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Abstract: 

Environmental regulations that grandfather existing plants, by not holding them to the same strict 
standards as new plants, may have the unintended consequence of retarding new investment. If 
new plants are cleaner, then this effect may increase pollution in the short run. I develop a 
dynamic model of a facility’s decisions over scrapping and abatement, which depend on capital 
depreciation, profitability shocks, and environmental policy. Using data from fossil fuel fired 
boilers at electric power plants, I estimate the structural parameters of the model and assess the 
impact of grandfathering in the Clean Air Act on sulfur dioxide emissions. Counterfactual policy 
simulations show that an increase in the stringency of performance standards would have led to a 
decrease in investment in new boilers. However, this does not lead to increased emissions, since 
there is less investment in dirtier coal boilers as compared to relatively cleaner oil or natural gas 
boilers. 

Keywords: Clean Air Act | Sulfur dioxide | Method of simulated moments | Vintage-
differentiated regulation | Electric power plants 

Article:  

Introduction 

Regulations often contain grandfathering provisions, where facilities already built or workers 
already employed at the time of passage are not subject to the new standard. While the reasoning 
for such provisions may relate to fairness, such as a wish not to “change the rules in the middle 
of the game,” they often come with unintended consequences. By giving different incentives to 
grandfathered agents and non-grandfathered agents, the regulations can lead to unexpected 
outcomes. The federal Clean Air Act (CAA) and its New Source Performance Standards (NSPS) 
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for major sources of air pollution are examples. By mandating that any new pollution sources 
(including power plants) meet strict pollution control standards, the rule may keep older facilities 
from scrapping and being replaced by newer ones. If older facilities are dirtier than newer ones, 
then this may create a “perverse” effect that increases pollution. 

The purpose of this paper is to determine how grandfathering provisions in environmental policy 
affect both investment in and pollution from fossil fuel fired electric power plants. I develop a 
dynamic model of each facility’s decisions about investment in new capital and choice of 
abatement techniques. These decisions are affected by the relative profitability of new capital, 
the costs of upgrading, and environmental regulations. Newer capital pollutes less, and hence 
stricter environmental policy without grandfathering provides an extra incentive to upgrade. Yet 
stricter environmental policy with grandfathering may provide a disincentive to upgrade. Using 
data from 1985 to 1995 on U.S. electric power plants, I estimate the parameters of the model. 
Finally, I simulate the estimated model to determine how grandfathering in the CAA impacts 
emissions and investment. 

An early examination of a grandfathered environmental policy is [1], who looks not at stationary 
air pollution sources but at automobiles. He finds that stricter vehicle emissions standards, which 
apply only to new cars and hence effectively grandfather old cars, lead to a perverse short-term 
increase in emissions.[2] find that environmental regulations increase the age of capital but not 
the level of emissions for electric utilities, while [3] finds no significant difference in capital 
vintage between states with and without grandfather provisions for manufacturing plants in 
commercial printing and paint manufacturing, [4, 5] also find perverse effects of grandfathering 
in the electric power industry and in manufacturing plants in New York state, respectively. 
Finally, [6] find that grandfathering in the CAA decreases the capital expenditures of coal-fired 
power plants but has no effect on their operating costs, fuel efficiency, or emissions. 

In this paper’s model, firms face a discrete choice of whether or not to scrap and upgrade their 
capital. This model contains two important extensions to discrete choice scrapping models to 
accommodate this industry and this policy. First, since the regulations are grandfathered, the 
model contains an additional state variable representing a facility’s grandfathered status. 
Investment affects this status (if you scrap your plant, you lose its grandfathered status), so the 
policy impacts dynamic investment decisions. Second, instead of just considering a single binary 
decision (scrap or do not scrap), the model includes decisions over pollution abatement and plant 
type. These are important avenues for plants to respond to environmental policy, and without 
including them as options, plants are constrained in how they can react to policy changes. 

This paper also extends the literature that studies the effects of grandfathering provisions in the 
CAA, including NSPS and New Source Review (NSR), by developing the first model that is 
structural and dynamic. A structural model allows for simulation of countless counterfactual 
policy scenarios. A dynamic model makes explicit the dynamic programming problem that 
utilities are solving, and it captures the effect that the cross-sectional distribution of plant 



vintages and grandfathering statuses has on the impact of the policy. Although this paper uses the 
model to retrospectively analyze the CAA’s effect on the electricity industry through the mid-
1990s, the model can be adapted to study and make forecasts about other industries and other 
policy environments in which grandfathering plays a role. 

Grandfathering, or vintage-differentiated regulation, appears frequently outside of the CAA, both 
in environmental and non-environmental laws. Corporate average fuel economy (CAFE) 
standards and emissions rate standards apply only to new cars, so old cars are effectively 
grandfathered. The Clean Water Act and the Safe Drinking Water Act both set differential 
standards for water treatment plants based on when they went into operation. Furthermore, 
grandfathering is by no means absent from current policy debate.1Fire sprinklers are required in 
new buildings, but existing buildings are often not required to have them unless they are 
renovated. Zoning ordinances generally do not apply to businesses or homes built before the 
ordinance went into effect. Given the prevalence of grandfathering, it is important to study its 
effects, including any potentially perverse or counterproductive effects. 

I find a significant effect of grandfathering in environmental regulations on both emissions and 
investment. Using the model to simulate the CAA and counterfactuals, I find that if 
grandfathering provisions were eliminated in 1985, emissions from power plants would be 60% 
less than the baseline level in 1995. This is because a large majority of plants in the cross section 
are grandfathered, and eliminating grandfathering amounts to a large policy shift. If the 
stringency of the grandfathered CAA standards was weakened in 1985, investment in new 
boilers would rise and yet emissions would also rise. The rise in new investment occurs for the 
same reason that strengthening a grandfathered standard can reduce new investment. When the 
grandfathered regulations are weakened, grandfathered plants lose some value in their 
grandfathered status, and hence their disincentive to invest falls. However, emissions do not fall, 
because the increased new investment occurs in relatively dirty coal boilers as opposed to 
relatively clean oil or natural gas boilers. Thus, the structural model that includes choice of boiler 
type helps explain results from previous studies, including [2] and [6], finding that grandfathered 
regulations inhibit new plant investment but have no perverse effect on emissions. 

Model 

I develop a model to estimate the impact of grandfathering in the Clean Air Act of 1970 on the 
electric power generating industry.2 The CAA is an appropriate policy to consider because of its 
explicit grandfathering of existing sources. Section 111 of the law gave EPA the power to set 
binding emissions standards on all new sources of emissions—the New Source Performance 
Standards. Regulation of existing plants was left up to the states and is likely to be less strict. The 
plants were grandfathered for reasons of efficiency (it was costlier to retrofit existing plants than 
new ones), equity (it was unfair to “change the rules of the game mid-stream” by regulating 
existing plants), and politics (potential facilities has less clout than existing ones).3 



I consider the behavior of a profit-maximizing single-plant firm. This model could be 
generalized to multi-plant firms, but the assumption that each individual plant’s maximization 
decision is independent leads to identical results. The basis of this model is the discrete choice 
scrapping model [7], extended in two important ways. First, in addition to the choice of 
scrapping, plants can choose abatement investment to reduce emissions and can choose among 
different types of capital. Second, plants can be grandfathered from environmental policy. 

