − 𝑣𝑎𝑙𝑢𝑒
< 0.05 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 > 0.05 

(not significant) 

Number of 

genes 

196 90 173 1302 
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Of all the genes, 459 genes show a significant difference in ASE between My and Sp on 

the 5% confidence level. Among those, 268 genes show higher expression for the My allele than 

the Sp allele (238 genes with the same difference direction across all the samples, see Figure 

4.6), and 191 genes show higher expression of the Sp allele (160 genes with the same difference 

direction across all samples, see Figure 4.6). This points to one of the common observations in 

ASE analyses, that the allele from a female parent usually shows higher expression than a male 

parent (Shao et al., 2019; Springer & Stupar, 2007), also known as parent-of-origin-effects, and 

all the F1s in our experiments have My cytoplasm (i.e., My is the mother for all the F1s). 

However, another possibility that the My alleles are showing higher ASE for most of the genes is 

that we first aligned the original RNAseq data to the haploid reference and then selected the 

reads aligned to LG2 to align it to the diploid genome. This could have created some bias 

because reads originating from the Mayodan haplotype could have higher alignment to the 

haploid reference because it is prepared based on a single North American strain. However, we 

still see a higher expression of Sp alleles for several genes, providing support that this bias must 

have been minimal. Moreover, there are many genes with both high Log2FoldChange and low P-

value (see Figure 4.7) in both directions. A large number of genes with the insignificant 

difference is shown in Figure 4.8. 
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Figure 4.6 Venn Diagram Showing the Number of Genes With Significant ASE (Based on 

Wald Test) in Either Direction (My > Sp, My < Sp) Across All the Samples 

 

Note: 238 genes show significant (P-value < 0.05) ASE and have the expression of My > 

Sp in all the samples; 160 genes show significant (P-value < 0.05) ASE and have expression of 

My < Sp in all the samples. 

Figure 4.7 Volcano Plot Showing the Distribution of Log2FoldChange (X-axis) Against the 

-log10P-Value From the Wald Test 

 

Note: Blue dots show ASE in favor of Sp, and red dots show ASE in favor of My alleles 

with varying levels of significance justified by the intensity of the color.  



 

 141 

Figure 4.8 MA Plot Showing Log2FoldChange (Y-axis) Against the Log2 of the Mean 

Expression Across Samples; P-values Are From the Wald Test 

 

Note: Blue dots show ASE in favor of Sp alleles, and red dots show ASE in favor of My 

alleles with varying levels of significance justified by the intensity of the color. 

The data (Table 4.4) and boxplot (Figure 4.9) represent the twenty genes with the lowest 

adjusted P-values (False Discovery Rate adjusted). Some of the genes have a high expression 

difference due to the lower base of the opponent allele. For example, the gene with ID 

AL2G12300 and AL2G13160 have a mean of Sp allele expression less than 2, while gene 

AL2G25210 has My allele expression equal to two (see Table 4.4). However, most other genes 

have both alleles expressed at higher levels. There are six genes from the QTL region among the 

top 20 reported by the Wald test P-value (see boxplots shaded in light green in Figure 4.9). The 

coordinates for resource allocation QTL in LG2 start at 2:12,875,693 (with gene FKF1, also 

called ADO3, at the left end of the QTL region) and ends at 2:16,344,528.  
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Figure 4.9 According to the Wald Test, the Top 20 Genes With Significant ASE 

 

Note: Raw counts of total gene expression of My and Sp haplotypes are used for all of 

these plots. For better visualization, expression levels are transformed with log2(x +1) where x is 

the number of raw counts. Genes on the x-axis are ordered by genomic position (beginning to 

end). The bars shaded in green are loci within the QTL region. 

The boxplot (Figure 4.10) represents genes with ASE at a P-value < 0.001 level of 

significance. The genes are arranged by their genomic position (beginning to end). Six genes are 

highlighted, with colored gene IDs showing comparatively high expression. We also provide the 

same plots for genes with different significance criteria (see, FigureS4.A1 and FigureS4.A2). 

These criteria depend on both the magnitude of log2FoldChange and the P-values. These criteria 

are: 

1. Log2FoldChange > 2 & P-value < 0.05 (104 genes) ; see FigureS4.A1. 

2. Log2FoldChange > 4 & P-value < 0.01 (62 genes); see FigureS4.A2. 
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Figure 4.10 Genes Showing ASE With Wald Test P-value < 0.001 

 

Note: The green shaded horizontal bar spans the QTL region. There is no space for all 

gene IDs' name, so only some are shown on the X-axis. The box plot for each gene is based on 

raw counts of My and Sp alleles from each sample. Unlike in Figure 4.9, a logarithm with a 

pseudo count of 1 is not added for generating this plot. Figure 4.9 showed 20 genes with the 

lowest P-values. Some of the genes in this plot can have high expression and low P-value but are 

still not as low as the ones mentioned in Figure 4.9, e.g., AL2G13510 has a P-value = 9.10E-09, 

which is still not enough to get into top 20. The highest P-value among the top 20 was 3.19E-14. 

AL2G19580 gene encodes an RNAse H-like protein and showed the most significant 

differences in ASE in our study, with My showing strong expression in all the samples; P-value 

= 2.726e-47, see Figure 4.11. As expected, the difference is rather severe in each sample. 
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Figure 4.11 Raw Counts of My and Sp Alleles for the Gene (AL2G19580) With the Least P-

value (P-value = 2.726e-47) 

 

We also identified the top 20 genes with the most significant ASE in the QTL region 

(Table 4.5). Among those, 4/20 (AL2G30710, AL2G30870, AL2G27860, AL2G34280) are 

transcription factor regulators, 3/20 (AL2G27970, AL2G33570, AL2G32660) are involved in 

protein binding, 3/20 (AL2G31800, AL2G27470, AL2G30460) support transporter activity, and 

2/20 (AL2G34280, AL2G30290) are involved in managing biotic, abiotic stress. The locus 

AL2G34280 encodes a MYB transcription factor for pathogen defense. The gene AL2G30710 

encodes an ethylene-responsive transcription factor, and AL2G27860 is a positive regulator of 

cytokinin levels and cytokinin-mediated development. One gene, AL2G27470, encodes a 

membrane transporter for Gibberellic Acid. The top 20 genes ranked by fold difference in allelic 

expression are shown in Table 4.6.  
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Results for Candidate Genes 

We also looked into the candidate genes vital in plant morphological development, which 

we hypothesized earlier, PIN1, PIN3, BRC2, and PILS2, along with two other genes in the TCP 

family (TCP15 and TCP22) and a key regulator of transition to flowering (AP1). 

PIN1  

PIN1 showed higher expression of the Sp allele in 3 out of 4 samples (Figure 4.12, Figure 

A5). However, the difference is modest, resulting in a P-value equal to 0.08. 

Figure 4.12 Raw Counts (Y-axis) for PIN1 Observed for My and Sp Alleles (X-axis) Across 

Samples 

 

PIN3 

PIN3 showed higher expression of the My allele in all the samples (Figure 4.13, Figure 

A6) and is one of the top 20 gene in the QTL region (15th position, see Table 4.5) and is at 

60th/1761 position in the overall genes tested. The quantitative difference between two alleles 

seems to be exceeding even that for the gene with the lowest P-value, but the fold change is still 
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high for AL2G19580. However, in the case of the PIN3 gene, the magnitude still varies strongly 

across samples. The Wald-test P-value for this gene is 1.053203e-07. 

Figure 4.13 Raw Counts (Y-axis) for PIN3 Observed for My and Sp Alleles (X-axis) Across 

Samples 

 

TCP15 

TCP15 gene does not show any ASE trend across samples (Figure 4.14, Figure A7). 

There are two samples with Sp alleles exceeding My and two vice versa. The Wald test P-value 

for this gene is also relatively high, at 0.981, which means that the difference in expression is 

insignificant; see Figure 4.14. 
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Figure 4.14 Raw Counts (Y-axis) for TCP15 Observed for My and Sp Alleles (X-axis) 

Across Samples 

  

TCP22 

Figure 4.15 and Figure S4.A8 represent raw counts for the TCP22 gene. Sample 2ms04h 

is the only sample with strong gene expression differences. The P-value for TCP is as well 

relatively high at 0.816. 

Figure 4.15 Raw Counts (Y-axis) for TCP22 Observed for My and Sp Alleles (X-axis) 

Across Samples 
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AP1 

Gene AP1 has a deficient gene expression in samples 2ms03g and 2ms04h. However, 

there is a clear difference in raw counts in the other two samples. The direction of the difference 

is different, however (Figure 4.16, Figure A9) . Therefore, the results of the Wald test indicate 

that there's no significant difference in gene expression (P-value = 0.91). 

Figure 4.16 Raw Counts (Y-axis) for AP1 Observed for My and Sp Alleles (X-axis) Across 

Samples 

 

  



 

 149 

PILS2  

ASE differences for PILS2 (AL2G30670) are statistically significant (P-value=0.00062), 

but My shows less than 2-fold greater expression levels than Sp, see Figure 4.17. 

Figure 4.17 Raw Counts (Y-axis) for PILS2 Observed for My and Sp Alleles (X-axis) 

Across Samples 
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Table 4.4 Top 20 Genes on the Entire Chromosome 2 With the Most Significant ASE (by P-

value) Reported by the Wald Test 

Gene ID Mean 

(unqC_My) 

SD 

(unqC_My) 

Mean 

(unqC_Sp) 

SD 

(unqC_Sp) 

P-value 

(FDR) 

in 

QTL 

region 

AL2G12300 658.5 58.84159527 1.5 1.914854216 6.14E-24  

AL2G13160 964 481.0100484 0.5 1 5.93E-19  

AL2G14850 767 704.6408068 85.5 91.17565465 4.94E-18  

AL2G16660 9.5 10.24695077 8618 6750.671473 1.98E-44  

AL2G17900 2373.5 1201.733609 943.5 440.8246061 3.78E-35  

AL2G19580 636 327.8414251 106 56.09515725 2.73E-47  

AL2G23860 209.5 148.4710971 804 574.6488783 7.92E-27  

AL2G25130 1655 1019.456718 745 524.2454896 8.48E-15  

AL2G25210 2 1.632993162 90.5 55.60275773 3.19E-14  

AL2G26480 218.5 60.56126375 62 29.52964612 3.65E-15  

AL2G27970 184 56.35601121 18 8.164965809 3.12E-14 + 

AL2G30710 696 60.37659591 145.5 42.12283625 5.47E-20 + 

AL2G30870 460 71.49825173 158.5 53.30103188 5.93E-19 + 

AL2G31320 308.5 10.63014581 738 104.9317238 8.73E-21 + 

AL2G31480 2848.5 784.4460891 18 16.08311744 1.60E-30 + 

AL2G31800 190 118.0169479 37.5 20.80865205 9.21E-15 + 

AL2G35740 780.5 750.7904723 4025.5 3315.012871 6.61E-14  

AL2G35970 324 112.0833024 77 17.4737899 1.83E-16  

AL2G36030 361.5 86.53900855 92 7.831560083 1.63E-25  

AL2G38880 39 32.68026928 281.5 175.4565473 7.36E-23  

Note: The genes with “+” in the column “in QTL region” belong to LG2 QTL, which 

showed strong life-history differences between our study populations. 
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Table 4.5 Top 20 Genes in the LG2 QTL Regions, With the Most Significant ASE (by P-

value) Reported by the Wald Test 

Gene ID 

Gene 

Name 

unqC

_ My 

unqC 

_Sp 

directio

n 

Padj 

(FDR) 

