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Abstract: 

Diets rich in fat result in higher concentrations of secondary bile acids or their salts in the colon, which may 

adversely affect cells of the colonic epithelium. Because secondary bile acids are thought to be genotoxic, 

exposing colon epithelial cells to secondary bile acids may induce DNA damage that might lead to apoptosis. 

The requirement for the p53 tumor suppressor gene in such events is unknown. In particular, the effects of 

secondary bile acids on colon epithelial cells having different p53 tumor suppressor gene status have not been 

examined. Therefore, HCT-116 and HCT-15 human colon adenocarcinoma cells, which express the wild-type 

and mutant p53 genes, respectively, were exposed to physiological concentrations of deoxycholate. The cells 

were then analyzed for evidence of DNA damage and apoptosis. After 2 h of incubation with 300 µM 

deoxycholate, both cell lines had greater levels of single-strand breaks in DNA as assessed by the comet assay. 

After 6 h of exposure to deoxycholate, HCT-116 and HCT-15 cells showed morphological signs of apoptosis, 

i.e., membrane blebbing and the presence of apoptotic bodies. Chromatin condensation and fragmentation were 

also seen after staining DNA with 4',6-diamidino-2-phenylindole. Other apoptotic assays revealed greater 

binding of annexin V-fluorescein isothiocyanate, as well as greater post-enzymatic labeling with dUTP-

fluorescein isothiocyanate, by both cell lines exposed to deoxycholate. These data suggest that deoxycholate 

caused DNA damage in colon epithelial cells that was sufficient to trigger apoptosis in a p53-independent 

manner. 
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1. INTRODUCTION 

 

Colon cancer is one of the major health concerns in the US. Based on statistics from the American Cancer 

Society, there will be 93 800 new cases of colon cancer and 47 700 deaths from the disease this year [1]. These 

figures have prompted research regarding the etiology of colon cancer in order to prevent and treat the disease. 

Inherited mutations of critical tumor suppressor genes, such as the adenomatous polyposis coli (APC) gene, can 

cause colon cancer [2]. However, there may also be a non-familial or environmental basis for colon cancer. 

Along this line, gene mutation and colon tumorigenesis seem to be the long-term consequence of unhealthy 

dietary habits. For example, epidemiological studies indicate that the traditional Western diet, which is often 

low in plant products and high in red meat and fat, increases the risk of colon cancer [3]. Apparently, the 

Western diet supplies carcinogens and/or cancer-promoting substances that work directly or indirectly to cause 

damage to the DNA of colon epithelial cells, leading to gene mutation and tumorigenesis. 
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The role of dietary fat in colon tumorigenesis has been examined in particular. The risk of colon cancer is 

increased by diets high in fat [4], although this is not always the case [5]. Nevertheless, it is generally thought 

that high fat diets have cancer-promoting effects by way of bile acids or their salts [6]. High fat diets stimulate 

greater secretion of bile acids from the gall bladder into the small intestine to facilitate fat digestion and 

absorption [7]. Much of the bile acids are recycled, but a significant pool escapes recycling and reaches the 

colon, where resident bacteria convert this pool into secondary bile acids. One of the most predominant 

secondary bile acids is deoxycholic acid, which is a cancer-promoting substance as demonstrated in rats by its 

ability to increase proliferation of colonic crypt cells [8] and potentiate the stomach tumorigenic effect of the 

chemical carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine [9]. The notion that deoxycholic acid and other 

secondary bile acids contribute to the development of colon cancer is supported by the finding that elevated 

levels of secondary bile acids are present in the colon residual fluid or fecal material of human subjects with 

colon cancer [10]. 

 

Several possible mechanisms have been examined to explain the role for bile acids in colon tumorigenesis. It 

does not appear that bile acids are direct mutagens or carcinogens, because no bile acid-DNA adducts have been 

detected either in the colon and liver of rats that were administered various bile acids by gavage, or in cultured 

cells exposed to bile acids [11]. Other studies have focused on the ability of secondary bile acids to act as tumor 

promoters by stimulating signal transduction and cancer-promoting genes. Activation of protein kinase C, 

which is a common event triggered by many tumor promoters, was reported in cultured colon cells that were 

exposed to deoxycholic acid [12]. Additionally, activation of the transcription factors, AP-1 [13] and NF-κB 

[14], as well as the NF-κB –responsive cyclooxygenase-2 (COX-2) gene [15], has been reported. 