Five nonrandom and two random state variables describe the plant at each period. First, the 
plant’s age is v. Second, a plant can be of two types: coal (b=1) or non-coal (b=0). 4 Third, a coal 
plant can have a flue gas desulfurization unit, or “scrubber,” to reduce its emissions of sulfur 
dioxide (SO2). If so, then s=1, otherwises=0. Fourth, a plant can be grandfathered from 
environmental policy. Let u=0 if the plant is grandfathered and exempt from the policy, and u=1 
if not. Fifth, a plant faces a price differential, p, between the prices it faces for using low-sulfur 
coal and high-sulfur coal. 5 Finally, two random state variables, A and B, represent a productivity 
shock and a shock to emissions, respectively. The state variables are summarized in the first 
column of Table 1. 

Table 1. Summary of variables in dynamic model. 

State variables Choice variables Transition process 

v—Boiler age, integer z—Replacement decision, discrete (z=0 
if no replacement,z=1 if replaced with a 
coal boiler, z=2 if replaced with non-coal 
boiler) 

v′=v+1 if z=0 

  v′=1 if z>0 

b—Boiler type, binary (b=1 for 
coal,b=0 for non-coal) 

x—Build scrubber decision, binary b′=b if z=0 

  b′=1 if z=1 

  b′=0 if z=2 

s—Scrubber present, binary c—Use clean coal decision, binary s′=1 if (s=1 
and z=0) or (x=1) 

  s′=0 otherwise 

u—Grandfathered status, binary 
(u=0 if grandfathered, u=1 if not 

m—Intensity of use decision, continuous u′=u if z=0u′=1 
if z>0 



State variables Choice variables Transition process 

grandfathered) 

p—Price differential between 
high- and low-sulfur coal, 
continuous 

 p′ determined 
exogenously 

A—productivity shock, 
continuous 

 A′ determined 
exogenously 

B—emissions shock, continuous  B′ determined 
exogenously 

 

Each plant in each period faces decisions over four variables. First, it makes a discrete decision 
whether or not to update its production technology, that is, whether or not to scrap and replace 
with a new plant of age 1.6 If updating, it can be replaced with a coal or a non-coal plant. Let the 
decision variable z=0 if no replacement,=1 if replaced with a coal plant, and=2 if replaced with a 
non-coal plant. The second decision faced by plants is whether to add a scrubber. This decision is 
possible only for coal plants. Let x=1 if the plant chooses to add a scrubber and x=0 otherwise. 
Third, also available for coal plants only, is the opportunity to use low-sulfur “clean” coal as a 
means of reducing SO2 emissions. Let c=1 if the plant chooses to use clean coal and 0 otherwise. 
Fourth, the plant faces a continuous decision over the intensity of use. This is measured by the 
amount of fuel input, m, used by the plant in a period. The second column of Table 1 summarizes 
the four choice variables. 

A plant’s single-period profit function is given by 

Af(v,m,b)−Fc1(z=1)−Fnc1(z=2)−xG−pcm−τue/m. 

The first term, Af(v,m,b), represents the reduced-form revenue of a plant of age v, operating at 
intensitym, and of type b. Here A is a multiplicative productivity shock. By reduced-form 
revenue I mean that the utilities are implicitly optimizing given supply and demand curves and 
whatever regulations they face, including rate of return regulations on electricity prices. Given 
the conditions under which these utilities operate, some function exists that they are trying to 
optimize, and it varies by capital age, type, and intensity of use. The next two terms capture fixed 
adjustment costs, Fc and Fnc, that are faced only if a plant is replaced with a coal plant (z=1) or a 
non-coal plant (z=2), respectively. G is the fixed cost of adding a scrubber, paid only when a 
scrubber is added (x=1). The per-unit cost differential between clean and dirty coal is p, so that 
when clean coal is used (c=1), p is paid per unit of coal m. 7 This price differential p is allowed to 
vary by plant and over time. 

http://www.sciencedirect.com/science/article/pii/S0095069610000793#fn7


The last term in the expression for profit, –τue/m, represents the implicit costs of environmental 
policy. A plant’s emissions is given by e. Environmental policy is modeled by a virtual tax 
rate τ levied on emissions intensity e/m. The tax payment τe/m is paid only if the plant is not 
grandfathered, that is, u=1. If the plant is grandfathered, then u=0 and no environmental tax is 
paid. 

The NSPS are performance standards, not an emissions tax, though here they are modeled as a 
tax. These standards create an implicit price on emissions, and utilities respond to the NSPS the 
same as they would respond to a tax ([8], [9] and [10]). Importantly, the tax is levied not on the 
quantity of emissions e but on the emissions intensity, e/m. The NSPS have always been targeted 
towards emissions intensity rather than absolute emissions. For example, the NSPS for new coal 
plants set in the 1970 CAA was 1.2 lbs of SO2 per MMbtu of heat input. By modeling the NSPS 
as a tax on emissions intensity, plants cannot limit the impact of this tax by reducing operating 
intensity only while maintaining the same ratio of emissions to fuel input. Thus, it more closely 
matches the regulatory environment these firms faced; no evidence exists suggesting that plants 
met their NSPS through reduced operating intensity. 

Different specifications of the policy have different implications for firm behavior. Many 
observers have claimed that regulations rewritten in 1978 effectively required the installation of 
scrubbers on all new coal plants. In a sensitivity analysis, I consider policy modeled as a tax on 
the level of emissions rather than emissions intensity. 

Emissions, like revenue, are a function of plant age, type, and intensity of use, but also of 
abatement activity: e=Bg(v,c,s,m,b), where B is a random shock to emissions. Like a total factor 
productivity shock, this shock could arise from an innovation in abatement technology. It is 
expected that older plants emit more, plants using scrubbers or clean coal emit less, and a higher 
operating intensity leads to higher emissions; all of these properties are found in the data. 

The final column of Table 1 describes the transition process between states. If a plant of 
age v updates, its age next period (v′) becomes 1. If it does not update its next-period age 
is v+1. The plant type next period b′ is determined by the replacement decision. The indicator 
for the presence of a scrubber next period, s′, equals one if either a scrubber was present this 
period and the plant was not replaced or a scrubber was built this period. If a plant updates, then 
it loses its grandfathering status so u′=1. The last three state variables, p,A, and B, are 
determined exogenously by an as-yet unspecified Markov process, so that the expectation of next 
periods’ values of these variables is taken as a function of this process. 

Plants maximize discounted expected lifetime profits over an infinite  



horizon  where E0 is the expectation operator at t=0, β is the discount factor, 
and yt is profit in period t. The plant’s choice can thus be written as a dynamic programming 
problem: 

 

where the variables are determined according to the transition processes described in Table 1. 
Even when parameterizing the revenue function, the emissions function, and the process 
governing the evolution of the shocks and p, this model cannot be solved analytically. Thus, the 
model is solved numerically through value function iteration (VFI). 8 

While this model does not explicitly incorporate technological growth, it can be derived from a 
model with an exogenous growth rate that is factored out to make the problem stationary [11]. 
Suppose that the productivity of a new plant increases at the rate κ each year. Older capital is 
less productive both absolutely, because of real depreciation at rate, say, δr, and relatively, 
because of the improved technology of newer capital. Thus “capital depreciation” in this 
model encompasses both physical depreciation (δr) and obsolescence (κ). This model cannot 
separately identify δr from κ, but it includes both. Since I am concerned with analyzing policy 
by simulating counterfactuals, this does not present a problem so long as these two forms of 
depreciation remain constant under the various counterfactuals. Thus, the model does not 
accommodate endogenous technological growth, which may be induced by changes in 
environmental policy. A counterfactual strengthened environmental policy may induce additional 
growth in abatement technology, and thus the counterfactual simulation here will overstate 
emissions from that counterfactual. So, long-run predictions of the model should be viewed with 
more caution than short- or medium-run predictions, where technological change cannot yet 
respond to policy. 