Annotations 

AL2G31480 - 11394 72 My > Sp 1.60E-30  - 

AL2G31320 HGPT 1234 2952 Sp > My 8.73E-21 

phosphoribosyltransferas

e 

AL2G30710 - 2784 582 My > Sp 5.47E-20 

Ethylene responsive 

transcription factor 

AL2G30870 ATWHY2 1840 634 My > Sp 5.93E-19 Transcription regulator 

AL2G31800 - 760 150 My > Sp 9.21E-15 

Transmembrane 

transport 

AL2G27970 - 736 72 My > Sp 3.12E-14 Protein binding 

AL2G34280 MYB95 1088 5208 Sp > My 7.60E-14 MYB transcription factor 

AL2G28140 - 1010 6 My > Sp 2.25E-12 Amino transferase 

AL2G27130 ENDO 2 7826 

1865

6 Sp > My 1.68E-11 

Response to stress 

AL2G33570 - 2184 6074 Sp > My 2.04E-11 

Zinc finger, protein 

binding 

AL2G33070 scpl6 958 256 My > Sp 7.78E-10 Proteolysis 

AL2G32500 - 4998 2774 My > Sp 3.91E-09 - 

AL2G27860 ATSOFL2 204 744 Sp > My 6.00E-09 

Positive regulator of 

cytokinin levels 

AL2G27470 - 11994 6782 My > Sp 3.09E-08 

Gibberelic acid 

membrane transport 

AL2G30460 PIN3 10522 4870 My > Sp 1.05E-07 

Auxin efflux 

transmembrane transport 

AL2G32660 - 144 1222 Sp > My 1.10E-07 Protein binding 

AL2G30290 - 506 4 My > Sp 1.21E-07 Defense response 

AL2G31290 - 968 1680 Sp > My 2.34E-07 

Nucleic acid binding 

domain 

AL2G31440 PTP1 1120 594 My > Sp 6.87E-07 

Protein 

dephosphorylation 

AL2G29070 - 950 1566 Sp > My 7.17E-07  
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Table 4.6 Top 20 Genes in the LG2 QTL Regions, With the Greatest Log2 Fold Difference In ASE expression (Reported by the 

Wald Test) 

gene_ID gene_Name start end unqC_My unqC_Sp direction padj 

Log2Fold 

(My/Sp) 

ABS(Log2Fold 

Change) 

AL2G29760 - 14401428 14403086 1216 6 My > Sp 0.239741 7.441759 7.441759 

AL2G31480 - 15107502 15110686 11394 72 My > Sp 1.60E-30 7.286289 7.286289 

AL2G28140 - 13562675 13564212 1010 6 My > Sp 2.25E-12 7.174212 7.174212 

AL2G33420 AtRABA6a 15925702 15926926 130 0 My > Sp 7.32E-07 7.033423 7.033423 

AL2G30290 - 14635146 14636342 506 4 My > Sp 1.21E-07 6.663914 6.663914 

AL2G28230 - 13593457 13594282 0 90 Sp > My 0.065418 -6.50779 6.507795 

AL2G32650 - 15620819 15622127 0 78 Sp > My 0.865459 -6.30378 6.303781 

AL2G32540 - 15586449 15591281 0 60 Sp > My 0.000314 -5.93074 5.930737 

AL2G31780 - 15225835 15226752 4 248 Sp > My 2.92E-06 -5.63807 5.638074 

AL2G32490 - 15564449 15566342 0 46 Sp > My 0.026045 -5.55459 5.554589 

AL2G30630 - 14770030 14771631 38 0 My > Sp 0.021017 5.285402 5.285402 

AL2G27220 - 13039018 13042554 0 30 Sp > My 0.240909 -4.9542 4.954196 

AL2G28010 - 13501247 13502612 2 90 Sp > My 7.22E-05 -4.92283 4.922832 

AL2G27280 - 13077719 13084998 518 20 My > Sp 0.000952 4.627273 4.627273 

AL2G27900 AtbZIP 13440351 13441078 2 64 Sp > My 0.001356 -4.43741 4.437405 

AL2G28690 - 13828335 13831656 4 66 Sp > My 0.00291 -3.74416 3.744161 

AL2G32800 - 15681217 15683572 2 38 Sp > My 0.058945 -3.70044 3.70044 

AL2G27970 - 13470624 13474668 736 72 My > Sp 3.12E-14 3.335696 3.335696 

AL2G32660 - 15623379 15624766 144 1222 Sp > My 1.10E-07 -3.0763 3.0763 

AL2G32530 - 15579500 15583054 88 10 My > Sp 0.004609 3.016302 3.016302 
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Discussion 

This research identifies that PIN3 and PILS2 show significant ASE in the predicted 

direction (My > Sp) among the few hypothesized candidates. One of the anticipated candidates, 

BRC2, almost did not show any expression. PIN1, on the contrary, showed slightly higher 

expression of Sp alleles. Our research gives some interesting insights; we see the strong 

expression of Mayodan alleles of PIN3 and PILS2 from the resource allocation QTL region, 

while PIN1 shows almost equal bi-allelic expression, with the Sp allele showing only a little 

higher expression. The expression of the BRC2 gene might be limited to certain tissues, 

especially meristems, because their specific role is to arrest the growth of the meristems, and 

extraction of mRNA from the whole shoot could have diluted their expression levels. 

The genomic position of PIN3 is almost precisely in the middle of the resource allocation 

QTL region. PIN3 is an essential auxin transport protein associated with the control and 

localization of auxin toward the cell membrane's lateral side in response to gravitropic (Müller et 

al., 1998; Ottenschläger et al., 2003) and phototropic stimulation (Ding et al., 2011; Friml et al., 

2002; T. Hu et al., 2021; Savaldi-Goldstein et al., 2007). PIN3 expression is coupled with 

elevated auxin biosynthesis for SAS (Shade Avoidance Syndrome) (Keuskamp et al., 2010; Tao 

et al., 2008). Low R:FR (red/far-red light) ratio stimulates PIN3 abundance, induces a lateral 

cellular reorientation of PIN3, and elevates auxin levels. The low R:FR environment itself 

regulates PIN3 gene expression, further promoting PIN3 protein abundance and localization, 

directing its own (auxin) transport (Keuskamp et al., 2010). This environment-based adaptive 

significance of PIN3 is observed in competitive experiments that comprise high plant densities. 

Low R:FR induces elongation and development of the hypocotyls, thereby reducing the fitness of 

PIN3 mutant in low R:FR conditions compared to wild-type variants (Friml et al., 2002). In 
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previous Chapter 2, we found somewhat inconclusive support for the role of differences in auxin 

transport underlying life-history differences between the two study populations. The observed 

apparent cis-regulatory differences in PIN3 allelic expression in this study could easily be the 

cause. 

The other protein, PILS2, constitutes a protein from a distinct family that evolved 

independently but is structurally similar to PIN proteins (Feraru et al., 2012). While PINs 

mediate long-distance auxin transport, PILS2, a putative auxin carrier, localizes to the 

endoplasmic reticulum (ER) and regulates intracellular auxin accumulation and auxin 

homeostasis (Barbez et al., 2012; Feraru et al., 2012; Mohanta et al., 2015). The PILS protein 

family is conserved throughout the plant lineage, including unicellular algae (Ostreococcus tauri 

and Chlamydomonas reinhardtii). However, the PIN proteins are absent in those algae, 

indicating that PILS proteins evolved before PINs. This suggests that intracellular auxin 

transport and auxin compartmentalization are evolutionarily older than directional, cell-to-cell 

PIN-dependent auxin transport (Barbez et al., 2012). In our study, we found higher expression of 

My alleles of PILS2. This correlated higher expression of PIN3 and PILS2 suggests that higher 

transport of auxin-mediated by PIN3 could be supported by higher auxin compartmentalization 

and supply of auxin-mediated by PILS2, contributing to higher apical dominance in Mayodan 

individuals and likely resource allocation tradeoffs. 

The locus AL2G34280 regulates the MYB transcription factor for pathogen defense and 

is not a likely candidate for life-history variation. Among other genes with the lowest ASE P-

values (Table 4.5) in this QTL region, AL2G30710, AL2G27860, and AL2G27470 could have a 

role in developmental variation since both are involved in phytohormone response. Functionally, 

AL2G30710 is an ethylene-responsive transcription factor, and AL2G27860 is a positive 
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regulator of cytokinin levels and cytokinin-mediated development, which could affect 

developmental variation or work together with PIN3 to mediate developmental variation. The 

gene, AL2G27470, encodes for membrane transporter for Gibberellic Acid and would be 

interesting, but annotations in other studies describe it as being expressed in the root 

endodermis. However, in our research, this gene is clearly expressed in the main shoot of the 

plants. Overall, these three genes are involved in phytohormone response, and they could have a 

role in developmental variation. However, they don't seem nearly as good a possibility as PIN3 

(AL2G30460). 

Based on these data, PIN3 emerges as a strong candidate gene for this QTL region that 

explains the life-history variation between the two populations of Arabidopsis lyrata we studied. 

The phototropic-based adaptive responses could be the driving factor for the evolution of 

diverged resource allocation tradeoffs in two study populations. Since the Mayodan population 

has a relatively more extended seasonal growth period, it provides an opportunity for elevated 

auxin synthesis and lateral transport mediated by higher expression of PIN3. However, the 

mechanistic process by how PIN3 would provide the adaptive basis still needs thorough 

analyses. 

A more detailed list of genes showing significant ASE variation is provided in 

Supplementary Materials S4.E (sorted by P-value) and Supplementary Materials S4.E 

(sorted by genomic position). 