Transcriptional activation of COX-2 may promote colon tumor cell growth and proliferation, since expression 

of COX-2 has been found in colon tumor tissue but not normal colon tissue [16]. 

 

In investigating another possible role of bile acids in colon tumorigenesis, it was established recently that bile 

acids can induce single-strand breaks in DNA of colon cells in a process that might involve oxygen free radicals 

[17]. Thus, it is conceivable that oxidative DNA damage could lead to gene mutation and tumorigenesis [18]. 

Normally, however, DNA damage increases the levels of p53 tumor suppressor protein, which transcriptionally 

activates the WAF1/CIP1/p21 gene whose protein product triggers cell cycle arrest to permit DNA repair [19]. 

However, if the DNA damage is irreparable, apoptosis is initiated. Therefore, the ability of colon epithelial cells 

to undergo apoptosis when exposed to bile acids that cause severe DNA damage might prevent them from being 

transformed into cancerous cells. On the other hand, it is thought [20] that continuous exposure of colon 

epithelial cells to bile acids and other genotoxic agents often associated with the Western diet can lead to 

selective survival of cells having unrepaired DNA. As such, the apoptosis-resistant cells could accumulate 

mutations to the APC tumor suppressor gene, thus allowing the initial development of a benign tumor or polyp. 

Eventually, these early tumor cells would develop mutations in a few other pivotal genes, including the p53 

tumor suppressor gene, thus transforming the polyp into a malignant tumor [2]. 

 

The ability of different types of cells to undergo apoptosis after sustaining DNA damage can be either 

dependent or independent of the p53 gene or protein [21]. It is unknown whether p53 gene status is important in 

permitting colon epithelial cells to undergo apoptosis when exposed to secondary bile acids at concentrations 

that induce significant DNA damage. Accordingly, in this study, we determined whether deoxycholate was able 

to induce DNA damage sufficient to initiate apoptosis in HCT-116 and HCT-15 human colon adenocarcinoma 

cell lines expressing wild-type p53 [22] and mutant p53 [23] genes, respectively. 

 

2. MATERIALS AND METHODS 

 

2.1. Materials 

HCT-116 and HCT-15 human colon adenocarcinoma cell lines were purchased from the American Type 

Culture Collection (Rockville, MD). All reagents were obtained from Sigma Chemical Co. (St. Louis, MO) 

unless otherwise stated. 

 



2.2. Cell culture and treatment 

HCT-116 cells were propagated in McCoy’s 5A medium supplemented with 10% fetal bovine serum, 1% 

penicillin/streptomycin (10 μg/ml), and 0.2% amphotericin B (250 μg/ml). HCT-15 cells were propagated in 

RPMI-1640 medium supplemented with 10% fetal bovine serum, 1% of penicillin/streptomycin (10 μg/ml), and 

0.2% amphotericin B (250 μg/ml). Cells were kept at 37°C in a water-humidified atmosphere of 5% CO2/95% 

air. The media were changed every other day, and the cells were split every 5 days. Cell number and viability 

were determined by counting an aliquot of trypan blue-stained cells with a hemocytometer. 

 

For the experiments, cells were seeded into either six-well polystyrene plates or 100 mm petri dishes and 

allowed to reach about 70% confluency. Then, the cells were exposed to 300 μM sodium deoxycholate 

(NaDOC), i.e., the sodium salt of deoxycholic acid, for 2–20 h depending on the experiment. They were 

harvested by using Non-enzymatic Cell Dissociation Solution (Sigma) and analyzed as detailed below. 

 

2.3. Assessment of cellular DNA damage 

After exposure to either 0 or 300 μM NaDOC for 2 h, cells were assessed for DNA damage using the comet 

assay [24], a procedure also described in our most recent work [25,26]. Briefly, cells were suspended in 0.5% 

agarose that had been dissolved in phosphate-buffered saline (PBS). Aliquots of the cell/agarose suspension 

were pipetted onto frosted glass slides, which had been pre-coated with the agarose solution. After allowing the 

cell/agarose suspension to congeal, the slides were then immersed in ice-cold lysis buffer (2.5 M NaCl, 100 mM 

EDTA, 10 mM Tris, 300 mM NaOH, 10% DMSO and 1% Triton X-100) for 1 h. Next, the slides were placed 

in a horizontal electrophoresis tank that was filled with alkaline buffer (300 mM NaOH, 1 mM EDTA). They 

were left undisturbed in the tank for 20–25 min, before electrophoresis was performed for 20 min at 20 V (300 

mA). 