While federal emissions regulations have been grandfathered since the 1970 CAA, Title IV of 
the 1990 Clean Air Act Amendments (CAAA) established an emissions trading program for 
SO2 emissions among electric utilities beginning in 1995 [12]. Because of this regulatory change, 
I do not estimate the model on data after 1995. This policy was not grandfathered; plants were 
required to participate regardless of their vintage. Therefore, the analysis here should be viewed 
as a retrospective analysis of NSPS for SO2, since those standards exist alongside the permit 
trading market. The extent to which plants respond in anticipation of a forthcoming policy (for 
example, by installing a scrubber in 1992 so that their emissions can be reduced when the policy 
takes effect in 1995) can be captured in this model by incorporating dynamic policy.9 Another 



potential concern is the restructuring of electricity markets, though I suspect that this will be 
unimportant during my sample period (1985–1995), since restructuring did not begin until the 
late 1990s.10 

A different grandfathered policy created in the 1977 CAAA, New Source Review (NSR), applies 
to both new plants and existing plants making major modifications. Thus, a unit could be built 
before 1970 and hence be grandfathered from NSPS, but have made major modifications that 
triggered NSR and hence be subject to federal environmental regulations. As identified by 
Bushnell and Wolfram [6], this additional aspect of NSR creates a second distortion from 
grandfathering: in addition to keeping older plants from scrapping, it keeps them from making 
modifications that might trigger NSR, although these modifications may increase productivity 
and reduce emissions. The second distortion is unlikely to actually apply to any units in my 
sample period (1985–1995), since it has been widely documented that there had been no 
vigorous enforcement of this aspect of NSR prior to the late 1990s.11 

Data 

The econometric analysis is done at the boiler level as opposed to the plant level. Each fossil fuel 
fired power plant can have multiple boilers that could be of different vintages, have different 
grandfathered statuses, and use different abatement strategies. The data come from three sources. 
The Energy Information Administration’s Form EIA-767 contains information on each boiler, 
including age, intensity of use, and abatement choices, and is used to calculate the emissions 
function for coal boilers and the moments for the structural estimation. Form EIA-423 contains 
plant-level fuel prices for both clean and dirty coal as well as oil and natural gas. The EPA’s 
Emissions and Generation Resource Integrated Database (eGRID) provides emissions data used 
in estimating the emissions function for non-coal boilers. 

Emissions data are not available for the years studied (1985–1995). To estimate the emissions 
function, I use two different strategies, one for coal boilers and one for non-coal boilers. For coal 
boilers, information from the Form EIA-767 is used to calculate each boiler’s annual emissions 
from its amount of coal used, average sulfur content of coal, and abatement technology. An 
engineering equation is used to calculate emissions from these data on a mass-balance 
basis.12 Given these emissions estimates (in tons of SO2), the emissions function g(v,m,s,c,b) for 
coal boilers is estimated using OLS. These emissions calculations are only available for coal 
boilers. For non-coal boilers, I use measured emissions data from eGRID. 13 While measured 
emissions data ought to be preferable to those calculated from an engineering equation, the 
measured eGRID data are only available from 1996 to 2000, after the sample period. 14 

Data on boiler age, total fuel input, use of clean coal and scrubbers, and grandfathering status 
come from the EIA-767 data files.15 These data cover steam-electric plants (including fossil fuel 
fired plants) with a generator nameplate rating of 10 or more megawatts. I use data from 1985 to 
1995, which contain approximately 1800 boilers per year. 



Boiler age is calculated from the inservice date reported, or the year in which the boiler went into 
operation. The grandfathered status of a boiler, that is, whether it is subject to NSPS, is reported 
in the data set.16 In 1985, 87% of boilers are grandfathered from NSPS. Fig. 1 presents a 
histogram of the vintage distribution of all operating boilers in the 1985 EIA-767 data file, 
categorized according to grandfathered status. While virtually all boilers built before 1970 are 
grandfathered, and all built after 1978 are not, during the intermediate period variation exists in 
grandfathering status even for boilers of the same age. 

 

Fig. 1. Data source is EIA-767, 1985. The x- axis is the age of the boiler; the y-axis is the number 
of boilers of that age. Grandfathered boilers are those not subject to any New Source 
Performance Standard. 

The EIA-767 data also provide information on abatement activity: scrubbers and clean coal. In 
1985, 15% of coal boilers used a scrubber. The data include the average sulfur content of the 
coal used, which can be converted to pounds of sulfur per MMbtu of heat input. Though this 
value is continuous, for simplicity I model the choice of coal type as a binary variable; it is either 
clean (low-sulfur) or dirty (high-sulfur). I choose the cut-off point between the two coal types to 
be 1.2 lb/MMbtu [12], the value of the performance standard for new boilers set in the 1970 
CAA. Based on this definition, 34% of coal boilers use clean coal in 1985. 

This differential is clearly due to heterogeneous price differentials between clean and dirty coal. 
The EIA-423 data contain plant-level information on total quantity and average price of annual 
coal consumption.17 The data are given for the price actually paid for the coal actually received 
by the plants. A single plant can use coal from multiple sources, some of which may be high-



sulfur and some of which may be low-sulfur. For plants that use both types of coal, I am able to 
construct an average price paid for each of the two types. Many plants, though, only use one type 
of coal. For these plants, I use the state average of coal prices for the other type of coal. For some 
states, no plants use a particular type of coal, and I use the average price for the census region of 
a particular type of coal for plants in these states. For those plants with multiple boilers, I assign 
each boiler the same plant-level value of coal prices. 

Coal price data are available for coal plants only. Since the model allows for non-coal boilers to 
scrap and be replaced by coal boilers, I also want coal prices available to these boilers. Thus for 
non-coal boilers I assign coal prices based on the state or regional average coal prices. 

The last item obtained from the EIA-767 data set is the annual amount of fuel input used by a 
boiler. For each fuel, I convert the fuel amounts into the amount of heat energy (in MMbtus). 
While 58% of all boilers are coal in 1985, they represent over 90% of the total amount of fuel 
input. Most of the remaining 10% is from gas boilers. 

In addition to the differential fuel use by type of boiler, the age of the boiler also makes a large 
difference in the operating intensity. Boilers built after 1970 are used much more intensively. 
The grandfathered boilers represent a large fraction of the industry by number (85%) but only a 
small fraction by fuel use (7%). Boiler efficiency is declining in age, averaging 86.4% for the 
youngest decile of boilers and 84.0% for the oldest decile. 

I choose two sets of moments to identify the parameters in the structural portion of the 
estimation. First, I use a set of moments from each year in the sample period. Table 2 includes 
moments from the first year, 1985, although they will not be used in the estimation, since the 
1985 data are used to set the initial distribution of boilers. Also, I omit 1995, the last year for 
which I have data, since one of the moments requires data from the following year to construct it. 
For each year in 1985–1994, I calculate the fraction of boilers grandfathered, the fraction that 
uses coal, and of the coal boilers, the fraction that has a scrubber and the fraction that uses clean 
coal. These annual data moments are meant to identify changes in the industry over the different 
years and match how boiler characteristics change with time. Second, I aggregate the boilers 
from all ten years of data and divide them into five categories based on their age and 
grandfathered status: less than or equal to 15 years old, between 16 and 25 years old and 
grandfathered, between 16 and 25 years old and not grandfathered, between 26 and 35 years old, 
and greater than 35 years old. The age group between 16 and 25 years old is divided into 
grandfathered and non-grandfathered boilers since it is those ages of boilers for which there is 
variation in the grandfathered status. For each category, I evaluate the fraction of boilers 
scrapping, the fraction of boilers that uses coal, of the coal boilers, the fraction with scrubbers 
and the fraction using clean coal, and the fraction of boilers in each category. These categorical 
data moments are used to identify the impact of both age and policy on boiler operating 
decisions. 