Future Studies 

We could derive interesting future studies based on these results; a potential follow-up 

study would be to do a transgenic exchange of My alleles (for gene PIN3, PILS2) onto the Sp 

genotypes and vice-versa and study their effects on life-history traits. Another way of testing for 
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the effects of these genes/alleles would be to generate CRISPR knock-outs and check for their 

effects on life-history traits. Additional genomic and transcriptomics studies can also test if NPA 

affects gene expression variation in the parental populations, mainly Mayodan. This analysis can 

also include other genes involved in developmental variation AL2G30710, AL2G27860, and 

AL2G27470. Finally, other experiments involving verification of ASE expression could be done 

in the parental population using qPCR, which was one of the original goals of this chapter but 

was missed due to technical difficulties. One of the technical difficulties was that we were not 

successful in growing two parental populations and having them flower simultaneously. Also, A. 

lyrata is a perennial; they take about 6 months to reach the developmental stage necessary for the 

experiment, unlike A. thaliana, which is ready in about 1 month. It would also be beneficial to 

check if the PIN1 gene shows coding polymorphisms likely to affect protein function. Mutations 

in the coding region could influence protein function and drive variation in apical dominance not 

due to variation in gene expression but through variation in protein function (i.e., coding 

polymorphisms could induce differences in auxin transport). This is potentially important 

because PIN1 was a stronger a priori candidate than PIN3. Another vital investigation would be 

to evaluate flanking region polymorphisms in PIN3 and PILS2 for gain/loss of transcription 

factor binding sites. This analysis could provide insights into the cis-regulatory mechanisms of 

gene expression differences. 
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Supplementary Materials: Chapter IV 

Abbreviations 

My: Mayodan 

Sp: Spiterstulen 

SE: Standard error estimate 

DnaSP: DNA Sequence Polymorphism 

SAM: Sequence Alignment Map 

MA plot: M (log ratio) and A (mean average) scales plot 

Supplementary Materials S4.A: Extra Diagrams  

Figure S4.A1 Box Plot Showing the Distribution of Total Gene Expression for Genes With 

Log2FoldChange > 2 and Wald Test P-value < 0.05 

 

Figure S4.A2 Box Plot Showing the Distribution of Total Gene Expression for Genes With 

Log2FoldChange > 4 and Wald Test P-value < 0.01 
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Figure S4.A3 A schematic of competitive alignment on the diploid genome 

 

Note: Haplotype 1 contains haplotype “T-G-C-T”, whereas haplotype 2 contains 

haplotype variant “A-C-A-G”. ASE can be estimated by counting the allele expressed at each 

variant site; e.g., from “Haplotype 1” 3 alleles of “G” are expressed at the 8th position, with 

“Haplotype 2” showing the same number of “C”. Since both alleles are equally expressed there is 

no significant ASE difference. Another way is to count the total number of reads aligned, which 

in this case, “Haplotype 1” has 4 reads expressed and “Haplotype 2” also has 4 reads expressed, 

still showing no significant ASE difference. In our method, we use the latter to count the total 

number of reads aligned to the haplotype (or gene/transcriptomic) region.
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Figure S4.A4 Bioinformatics data processing pipeline diagram for haplotype phasing and ASE analysis 

 

Note: This pipeline contains 4 stages. The first stage deals with sequence alignment, the second stage deals with calling 

variants, the third stage deals with phasing variants, and the last/fourth stage deals with the alignment of the reads competitively on a 

diploid genome, then counts the read aligned to two haplotypes for ASE analysis.  
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Figure S4.A5 Bar plot showing raw counts for PIN1 Observed for My and Sp Alleles 

Across Samples 

 

Figure S4.A6 Bar plot showing raw counts for PIN3 Observed for My and Sp Alleles 

Across Samples 
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Figure S4.A7 Bar plot showing raw counts for TCP15 Observed for My and Sp Alleles 

Across Samples 

 

Figure S4.A8 Bar plot showing raw counts for TCP22 Observed for My and Sp Alleles 

Across Samples 
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Figure S4.A9 Bar plot showing raw counts for AP1 Observed for My and Sp Alleles Across 

Samples 

 

Figure S4.A10 Bar plot showing raw counts for PILS2 Observed for My and Sp Alleles 

Across Samples 
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Supplementary Materials S4.B: GENOME SEQ PIPELINE 

The original bash scripts and pipeline for this procedure is available at, 

- https://github.com/everestial/phase-extender  

- https://github.com/everestial/ASE-CADG  

Mayodan sample names: MA605, MA611, MA622, MA625, MA629, Ncm8 

Spiterstulen sample names: Sp154, Sp164, Sp21, Sp3, Sp76, SpNor33 

F1 sample name: 2ms01e, 2ms02g, 2ms03g, 2ms04h 

Step 01: Trim the adapter from My and Sp fastq files 

trimSoftware= ~ /Trimmomatic-0.35/trimmomatic-0.35.jar 

item= “MA605” 

java -jar trimSoftware PE -phred33 ${item}_R1.fastq ${item}_R2.fastq Trm_PE-

${item}_R1.fastq Trm_SE-${item}_R1.fastq Trm_PE-${item}_R2.fastq Trm_SE-

${item}_R2.fastq ILLUMINACLIP:all_all_adapters_primers-RNAseq_updated01.fa:2:30:10 

LEADING:20 TRAILING:20 SLIDINGWINDOW:4:15 MINLEN:36 

Step 02: Index the reference genome prior to alignment (if the reference genome and 

appropriate indexes are already prepared it won't be required). See the scripts below to 

prepare index for the tools: bwa, samtools and picard.jar 

GATK3p8= /GenomeAnalysisTK-3.8/GenomeAnalysisTK.jar 

Picard= /Picard2.16/picard.jar 

RefGenome= /RefGenomeN_index/lyrata_genome.fa 

TempDir= /temp_files/ 

samtools=/usr/local/apps/samtools/0.1.19-gcc412/samtools 

2.1 prepare the bwa index of the reference genome 

https://github.com/everestial/phase-extender
https://github.com/everestial/ASE-CADG
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This step creates 4-8 different index files with extensions *.sa *.amb, etc. 

bwa index -a bwtsw ${RefGenome}  

2.2 generate index for samtools // this creates a *.fai index file 

${samtools} faidx ${RefGenome} 

2.3 generate sequence dictionary index for picard.jar // this creates a *.dict index file 

java -jar ${Picard} CreateSequenceDictionary REFERENCE=${RefGenome} 

OUTPUT=lyrata_genome.dict 

Step 03: Generate an unmapped BAM from FASTQ 

GATK3p8= /apps/GenomeAnalysisTK-3.8/GenomeAnalysisTK.jar 

Picard= /apps/Picard2.16/picard.jar 

RefGenome= /apps/RefGenomeN_index/lyrata_genome.fa 

TempDir= /apps/temp_files/ 

java -Xmx4G -jar ${Picard} FastqToSam FASTQ=Trm_PE-MA605_R1.fastq 

FASTQ2=Trm_PE-MA605_R2.fastq OUTPUT=uBAM_MA605.bam 

READ_GROUP_NAME=MA605_C080WACXX_7 SAMPLE_NAME=MA605 

LIBRARY_NAME=C080WACXX_4 PLATFORM_UNIT=GTGAAA.7 PLATFORM=illumina 

SEQUENCING_CENTER=EU TMP_DIR=${TempDir} 

Step 04: Map and Mark Duplicates With Mate Cigar values 

Function/Purpose: Jointly realign the aligned reads around the indel regions for all the 

samples. 

java -jar ${GATK3p8} -T PrintReads -R ${RefGenome} -I 

${item}_duplicates_merged.bam -o ${item}.deDuplicated.bam -rf DuplicateRead 

# index all the files using samtools 
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samtools index *.*bam 

Step 05: First create Realignment interval file. 

Run jointly on all samples (from population) 

java -Xmx4g -jar ${GATK3p8} -T RealignerTargetCreator -R ${RefGenome} -I 

MA605.deDuplicated.bam -I MA611.deDuplicated.bam -I MA622.deDuplicated.bam -I 

MA625.deDuplicated.bam -I MA629.deDuplicated.bam -I Ncm8.deDuplicated.bam  -o all_MA-

Indels.intervals 

Then run IndelRealigner for realignment of the reads around the target indels to correct 

any SNP artifactual. Local realignment helps to identify the most parsimonious alignment. 

java -jar ${GATK3p8} -T IndelRealigner -R ${RefGenome} -I 

MA605.deDuplicated.bam -I MA611.deDuplicated.bam -I MA622.deDuplicated.bam -I 

MA625.deDuplicated.bam -I MA629.deDuplicated.bam -I Ncm8.deDuplicated.bam -

targetIntervals all_MA-Indels.intervals -nWayOut '.indel_realigned.bam' --

consensusDeterminationModel USE_SW  

This step creates a file called *deDuplicated.realigned.bam containing all the original 

reads but with better local alignments in the targeted regions using the interval file"all_MA-

Indels.interval". Finally, we use --consensusDeterminationModel USE_SW to generate alternate 

consensus using Smith-Waterman. 

Step 06: This step filters the paralogous and ambiguous alignment by mapping quality and 

coverage. 

6.1: Filter BAM files 

samtools sort mapQ20.${item}.bam mapQ20.sorted.${item} 

samtools index mapQ20.sorted.${item}.bam 
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rm mapQ20.${item}.bam  # remove the unrequired file 

6.2: prepare a genome coverage file (text file) in bedgraph format 

 bedtools genomecov -ibam mapQ20.sorted.${item}.bam -bg > 

genomecov.mapQ20_${item}.bg 

6.3: First, prepare a bed file with high coverage (for each sample) 

For My Samples 

awk '($1 < 9 && $3-$2 > 5 && $4 > 21); ($1 == "scaffold_9" && $3-$2 > 5 && $4 > 

47); ($1 == "scaffold_10" && $3-$2 > 5 && $4 > 127)' genomecov.mapQ20_MA605.bg > 

highCoverage_MA605.bg 

Note: For this filtering we need new version of samtools (1.3) 

SamtoolsV1_3= /Samtools1.3/Samtools1.3 

${SamtoolsV1_3} view -b -h -L highCoverage_${item}.bg -U 

good_Coverage.mapQ20.${item}.bam mapQ20.sorted.${item}.bam -o 

highCoverage.${item}.bam 

samtools sort good_Coverage.mapQ20.${item}.bam 

good_Coverage.mapQ20.sorted.${item}  

# only provide the prefix 

samtools index good_Coverage.mapQ20.sorted.${item}.bam 

rm highCoverage.${item}.bam 

rm good_Coverage.mapQ20.${item}.bam 

rm mapQ20.sorted.${item}.bam 

Step 07: Joint Variant Call on all Samples. 