 

After electrophoresis, the slides were washed with a neutralization buffer (0.4 M Tris–Cl, pH 7.5) for 5 min and 

then stained with 45 μl of ethidium bromide (20 μg/ml). The slides were viewed on an Olympus BX-60 

fluorescence microscope equipped with a SPOT digital camera. For each of the six replicate experiments, 50 

nucleoids were scored (at 400 × magnification) on a scale of 0 (no DNA damage) to 4 (severe DNA damage) in 

regard to the appearance of a comet tail-like shape, reflecting single-strand breaks in DNA. To calculate the 

total comet scores reported, the individual scores for each of the 50 nucleoids were added. Although subjective, 

this scoring method compares favorably with computer imaging analysis [27]. 

 

2.4. Examination of the cells for morphological signs of apoptosis 

After exposure to either 0 or 300 μM NaDOC for 6 h, cells were examined for morphological signs of apoptosis 

(membrane blebbing and presence of apoptotic bodies) using an Olympus IX-70 inverted, light microscope 

equipped with another SPOT digital camera. 

 

2. 5. Annexin V-FITC binding assay 

After exposure to either 0 or 300 μM NaDOC for 6 h, cells were washed twice with cold PBS. Binding of 

annexin V-FITC to the cell surface, which is an early marker of apoptosis, was determined with a kit from 

Pharmingen (San Diego, CA). The washed cells were very gently resuspended in a solution comprised of 100 μl 

of 1 x binding buffer, 5 μl of Annexin V-FITC, 5 μl of propidium iodide (50 μg/ml), and a small drop of Anti-

fade solution (Bio-Rad, Hercules, CA) and allowed to incubate in the dark for 15 min at room temperature. 

After incubation, the cell suspension was applied onto a glass slide and covered with a glass cover slip. The 

edges of the cover slip were sealed with fingernail polish. Slides were viewed immediately on the Olympus BX-

60 fluorescence microscope/SPOT digital camera. For each of the four replicate experiments, three randomly 

selected microscopic fields were examined at 400 x magnification. The presence of any annexin V-FITC-

labeled cells (green fluorescence) were then counted in each of the fields. Finally, to calculate the annexin 

binding scores reported, all of the annexin V-FITC-labeled cells present in the three microscopic fields were 

added. 

 

2.6. Staining of cellular DNA with 4’,6-diamidino-2-phenylindole (DAPI) 



After exposure to either 0 or 300 μM NaDOC for 6 h, cells were washed three times and resuspended in PBS. 

Aliquots of the cell suspension were pipetted onto lysine-coated glass slides for centrifugation in a Stat Spin 

Cytofuge. To fix the cells, slides were immersed in 4% formaldehyde solution in PBS for 25 min and stored in 

70% ethanol at − 20°C for at least 24 h. Before staining, the slides were washed three times with PBS. Then, 

they were immersed in 1 μg/ml DAPI for 10 min. For some experiments, sulforhodamine 101 (10 μg/ml) was 

used as a counterstain. After washing in PBS, a drop of anti-fade solution was applied onto each slide. The 

slides were covered with glass cover slips, whose edges were then sealed with fingernail polish. They were 

examined (at 400X magnification) on the Olympus BX-60 fluorescence microscope/SPOT digital camera. For 

each experiment, performed in triplicate, 200 randomly selected cells were scored either for the absence or 

presence of DNA condensation and fragmentation, which are characteristic features of apoptosis. To calculate 

the DAPI staining scores reported, the number of cells showing the apoptotic features was expressed as a 

percentage of the total number of cells scored. 

 

2.7. TUNEL assay 

After exposure to either 0 or 300 μM NaDOC for 20 h, cells were fixed as above. To detect the DNA 

fragmentation associated with apoptosis, the TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP 

nick end labeling) assay was performed using a kit with a set of instructions from Promega (Madison, WI). 