Table 2. Data moments used in MSM estimation. 

Annual moments 

 

 1985 1986 1987 1988 1989 

Fraction 
grandfathered 

0.8736018 0.8659091 0.8609502 0.859366 0.8571429 

Fraction coal 
boilers 

0.5755079 0.5869809 0.6020702 0.604611 0.6030006 

Fraction of coal 
with scrubber 

0.1354962 0.1453155 0.1451767 0.1458532 0.1492823 

Fraction of coal 
using clean coal 

0.3435115 0.3518164 0.3906399 0.4566254 0.3617225 

  1990 1991 1992 1993 1994 

Fraction 
grandfathered 

0.8564946 0.8510029 0.8485023 0.8463768 0.8435092 

Fraction coal 
boilers 

0.5996563 0.6087963 0.6101104 0.6153396 0.6230586 

Fraction of coal 
with scrubber 

0.1509074 0.1625475 0.1685714 0.1712655 0.1783317 

Fraction of coal 
using clean coal 

0.3352436 0.3612167 0.3314286 0.3644148 0.4074784 

 Categorical moments 

 Age≤15 15<Age≤25 and 
grandfathered 

15<Age≤25 and 
not 
grandfathered 

25<Age≤35 Age>35 

Fraction 
scrapping 

0.0052647 0.0091001 0.0233645 0.0233645 0.0705286 



Annual moments 

 

Fraction of coal 
with scrubber 

0.4264165 0.1077819 0.5617978 0.0556046 0.0382166 

Fraction of coal 
using clean coal 

0.5283297 0.3499792 0.511236 0.3415711 0.2845011 

Fraction coal 
boilers 

0.7680136 0.5695662 0.5615142 0.5695375 0.5675839 

Fraction in 
category 

0.1630 0.1927 0.0144 0.2726 0.3573 

Notes: Data source is EIA-767, 1985–1995. 

The top half of Table 2 displays the annual moments. The fraction of boilers grandfathered 
declines slightly over the period from 87% to 84%. Of coal boilers, the fraction using scrubbers 
increases from 14% to 18%. The percentage using clean coal goes from 34% in 1985 to 41% in 
1994, but not monotonically; this fraction peaks at 46% in 1988. The fraction of all boilers that 
are coal boilers increases slightly from 58% to 62%. 

The second panel of Table 2 displays the categorical moments. While the annual moments do not 
differ significantly from year to year, the categorical moments do strikingly differ by category. 
The first row shows that the fraction of generators scrapping is very low. The percentages in the 
first four categories are all less than three percent, and they show that a very small number of 
boilers are scrapping. For example, the value of 0.5265% for boilers younger than 15 years old 
comes from 18 boilers scrapping out of 3419 in that age category over the ten years. The patterns 
in the data are conformable to intuition. One would expect that grandfathered boilers are less 
likely to scrap than non-grandfathered boilers, and that is just what is seen comparing the second 
and third categories. As boilers get older, they are more likely to scrap; 7% of boilers older than 
35 years old scrap. 

The moments related to abatement activity are consistent with boilers responding to 
grandfathered policy. Grandfathered units are less likely to have a scrubber or to use clean coal. 
The rate at which boilers adopt either of these abatement measures decreases with boiler age. 
The youngest boilers are more likely to be coal fired, but there is no difference in the fraction of 
coal boilers between the other age categories. About 35% of the boilers are more than 35 years 
old, while about 16% are younger than 16 years old. 

Estimation strategy and results 



The model is estimated in three steps. First, the emissions function g(v,m,s,c,b) is estimated with 
OLS, after imposing a functional form. This equation is an emissions production function; given 
the plant’s age, abatement equipment, type, and choice of operating intensity, a level of 
emissions will be produced. Second, I estimate the revenue function f(v,m,b) using panel data 
estimation allowing for boiler-specific effects and autocorrelated error terms. Finally, since it is 
impossible to estimate all of the parameters in this way, I estimate the rest of the parameters 
using the method of simulated moments (MSM) ( [13], [14],[15] and [16]). While all of the 
parameters could be estimated using MSM, estimating a subset of parameters using other 
methods when possible is preferable because it saves computational time and the identification 
of those parameters is more straightforward. 

Because the emissions function, g, is a function of plant type, b, I estimate a separate emissions 
function for coal and non-coal plants. The estimating equation for coal boilers is 

 

The age of the boiler, the amount of fuel input (m), whether the boiler uses low-sulfur coal (lsc) 
and whether the boiler has a scrubber are all included, as is the interaction term between the last 
two abatement methods. The estimating equation for non-coal boilers is identical, save that 
the lsc and scrubber terms (and their interaction) are not included. I do not estimate the 
emissions shock B because I do not have actual emissions data and thus do not have to 
accommodate variation in the data. 

Results are presented in Table 3. The first four columns are the results for coal boilers from the 
calculated emissions data from 1985 to 1995. Unreported state and year dummies are included in 
all columns of Table 3 to account for unobserved heterogeneity in the regulatory environment at 
the state level, as well as trends in emissions picked up by the year effects. Older plants emit 
more, once controlling for total heat input and abatement activity. The elasticity of emissions 
with respect to age is about 0.13. Note that this is measuring both physical depreciation and 
technological obsolescence; older boilers are both absolutely and relatively dirtier. The use of 
scrubbers and the use of low-sulfur coal significantly decrease emissions, as expected, and the 
interaction term is positive (since a scrubber has less to “scrub” when low-sulfur coal is already 
being used). The elasticity of emissions with respect to heat input is almost exactly one. This 
suggests that emissions are linear in heat input, which is used in identifying the revenue function 
off the first-order condition.18 

Table 3. Emissions function estimation results. 

 Coal 

 

Non-coal 

 



 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 lnemis lnemisr
ate 

lnemisr
ate 

lnemisrat
e 

lnemisr
ate 

lnemis lnemis
rate 

lnemis
rate 

lnemisrat
e 

lnage 0.128***

(0.0102
) 

0.138***

(0.0085
0) 

0.165***

(0.0102
) 

0.0504***

(0.0166) 
0.297**

*(0.023
9) 

0.166 
(0.148) 

−0.189 
(0.136) 

0.438**

(0.190) 
0.0258 
(0.141) 

scrub
ber 

−1.308*

**(0.032
8) 

−1.306*

**(0.033
0) 

−1.239*

**(0.037
3) 

−1.213***

(0.0622) 
−1.458*

**(0.03
84) 

    

lsc −1.059*

**(0.009
61) 

−1.058*

**(0.009
58) 

−0.997*

**(0.012
0) 

−0.907***

(0.0129) 
−0.924*

**(0.01
69) 

    

lsc_sc
rubbe
r 

0.285***

(0.0435
) 

0.283***

(0.0435
) 

0.130***

(0.0494
) 

0.385***(
0.0826) 

0.680**

*(0.053
7) 