7.1 Run single-sample gvcf calls 
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java -jar -Xmx32g -Djava.io.tmpdir=${TempDir} ${GATK3p8} -T HaplotypeCaller -R 

${RefGenome} -I good_Coverage.${item}.bam --emitRefConfidence GVCF -o 

${item}.raw.snps.indels.g.vcf 

java -jar -Xmx32g -Djava.io.tmpdir=${TempDir} ${GATK3p8} -T HaplotypeCaller -R 

${RefGenome} -I realigned_${item}.bam --emitRefConfidence GVCF -o 

${item}.raw.snps.indels.g.vcf 

7.2 If there are lots of samples run combineGVCF on a batch of 200s 

# Our samples size is small, so skipping this step 

7.3 : Joint Genotyping by running GenotypeGVCFs on all the samples together 

# 

https://software.broadinstitute.org/gatk/documentation/tooldocs/org_broadinstitute_gatk_tools_w

alkers_variantutils_GenotypeGVCFs.php 

java -jar -Xmx32g -Djava.io.tmpdir=${TempDir} ${GATK3p8} -T GenotypeGVCFs -R 

${RefGenome} --variant MA605.raw.snps.indels.g.vcf --variant MA611.raw.snps.indels.g.vcf --

variant MA622.raw.snps.indels.g.vcf --variant MA625.raw.snps.indels.g.vcf --variant 

MA629.raw.snps.indels.g.vcf --variant Ncm8.raw.snps.indels.g.vcf --variant 

Sp3.raw.snps.indels.g.vcf --variant Sp21.raw.snps.indels.g.vcf --variant 

Sp76.raw.snps.indels.g.vcf --variant Sp154.raw.snps.indels.g.vcf --variant 

Sp164.raw.snps.indels.g.vcf --variant SpNor33.raw.snps.indels.g.vcf --variant 

ms01e.raw.snps.indels.g.vcf --variant ms02g.raw.snps.indels.g.vcf --variant 

ms03g.raw.snps.indels.g.vcf  --variant ms04h.raw.snps.indels.g.vcf -o 

raw_variants.AllSamples.MySpF1.vcf 
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Step 08: We take the Joint Genotyped VCF data and run Variant Filtration (using either 

VQSR or Hard Filtering parameters) 

8.1: Separate the truth Set variants Vs. Other Set of Variants 

    ## We are taking the variants data provided by Detlef's lab as a truth set. 

    ## So, any variants called in our set that matches or intersects with their variants are 

highly true. 

8.1.1 : variants common between my call and Detlef's lab VCF - i.e concordant 

variants 

java -jar ${GATK3p8} -T SelectVariants -R ${RefGenome} -V 

raw_variants.AllSamples.MySpF1.vcf --concordance Detlef.Variants.asPASSED.vcf -o 

HighConf_Variants.AllSamples.vcf 

8.1.2: Identify the discordant set of Variants 

   # i.e the variants in my call but missing in Detlef's lab VCF - i.e Disconcordant variants 

java -jar ${GATK3p8} -T SelectVariants -R ${RefGenome} -V 

raw_variants.AllSamples.MySpF1.vcf --discordance Detlef.Variants.asPASSED.vcf -o 

Remaining.Variants.AllSamples.vcf  

Step 8.2 (for SNPs) : Now, start filtering the variants from Discordant set. 

   # Since Discordant set contains variants that may or may not be true, we do further 

filtering based on several "Quality parameters". 

   # In this Discordant set we take variants only from GenomicVariants (i.e Excluding the 

variants from RNAseq Samples) for quality control.    

   # Some GATK flags that are useful during this filtering: --removeUnusedAlternates ,  --

excludeNonVariants ,  --excludeFiltered 
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8.2.1: Separate GenomeReSeq Variants from RNAseq variants  

  # removing RNAseq samples - use flag "-xl_sn" ; & remove Un-used Alternate alleles - 

use flag "--removeUnusedAlternates" 

  # remove sites that are uncalled (GT = ./.) after sample selection  

    # - use flag "'vc.getCalledChrCount() == 0' will select the sites that was noCall (./.) in 

all the samples 

    # - -invertSelect" will invert this selection and also include the variants where at least 

variant in one sample is called (including GT = 0/0).  

    java -jar ${GATK3p8} -T SelectVariants -R ${RefGenome} -V 

Remaining.Variants.AllSamples.vcf -selectType SNP --removeUnusedAlternates -o 

DNA_Samples.raw_SNPs.vcf -xl_sn ms01e -xl_sn ms02g -xl_sn ms03g -xl_sn ms04h -select 

'vc.getCalledChrCount() == 0' –invertSelect 

8.2.2: Identify the discordant set of Variants 

   # i.e the variants in my call but missing in Detlef's lab VCF - i.e Disconcordant variants 

java -jar ${GATK3p8} -T SelectVariants -R ${RefGenome} -V 

raw_variants.AllSamples.MySpF1.vcf --discordance Detlef.Variants.asPASSED.vcf -o 

Remaining.Variants.AllSamples.vcf  

Step 8.3 (for SNPs) : Now, start filtering the variants from Discordant set. 

   # Since Discordant set contains variants that may or may not be true, we do further 

filtering based on several "Quality parameters". 

   # In this Discordant set we take variants only from GenomicVariants (i.e Excluding the 

variants from RNAseq Samples) for quality control. 
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   # Some GATK flags that are useful during this filtering: --removeUnusedAlternates ,  --

excludeNonVariants ,  --excludeFiltered 

8.4.1: Separate GenomeReSeq Variants from RNAseq variants  

  # removing RNAseq samples - use flag "-xl_sn" ; & remove Un-used Alternate alleles - 

use flag "--removeUnusedAlternates" 

  # remove sites that are uncalled (GT = ./.) after sample selection  

    # - use flag "'vc.getCalledChrCount() == 0' will select the sites that was noCall (./.) in 

all the samples 

    # - -invertSelect" will invert this selection and also include the variants where at least 

variant in one sample is called (including GT = 0/0).  

    java -jar ${GATK3p8} -T SelectVariants -R ${RefGenome} -V 

Remaining.Variants.AllSamples.vcf -selectType SNP --removeUnusedAlternates -o 

DNA_Samples.raw_SNPs.vcf -xl_sn ms01e -xl_sn ms02g -xl_sn ms03g -xl_sn ms04h -select 

'vc.getCalledChrCount() == 0' –invertSelect 

8.4.2: Set the hard filter parameters (for SNPs) 

# Mark the Filtered SNPs and filterName from genomic VCF data 

java -jar -Xmx8g ${GATK3p7} -T VariantFiltration -R lyrata_genome.fa -V 

DNA_Samples.raw_SNPs.vcf --filterExpression "QD < 2.0 || FS > 60.0 || MQ < 40.0 || 

MQRankSum < -12.5 || ReadPosRankSum < -8.0" --filterName "my_snp_filter" -o 

DNA_Samples.Filtered_SNPs.vcf 

# Select passed variants (SNPs) - use either of below codes 

java -jar -Xmx8g ${GATK3p7} -T SelectVariants -R lyrata_genome.fa -V 

DNA_Samples.Filtered_SNPs.vcf -o DNA_Samples.Passed_SNPs.vcf -select 'vc.isNotFiltered()' 
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8.4.3 (for InDels) : Varian Filtration from Discordant set. 

Select Variants (InDels) and exclude samples from RNAseq 

java -jar -Xmx8g ${GATK3p8} -T SelectVariants -R lyrata_genome.fa -V 

Remaining.Variants.AllSamples.vcf -selectType INDEL --maxIndelSize 20 --

removeUnusedAlternates -o DNA_Samples.raw_InDels.vcf -xl_sn ms01e -xl_sn ms02g -xl_sn 

ms03g -xl_sn ms04h -select 'vc.getCalledChrCount() == 0' -invertSelect 

  # also removes UnUsed Alternates and sites that are uncalled for all selected samples 

8.4.4: Set the hard filter parameters (for InDels) 

# Mark the Filtered InDels and filterName from genomic VCF data 

java -jar -Xmx8g ${GATK3p7} -T VariantFiltration -R lyrata_genome.fa -V 

DNA_Samples.raw_InDels.vcf --filterExpression "QD < 2.0 || FS > 200.0 || ReadPosRankSum < 

-20.0" --filterName "my_indel_filter" -o DNA_Samples.Filtered_InDels.vcf 

java -jar -Xmx8g ${GATK3p7} -T SelectVariants -R lyrata_genome.fa -V 

DNA_Samples.Filtered_InDels.vcf -o DNA_Samples.Passed_InDels.vcf  -select 

'vc.isNotFiltered()' 

8.5 : Remove the sites that are heterozygote InDels in all called samples at that site.  

# i.e the sites that have atleast one Homozygous allele is retained 

java -jar ${GATK3p7} -T SelectVariants -R lyrata_genome.fa -V 

DNA_Samples.Passed_InDels.vcf -o DNA_Samples.Passed.InDels_allHetsRemoved.vcf -select 

'vc.getHetCount() == vc.getCalledChrCount()/2' –invertSelect 

8.6.1: Purpose/Function: Filter the variants from RNAseq Data 

    # In the previous step 08-A-C we created high quality Final variants for Genome Data. 

In this workflow we prepare high quality Final Variants for RNAseq data. 
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    # RNAseq data cannot/shouldnot be filtered based on the depth of the coverage. 

Because highly expressed genes will be expressed more and will have high coverage. Also, 

RNAseq reads mostly cover Genic regions, so paralog alignment from duplicated regions is  not 

as pervasive as in GenomeReq data. Also, the paralog alignment for duplicated genes are only 

possible in local cluster within the GENE, rather than through out the whole genome. 

    # So, the fix for this problem is to filter the RNAseq aligned BAM files. We take the 

highly confident variants from Genomic VCFs and any covert it to a bedfile. After this we filter 

the RNAseq BAMs based on this bedfile. Any reads not touching the bed regions are filtered 

away.  

    # This works under the assumption that any reads that contains and/or overlapps a true 

variant (from BED regions) should be an ortholog reads. 

8.6.2 : Make a Bed file from all the passed Genomic VCF: 

## Use the self created python parser: VcfToBed 

# https://github.com/everestial/VcfToBed 

# use python > version 3.6  

python VcfToBed.py DNA_Samples.Passed_Variants.Final.vcf 

DNA_Samples.Passed_Variants.Final.bed 

8.6.3 : Now filter the BAMs from RNAseq Data   

  ## Only retain the reads that 1) are mapQ > 40   2) touch the true set of variants from 

above BED file. 