Following the PBS wash, cells were treated with permeabilizing solution (0.2% Triton X-100 in PBS) for 5 min 

on ice. The cells were washed again with PBS, and then 50 μl of equilibration buffer was applied to the slides 

for 10 min of incubation at room temperature. A mixture of terminal deoxynucleotidyl transferase (TdT), 

nucleotide mix (containing FITC-12-dUTP), and equilibration buffer were pipetted onto the slides and 

coverslipped for incubation in a humidified chamber at 37°C for 60 min in the dark. The reaction was 

terminated by immersing the slides in SSC Buffer for 15 min. Following washes in PBS, slides were counter- 

stained with 1 μg/ml propidium iodide for 15 min. Stained slides were washed with deionized water, and a drop 

of anti-fade solution was applied onto each slide. After covering with a glass cover slip and sealing the edges 

with fingernail polish, the samples were examined by fluorescence microscopy as before. For each experiment, 

performed in triplicate, 100 randomly selected cells were scored for either the absence or presence of green 

fluorescence (TUNEL-labeling). To calculate the TUNEL scores reported, the number of cells showing the 

green fluorescence was expressed as a percentage of the total number of cells scored. 

 

2.8. Statistical analysis of data 

Data were analyzed for significant differences (P < 0.05) by analysis of variance (ANOVA) and Fisher’s 

Protected Least Significant Differences Test (version 9.0, SYS STAT, Chicago, IL). 

 

3. RESULTS 

 

To determine if NaDOC was able to induce single-strand breaks in DNA of HCT-15 and HCT-116 cells, the 

comet assay was performed with the results presented in Fig. 1. As shown by the representative photos, the 

untreated control samples for both cell lines had nucleoids that did not have ‘comet tails’. That is, the DNA 

remained within the perimeter of the spherical masses giving them the appearance of ‘comet heads’, indicative 

of a minimal level of DNA single-strand breaks. Nonetheless, upon complete scoring of the nucleoids in 

multiple experiments, a small number of the nucleoids from control cells exhibited small comet tails (not shown 

by the photo), reflecting a baseline level of DNA single-strand breaks. Hence, the average comet scores for 

control HCT116 and HCT-15 cells were 38 ± 5 and 31 ± 6, respectively. 

 

In contrast, as shown by the other representative photos in Fig. 1, HCT-116 and HCT-15 cells that were 

exposed to 300 µM NaDOC for 2 h had significant numbers of nucleoids with larger comet tails, indicative of 

higher levels of DNA single- strand breaks. The comet assay scores were 105 ± 16 and 88 ± 6 for HCT-116 and 

HCT-15 cells, respectively. Because the extent of DNA damage seen in many of the cells was substantial, it was 

suspected that this situation was irreparable overall and sufficient to initiate apoptosis with continued incubation 

of the cells with NaDOC. This possibility was investigated next. 



 

 

To determine whether exposing HCT-116 and HCT-15 cells to 300 µM NaDOC for 6 h resulted in apoptosis, 

the cells were first examined for morphological signs of apoptosis by light microscopy (Fig. 2). Consistent with 

the occurrence of apoptosis, membrane blebbing and apoptotic bodies were present. 

 

To unequivocally determine that exposing HCT-116 and HCT-15 cells to NaDOC leads to apoptosis, three 

other apoptotic assays were performed. The annexin V-FITC binding assay was done first. It detects the 

translocation of phosphatidylserine (PS) from the inner to the outer leaflet of the plasma membrane during the 

early stages of apoptosis. The annexin V-FITC binds to the translocated PS, producing green fluorescence at the 

cell surface as shown by the representative photos in Fig. 3. Control HCT-116 and HCT-15 cells had low 

annexin binding scores of 8 ± 3 and 7 ± 3, respectively. In contrast, the HCT-116 and HCT-15 cells had high 

annexin binding scores of 46 ± 10 and 49 ± 15, respectively, after exposing the cells to 300 µM NaDOC for 6 h. 



 

Further evidence for NaDOC-induced apoptosis in HCT-116 and HCT-15 cells was obtained after staining their 

DNA with DAPI for fluorescence microscopy (Fig. 4). Chromatin condensation and fragmentation were present 

in 46 ± 5% of HCT-116 cells and 43 ± 17% of HCT-15 cells, whereas virtually none of the control cells had 

these features. 

 

HCT-116 and HCT-15 cells were also examined for the presence of DNA fragmentation after exposure of the 

cells to 300 µM NaDOC for 20 h. More specifically, the TUNEL assay was done (Fig. 5) to detect free 3'-OH 

ends of the fragmented DNA, which arise due to the action of endonucleases that are activated during the late 

stages of apoptosis. Upon scoring, 26 ± 6% of HCT-116 cells and 57 ± 2% of HCT-15 cells were TUNEL-

positive, whereas virtually none were detected in the respective control samples. 