    

lnmm
btus 

0.994***

(0.0040
4) 

    1.207**

*(0.030
8) 

   

nonatt
ainme
nt 

  −0.0964
***(0.01
90) 

    −0.697 
(0.495) 

 

Coal–
gas 
ratio 

  −0.129 
(0.0972
) 

    −0.236 
(1.176) 

 

Coal–
oil 
ratio 

  −0.0700 
(0.0597
) 

    −0.125 
(1.824) 

 

Capac
ity 

   −1.7e−7*

**(3.03e−
08) 

    0.000226*

**(4.87e−
05) 

Heat 
rate 

   5.19e−07 
(5.25e−0
7) 

    −3.39e−7
***(9.74e−
08) 



 Coal 

 

Non-coal 

 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 lnemis lnemisr
ate 

lnemisr
ate 

lnemisrat
e 

lnemisr
ate 

lnemis lnemis
rate 

lnemis
rate 

lnemisrat
e 

Hours    −1.0e−5*

**(2.44e−
06) 

    6.5e−5***(
1.64e−05
) 

Const
ant 

−6.697*

**(0.089
2) 

−6.832*

**(0.033
3) 

−6.791*

**(0.057
8) 

−6.592***

(0.0665) 
−7.720*

**(0.09
30) 

−17.03
***(0.8
37) 

−13.57
***(0.6
02) 

−14.98
***(1.0
23) 

−14.45***

(0.624) 

Obser
vation
s 

10,837 10,837 6530 6209 5154 2940 2940 1446 2940 

R-
squar
ed 

0.937 0.806 0.819 0.722 0.734 0.719 0.646 0.579 0.650 

Notes: Coal emissions data in columns 1–4 are calculated based on EIA-767, 1985–1995. Coal 
emissions data in column 5 and non-coal emissions data in columns 6–9 are from eGrid, 1996–
2000. Columns 3 and 8 include only boilers in states that had not begun electricity market 
restructuring by 2000. The dependent variable is the log of tons of SO2 emissions or the log of 
tons of SO2 emissions per MMbtus heat input. All columns include unreported state and year 
fixed effects. Robust standard errors are in parentheses. 

***p<0.01. 

**p<0.05. 

The next column of Table 3 uses the log of the emissions rate, in tons of SO2 per MMbtu heat 
input, as the dependent variable. This estimating equation is 

 

The emissions rate is also higher for older boilers, with an elasticity of about 0.14. Scrubbers and 
low-sulfur coal have the expected effects. 



Columns 3–5 consider alternate specifications for coal boilers. In each of these columns the 
dependent variable is the log of the emissions rate. Column 3 includes an indicator variable equal 
to one if the boiler’s county is not in attainment of the Clean Air Act’s air quality standards for 
SO2. It also includes a measure of relative prices of three fossil fuel inputs, averaged at the state-
year level from EIA-423 data. Column 3 also removes all observations from states that had 
begun electricity restructuring by 2000, to eliminate any potential bias from utilities’ anticipatory 
behavior of restructuring. Boilers in nonattainment counties have a significantly lower emissions 
rate, and fuel prices do not enter significantly. The coefficient on the log of boiler age is 0.17, 
only slightly higher than in column 2. 

Column 4 includes three additional variables related to boiler technology or intensity. These are 
the capacity of the boiler’s plant (in megawatts), the heat rate of the boiler’s plant (in 
BTU/kilowatt-hours), and the number of hours the boiler is in operation over the year. Plant 
capacity and hours of operation enter negatively, while heat rate is insignificant. The coefficient 
on the log of boiler age is still significantly positive, but falls to 0.05. Lastly for coal boilers, 
column 5 performs the same regression as column 2 but uses the actual emissions data from 
eGrid (available only from 1996 to 2000) rather than the estimated emissions data from EIA-767 
(from 1985 to 1995). The coefficient on the log of boiler age is still significant but is larger than 
in column 2. 

The regression results for non-coal boilers are presented in columns 6–9 of Table 3. Column 6 
regresses the log of total emissions on the log of age and the log of total heat input, as well as 
unreported state and year fixed effects, and column 7’s dependent variable is the log of the 
emissions rate. Column 8 includes county-level attainment status, relative fuel prices, and omits 
states that began restructuring by 2000; column 9 includes capacity, heat rate, and hours. The 
non-coal regressions do not tell a consistent story. Only in column 8 is there a positive and 
significant coefficient on age (as expected). 

This unusual result is not worrisome for two reasons. First, the contribution of non-coal boilers 
to SO2emissions is small; coal plants are responsible for 97% of total SO2 emissions from this 
sector. If the non-coal regression results in this stage are off, it will not substantially affect the 
simulations. Second, the absence of a positive elasticity between age and emissions for non-coal 
plants is possible. Technological innovation in abatement of SO2 emissions from power plants 
has focused mainly on coal plants because of their dominance in this pollutant. Since the age 
elasticities in Table 3 include the effect of obsolescence from technological growth, the lack of a 
positive age effect may signal this lack of technological growth in this area. I use the point 
estimates from columns 2 and 7 in the MSM estimation and simulations. 

In the second stage of the estimation, I exploit the fact that two of the choice variables are chosen 
in a static, not dynamic, problem. Both m, the operating intensity, and c, the sulfur content of 
coal input, affect the single-period profit function but no future state variables and thus not the 
next period value function. 19 The optimal decision over these two variables can be made by just 



looking at the single-period profit function. In the case of m, a continuous choice variable, a first-
order condition arises 

 

The first term in the equation represents the marginal benefit to a plant of an additional unit of 
fuel input from increased revenue. The middle term represents the costs from the environmental 
policy as measured by a marginal increase in the virtual emissions tax paid, paid only by non-
grandfathered plants (u=1). The last term is the marginal cost of using clean rather than dirty 
coal. 

The middle term of the first-order condition disappears when the emissions function g is linear in 
fuel input m, as in the emissions estimates above. This simplifies the moment condition. It 
depends on the parameterization of f, defined as follows: 

 

This parameterization captures an important dimension of the behavior of these boilers: older 
plants are used less intensively. Under this parameterization, this behavior of plants can be 
captured when d1c andd1nc are negative. 20 

Given this parameterization, the first-order condition for fuel use for non-coal boilers 
is d0nc+d1ncv−m=0, while the first-order condition for coal boilers is d0c+d1cv−m−pc=0. Notice 
that the emissions function for coal plants has the additional variable c for low-sulfur coal use. A 
coal boiler optimizes over whether to use clean or dirty coal (c=1 or 0), but after doing so the 
boiler chooses a level of fuel input which satisfies the first-order condition above, for either 
value of c. 

The reduced-form revenue function abstracts from supply and demand curves and from the 
strategic behavior of firms operating under regulators. Because markets as well as regulations 
differ by time and location, I include in the revenue function estimation state- and year-fixed 
effects. 

These results are presented in Table 4. Columns 1–4 present the results for non-coal boilers, and 
columns 5–8 present the results for coal boilers. Columns 1 and 5 are simply OLS regressions 
with standard errors clustered at the boiler level; the significant negative coefficient on age 
indicates that older boilers are used less intensively. For coal boilers, the coefficient on pc is 
negative, as expected, though only significantly so in columns 6 and 7. 

Table 4. Revenue function estimation results. 