  ## **Note: While parallelizing with 'samtools' make sure to include the whole 

task/command within " " because parallel sees '>' as redirection rather than output. The '>' may 

also be enclosed within " " as ">" to work the problem out. 

https://github.com/everestial/VcfToBed
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    # filter the reads 

parallel --tmpdir ${TempDir} --jobs 4 "${samtools} view -b -q 40 realigned_{}.bam -L 

DNA_Samples.Passed_Variants.Final.bed > realigned_{}Filtered.bam" ::: ms01e ms02g ms03g 

ms04h 

parallel --tmpdir ${TempDir} --jobs 4 "${samtools} index realigned_{}Filtered.bam 

realigned_{}Filtered.bai" ::: ms01e ms02g ms03g ms04h 

    # Create flagstat report for non-filtered and filtered BAMs 

parallel --tmpdir ${TempDir} --jobs 4 "${samtools} flagstat realigned_{}.bam > 

realigned_{}.BAM.report.txt" ::: ms01e ms02g ms03g ms04h 

parallel --tmpdir ${TempDir} --jobs 4 "${samtools} flagstat realigned_{}Filtered.bam > 

realigned_{}Filtered.BAM.report.txt" ::: ms01e ms02g ms03g ms04h 

    # To Do- Now, compare the flagstat report to check how much reads got filtered (both 

number and percentage). 

8.7: Now, again call the variants from filtered RNAseq BAM files in GVCF mode 

Now, call Variants from RNAseq data in GVCF mode (using Parallel). 

parallel --jobs 4 java -jar -Xmx16g -Djava.io.tmpdir=${TempDir} ${GATK3p8} -T 

HaplotypeCaller -R ${RefGenome} -I realigned_${}_Filtered.bam --emitRefConfidence GVCF -

o realigned_Filtered_{}.raw.snps.indels.g.vcf ::: ms01e ms02g ms03g ms04h 

8.8 : Joint Genotyping by running GenotypeGVCFs on all the samples together 

https://software.broadinstitute.org/gatk/documentation/tooldocs/org_broadinstitute_gatk_

tools_walkers_variantutils_GenotypeGVCFs.php 

java -jar -Xmx16g -Djava.io.tmpdir=${TempDir} ${GATK3p8} -T GenotypeGVCFs -R 

${RefGenome} --variant MA605.raw.snps.indels.g.vcf --variant MA611.raw.snps.indels.g.vcf --
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variant MA622.raw.snps.indels.g.vcf --variant MA625.raw.snps.indels.g.vcf --variant 

MA629.raw.snps.indels.g.vcf --variant Ncm8.raw.snps.indels.g.vcf --variant 

Sp3.raw.snps.indels.g.vcf --variant Sp21.raw.snps.indels.g.vcf --variant 

Sp76.raw.snps.indels.g.vcf --variant Sp154.raw.snps.indels.g.vcf --variant 

Sp164.raw.snps.indels.g.vcf --variant SpNor33.raw.snps.indels.g.vcf --variant 

realigned_Filtered_ms01e.raw.snps.indels.g.vcf --variant 

realigned_Filtered_ms02g.raw.snps.indels.g.vcf --variant 

realigned_Filtered_ms03g.raw.snps.indels.g.vcf --variant 

realigned_Filtered_ms04h.raw.snps.indels.g.vcf -o raw_variants.Set02.AllSamples.MySpF1.vcf 

8.9 : Now, separate RNAseq Data Variants from Genome Variants. 

  # useful flags: "-sn" for selecting required Samples 

    # "--removeUnusedAlternates": remove Un-used Alternate alleles 

  # remove sites that are uncalled (GT = ./.) after sample selection  

    # - use flag "'vc.getCalledChrCount() == 0' will select the sites that was noCall (./.) in 

all the samples 

    # - -invertSelect" will then invert this selection and also include the variants where at 

least variant in one sample is called (including GT = 0/0).  

# SelectVariants from RNAseq Samples 

java -jar -Djava.io.tmpdir=${TempDir} ${GATK3p7} -T SelectVariants -R 

lyrata_genome.fa -V raw_variants.Set02.AllSamples.MySpF1.vcf --removeUnusedAlternates -o 

RNAseq_Samples.raw_Variants.vcf -sn ms01e -sn ms02g -sn ms03g -sn ms04h -select 

'vc.getCalledChrCount() == 0' -invertSelect 

# Now, convert the these variants as PASS 
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head -n -0 RNAseq_Samples.raw_Variants.vcf |tee >(grep '^#' > header.txt) >(grep '^#' -

v | awk '$7 = "PASS" {print $0}' OFS="\t" > passed.txt) 

Supplementary Materials S4.C: RNASEQ PIPELINE   

NOTE: The original bash scripts and pipeline for this procedure is available at  

- https://github.com/everestial/phase-stitcher  

- https://github.com/everestial/ASE-CADG  

Data for this pipeline were sequenced at David Murdoch Center. It has four samples. 

Each sample has 100 bp paired-end reads.  

Initial Step: Data check and adapter trimming.  

Quality check – using fastqc application (as in Supplementary Materials S4.A that was 

done for genome sequence reads) 

Adapters trimming - using trimmomatic application. 

java -jar / apps/Trimmomatic-0.35/trimmomatic-0.35.jar PE -phred33 2ms01e_R1.fastq 

2ms01e_R2.fastq Trm_PE-2ms01e_R1.fastq Trm_SE-2ms01e_R1.fastq Trm_PE-

2ms01e_R2.fastq Trm_SE-2ms01e_R2.fastq ILLUMINACLIP:all_all_adapters_primers-

RNAseq_updated02.fa:2:30:10 LEADING:20 TRAILING:20 SLIDINGWINDOW:4:15 

MINLEN:36 

Step 01:    This step is used to align RNAseq reads to the haploid reference genome, 

transcriptome using rnaSTAR software; then extract the SNPs, InDels which will be further 

utilized in phasing. 

We map RNAseq reads to the reference genome using the 2-pass approach. 

1.1 : Create index using reference genome and GTF/GFF align (1st pass) 

mkdir 1sTpassGenomeDir 

https://github.com/everestial/phase-stitcher
https://github.com/everestial/ASE-CADG
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STAR --runThreadN 8 --runMode genomeGenerate --genomeDir 1sTpassGenomeDir --

genomeFastaFiles lyrata_genome.fa --sjdbGTFfile lyrata.ensemble.gtf --sjdbOverhang 100   

Outcome: 1) makes index files for given reference genome.  

Ensure that the input gtf file is compatible with the reference genome. 

1.2: First pass alignment directory for each RNAseq sample 

mkdir 1passAlignment 

# sample 2ms01e 

mkdir 1passAlignment/2ms01e 

STAR --runThreadN 16 --runMode alignReads --genomeDir 1sTpassGenomeDir --

readFilesIn Trm_PE-2ms01e_R1.fastq Trm_PE-2ms01e_R2.fastq --outFileNamePrefix 

1passAlignment/2ms01e/2ms01e --outFilterMultimapNmax 10 --outSAMmapqUnique 60 --

outSAMtype BAM SortedByCoordinate --outReadsUnmapped Fastx --outSAMattributes All --

alignIntronMin 10 --quantMode TranscriptomeSAM GeneCounts  

# Comment: --outSAMmapqUnique Integer0to255 makes the SAM file compatible with 

GATK; set it at 60. 

# With --quantMode GeneCounts option STAR will count number of reads per gene 

while mapping. A read is counted if it overlaps (1nt or more) one and only one gene. This option 

requires annotations (GTF or GFF with –sjdbGTFfile option) at the genome generation step, or 

at the mapping step. STAR outputs read counts per gene into ReadsPerGene.out.tab file with 4 

columns which correspond to different strandedness options. - see STAR manual for details. 

# With --quantMode TranscriptomeSAM will also output the reads aligned to 

transcriptome reads (check for  Aligned.toTranscriptome.out.bam file - this bam file can be used 

for identification of diagnostic alleles), this flag combined with --quantTranscriptomeBan 
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IndelSoftclipSingleend (default) prohibit indels, soft clipping and single-end alignments - to 

make it compatible with RSEM (and probably EMASE). 

Step 02. Add read groups, sort, mark duplicates, and create index 

java -jar / apps/picard-tools-2.5.0/picard.jar AddOrReplaceReadGroups 

I=2ms01eAligned.sortedByCoord.out.bam O=2ms01e_sorted.bam SO=coordinate 

RGID=TTAGGC RGLB=F1_hybrid RGPL=Illumina RGPU=C4AM3ACXX RGSM=2ms01e 

CREATE_INDEX=true  

java -jar / apps/picard-tools-2.5.0/picard.jar MarkDuplicates I=2ms01e_sorted.bam 

O=2ms01e_dedupped.bam CREATE_INDEX=true VALIDATION_STRINGENCY=SILENT 

M=2ms01e_output.metrics 

Step 03 - note: Using GATK app requires creating a sequence dictionary file for reference 

genome. 

java -jar -Xmx16g -Djava.io.tmpdir= /temp_files/ /apps/picard-tools-2.5.0/picard.jar 

CreateSequenceDictionary R=lyrata_genome.fa O=lyrata_genome.dict 

# Step 03.1: Split'N'Trim and reassign mapping qualities 

java -jar -Xmx16g -Djava.io.tmpdir= /temp_files/ apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T SplitNCigarReads -R lyrata_genome.fa -I 2ms01e_dedupped.bam 

-o 2ms01e_split.bam -U ALLOW_N_CIGAR_READS 

Step 03.2: Variant Calling 

java -jar -Xmx16g -Djava.io.tmpdir=/temp_files /apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T HaplotypeCaller -R lyrata_genome.fa -I 2ms01e_split.bam -

dontUseSoftClippedBases -stand_call_conf 20.0 -stand_emit_conf 20.0 -o 2ms01e_raw.vcf 
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# Variant Filtration 

java -jar -Xmx16g -Djava.io.tmpdir=/temp_files /apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T VariantFiltration -R lyrata_genome.fa -V 2ms01e_raw.vcf -

window 35 -cluster 3 -filterName FS -filter "FS > 30.0" -filterName QD -filter "QD < 2.0" -

filterName MappingQ -filter "MQ < 25.0" -o 2ms01e_filtered.vcf 

Step 04: IndelRealigment 

## Realignment around the indels: Evidence of hidden indels > 1) presence of 

mismatches 2) softclips. InDels in reads (especially near the ends) can trick the mappers into 

mis-aligning with mismatches. Note: Know indels sites may be supplemented for the preparing 

the realignment target site (but not required).  

4.1 Run the RealignmentTargetCreator to find the positions on the chromosome 

that may require realiment 

java -jar -Xmx16g -Djava.io.tmpdir=/temp_files /apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T RealignerTargetCreator -R lyrata_genome.fa -I 2ms01e_split.bam 

-o 2ms01e_realigner.intervals  

#Note: this run a) requires index file for both input *.bam as well as the reference *.fasta 

files, so check for the index files. b) creates a intervals.list for futher downstream realignment. 