 

Although all of these effects on the cells were achieved with 300 µM NaDOC, lower concentrations (50 and 

100 µM) also induced noticeable DNA damage and signs of apoptosis in both HCT-116 and HCT-15 cells (data 

not shown). 

 

4. DISCUSSION 

 

The gastrointestinal tract is exposed to numerous dietary constituents and also ingested xenobiotics. Some of 

these substances produce undesirable secondary effects as they are processed. For example, eating high amounts 

of fat increases the secretion of bile acids to help fat digestion and absorption [7]. As a consequence, the 

concentration of secondary bile acids is increased in the colon. An estimate of the colonic concentration can be 

inferred from the amount of secondary bile acids excreted from the body. Total bile acids in fecal water were as 

high as 1 mM, and deoxycholate approached concentrations as high as 0.8 mM in human subjects given added 

fat in the diet [28]. Therefore, it is reasonable that the 0.3 mM NaDOC used in the present study falls within the 

physiological range. However, it is unknown whether such a concentration of deoxycholate in vivo results in 

any DNA damage and apoptosis in colon epithelial cells. It must be considered that under physiological 

conditions, other types of matter entering the colon (e.g., unabsorbed calcium, phytochemicals, and indigestible 

dietary fiber) could inhibit the adverse effects of deoxycholate. As such, these dietary constituents would 

influence whether a certain concentration of deoxycholate will induce DNA damage and apoptosis but also 

development of colon cancer. 

 

Exposing both HCT-116 and HCT-15 cells to NaDOC resulted in DNA damage, i.e. single-strand breaks as 

detected by the comet assay performed under alkaline conditions. Our results are consistent with recent work by 

others who showed that secondary bile acids induced DNA damage in HT-29 [17] and Caco-2 [29] human 

colon adenocarcinoma cells. The extent of DNA damage sustained by the HCT-116 and HCT-15 cells were 

similar, as indicated by the comet scores. It is not entirely clear how NaDOC induces the DNA damage, but 

there is support for the notion that free radicals are involved. Apparently, secondary bile acids stimulate the 

production of reactive oxygen species (ROS) and also reactive nitrogen species (RNS). In considering 



 

 

ROS, lipid peroxidation products were increased in rat hepatocytes after being exposed to bile acids [30], but 

this was inhibited by various antioxidants [31]. The bile acid-induced DNA damage in HT-29 cells mentioned 

above was inhibited when cells were pre-treated with the antioxidant, vitamin E, before exposure to the bile 



acids [17]. The hydroxyl radical is the major ROS that damages DNA [32]. Whether the hydroxyl radical is 

responsible for the DNA-damaging effect of NaDOC remains to be established, however. For this reason, it 

would be desirable to measure the levels of 8-hydroxy-2'-deoxyguanosine (8-oxodG) as a marker of oxidative 

DNA damage [33] in NaDOC-treated HCT-116 and HCT-15 cells. In considering RNS, nitrotyrosine residues 

were detected immunocytochemically in the plasma membrane of HT-29 cells after exposure to NaDOC [34], 

suggesting that NaDOC stimulated the production of nitric oxide and/or peroxynitrite. Both of these RNS can 

damage DNA [35]. 

 

A normal response of cells to DNA damage is to undergo cell cycle arrest so that DNA repair can be 

implemented [19]. If the repair is unsuccessful, cells commit apoptosis to safeguard the genome. Therefore, our 

other data suggest that NaDOC induced irreparable DNA damage in both HCT-116 and HCT-15 cells, since the 

DNA damage caused by NaDOC was clearly followed by apoptosis, as determined by a panel of standard 

methods (microscopic examination for morphological changes, DAPI staining, and also annexin V-FITC and 

TUNEL assays). This finding expands previous research, where it was shown that NaDOC induced apoptosis in 

HT-29 and Caco-2 colon cells in one study [36], and also apoptosis not only in HT-29 but also FHC colonic cell 

lines in another study [37]. Nevertheless, we cannot rule out the possibility that the DNA damage caused by 

NaDOC was a coincidental event and that NaDOC may have induced apoptosis by some other means. 