 Non-coal 

 

Coal 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Age −1.8e+06
***(256,3
24) 

−891,911
***(223,8
68) 

−920,688
***(233,2
85) 

−777,48
9***(130,
785) 

−9.31e+6
***(496,7
21) 

−6.74e+6*

**(1.599e
+06) 

−6.72e+6*

**(1.603e
+06) 

−3.59e+6
***(226,5
40) 

Coal
–gas 
ratio 

  7.018e+0
6 
(7.495e+
06) 

   1.502e+0
7 
(1.204e+0
7) 

 

Coal
–oil 
ratio 

  −9.773e+
06 
(1.044e+
07) 

   −2.10e+7*

**(6.154e
+06) 

 

p×c     −124,463 
(115,035
) 

−95,069**

*(36,650) 
−92,138**

(36,725) 
−43,314 
(35,468) 

Cons
tant 

9.31e+7**

*(8.937e+
06) 

7.07e+7**

*(7.240e+
06) 

7.61e+7**

*(7.926e+
06) 

2.657e+
07 
(5.880e+
07) 

4.91e+8**

*(1.442e+
07) 

3.80e+8**

*(2.724e+
07) 

3.87e+8**

*(2.756e+
07) 

3.30e+8**

*(1.040e+
08) 

Obse
rvati
ons 

3096 3096 2907 3096 3760 3760 3760 3760 

R-
squar
ed 

0.347 0.334 0.322 0.331 0.527 0.510 0.510 0.419 

Num
ber 
of 
boile
rs 

– 720 704 720 – 975 975 975 

Esti
mati

OLS RE RE RE OLS RE RE RE 



 Non-coal 

 

Coal 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

on 

Error 
struct
ure 

Clustered 
at boiler 

Clustered 
at boiler 

Clustered 
at boiler 

AR(1) Clustered 
at boiler 

Clustered 
at boiler 

Clustered 
at boiler 

AR(1) 

Notes: Data source is EIA-767, 1985–1995. Relative fuel price ratio data are from EIA-423, 
1985–1995. Robust standard errors in parentheses. 

***p<0.01. 

**p<0.05. 

Columns 2 and 6 use a random-effects specification, to pick up an unobserved boiler-specific 
effect. These specifications result in a coefficient on age that is still significantly negative but has 
a smaller magnitude, by about a factor of one-half for non-coal boilers and a factor of two-thirds 
for coal boilers. Columns 3 and 7 keep the random-effects specification and also add state-year 
relative fuel prices as regressors. Given that many boilers and plants belong to a utility’s fleet 
and are dispatched on a least-cost basis, relative fuel prices may matter. The coefficient on age 
does not change after inclusion of the price variables. Finally, in columns 4 and 8 the error is 
allowed to be autocorrelated according to an AR(1) process; again the coefficient of interest is 
largely unchanged. The preferred specification for the parameter values comes from columns 4 
and 8, and those estimated parameters are used in the simulations. 

Finally, in the third stage I use MSM to estimate the remaining parameters of the model. This 
method is described in more detail in the Appendix. These parameters include the fixed costs for 
building a coal and non-coal boiler, Fc and Fnc, and the fixed cost of building a scrubber G. The 
implicit tax on emissions intensity τ is also estimated in this stage. Ideally, this could be 
calibrated based on the policy. Because the complex CAA is modeled simply as an emissions 
tax, where the value of the tax is the shadow price on pollution intensity that the policy creates, 
this value is unknown. Hence, it falls into the parameter set to be estimated. The productivity 
shock A is idiosyncratic. 21 It is assumed to be multiplicative and distributed log-normally with 
median one. That fixes its first parameter, μ, to zero, while σA2 is estimated. The shock is 
persistent and evolves according to a Markov process. A boiler has probability P of having the 
same productivity shock in the next period. With probability 1–P, the next-period productivity 
shock is randomly chosen from the log-normal distribution. 



The annual discount rate β is set at 0.95. 22 This leaves six parameters to be estimated with 
MSM: [Fc, Fnc,G, τ, σA2, P]. The data moments that are used in MSM are described in the 
following section and listed in Table 2. 

The MSM estimation is based on an explicitly dynamic structural model, which differs from 
estimation techniques used in previous literature.23 As a result, the mechanisms by which policy 
affects firm behavior can be better understood. 

As with any estimation but in particular with structural estimation, one must pay careful attention 
to identification of the model’s parameters. In the MSM estimation stage, I identify the implicit 
tax on emissions using variation in the behavior of grandfathered versus non-grandfathered 
facilities. Grandfathering is based on age, so it is difficult to separate an age effect from a 
grandfathering effect. I do so by exploiting the fact that of the facilities aged 15–25 years, some 
are grandfathered and some are not. It is unfortunately impossible to determine the source of this 
variation from the data. The age is based on the date the plant went online, but the grandfathering 
status for some plants may have been partly based on the date of construction. For some 
facilities, the grandfathering status could be determined by the utilities bargaining with 
regulators to adjust the official online date. 

Clearly, grandfathering status was not randomly assigned; the question is how or if this 
determination creates a bias. Suppose that of the plants within that age group, those with the 
highest expected abatement costs were more likely to be grandfathered, say as a result of 
lobbying. The higher use of abatement among non-grandfathered plants is thus partly due to the 
unobservable difference in abatement costs, though the estimation strategy attributes it to the 
policy. Thus the estimated implicit tax created by the policy may be biased upwards. 
Alternatively, if the selection into grandfathering based on abatement costs went the other way, 
then there is a downward bias on the estimate. It is not possible to measure the direction or 
magnitude of this potential bias. 

The results from the MSM estimation are presented in Table 5. Each point estimate is presented 
with its estimated standard error, and all parameters have small standard errors save σA2. The 
fixed cost parameters are normalized to the boiler’s profit function y=Af(v,m,b)–Fc1(z=1)–
Fnc1(z=2)–τue/m–xG–pcm. The relative magnitudes of the three fixed cost parameters Fc, Fnc, 
and G give information about construction costs. The cost of a new coal boiler is 20 times as 
large as that of a new non-coal boiler; coal boilers and plants tend to be of much larger capacity, 
and this is represented both in the profit function of the boiler and in the fixed cost of building 
one. The cost of adding a scrubber to a coal boiler is about one-thirtieth the cost of the boiler 
itself, which is consistent with engineering estimates of production costs. 

Table 5. Structural parameter estimation results. 



Fc 1803.34 (1.61) 

Fnc 84.95 (0.60) 

G 61.41 (0.45) 

τ 2989.77 (258.62) 

σA2 0.1104 (0.4851) 

P 0.8727 (0.1207) 

Notes: Standard errors are in parentheses. Estimates come from simulated method of moments, 
matching moments from Table 2. 

Like the fixed costs, the policy parameter τ can be interpreted in relation to the profit function. 
The emissions function g gives the emissions intensity in tons of SO2 per MMbtu fuel input as a 
function of age and abatement technology. The implicit tax τ is levied on emissions intensity. 
The amount that is paid by a boiler in the virtual tax (if it is non-grandfathered) is the product of 
the estimated value of τ and its emissions intensity. For example, a coal boiler aged 20, with no 
scrubber and not using low-sulfur coal, has an estimated emissions intensity of 0.0016 tons 
SO2 per MMbtu fuel input. At the estimated tax value of about 3000, this equates to a tax 
payment of 4.8. Although this has no units, it can again be compared to the other parameters. 
Consider the cost of a scrubber, 61.41. This is about 13 times the annual payment in implicit 
emissions tax for that particular boiler. If that same boiler had a scrubber, its emissions intensity 
would be 0.000442, and its tax payment would be reduced to 1.3. Thus, utilities are balancing 
long-run projections of emissions tax payments with scrubber costs to decide when to add a 
scrubber. 