4.2 And then run IndelRealigner for realignment of the reads around the target 

indels to correct for any snp artifactuals. Local realignment helps to identify most 

parsimonious alignment. 

java -jar -Xmx16g -Djava.io.tmpdir=/temp_files /apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T IndelRealigner -R lyrata_genome.fa -I 2ms01e_split.bam -
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targetIntervals 2ms01e_realigner.intervals -o realigned_2ms01e.bam --

consensusDeterminationModel USE_SW  

#//This creates a file called realigned_readsMA605.bam containing all the original reads, 

but with better local alignments in the regions that were targeted using interval file 

2ms01e_realigner.intervals. We are using --consensusDeterminationModel USE_SW to generate 

alternate consensus using 'Smith-Waterman'; this model requires lots of computational power but 

is mostly accurate. 

Step 05: Use phaser for creating RBP blocks. 

vcf_file=passed_variants.All_samples.vcf.gz   

# Note: use gziped files for phASER 

# index the bam files 

samtools index "realigned_${item}.bam" 

# make a sub-directory on the fly 

rm -rf ${OPATH}/"${item}_phased"; mkdir ${OPATH}/"${item}_phased" 

5.1 now, run phASER for each sample on a for-loop 

python phaser.py --threads 2 --vcf ${vcf_file} --bam "realigned_${item}.bam" --

paired_end 1 --mapq 20 --baseq 10 --sample "$item" --o 

${OPATH}/"${item}_phased"/"${item}_Only_Chr2" --id_separator - --haplo_count_bam 1 --

chr 2 --write_vcf 1 --as_q_cutoff 0.025 --include_indels 1 --unique_ids 1 --output_network 

"${item}_network" --show_warning 1 --debug 1 &> 

${OPATH}/"${item}_phased"/"${item}.debug.log" 
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5.2 Create path, variables and fileName for corresponding files. 

vcf_file=passed_variants.All_samples.vcf.gz  # Note: use gziped files for phASER 

echo "Read the vcf file for all samples (:" 

# main output Dir 

rm -rf PHASER_OUTPUT_GenomeData; mkdir PHASER_OUTPUT_GenomeData   # 

creates an output dir if it doesn't exist 

OPATH=PHASER_OUTPUT_GenomeData 

echo "Create main output dir named: '${OPATH}' (:" 

# Run phASER for each genome samples/individuals 

samtools index "${item}.deDuplicated.indel_realigned.bam" 

# make sub-directory on the fly, if there is already a directory with that name (will be 

removed) -  

rm -rf ${OPATH}/"${item}_phased"; mkdir ${OPATH}/"${item}_phased" 

# now, run phASER for each sample on a for-loop 

python phaser.py --threads 2 --vcf ${vcf_file} --bam 

"${item}.deDuplicated.indel_realigned.bam" --paired_end 1 --mapq 20 --baseq 10 --sample 

"$item" --o ${OPATH}/"${item}_phased"/"${item}_Only_Chr2" --id_separator - --

haplo_count_bam 1 --chr 2 --write_vcf 1 --as_q_cutoff 0.025 --include_indels 1 --unique_ids 1 --

output_network "${item}_network" --show_warning 1 --debug 1 &> 

${OPATH}/"${item}_phased"/"${item}.debug.log" 

5.3 (optional ) 

### """ Description:  This is just a alternative method 

## this is run to 
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     # - use reference Genome to impute the phased variants 

     # - impute homVar (all samples) found in two distince populations 

     # - create chain files, and update GTF/GFF file 

  ## prepared to align the RNAseq reads only from Chr2 to diploid Chr2 

    ## This can be fully extended to include data analyses for all chromosomes and full 

genome updated GTF/GFF 

5.4: Phase Stitching 

python pHASE-Stitcher-

Markov/markov_final_test/Stitcher_using_1stOrderMarkov_InteractiveMode.py --vcf1 

My_seq.test.vcf --vcf2 Sp_seq.test.vcf --pop1 My --pop2 Sp --output 2ms04h_test --het_vcf 

RNA_seq.test.vcf --f1_sample 2ms04h 

python  stitcher/pHASE-Stitcher-

Markov/markov_final_test/Stitcher_using_1stOrderMarkov_InteractiveMode.py --vcf1 

MY.phased_variants.Final.vcf --vcf2 SP.phased_variants.Final.vcf --pop1 My --pop2 Sp --output 

${item}_Chr2 --het_vcf RNAseq.phased_variants.Final.vcf --f1_sample ${item} 

5.5: Find fix HomVar(GT) in both population 

  # This variants can be use for imputing the variants in phased genome 

## Part A: - select vcf site/lines that are fixed homozygous variants (GT = 1/1 or 2/2 ...) 

## Note: involves two runs for each vcf 

   ## first to select allHom Ref or Var and second to select sameAllHomVar in all 

samples  

## for Mayodan 
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java -jar /apps/GenomeAnalysisTK-3.7/GenomeAnalysisTK.jar -T SelectVariants -R 

lyrata_genome.fa -V MY.phased_variants.Final.vcf -o My.AllHomVar.vcf -select 

'vc.getHomVarCount() == 6' 

# change sample size (6) if multiple vcf with different size is used 

# now select the lines that are same HomVar in all samples 

java -jar / /apps/jvarkit/dist/vcffilterjs.jar -e 'function accept(vc) {for(var 

i=1;i<vc.getNSamples();i++) if(!vc.getGenotype(0).sameGenotype(vc.getGenotype(i))) return 

false; return true;}accept(variant); ' My.AllHomVar.vcf -o My.AllHomVarSameGT.vcf 

## same selection for SpiterStulen 

java -jar / apps/GenomeAnalysisTK-3.7/GenomeAnalysisTK.jar -T SelectVariants -R 

lyrata_genome.fa -V SP.phased_variants.Final.vcf -o Sp.AllHomVar.vcf -select 

'vc.getHomVarCount() == 6' 

# now select the lines that are same HomGT in all samples 

java -jar / apps/jvarkit/dist/vcffilterjs.jar -e 'function accept(vc) {for(var 

i=1;i<vc.getNSamples();i++) if(!vc.getGenotype(0).sameGenotype(vc.getGenotype(i))) return 

false; return true;}accept(variant); ' Sp.AllHomVar.vcf -o Sp.AllHomVarSameGT.vcf 

5.6: imputation status complete for Chromosome #2  

## Now, take the Haplotype Portrait file and run with 

   # 1) impute_F1_genotypes.py   

        # code for mining HomVar(GT_bases) - One run works for all(mostly) samples 

        # check codes 

   # 2) impute_F1_genotypes_part02_withPandas.py - still not an interactive program 

        # run for each sample separately - careful with samples names !! ?? 
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Step 06: Create a diploid genome 

This is done to:  

  ## prepared to align the RNAseq reads only from Chr2 to diploid Chr2 

    ## This can be fully extended to include data analyses for all chromosomes and full 

genome updated GTF/GFF 

6.1 Preparation of Diploid genome - Using g2gTools :  

  ## But, this method has a slight modification - in SNP haplotype file 

  ## Modification in prepraration of left vs. right SNP_InDelsPatched Genome (see 

explanation) 

6.1.1: gzip and index the vcf file 

# Only take Chr2 - Remove this step later 

  # Split using pyfaidx 

faidx -x lyrata_Chr2.My.fa 2 

    # outcome: This will output only chr2 in the fasta file 

# SNPs 

bgzip -c F1_2ms04h.imputed.SNP.haplotype.vcf > 

F1_2ms04h.imputed.SNP.haplotype.vcf.gz 

tabix -p vcf F1_2ms04h.imputed.SNP.haplotype.vcf.gz 

# InDels 

bgzip -c F1_2ms04h.imputed.InDel.haplotype.vcf > 

F1_2ms04h.imputed.InDel.haplotype.vcf.gz 

tabix -p vcf F1_2ms04h.imputed.InDel.haplotype.vcf.gz 
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6.2 : Create a chain-file using InDels  

# using lyrata_genome(1-10).fa 

# using --diploid option active 

  # A: Create chain file using InDels 

g2gtools vcf2chain -f ${REF} -i ${VCF_INDELS} -s ${STRAIN} -o ${STRAIN}/REF-to-

${STRAIN}.chain 

g2gtools vcf2chain -f lyrata_Chr2.only.fa -i F1_2ms04h.imputed.InDel.haplotype.vcf.gz -

s 2ms04h -o REF_to_2ms04h.chain –diploid 

# Outcome: This will create left - REF_to_2ms04h.left.chain and right - 

REF_to_2ms04h.right.chain chainfiles. 

# If --diploid mode is not active, HetVar will be tossed while creating chain files 

# B: Patch the SNPs 

g2gtools patch -i lyrata_Chr2.only.fa -v F1_2ms04h.imputed.SNP.haplotype.vcf.gz -s 

2ms04h -o lyrata_2ms04h_SNPsPatched.fa --diploid 

# Outcome: This will create left - lyrata_2ms04h_SNPsPatched.l.fa and right - 

lyrata_2ms04h_SNPsPatched.r.fa genome 

# If --diploid mode is not active HetVar will be tossed while creating genome 

  # C: Incorporate Indels 

g2gtools transform -i ${STRAIN}/${STRAIN}.patched.fa -c ${STRAIN}/REF-to-

${STRAIN}.chain -o ${STRAIN}/${STRAIN}.fa 

    # Note: So, no we plan to add InDels to SNPs patched genome 

    # So, use left-SnpPatchedGenome and left-chainfile to add the left-indels to create left-

SnpInDelPatchedGenome 
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# prep Left-Genome: 

g2gtools transform -i lyrata_2ms04h_SNPsPatched.l.fa -c REF_to_2ms04h.left.chain -o 

lyrata_2ms04h_SNPs_InDelsPatched.left.fa -d 

# prep Right-Genome: 

g2gtools transform -i lyrata_2ms04h_SNPsPatched.r.fa -c REF_to_2ms04h.right.chain -

o lyrata_2ms04h_SNPs_InDelsPatched.right.fa -d  

6.3: Create custom gene-annotation (i.e update GTF/GFF file using chain-file) 

    # Now, we create custom gene annotation with respect to the new custom genome.  

    # We can also create custom annotation database (so we can extract from custom 

genome) in the following steps: 

g2gtools convert -c ${STRAIN}/REF-to-${STRAIN}.chain -i ${GTF} -f gtf -o 

${STRAIN}/${STRAIN}.gtf 

# GTF for Left-Genome: 

g2gtools convert -c REF_to_2ms04h.left.chain -i lyrata.Chr2_only.gtf -f gtf -o 

GTF_for2ms04h.Left.gtf -d 

# GTF for Left-Genome: 

g2gtools convert -c REF_to_2ms04h.right.chain -i lyrata.Chr2_only.gtf -f gtf -o 

GTF_for2ms04h.Right.gtf -d 

# We can also use gff file - Using this for our ASE data analyses 

# GFF for Left-Genome: 

g2gtools convert -c REF_to_2ms04h.left.chain -i lyrata.Chr2.fromRawat_02.gff -f gtf -o 

GFF_for2ms04h.Left.gff 

 # GFF for Right-Genome: 
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g2gtools convert -c REF_to_2ms04h.right.chain -i lyrata.Chr2.fromRawat_02.gff -f gtf -o 

GFF_for2ms04h.Right.gff 

6.4  Add pre/suf-fix to the Diploid Genome/GTF,GFF files 

# First rename the chormosomes  - Do manually 

lyrata_2ms04h_SNPs_InDelsPatched.left.fa > lyrata_2ms04h_Chr2.My.fa  # left 

chromosome 

lyrata_2ms04h_SNPs_InDelsPatched.right.fa > lyrata_2ms04h_Chr2.Sp.fa  # right 

chromosome 

# Rename the GTF/GFF files too 

GFF_for2ms04h.Left.gff > lyrata_2ms04h_Chr2.My.gff 

GFF_for2ms04h.Right.gff > lyrata_2ms04h_Chr2.Sp.gff 

6.5  Add appropriate pre/suffixes in the fasta and GTF files 

  # suffix added manually for fasta files 

  # add suffix in GTF/GFF files 

"""  prefix was added to the gtf file, column 1, where the chromsome label if present 

From: 

2 version-2 gene 1 1011 0.42 - .