 

Because p53 tumor suppressor protein influences some of the critical events leading to apoptosis [38], a key 

question in our study was whether the presence of the normal or wild-type p53 gene is essential for NaDOC-

mediated apoptosis. Accordingly, this was the reason for selecting HCT116 (wild-type p53) and HCT-15 

(mutant p53) for our study because of their different p53 gene status [23]. The results of the morphological 

examination, DAPI staining, and also annexin VFITC binding and TUNEL assays show that both cell lines 

committed apoptosis when exposed to NaDOC. Therefore, these data suggest that NaDOC induced apoptosis in 

the colon epithelial cells in a p53-independent manner. It has been reported that other DNA-damaging agents, 

such as adriamycin, can also induce apoptosis in a p53-independent manner at least in human lymphocytes [39]. 

Other lines of evidence support the suggestion that NaDOC induces apoptosis in a p53-independent manner. 

First, NaDOC also induced apoptosis in rat fibroblasts that expressed p53 activity and in homologous rat 

fibroblasts that did not express p53 activity [40]. Secondly, like the HCT-15 colon cells used in the present 

study, both HT-29 [41] and Caco-2 [42] colon cells express mutant p53, and both undergo apoptosis when 

exposed to NaDOC [36]. Thirdly, in a similar study to ours, NaDOC induced apoptosis in not only HT-29 colon 

cells, but also in a human 



 
 

fetal colonic mucosa cell line (FHC) expressing wild-type p53 [37]. 

 

Finally, the signaling mechanism by which NaDOC induces apoptosis in HCT-116 and HCT-15 cells is 

unknown. However, previous studies suggest an involvement of the Fas receptor-mediated apoptotic pathway. 

Exposing rat hepatocytes to bile acids resulted in ligand-independent oligomerization of plasma membrane- 

bound Fas, recruitment of FADD, activation of caspase 8 and also a cascade of downstream caspases, and 

finally apoptosis [43]. Thus, since the Fas signaling pathway is functional in human colon cells [44], it is 

conceivable that NaDOC induced apoptosis in HCT-116 and HCT-15 cells in this manner. Studies are planned 

to consider this possibility. 

 

REFERENCES 

 

[1] American Cancer Society, The colon and rectum cancer resource center: colon and rectum cancer statistics, 

2000. 

[2] K.W. Kinzler, B. Vogelstein, Lessons from hereditary colorectal cancer, Cell 87 (1996) 159–170. 

[3] M. Lipkin, B. Reddy, H. Newmark, S.A. Lamprecht, Dietary factors in human colorectal cancer, Annu. Rev. 

Nutr. 19 (1999) 545–586. 

[4] B.S. Reddy, Nutritional factors and colon cancer, Crit. Rev. Food Sci. Nutr. 35 (1995) 175–190. 

[5] E. Giovannucci, B. Goldin, The role of fat, fatty acids, and total energy intake in the etiology of human 

colon cancer, Am. J. Clin. Nutr. S 66 (1997) 1564S–1571. 

[6] R.W. Owen, Faecal steroids and colorectal carcinogenesis, Scand. J. Gastroenterol. 222(Suppl.) (1997) 76–

82. 

[7] A.F. Hofmann, The continuing importance of bile acids in liver and intestinal disease, Arch. Intern. Med. 

159 (1999) 2647–2658. 

[8] T. Hori, K. Matsumoto, Y. Sakaitani, M. Sato, M. Morotomi, Effect of dietary deoxycholic acid and 

cholesterol on fecal steroid concentration and its impact on the colonic crypt cell proliferation in 

azoxymethane-treated rats, Cancer Lett. 124 (1998) 79–84. 



[9] O. Kobori, T. Shimizu, M. Maeda, Y. Atomi, J. Watanabe, M. Shoji, Y. Morioka, Enhancing effect of bile 

and bile acid on stomach tumorigenesis induced by N'-methyl-N’-nitro-N-nitrosoguanidine in Wistar rats, J. 

Natl. Cancer Inst. 73 (1984) 853–861. 

[10] C.H. Imray, S. Radley, A. Davis, G. Barker, C.W. Hendrickse, I.A. Donovan, A.M. Lawson, P.R. Baker, 

J.P. Neoptolemos, Faecal unconjugated bile acids in patients with colorectal cancer or polyps, Gut 33 (1992) 

1239– 1245. 

[11] K. Hamada, A. Umemoto, A. Kajikawa, M.J. Seraj, Y. Monden, In vitro formation of DNA adducts with 

bile acids, Carcinogenesis 15 (1994) 1911–1915. 