That τ significantly differs from zero implies a rejection of the null hypothesis that 
grandfathering has no effect on the behavior of plants. Since the implicit tax is paid only by non-
grandfathered boilers, a positive τmeans that these boilers respond to an incentive to reduce 
their emissions that the grandfathered boilers do not. 

The parameter σA2 gives information about the variance of the random productivity shock. The 
estimated value of the parameter, about 0.1104, corresponds to a variance of 
0.4588. 24 Finally, P represents the persistence in the idiosyncratic component of the productivity 
shock. If P=0, then no persistence exists, and if P=1 then the idiosyncratic component is 
constant. Here, P is 0.87. A generator has an 87% chance of staying in its current productivity 
state and a 13% chance of taking a random draw from the distribution of shocks; the 
idiosyncratic element of revenue is quite persistent. 



Counterfactual simulations 

The estimated parameters can be used to simulate the effects of policy changes. Specifically, I 
consider the impact of grandfathering in the CAA by comparing a baseline simulation using the 
estimated parameters to three counterfactual simulations. In all counterfactuals I present the 
simulation results for ten periods after the policy change, though the simulations come from an 
infinite horizon maximization model. In the first counterfactual, I keep all parameters the same, 
except that I eliminate any grandfathering provisions starting in the first year. Next, I set the 
implicit tax rate on pollution equal to 90% of its estimated value to simulate what would have 
happened had the stringency of the grandfathered CAA regulations been reduced by 10% in 
1985. Finally, the third counterfactual increases the implicit tax rate on pollution by 10%, to 
represent the CAA regulations increasing in strength in 1985. The counterfactual that eliminates 
grandfathering is chosen to quantify the effects of grandfathering itself in the policy, rather than 
the effects of the stringency of the policy. The two other counterfactuals, which keep 
grandfathering but alter the stringency of the policy for non-grandfathered units, are chosen to 
investigate how policy changes that maintain grandfathering will affect outcomes. 

For the eleven periods presented of the three counterfactual simulations, Fig. 2 presents the level 
of emissions. The line “No Grand.” represents the simulation that eliminates grandfathering. The 
line “Tax Cut” represents the simulation with the tax rate reduced. The line “Tax Hike” 
represents the simulation with an implicit tax rate increased by 10%.25 The emissions levels are 
presented as proportional deviations from the baseline simulation. For example, in 1995 
emissions under the “Tax Hike” counterfactual are 90% of emissions under the baseline scenario. 

 

Fig. 2. Results are from counterfactual simulations as described in the text. Values presented are 
proportional deviations from baseline simulation. 

Consider first the “No Grand.” simulation, which shows the largest difference from the baseline; 
emissions drop sharply. Since older boilers are no longer grandfathered under this counterfactual 

http://www.sciencedirect.com/science/article/pii/S0095069610000793


policy simulation, those boilers now face an implicit emissions tax. Many of these older boilers 
now choose to adjust their capital to a new vintage to reduce their emissions, especially since 
they have delayed productivity-enhancing upgrades to avoid that tax. In the next year, many 
more boilers are newer and cleaner. Once the law is changed, the rate of investment is much 
higher due to the shock in the policy. Though the number scrapping quickly gets closer to the 
baseline levels, the initial increase in brand new boilers reduces emissions throughout the 
simulation period. The magnitude of the change in both emissions and investment is large; in the 
first year after the policy change 350 additional boilers scrap, and by 1995 emissions are less 
than 40% of baseline levels. These large outcomes are from a very large policy change: since 
87% of boilers are initially grandfathered, eliminating grandfathering amounts to a massive 
policy shift. The result I find is slightly smaller in magnitude than that of [17], who find that if 
all plants were subject to NSR standards (that is, if grandfathering were eliminated), then 
emissions of SO2 and NOX would fall by 75%. 

The results from the “Tax Cut” and “Tax Hike” counterfactuals follow intuition. When the 
implicit tax on emissions intensity is increased by 10%, emissions fall, and ten years after the 
policy change emissions are 10% lower than the baseline. A 10% decrease in the value of the 
implicit tax sees a rise in emissions, though of a smaller magnitude. Emissions in 1995 are only 
4% higher than in the baseline. 

The effects of the counterfactual simulations on emissions can be compared with scrapping 
simulation results. Under the “Tax Cut” scenario, a larger number of boilers initially scrap and 
replace, while under the “Tax Hike” scenario, a smaller number do. Thus in the “Tax Hike” 
scenario, boilers are older on average than in the baseline scenario. Since older boilers are on 
average dirtier, one would expect that in the presence of an increase in the virtual emissions tax, 
boilers would scrap at a higher rate to avoid paying this increased tax, and likewise after a 
decrease in the implicit tax rate fewer boilers would scrap. However, here the effects of 
grandfathering come into play: grandfathered boilers have a valuable status that is lost when they 
scrap and replace. Increasing the tax rate on emissions increases the value of this status, and 
makes grandfathered boilers less likely to scrap than in the baseline simulation. 

This effect of grandfathering on scrapping rates can be seen in Fig. 3. This presents the 
simulation results for scrapping for the “Tax Cut” and “Tax Hike” counterfactuals, separately for 
boilers that are initially grandfathered and for those that are initially non-grandfathered. The left-
hand axis is the difference between the number of boilers scrapped in the counterfactual and the 
number scrapped in the baseline. For example, in the first year of the “Tax Cut” counterfactual 
about 50 more grandfathered boilers are scrapped than in the baseline. The top panel of Fig. 3, 
which shows the results for boilers that are initially grandfathered, shows the results of changes 
in the virtual tax rate on scrapping outcomes. When the tax is increased, fewer of these 
grandfathered boilers scrap, since they have even more incentive to hold on to their valuable 
grandfathered status. On the other hand, the bottom panel of Fig. 3, which shows the results for 
boilers that are initially non-grandfathered, shows no such behavior. After a tax increase, more 



boilers choose to scrap to newer, cleaner plants, to avoid paying the higher tax on emissions 
intensity. After a tax decrease the scrapping rate is slightly lower. On the whole, the effect from 
grandfathered boilers dominates the effect from non-grandfathered boilers, in large part because 
such a high fraction of boilers (87%) are grandfathered. Fig. 3 also demonstrates how 
grandfathering creates a schism in the reaction of boilers to policy changes, with grandfathered 
and non-grandfathered boilers responding in opposite directions. The reduction in new 
investment comes only from grandfathered boilers, and hence the magnitude and even the 
existence of a reduction in investment overall depends on the fraction of the fleet in the cross-
sectional distribution that is grandfathered at the onset of the policy change. 

 

Fig. 3. Results are from counterfactual simulations as described in the text. Values presented are 
absolute deviations from baseline simulation. The top panel presents simulations results for 
boilers that are initially grandfathered. The bottom panel presents the results for boilers that are 
initially non-grandfathered. 

Comparing the results for emissions in Fig. 2 with those for scrapping in Fig. 3 presents a puzzle. 
No evidence of a perverse result for emissions is found, yet a perverse result for scrapping is 



found. These results do not conform to some previous theoretical and empirical findings of a 
perverse effect of grandfathered policies for automobile emissions standards [1]. 

If an increase in the tax rate leads to less scrapping and hence older boilers than in the baseline, 
why is not the resulting level of emissions from these older, dirtier boilers higher than in the 
baseline? The choice between coal and non-coal boilers is affected by the tax rate. Since non-
coal boilers emit much less SO2, replacing scrapped boilers with non-coal boilers instead of coal 
boilers reduces emissions, even with no difference in the overall scrapping rate. 