 ID=AL2G10010;Name=AL2G10010;Note=Protein_Coding_gene 

2 version-2 transcript 1 1011 0.42 - .

 ID=AL2G10010.t1;Parent=AL2G10010 

To: 

2_My version-2 gene 1 1011 0.42 - .

 ID=AL2G10010;Name=AL2G10010;Note=Protein_Coding_gene 
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2_My version-2 transcript 1 1011 0.42 - .

 ID=AL2G10010.t1;Parent=AL2G10010 

""" 

6.6 Add suffix in column #1 (chr names) in gtf files 

# using Sed tool: 

#sed 's/^\S*/&_My/' lyrata_2ms04h_Chr2.My.gff > lyrata_2ms04h_Chr2_My.gff 

#sed 's/^\S*/&_Sp/' lyrata_2ms04h_Chr2.Sp.gff > lyrata_2ms04h_Chr2_Sp.gff 

# using Awk 

awk -v  PRE='_My' '{$1=$1PRE; print}' OFS="\t" lyrata_2ms04h_Chr2.My.gff > 

lyrata_2ms04h_Chr2_My.gff 

awk -v  PRE='_Sp' '{$1=$1PRE; print}' OFS="\t" lyrata_2ms04h_Chr2.Sp.gff > 

lyrata_2ms04h_Chr2_Sp.gff 

## also add suffix to all the variable_names in gene features (column 9)  

awk -v PRE='_My' '{gsub(/;/,PRE";",$9); sub(/$/,PRE,$9); print}' OFS='\t' 

lyrata_2ms04h_Chr2_My.gff > lyrata_2ms04h_Chr2_test_My.gff 

awk -v PRE='_Sp' '{gsub(/;/,PRE";",$9); sub(/$/,PRE,$9); print}' OFS='\t' 

lyrata_2ms04h_Chr2_Sp.gff > lyrata_2ms04h_Chr2_test_Sp.gff 

## Now, merge the genome and GTF/GFF files 

cat lyrata_2ms04h_Chr2.My.fa lyrata_2ms04h_Chr2.Sp.fa > 

lyrata_2ms04h_Chr2.MySp.fa   

cat lyrata_2ms04h_Chr2_test_My.gff lyrata_2ms04h_Chr2_test_Sp.gff > 

lyrata_2ms04h_Chr2_MySp.gff 
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Step 07: Alignment to Diploid Genome, GTF/GFF using STAR in TrancriptomeSAM, 

Gene Counts Mode 

## Set variable names and corresponding files to it. 

samtoolsV3= /Samtools1.3/Samtools1.3 

ref_genome=lyrata_genome.fa 

# output Directory 

rm -rf BAM_To_FastQ; mkdir BAM_To_FastQ OPATH=BAM_To_FastQ 

samtools index realigned_${item}.bam 

# select alignment reads only from Chr2 

samtools view -h -b realigned_${item}.bam 2 > "${OPATH}/chr2.${item}.bam" 

# sort the bam file 

samtools sort -n "${OPATH}/chr2.${item}.bam" "${OPATH}/chr2.sorted.${item}" 

# now, BAM to FastQ conversion 

/Samtools1.3/Samtools1.3 fastq -1 ${OPATH}/chr2_R1_${item}.fastq -2 

${OPATH}/chr2_R2_${item}.fastq -O -s ${OPATH}/chr2.single_${item}.fastq -t 

${OPATH}/chr2.sorted.${item}.bam --reference ${ref_genome} 

Step 08: Variant Calling 

java -jar -Xmx16g -Djava.io.tmpdir=/temp_files /apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T HaplotypeCaller -R lyrata_genome.fa -I realigned_2ms01e.bam -I 

realigned_2ms02g.bam -I realigned_2ms03g.bam -I realigned_2ms04h.bam -

dontUseSoftClippedBases -stand_call_conf 20.0 -stand_emit_conf 10.0 -o F1_hybrids_raw.vcf -

nt 1 -nct 8 
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8.2 Variant Filtration 

# Select Variants (SNPs) 

java -jar -Xmx16g -Djava.io.tmpdir=/temp_files /apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T SelectVariants -R lyrata_genome.fa -V F1_hybrids_raw.vcf -

selectType SNP -o F1_hybrids_SNPs_raw.vcf 

# Filter SNPs 

java -jar -Xmx16g -Djava.io.tmpdir=/temp_files /apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T VariantFiltration -R lyrata_genome.fa -V 

F1_hybrids_SNPs_raw.vcf --filterExpression "AS_FS > 60.0" --filterName "AS_FS_fail" --

filterExpression "AS_QD < 2.0" --filterName "AS_QD_fail" --filterExpression 

"AS_MQRankSum < -12.5" --filterName "AS_MQRankSum_fail" --filterExpression "AD < 3" --

filterName "AlleleDepth_fail" -o F1_hybrids_SNPs_filtered.vcf 

## The filtration of variants (cluster of 3 SNPs) in a window of 35 bp was not applied, 

because in the reads from Spiterstulen haplotype we were expecting there would be more SNPs 

cluster within the window of 35 bp. 

# Instead filtration was done by adding one more filtering parmeter AS_MQRankSum 

# See the link for AS_MQRankSum  

https://software.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_walkers_annotat

or_AS_MappingQualityRankSumTest.php 

# Select passed variants (SNPs) 

java -jar -Xmx16g -Djava.io.tmpdir=/temp_files /apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T SelectVariants -R lyrata_genome.fa -V 

F1_hybrids_SNPs_filtered.vcf -o F1_hybrids_SNPs_passed.vcf -select 'vc.isNotFiltered()' 
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8.3 (InDels): Variant Filtration 

# Select Variants (InDels) 

java -jar -Xmx16g -Djava.io.tmpdir=/temp_files /apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T SelectVariants -R lyrata_genome.fa -V F1_hybrids_raw.vcf -

selectType INDEL -o F1_hybrids_InDels_raw.vcf 

# Filter InDels 

java -jar -Xmx16g -Djava.io.tmpdir=/temp_files /apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T VariantFiltration -R lyrata_genome.fa -V 

F1_hybrids_InDels_raw.vcf --filterExpression "AS_FS > 200.0" --filterName "AS_FS_fail" --

filterExpression "AS_QD < 2.0" --filterName "AS_QD_fail" --filterExpression 

"AS_MQRankSum < -20" --filterName "AS_MQRankSum_fail" --filterExpression "AD < 3" --

filterName "AlleleDepth_fail" -o F1_hybrids_InDels_filtered.vcf 

# Select passed variants (InDels) 

java -jar -Xmx16g -Djava.io.tmpdir=/temp_files /apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T SelectVariants -R lyrata_genome.fa -V 

F1_hybrids_InDels_filtered.vcf -o F1_hybrids_InDels_passed.vcf -select 'vc.isNotFiltered()' 

8.4 (SNPs and InDels): Merge Variants 

java -jar -Xmx16g -Djava.io.tmpdir=/temp_files /apps/GenomeAnalysisTK-

3.6/GenomeAnalysisTK.jar -T CombineVariants -R lyrata_genome.fa --variant:SNPs 

F1_hybrids_SNPs_passed.vcf --variant:InDels F1_hybrids_InDels_passed.vcf -o 

F1_passed_variants.vcf 

 

 



 

 192 

Table S4.C1 RNAseq data alignment metrics. 

Sample # of Reads % Unique %Multi %Too many %Unmapped 

2ms01e 2549672 42.53 56.59 0.12 0.76 

2ms02g 2757392 38.76 60.47 0.08 0.68 

2ms03g 2352049 42.01 57.29 0.08 0.62 

2ms04h 2734175 42.17 56.98 0.09 0.76 

Note: This alignment metrics are for reads aligned on a diploid genome (using 

RnaSTAR) for each sample. The “% Unique columns” shows the percentage of uniquely aligned 

reads and other columns shows percentage of reads aligned in that category. 