[12] X.P. Huang, X.T. Fan, J.F. Desjeux, M. Castagna, Bile acids, non-phorbol-ester-type tumor promoters, 

stimulate the phosphorylation of protein kinase C substrates in human platelets and colon cell line HT29, 

Int. J. Cancer 52 (1992) 444–450. 

[13] F. Hirano, H. Tanada, Y. Makino, K. Okamoto, M. Hiramoto, H. Handa, I, Makino, Induction of the tran-

scription factor AP-1 in cultured human colon adenocarcinoma cells following exposure to bile acids, 

Carcinogenesis 17 (1996) 427–433. 

[14] C.M. Payne, C. Crowley, D. Washo-Stultz, M. Briehl, H. Bernstein, C. Bernstein, S. Beard, H. Holubec, J. 

Warneke, The stress-response proteins poly(ADP-ribose)polymerase and NF-xB protect against bile salt-

induced apoptosis, Cell Death Different. 5 (1998) 623–636. 

[15] F. Zhang, K. Subbaramaiah, N. Altorki, A.J. Dannenberg, Dihydroxy bile acids activate the transcription of 

cyclooxygenase-2, J. Biol, Chem. 273 (1998) 2424–2428. 

[16] H. Sano, Y. Kawahito, R.L. Wilder, A. Hashiramoto, S. Mukai, K. Asai, S. Kimura, H. Kato, M. Kondo, T. 

Hla, Expression of cyclooxygenase-1 and –2 in human colorectal cancer, Cancer Res. 55 (1995) 3785–3789. 

[17] L.A. Booth, I.T. Gilmore, R.F. Bilton, Secondary bile acid induced DNA damage in HT29 cells: are free 

radicals involved, Free Rad. Res. 26 (1997) 135–144. 

[18] B. Halliwell, Free radicals and antioxidants: a personal view, Nutr. Rev. 52 (1994) 253–265. 

[19] R.M. Elledge, W.-H. Lee, Life and death by p53, BioEssays 17 (1995) 923–930. 

[20] C.M. Payne, H. Bernstein, C. Bernstein, H. Garewal, Role of apoptosis in biology and pathology: 

resistance to apoptosis in colon carcinogenesis, Ultrastruct. Pathol. 19 (1995) 221–248. 

[21] C.C. Harris, Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic 

strategies, J. Natl. Cancer Inst. 88 (1996) 1442–1455. 

[22] Y. Take, M. Kumano, H. Teraoka, S. Nishimura, A. Okuyama, DNA-dependent protein kinase inhibitor 

(OK- 1035) suppresses p21 expression in HCT116 cells containing wild-type p53 induced by adriamycin, 

Biochem. Biophys. Res. Commun. 221 (1996) 207–212. 

[23] R. Chinery, J.A. Brockman, M.O. Peeler, Y. Shyr, R.D. Beauchamp, R.J. Coffey, Antioxidants enhance the 

cytotoxicity of chemotherapeutic agents in colorectal cancer: a p53-independent induction of 

p21WAF1/CIP1 via C/ EBP(, Nature Med. 3 (1997) 1233–1241. 

[24] N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A simple technique for quantitation of low levels of 

DNA damage in individual cells, Exp. Cell. Res. 175 (1988) 184–191. 

[25] Y.-J. Pan, G. Loo, Effect of copper deficiency on oxidative DNA damage in Jurkat T-lymphocytes, Free 

Radic. Biol. Med. 28 (2000) 824–830. 

[26] M.K. Johnson, G. Loo, Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular 

DNA, Mutat. Res. 459 (2000) 211–218. 

[27] P.J. McCarthy, S.F. Sweetman, P.G. McKenna, V.J. McKelvey-Martin, Evaluation of manual and image 

analysis quantitation of DNA damage in the alkaline comet assay, Mutagenesis 12 (1997) 209–214. 

[28] J. Stadler, H.S. Stern, K.A. Sing-Yeung, V. McGuire, R. Furrer, N. Marcon, W.R. Bruce, Effect of high fat 

consumption on cell proliferation activity of colorectal mucosa and on soluble faecal bile acids, Gut 29 

(1988) 1326–1331. 

[29] M. Venturi, R.J. Hambly, B. Glinghammer, J.J. Rafter, I.R. Rowland, Genotoxic activity in human faecal 

water and the role of bole acids: a case study using the alkaline comet assay, Carcinogenesis 18 (1997) 

2353–2359. 