The simulated counterfactual policy scenarios affect the choice of scrapped boilers between 
replacing with coal and non-coal units. The top panel of Fig. 4 presents the number of boilers 
scrapping and replacing with coal boilers, and the bottom panel presents the number scrapping 
and replacing with non-coal boilers. Each panel presents the absolute difference of the number 
scrapping from the baseline for each counterfactual. The first panel shows that the difference 
between the scrapping rates in the “Tax Cut” and “Tax Hike” counterfactuals is wholly 
accounted for by the different number of boilers replacing with coal boilers. In the “Tax Cut” 
counterfactual, 50 more boilers are scrapped and replaced with new coal boilers compared to the 
baseline, whereas in the “Tax Hike” scenario 40 fewer boilers are scrapped and replaced with 
new coal boilers. The difference between these two counterfactuals and the baseline in the 
number of boilers scrapping and replacing with non-coal boilers is almost zero. The apparent 
contradiction between the outcome for scrapping rates and the outcome for emissions is thus 
resolved: although a tax decrease results in a higher scrapping rate and hence younger boilers 
compared to the baseline scenario, the additional boilers that do scrap are replaced by coal rather 
than non-coal boilers. These boilers have a higher SO2 emissions rate, and hence emissions 
decreases after the tax decrease relative to the baseline. The opposite holds for a tax increase. 
This explanation also likely accounts for the results from prior literature, here explained through 
the dynamic model. 



 

Fig. 4. Results are from counterfactual simulations as described in the text. Values presented are 
absolute deviations from baseline simulation. Top panel presents the number of boilers scrapping 
and replacing with coal boilers; the bottom panel presents the number scrapping and replacing 
with non-coal boilers. 

The results for the “No Grand.” counterfactual simulation show quite a different pattern. The top 
panel of Fig. 4 shows that the number of boilers scrapping and being replaced with coal boilers is 
no different between the baseline and “No Grand.” By contrast, the bottom panel shows that a 
much larger number of boilers scrap and are replaced with non-coal boilers in this 
counterfactual. Thus, the change in the overall scrapping rate is almost entirely driven by this 
different rate of replacement with non-coal boilers. Because these boilers emit much less 
SO2 than coal boilers, emissions under this counterfactual are much lower than the baseline, as 
shown in Fig. 2. Finally, Fig. 5 summarizes the differences in types of boilers across the three 
counterfactual simulations by presenting the total number of coal boilers in each simulated year, 
as compared to the number in the baseline scenario. Because of the different scrapping and 
replacement rates described above, the number of coal boilers in the economy is highest under 



the “Tax Cut” simulation and lowest under the “No Grand.” simulation. Comparing this figure 
to Fig. 2 demonstrates that the simulated changes in emissions are largely driven by boiler type. 

 

Fig. 5. Results are from counterfactual simulations as described in the text. Values presented are 
absolute deviations from baseline simulation. 

How realistic is the assumption that utilities are able the change the boiler type from coal to non-
coal or vice versa, and by how much does this assumption affect the results? Plants are often 
located near a primary fuel source or access point: virtually all coal plants are located near 
railway lines or at the mouth of a mine, and natural gas plants have laterals that connect to major 
pipelines. It should be noted, though, that replacement in this model does not require that the 
boiler be located in the exact same location. A utility could scrap its coal plant located on a 
railway line and build a gas plant located near a pipeline. However, it may be that utilities have 
less freedom to change plant type than the model here provides them, for geographic or other 
constraints (perhaps a utility operates in an area with no access to any natural gas pipelines). 
Counterfactual results in a model where utilities do not have the option of changing the boiler 
type (coal boilers can be replaced only with coal) are almost identical to those of the original 
model: eliminating grandfathering reduces emissions by about 55% compared to the baseline. 
However, the mechanism by which this emissions reduction occurs is different. In the original 
model, emissions dropped because many coal boilers were replaced with non-coal boilers. That 
is not possible here; instead, many more coal boilers add scrubbers, bringing down total 
emissions. By the tenth year of the simulation, the number of scrubbers increases by a factor of 
four in the no grandfathering counterfactual compared to the baseline. 

Finally, I examine how sensitive the results are to the choice of modeling the policy as an 
implicit tax on emissions intensity. I estimate an alternative model where the tax is levied on 
emissions level rather than emissions intensity. In the “Tax Cut” and “Tax Hike” counterfactual 
simulations of this model, the results are nearly identical to the base model. A tax cut results in 
more replacement of older plants and higher emissions; a tax hike has the opposite effect. In 



contrast, while the “No Grand.” results are qualitatively similar, the magnitude of the difference 
between the counterfactual and the baseline simulation is much less pronounced. Removal of 
grandfathering results in a drop in emissions compared to the baseline, but only by about 5%, 
compared to the 60% drop in this counterfactual in the original model. This difference stems 
from the fact that utilities now have the option of meeting the pollution policy through reduced 
operating intensity, an option that was not possible when the policy was based on emissions 
intensity. In the “No Grand.” counterfactual, boilers that were grandfathered and are newly 
subject to the implicit tax can choose to reduce operating intensity rather than have to scrap and 
replace. They do so, and therefore there the reduction in emissions in much less pronounced. As 
argued earlier, this modeling choice is a poorer representation of actual policy than the implicit 
tax on emissions intensity, since NSPS have always been based on intensity. 

Conclusion 

This paper investigates how environmental regulations impact plant investment decisions and 
plant emissions. Regulations that are grandfathered can have short-term perverse effects. When 
grandfathered regulations are strengthened, grandfathered units may avoid being subject to the 
regulation by withholding investment in newer capital. If newer capital is less polluting, the 
reduction in new investment may increase emissions. Also, when grandfathered regulations are 
weakened, emissions can decrease in the short run, as grandfathered plants lose their valuable 
status that keeps them from investing. For electric power plants subject to the Clean Air Act, I 
find that removing grandfathering from the regulations in 1985 leads to a 60% decrease in 
emissions by 1995. A marginal change in the stringency of grandfathered regulations leads to a 
perverse effect on investment but not on emissions. This is because utilities can choose boilers of 
different emissions intensities. 

Future research could extend the model to answer other questions. Here, investment only occurs 
on the extensive margin: plants make a discrete choice decision about whether or not to scrap. 
One could allow for a continuous level of investment. The policy here is constant and without 
uncertainty. Adding uncertainty allows for a policy that changes over time. Alternative policies 
can also be considered within this model. For example, to counteract the investment disincentive 
created by grandfathering, regulators could provide direct subsidies to investment. Finally, the 
fixed cost parameters Fc, Fnc, and G are constant over time and firms in the model. Capital 
investment costs are likely to change and react to macroeconomics conditions [18], so these 
adjustment cost variables may be modeled as endogenous. 

When modeling the impacts of policy that contain grandfathering provisions, whether in 
environmental regulations or elsewhere, it is important to consider how these provisions affect 
the behavior of regulated firms or individuals and the potential for unintended consequences. A 
dynamic structural model as presented here can capture the regulatory impacts and the incentives 
created by grandfathering. The cross-sectional distribution of plant ages and grandfathering 
statuses, the relative profitability and emissions intensity of capital of different vintage, and the 



ability of plants to invest in abatement measures or choose among different types of capital all 
can affect how regulated entities respond to these policies. 
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