Supplementary Materials S4.D: Codes Used for ASE Analysis With DESeq2 

(1) [R script] Upload the DESeq2 package 

library(DESeq2) 

(2) Loading data 

counts_2ms01e <- read.table( "final_counts_2ms01e.txt", sep="\t", header = 

TRUE) 

counts_2ms02g <- read.table("final_counts_2ms02g.txt", sep="\t", header = 

TRUE) 

counts_2ms03g <- read.table("final_counts_2ms03g.txt", sep="\t", header = 

TRUE) 

counts_2ms04h <- read.table("final_counts_2ms04h.txt", sep="\t", header = 

TRUE) 

(3) Merge/join Dataframes 

counts.merged.ms1e2g3g4h <- merge( 

  counts_2ms01e, counts_2ms02g, 
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  by=c("contig", "start", "transcript_ID")) %>%  

  merge(counts_2ms03g, 

        by=c("contig", "start", "transcript_ID")) %>% 

  merge(counts_2ms04h, 

        by=c("contig", "start", "transcript_ID")) 

(4) Apply filters  

counts.ms1e2g3g4h.Abv10Counts <- filter( 

  counts.merged.ms1e2g3g4h,  

  unqC_My.ms01e>10 |unqC_Sp.ms01e>10 |unqC_My.ms02g>10 

|unqC_Sp.ms02g>10  |unqC_My.ms03g>10 |unqC_Sp.ms03g>10 

|unqC_My.ms04h>10 |unqC_Sp.ms04h>10) 

(5) Sequence alignment of Spiterstulen population of PIN3 gene  

counts.ms1e2g3g4h.Summed <- cbind( 

  counts.ms1e2g3g4h.Abv10Counts,  

  unqC_total = counts.ms1e2g3g4h.Abv10Counts %>% 

select(matches("unqC"))%>% 

    rowSums(), 

  mulC_total =  

    counts.ms1e2g3g4h.Abv10Counts %>%  

    select(matches("mulC")) %>% 

    rowSums(),  

  totalC_total = counts.ms1e2g3g4h.Abv10Counts %>% 

    select(matches("totalC")) %>% 
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    rowSums()) 

(6) Apply filters 

counts.ms1e2g3g4h.filt01 <- filter( 

  counts.ms1e2g3g4h.Summed,  

  mulC_total < .20*totalC_total |  

    unqC_total > .20*totalC_total) %>%  

  select(-unqC_total, -mulC_total, -totalC_total) %>% 

  arrange(start, contig) 

(7) Design the expression data 

expressionData <- data.frame( 

  counts.ms1e2g3g4h.filt01, row.names = "transcript_ID") %>% 

  select(matches("unqC", ignore.case = TRUE)) 

(8) Design covariate factors for the test 

# sample level variates 

sampleID <- factor(rep(c("ms01e", "ms02g", "ms03g", "ms04h"), each = 2)) 

 # haplotype level variates 

hapType <- factor(rep(c("My", "Sp"), 4)) 

# maternal cytoplasm level variates 

cytoplasm = factor(rep("Ma", 8)) 

# family level variates 

familyGroup <- factor(rep(c("e", "g", "g", "h"), each=2)) 

## create a dataframe detailing the above co-variate:sample relationship 

exp_factors = data.frame(sampleID = sampleID,  
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                         hapType = hapType, 

                         familyGroup = familyGroup,  

                         maternalEff = cytoplasm) 

# experimental design set up for ASE 

expDesign <- model.matrix(~0 + sampleID + hapType) 

(9) Provide count data as matrix, colData and design 

ASE_Matrix <- DESeqDataSetFromMatrix(countData = expressionData,  

                                      colData = exp_factors,  

                                      design = ~ 0 + sampleID + hapType) 

(10) Set normalization factors for all columns to 1 

sizeFactors(ASE_Matrix) <- rep(1, 2*4) 

(11) Run the DESeq using the design - fit the model using "local" 

dds.ASE_Data <- DESeq(ASE_Matrix, fitType = "local", betaPrior = FALSE) 

(12) Build the results table 

# Without threshold 

result.ASE_Data <- results( 

  dds.ASE_Data, contrast = c("hapType", "My", "Sp"),  

  alpha = 0.05) 

# With threshold 

result.ASE_Data.LFC1 <- results(dds.ASE_Data, lfcThreshold = 1, 

                                contrast = c("hapType", "My", "Sp")) 
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Supplementary Materials S4.E: Files repo 

1. File showing significant ASE differences (sorted by P-values) is on Github repo 

https://github.com/everestial/ASE-CADG , file name 

"wald_all_genes_PValue_byValues.csv" 

2. File showing significant ASE differences (sorted by genomic position) is on Github repo 

https://github.com/everestial/ASE-CADG , file name 

"wald_all_genes_PValue_byPosition.csv" 

  

https://github.com/everestial/ASE-CADG
https://github.com/everestial/ASE-CADG
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CHAPTER V: CONCLUSION 

Dissertation Goal 1; Chapter II 

My first goal (Chapter 2) was to determine whether differences in apical dominance and shoot 

architecture observed in the Mayodan and Spiterstulen populations can be explained by variation in the 

rate of auxin transport. 

I tested variation in auxin transport rates in our two study populations using radiolabelled 3H-

IAA (a synthetic auxin) in the inflorescence shoots. I found weak evidence of variation in the rate of 

auxin transport between populations; in the predicted direction, with Mayodan individuals 

showing higher auxin transport. The results might have been confounded by the variation in the 

diameter of inflorescences as Spiterstulen individuals mostly have a thicker diameter which is 

visually apparent but which we did not measure. We would expect the amount of transport to 

increase with diameter, so the actual differences in the transport rate might have been more 

significant if those were taken into account. 

In Experiment II (auxin inhibition assay), I found weak evidence that auxin transport 

inhibition affects life-history traits, i.e., NPA treatment reduces the diameter and increases lateral 

shoot rating. These are the expected directions if auxin transport differences cause life-history 

differences between our study populations. While the effects of NPA on inflorescence numbers 

were not significant, the control group had a higher number of inflorescences during the 

reproductive period, as expected.  

Overall, the evidence is not strong, but it does point to the direction as predicted that 

auxin transport is a likely candidate in shaping life-history differences between our study 

populations. The plants treated with NPA also had high mortality, thus reducing the test's 

statistical power. This mortality could be due to altered auxin dynamics causing direct toxic 

effects of NPA or the ecological consequences of the tradeoff or NPA affecting some 
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developmental pathways. In the NPA treatment group, we observed a delay in the apparent 

effects of transport inhibition on lateral shoot rating and the number of inflorescences, with 

effects showing up three months after discontinued NPA treatment. The findings are consistent 

with the idea that variation in traits such as apical dominance in early development can cascade 

through later developmental stages, changing the entire trajectory of life history. If the NPA 

treatment could have been continued without any adverse effects based on the dose of NPA, the 

measured differences in life-history traits between the two groups might have become greater. 

This provides evidence, although tentative, that genetic variation affecting auxin transport could 

underlie adaptive variation in life history in A. lyrata. 

Future studies measuring transport differences with larger biological and technical 

replicates and the measurements of the diameter of the inflorescences (as a covariate) can 

provide more clarity on this issue. In addition, further analyses of transport differences can be 

done at population levels using auxin pulse-chase assays. Other studies involving optimized 

doses of NPA treatment can provide more robust insights into the role of auxin transport on life-

history traits. Additionally, genetic insertion of My alleles (for auxin transport-related genes) on 

the Spiterstulen genotype background and vice-versa can test whether auxin transport genes 

result in life-history variation.  

Dissertation Goal 2; Chapter III 

My second goal (Chapter 3) was to develop algorithms and tools for phasing and 

assigning haplotypes in outcrossing populations. 

I developed three different algorithms and methods to help with phasing haplotypes for 

unphased genotype and read-backed-phased genetic variants data. The three tools/algorithms are 

Phase-Extender, Phase-Stitcher, and ShortVariantPhaser and are designed to handle three 
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different types of data structure generated in concurrent variant genotyping. Developing these 

resources was essential for phasing RNA-seq reads in our F1 samples since we didn't have the 

parents' genome or transcriptome sequence data. 

The results comparing Phase-Extender and ShapeIT showed that Phase-Extender could 

phase variants on par with ShapeIT, even using fewer reference panels. Additionally, Phase-

Extender can help samples phase each other and provide a more controlled approach to 

haplotype phasing. Therefore, I expect that it has the potential to be useful for other investigators 

who need to phase genomes that do not have a large number of reference haplotypes or in the 

situation when a small number of sample cohorts are only to be used for haplotype phasing. 

Dissertation Goal 3; Chapter IV 

My third goal (Chapter 4) was to identify candidate genes underlying a key life-history 

QTL region by evaluating quantitative variation in the expression of alleles from Mayodan and 

Spiterstulen genomes. 

This study found that the genes PIN3 and PILS2 show significant ASE in the predicted 

direction (My > Sp) among the few hypothesized candidates. Our research gives some interesting 

insights; we see strong expression of Mayodan alleles of PIN3 and PILS2 from the resource 

allocation QTL regions, while PIN1 shows almost equal bi-allelic expression, with the Sp allele 

showing only a little higher expression. On the other hand, the expression level of BRC2 was 

very low. The expression of the BRC2 gene might be limited to certain tissues, especially 

meristems, because their specific role is to arrest the growth of the meristems. Also, the 

extraction of mRNA from the whole shoot could have diluted their expression levels, so we can 

not rule out a role for BRC2 for these reasons. A few other genes from the QTL region also 

showed significant ASE, but none are obvious candidates based on their annotations.  
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The role of PINI3 and PILIS2 on life history can be further tested for their effects on life-

history traits by transgenically exchanging My alleles (for gene PIN3, PILS2) onto the Sp 

genotypes and vice-versa and studying their effects on life-history traits. Another way of testing 

for the effects of these genes/alleles would be to generate CRISPR knock-outs and study their 

phenotypic effects. Another graduate student in the lab has developed CRISPR constructs for 

PIN3 and BRC2, which will help test the role of population-specific alleles on life-history traits. 

However, based on the results, I recommend that PILS2 be added to the list. Furthermore, 

additional genomic and transcriptomics studies can also be designed to test whether NPA affects 

gene expression variation in the parental populations, mainly Mayodan. Finally, other 

experiments involving verification of ASE expression could be done in the parental population 

using qPCR, which was one of the original goals of this chapter but was missed due to technical 

difficulties. One of the technical difficulties was that we were not successful in growing two 

parental populations and having them flower simultaneously. And, since A. lyrata is a perennial, 

they take about six months to reach that stage of required biological condition, unlike A. 

thaliana, which are ready in about one month. 

Overall, the results from auxin transport/inhibition and ASE analyses converge on 

support for genetic variation in auxin transport as a mechanism underlying adaptive life-history 

variation. Furthermore, the results indicate PIN3 as a likely candidate driving life history 

differences in our study population, which are strongly adapted to contrasting climatic 

environments.  Although none of this is conclusive, it all points in the same direction. The gene 

PIN3 is interesting because previous studies have not implicated auxin transporters as adaptive 

QTLs underlying life-history variation. In most cases, PIN1 is the gene that is tested and 

researched for its role in apical dominance, not PIN3. 
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Resource allocation is an "integrated complex phenotype." 

I want to reiterate that resource allocation can be understood as an "integrated complex 

phenotype" (mentioned previously in Chapter-I) where several fitness-related components of an 

organism integrate. While these are quantitative in nature, they form an integrative life-history 

pattern characterized by resource allocation tradeoffs and play a central role in adaptation to 

different climates. We emphasize that meaningful insights about variation in iteroparous plants 

require understanding fitness from a developmental perspective, where limited time for resource 

acquisition during a particular season and optimal investment of this resource pool to different 

functions along the life cycle is crucial for organisms' fitness. Similar integrated phenotypes 

appear to be essential for adaptation in other perennial plants (Gove et al., 2012; Kim & 

Donohue, 2011, 2012; Leinonen et al., 2012; Remington et al., 2015; Wang et al., 2009). 
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