[30] R.J. Sokol, B.M. Winklhofer-Roob, M.W. Devereaux, J.M. McKim Jr, Generation of hydroperoxides in 

isolated rat hepatocytes and hepatic mitochondria exposed to hydrophobic bile acids, Gastroenterol. 109 

(1995) 1249– 1256. 



[31] R.J. Sokol, M. Devereaux, R. Khandwala, K. O’Brien, Evidence for involvement of oxygen free radicals in 

bile acid toxicity to isolated rat hepatocytes, Hepatology 17 (1993) 869–881. 

[32] A.P. Breen, J.A. Murphy, Reactions of oxyl radicals with DNA, Free Radic. Biol. Med. 18 (1995) 1033–

1077. 

[33] T.M. Nicotera, S. Bardin, Electrochemical detection of 8-hydroxy-2-deoxyguanosine levels in cellular 

DNA, Methods Mol. Biol. 108 (1998) 181–190. 

[34] D. Washo-Stultz, N. Hoglen, H. Bernstein, C. Bernstein, C.M. Payne, Role of nitric oxide and peroxynitrite 

in bile salt-induced apoptosis: relevance to colon carcinogenesis, Nutr. Cancer 35 (1999) 180–188. 

[35] S. Burney, J.L. Caufield, J.C. Niles, J.S. Wishnok, S.R. Tannenbaum, The chemistry of DNA damage from 

nitric oxide and peroxynitrite, Mutation Res. 424 (1999) 37–49. 

[36] M.C. Marchetti, G. Migliorati, R. Moraca, C. Riccardi, I. Nicoletti, R. Fabiani, V. Mastrandrea, G. 

Morozzi, Possible mechanisms involved in apoptosis of colon tumor cell lines induced by deoxycholic acid, 

short-chain fatty acids, and their mixtures, Nutr. Cancer 28 (1997) 74–80. 

[37] A.J. Haza, B. Glinghammer, A. Grandien, J. Rafter, Effect of colonic luminal components on induction of 

apoptosis in human colonic cell lines, Nutr. Cancer 36 (2000) 79–89. 

[38] M.R. Bennett, Mechanisms of p53-induced apoptosis, Biochem. Pharmacol. 58 (1999) 1089–1095. 

[39] R.B. Gartenhaus, P. Wang, P. Hoffman, Induction of the WAF1/CIP1 protein and apoptosis in human T-

cell leukemia virus type I-transformed lymphocytes after treatment with adriamycin by using a p53-

independent pathway, Proc. Natl. Acad. Sci. USA 93 (1996) 265–268. 

[40] Z.-Y. Zheng, H. Bernstein, C. Bernstein, C.M. Payne, J.D. Martinez, E.W. Gerner, Bile acid activation of 

the gadd 153 promoter and of p53-independent apoptosis: relevance to colon cancer, Cell Death Different. 3 

(1996) 407–414. 

[41] W.G. Zhang, X.W. Li, L.P. Ma, S.W. Wang, H.Y. Yang, Z.Y. Zhang, Wild-type p53 protein potentiates 

phototoxicity of 2-BA-2-DMBA in HT29 cells expressing endogenous mutant p53, Cancer Lett. 138 (1999) 

189–195. 

[42] S. Djelloul, M.E. Forgue-Lafitte, B. Hermelin, M. Ma- reel, E. Bruyneel, A. Baldi, A. Giordano, E. 

Chastre, C. Gespach, Enterocyte differentiation is compatible with SV40 large T expression and loss of p53 

function in human colonic Caco-2 cells. Status of the pRb1 and pRb2 tumor suppressor gene products, 

FEBS Lett. 406 (1997) 234–242. 

[43] W.A. Faubion, M.E. Guicciardi, H. Miyoshi, S.F. Bronk, P.J. Roberts, P.A. Svingen, S.H. Kaufmann, G.J. 

Gores, Toxic bile acids induce rodent hepatocyte apoptosis via direct activation of Fas. J. Clin. Invest. 103 

(1999) 137– 145. 

[44] J.A. Houghton, F.G. Harwood, A.A. Gibson, D.M. Tillman, The fas signaling pathway is functional in 

colon carcinoma cells and induces apoptosis, Clin. Cancer Res. 3 (1997) 2205–2209. 


